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Abstract: Parametric devices based on four-wave mixing in fibers
perform many signal-processing functions required by optical communi-
cation systems. In these devices, strong pumps drive weak signal and idler
sidebands, which can have one or two polarization components, and one or
many frequency components. The evolution of these components (modes) is
governed by a system of coupled-mode equations. Schmidt decompositions
of the associated transfer matrices determine the natural input and output
mode vectors of such systems, and facilitate the optimization of device
performance. In this paper, the basic properties of Schmidt decompositions
are derived from first principles and are illustrated by two simple examples
(one- and two-mode parametric amplification). In a forthcoming paper, sev-
eral nontrivial examples relevant to current research (including four-mode
parametric amplification) will be discussed.
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OCIS codes: (060.2320) Fiber optics amplifiers and oscillators; (190.4380) Nonlinear optics,
four-wave mixing; (270.6570) Squeezed states.

References and links
1. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2007).
2. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li and P. O. Hedekvist, “Fiber-based optical parametric amplifiers

and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
3. J. H. Lee, “All-optical signal processing devices based on holey fiber,” IEICE Trans. Electron. E88-C, 327–334

(2005).
4. S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,”

IEICE Trans. Electron. E88-C, 859–869 (2005).
5. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,”

Laser Photon. Rev. 1, 231–248 (2007).
6. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18, 670–680 (2012).
7. R. Loudon, The Quantum Theory of Light, 3rd Ed. (Oxford, 2000).
8. M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, “All-fiber photon-pair source for quantum communica-

tions,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).
9. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth and J. G. Rarity, “Nonclassical 2-photon

interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009).
10. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley and I. A. Walmsley, “Tailored photon-pair gener-

ation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
11. K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron.

28, 883–894 (1992).
12. C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic and A. V. Kanaev, “Four-wave mixing in fibers with

random birefringence,” Opt. Express 12, 2033–2055 (2004).

#175921 - $15.00 USD Received 11 Sep 2012; revised 5 Dec 2012; accepted 30 Dec 2012; published 14 Jan 2013
(C) 2013 OSA 28 January 2013 / Vol. 21,  No. 2 / OPTICS EXPRESS  1374



13. M. E. Marhic, K. K. Y. Wong and L. G. Kazovsky, “Fiber optic parametric amplifiers with lineary or circularly
polarized waves,” J. Opt. Soc. Am. B 20, 2425–2433 (2003).

14. C. J. McKinstrie, H. Kogelnik and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 14,
8516–8534 (2006).

15. G. W. Stewart, “On the early history of the singular value decomposition,” SIAM Rev. 35, 551–566 (1993).
16. G. J. Gbur, Mathematical Methods for Optical Physics and Engineering (Cambridge, 2011), Sec. 5.4.
17. A. K. Ekert and P. L. Knight, “Relationship between semiclassical and quantum-mechanical input-output theories

of optical response,” Phys. Rev. A 43, 3934–3938 (1991).
18. S. L. Braunstein, “Squeezing as an irreducible resource,” Phys. Rev. A 71, 055801 (2005).
19. H. P. Yuen, “Two-photon states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
20. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
21. C. K. Law, I. A. Walmsley and J. H. Eberly, “Continuous frequency entanglement: Effective finite Hilbert space

and entropy control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
22. W. P. Grice, A. B. U’Ren and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton

states,” Phys. Rev. A 64, 063815 (2001).
23. M. G. Raymer, S. J. van Enk, C. J. McKinstrie and H. J. McGuinness, “Interference of two photons of different

color,” Opt. Commun. 283, 747–752 (2010).
24. C. J. McKinstrie, L. Mejling, M. G. Raymer and K. Rottwitt, “Quantum-state-preserving optical pulse reshaping

and multiplexing by four-wave mixing in fibers,” Phys. Rev. A 85, 053829 (2012).
25. C. J. McKinstrie, M. Yu, M. G. Raymer and S. Radic, “Quantum noise properties of parametric processes,” Opt.

Express 13, 4986–5012 (2005).
26. Z. Tong, C. Lundström, P. A. Andrekson, M. Karlsson and A. Bogris, “Ultralow noise, broadband phase-sensitive

optical amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 18, 1016–1032 (2012).
27. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Euro. Trans. Telecom. 10, 585–595 (1999).
28. C. J. McKinstrie and N. Alic, “Information efficiencies of parametric devices,” J. Sel. Top. Quantum Electron.

18, 794–811 (2012).
29. C. J. McKinstrie, “Unitary and singular value decompositions of parametric processes in fibers,” Opt. Commun.

282, 583–593 (2009).
30. D. A. Edwards, J. D. Fehribach, R. O. Moore and C. J. McKinstrie, “An application of matrix theory to the

evolution of coupled modes,” to appear in SIAM Rev.
31. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).
32. K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-

sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14, 648–658 (2008).
33. J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements—Part I. General energy relations,”

Proc. IRE 44, 904–913 (1956).
34. M. T. Weiss, “Quantum derivation of energy relations analogous to those for nonlinear reactances,” Proc. IRE

45, 1012–1013 (1957).
35. A. I. Lvovsky, W. Wasilewski and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into inde-

pendent squeezers,” J. Mod. Opt. 54, 721–733 (2007).
36. C. J. McKinstrie, M. G. Raymer and H. J. McGuinness, “Spatial-temporal evolution of asymmetrically-pumped

phase conjugation I: General formalism,” Alcatel-Lucent ITD-09-48636Q, available upon request.
37. H. Goldstein, Classical Mechanics, 2nd Ed. (Addison-Wesley, 1980).
38. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd Ed. (Springer, 2000).
39. D. H. Sattinger and O. L. Weaver, Lie groups and Algebras with Applications to Physics, Geometry and Mechan-

ics (Springer, 1986).
40. M. Hamermesh, Group Theory and its Application to Physical Problems (Dover, 1989).
41. H. Takenaka, “A unified formalism for polarization optics by using group theory,” Nou. Rev. Opt. 4, 37–41

(1973).
42. Y. S. Kim and M. E. Noz, “Illustrative examples of the symplectic group,” Am. J. Phys. 51, 368–375 (1983).
43. A. Mufti, H. A. Schmitt and M. Sargent, “Finite-dimensional matrix representations as calculational tools in

quantum optics,” Am. J. Phys. 61, 729–733 (1993).
44. C. C. Gerry, “Remarks on the use of group theory in quantum optics,” Opt. Express 8, 76–85 (2001).

1. Introduction

Parametric devices based on four-wave mixing (FWM) in fibers can amplify, frequency con-
vert, phase conjugate, regenerate and sample optical signals in classical communication sys-
tems [1–6]. They can also generate photon pairs for quantum information experiments [7–10].
Three different types of FWM are illustrated in Fig. 1. Modulation interaction (MI) is the de-
generate process in which two photons from the same pump are destroyed, and signal and
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idler (sideband) photons are created (2πp → πs + πi, where π j represents a photon with fre-
quency ω j). Inverse MI is the degenerate process in which two photons from different pumps
are destroyed and two signal photons are created (πp +πq → 2πs). Phase conjugation (PC) is
the nondegenerate process in which two different pump photons are destroyed and two different
sideband photons are created (πp+πq → πs+πi). The polarization properties of these processes
are reviewed in [11–14].

s p i

(a)

p s q

(b)

p q is

(c)

s i qp

(d)

Fig. 1. Frequency diagrams for (a) modulation interaction, (b) inverse modulation interac-
tion, and (c) outer-band and (d) inner-band phase conjugation. Long arrows denote pumps
(p and q), whereas short arrows denote sidebands (s and i). Downward arrows denote modes
that lose photons, whereas upward arrows denote modes that gain photons.

Parametric interactions of weak sidebands, driven by strong pumps, are governed by coupled-
mode equations (CMEs) of the form

dzX = AX +BX∗, (1)

where z is distance, dz = d/dz, X = [x j] is the vector of sideband amplitudes (modes), A = [α jk]
and B = [β jk] are coefficient matrices, and ∗ denotes a complex conjugate. The entries of the
amplitude vector could be the amplitudes of distinct monochromatic sidebands (continuous
waves), or different frequency components of multichromatic sidebands (pulses), with one or
two polarization components. For uniform fibers (media) the coupling coefficients are con-
stants, whereas for nonuniform media they vary with distance. Because Eq. (1) is linear in the
amplitude vector and its conjugate, the (explicit or implicit) solution of Eq. (1) can be written
in the input–output (IO) form

X(z) = M(z)X(0)+N(z)X∗(0), (2)

where M = [μ jk] and N = [ν jk] are transfer (Green) matrices.
For the aforementioned one- and two-mode interactions (scalar MI and PC of continuous

waves), it is easy to solve the CMEs and interpret the IO relations. However, for multiple-
mode interactions, the CMEs and IO relations are complicated and two related questions arise:
Under what conditions can one solve the CMEs explicitly and how should one interpret the IO
relations physically?

Recall that every complex matrix M has the singular value (Schmidt) decomposition M =
V DU†, where U and V are unitary and D is diagonal [15, 16]. The columns of U are the eigen-
vectors of M†M, the columns of V are the eigenvectors of MM†, and the entries of D are the
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(common) non-negative eigenvalues of M†M and MM†. In the context of parametric interac-
tions, the laws of Hamiltonian mechanics impose constraints on the transfer matrices M and
N, which ensure that they have the simultaneous (related) decompositions M = V DμU† and
N =V DνUt , where Dμ = diag(μ j), Dν = diag(ν j) and their entries (Schmidt coefficients) sat-
isfy the auxiliary equations μ2

j −ν2
j = 1 [17, 18]. Hence, Eq. (2) can be rewritten in the form

X(z) =V DμU†X(0)+V DνUtX∗(0), (3)

where U , V , Dμ and Dν depend implicitly on z. It follows from Eq. (3) that the columns of
U define input (Schmidt) mode vectors, the columns of V define output vectors, and the mode
amplitudes x̄ j(0) and x̄ j(z), which are the components of X relative to the input and output
Schmidt bases, respectively, satisfy the one-mode squeezing equations

x̄ j(z) = μ j(z)x̄ j(0)+ν j(z)x̄
∗
j(0). (4)

Equations (3) and (4) are remarkable. They imply that every parametric process, no matter
how complicated, can be decomposed into independent squeezing processes, the properties of
which are known (in-phase signal quadratures are stretched, whereas out-of-phase quadratures
are squeezed) [7,19,20]. This decomposition is the answer to the second of the aforementioned
questions. The first question is harder to answer, but in a forthcoming paper it will be shown
that the (known) form of the decomposition sometimes provides guidance that facilitates the
solution of the CMEs.

The simultaneous Schmidt decomposition is more than an elegant mathematical result. De-
termining the Schmidt modes and coefficients of a parametric process, and the device based
upon it, facilitates the optimization of device performance. For example, in photon pair gener-
ation by pulsed pumps, the Schmidt modes are the (temporal) wave-packets of the signal and
idler photons, and the squares of the Schmidt coefficients are the probabilities with which pho-
ton pairs are produced [21,22]. If one designs the system so that only one coefficient is nonzero,
the output state is pure, as required for a variety of quantum information experiments. In pho-
ton frequency conversion by pulsed pumps, the Schmidt modes are the natural input and output
wave-packets of the signal and idler photons, and the squares of the Schmidt coefficients are the
conversion probabilities [23, 24]. One can optimize two-photon interference (or single-photon
conversion) experiments by designing the system so that at least one squared coefficient is 0.5
(or 1.0). It is well known that one-mode squeezing and stretching processes dilate the coherent
and incoherent parts of input signals by the same amounts. The former processes are of interest
in quantum optics, because the out-of-phase quadratures have smaller fluctuations than vacuum
quadratures [19, 20], whereas the latter are of interest in optical communications, because they
can amplify in-phase signals without degrading their signal-to-noise ratios [25, 26]. To mini-
mize the effects of noise in a communication system, one should encode information in the
Schmidt modes of the system (superpositions of frequency or polarization components), not
the physical modes (individual components). Encoding information in this way also maximizes
the information capacity of the system [27,28].

This paper is organized as follows: In Sec. 2, one- and two-mode parametric amplification
are analyzed in detail. The transfer matrices for these processes are determined explicitly by
solving the CMEs analytically. These matrices are shown to have several interesting and useful
properties, which are not accidental. In Sec. 3, the Schmidt decomposition theorem is proved
constructively (from first principles) and the aforementioned properties are established. Previ-
ous derivations of these results were based on the laws of quantum optics [17, 18], in which
context they are standard [21–24]. In contrast, the present derivation is based solely on the laws
of classical mechanics, which are less fundamental, but sufficient. Readers who are interested
in Schmidt decompositions and their applications can learn about them easily, unburdened by
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the complexities of quantum optics. In Sec. 4 the specific results derived in Sec. 3 are related to
general properties of Hamiltonian systems. Finally, in Sec. 5 the main results of this paper are
summarized.

Aspects of Schmidt decompositions were also discussed in [29, 30]. In these articles, the
mathematical properties of Schmidt decompositions, and the adjoint decompositions to which
they are related, were described in detail, and some simple examples (including one- and
two-mode amplification) were mentioned briefly. In this paper, the physical consequences of
Schmidt decompositions are emphasized, the aforementioned simple examples are discussed in
detail and key results are explained in the context of Hamiltonian dynamics. In a forthcoming
paper, new solutions of the CMEs are obtained and used to discuss several nontrivial examples
of current interest (including four-mode parametric amplification).

2. Simple examples of Schmidt decompositions

In this section, two simple parametric processes are considered, for which the Schmidt decom-
positions are easy to determine. These examples provide useful checks and illustrations of the
general results derived in the next section.

2.1. One-mode amplification

Consider a one-mode parametric process (inverse MI), which is governed by the equation

dzx = iδx+ iγx∗, (5)

where x is the mode amplitude, δ is the (real) mismatch coefficient and γ is the (complex)
coupling coefficient [31, 32]. Equation (5) depends linearly on x and x∗, so its solution can be
written in the input–output (IO) form

x(z) = μ(z)x(0)+ν(z)x∗(0). (6)

For the common case in which δ and γ are constants, the transfer (Green) functions

μ(z) = cos(kz)+ iδ sin(kz)/k, ν(z) = iγ sin(kz)/k, (7)

and the characteristic wavenumber k = (δ 2 − |γ|2)1/2. If coupling is stronger than mismatch
(|γ|> δ ), the system is unstable. The transfer functions (7) satisfy the auxiliary equation

|μ(z)|2 −|ν(z)|2 = 1. (8)

They also have the interesting properties

μ(−z) = μ∗(z), ν(−z) =−ν(z). (9)

Furthermore, if γ is real, then ν∗(z) =−ν(z). These properties are not accidental.
Because the transfer functions usually have different phases, some analysis is required to

determine the consequences of Eq. (6). Let μ = |μ |eiφμ and ν = |ν |eiφν , and define the sum and
difference phases φs = (φμ + φν)/2 and φd = (φν − φμ)/2, respectively. Then Eq. (6) can be
rewritten in the form

x(z) = v|μ |u∗ x(0)+ v|ν |ux∗(0), (10)

where u = eiφd and v = eiφs are phase factors (input and output phase references). If the signal
phase φx = φu = φd , the terms on the right side of Eq. (10) add constructively: The signal is said
to be in-phase and is amplified (stretched) by the factor |μ |+ |ν |. Conversely, if φx = φd +π/2,
the terms on the right side of Eq. (10) add destructively: The signal is said to be out-of-phase
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and is attenuated (squeezed) by the factor |μ |+ |ν |= 1/(|μ |− |ν |). If one were to measure the
phase of the input signal relative to the aforementioned reference phase, one would say that the
real quadrature is amplified and the imaginary quadrature is attenuated. Notice that Eq. (10) has
the canonical form of Eq. (3).

It is instructive to formalize the method of solution. Equation (5) and its conjugate can be
written in the augmented matrix form

dzY = iLyY, (11)

where the 2×1 mode vector Y = [x,x∗]t and the 2×2 coefficient matrix

Ly =

[
δ γ

−γ∗ −δ

]
. (12)

Notice that Ly is specified by three real parameters (δ , γr and γi). The solution of Eq. (11) can
be written in the IO form

Y (z) = Ty(z)Y (0), (13)

where the transfer (Green) matrix

Ty(z) = exp(iLyz). (14)

Two important results follow from Eqs. (12) and (14). First, tr(Ly) = 0, so det(Ty) = 1, and
second, Ty(−z) = T−1

y (z). Because Eqs. (11) and (13) describe two copies of the same process
(the original and its conjugate), the transfer matrix can be written in the form

Ty(z) =

[
μ(z) ν(z)
ν∗(z) μ∗(z)

]
. (15)

Notice that det(Ty) = |μ |2−|ν |2 = 1, so Ty is defined by three real parameters (|ν |, φμ and φν ),
the same number that specified Ly. Notice also that

Ty(−z) =

[
μ(−z) ν(−z)
ν∗(−z) μ∗(−z)

]
= T−1

y (z) =

[
μ∗(z) −ν(z)
−ν∗(z) μ(z)

]
. (16)

Hence, μ(−z) = μ∗(z) and ν(−z) =−ν(z), as stated in Eqs. (9).
It was stated in Sec. 1 that the Schmidt vectors of Ty are the eigenvectors of T †

y Ty and TyT †
y ,

and the Schmidt coefficients are the square roots of the (common) eigenvalues of these matrices.
One can determine these eigensystems explicitly, or simply verify that

Ty(z) =
1

21/2

[
eiφs eiφs

e−iφs −e−iφs

][ |μ |+ |ν | 0
0 |μ |− |ν |

]
1

21/2

[
e−iφd eiφd

e−iφd −eiφd

]
, (17)

where φs and φd were defined before Eq. (10). All three matrices in Eq. (17) depend on z. The
evolution equation (11) governs x and x∗ simultaneously, so it is natural that the associated
transfer matrix describes stretching and squeezing simultaneously. Specifically, Eq. (17) shows
that the stretching condition is 2φx = 2φd , whereas the squeezing condition is 2φx = 2φd +π ,
and the associated Schmidt coefficients are reciprocals. The input Schmidt vectors, which are
the natural inputs for one-mode amplification, correspond to in-phase and out-of-phase signals.
These results are consistent with the discussion that follows Eq. (10).

Equations (15) and (16) show that there is a simple relation between the transfer matrix and
its inverse. The replacements μ → μ∗ and ν → −ν (which do not affect the moduli of the
transfer functions) are equivalent to φμ →−φμ and φν → φν +π and, ultimately, to eiφs → ieiφd
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and eiφd → ieiφs . By making these replacements in decomposition (17), one obtains the inverse
decomposition

T−1
y (z) =

1

21/2

[
ieiφd ieiφd

−ie−iφd ie−iφd

][ |μ |+ |ν | 0
0 |μ |− |ν |

]
1

21/2

[ −ie−iφs ieiφs

−ie−iφs −ieiφs

]
.

(18)
For reference, neither the forward decomposition (17), nor the backward decomposition (18),
is unique.

2.2. Two-mode amplification

Now consider a two-mode parametric process (MI or PC), which is governed by the CMEs

dzx1 = iδ1x1 + iγx∗2, dzx2 = iδ2x2 + iγx∗1, (19)

where x j is a mode amplitude and δ j is a (real) mismatch coefficient [1, 2]. We will refer to
mode 1 as the signal and mode 2 as the idler. The solutions of Eqs. (19) can be written in the
IO forms

x1(z) = μ11(z)x1(0)+ν12(z)x
∗
2(0), x2(z) = μ22(z)x2(0)+ν21(z)x

∗
1(0). (20)

If δ j and γ are constants, the two-mode transfer functions μ11(z) = e(z)μ(z), ν12(z) = e(z)ν(z),
μ22(z) = e∗(z)μ(z) and ν21(z) = e∗(z)ν(z), where the one-mode transfer functions μ(z) and
ν(z) are defined by Eqs. (7), with the mismatch coefficient δ replaced by (δ1 +δ2)/2, and the
phase factor e(z) = exp[i(δ1 −δ2)z/2] = exp(iφδ ). The two-mode transfer functions satisfy the
auxiliary equations

|μ11(z)|2 −|ν12(z)|2 = 1, |μ11(z)|2 −|ν21(z)|2 = 1, (21)

and have the interesting properties

μ11(−z) = μ∗
11(z), ν12(−z) =−ν21(z). (22)

Furthermore, if γ is real, then ν∗
12(z) = −ν21(z). One obtains additional constraints and prop-

erties by interchanging the subscripts 1 and 2. For the special case in which δ1 = δ2, solutions
(20) reduce to solution (6).

In the first of Eqs. (20), the transfer functions have the common factor e(z), which affects
the output signal phase, but does not affect the interference conditions. Hence, if φ1 + φ2 =
φν − φμ = 2φd , the terms in the first of Eqs. (20) add constructively: The sidebands are said
to be in-phase and (if their input amplitudes are equal) are stretched by the factor |μ |+ |ν |.
Conversely, if φ1 +φ2 = φν −φμ +π , the terms in the first of Eqs. (20) add destructively: The
sidebands are said to be out-of-phase and (if their input amplitudes are equal) are squeezed by
the factor |μ |+ |ν | = 1/(|μ | − |ν |). The same interference conditions apply to the second of
Eqs. (20).

Equations (19) can be written in the standard matrix form

dzX = iLxX , (23)

where the 2×1 mode vector X = [x1,x∗2]
t and the 2×2 coefficient matrix

Lx =

[
δ1 γ
−γ∗ −δ2

]
. (24)
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Notice that Lx is specified by four real parameters (δ1, δ2, γr and γi). Notice also that Eq. (23)
is closed (involves only x1 and x∗2), so no augmentation is necessary. (The equation for [x∗1,x2]

t

is simply the conjugate of the stated equation and contains no extra information.) The solution
of Eq. (23) can be written in the IO form

X(z) = Tx(z)X(0), (25)

where the transfer matrix
Tx(z) = exp(iLxz). (26)

The properties of Lx and Tx [Eqs. (24) and (26)] differ only slightly from those of Ly and Ty

[Eqs. (12) and (14)]. Because tr(Lx) = δ1−δ2 �= 0, det(Tx) = exp[i(δ1−δ2)z] �= 1. Nonetheless,
Tx(−z) = T−1(z).

It follows from Eqs. (20) that the transfer matrix

Tx(z) =

[
μ11(z) ν12(z)
ν∗

21(z) μ∗
22(z)

]
= e(z)

[
μ(z) ν(z)
ν∗(z) μ∗(z)

]
. (27)

Notice that Tx is determined by four real parameters (|ν |, φμ , φν and φδ ), the same number that
specified Lx. Notice also that

Tx(−z) = e(−z)

[
μ(−z) ν(−z)
ν∗(−z) μ∗(−z)

]
= T−1

x (z) = e∗(z)
[

μ∗(z) −ν(z)
−ν∗(z) μ(z)

]
. (28)

Hence, μ11(−z) = μ∗
11(z) and ν12(−z) =−ν21(z), as stated in Eqs. (22).

The only difference between Eqs. (15) and (27) is the phase factor e(z) = eiφδ , so it follows
from Eq. (17) that the forward transfer matrix has the Schmidt decomposition

Tx(z) =
eiφδ

21/2

[
eiφs eiφs

e−iφs −e−iφs

][ |μ |+ |ν | 0
0 |μ |− |ν |

]
1

21/2

[
e−iφd eiφd

e−iφd −eiφd

]
, (29)

where φs and φd were defined after Eq. (9), and φδ was defined after Eq. (20). Suppose that the
input sideband phases are measured relative to the reference phase φd . Then decomposition (29)
implies that the combination x1 + x∗2 is stretched, whereas the combination x1 − x∗2 is squeezed.
For stretching, the optimal phase condition is φ1 +φ2 = 0, whereas for squeezing, the optimal
phase condition is φ1 + φ2 = π . These results are consistent with the results stated after Eq.
(22). It follows from Eq. (18) that the backward transfer matrix has the Schmidt decomposition

T−1
x (z) =

1

21/2

[
ieiφd ieiφd

−ie−iφd ie−iφd

][ |μ |+ |ν | 0
0 |μ |− |ν |

]
e−iφδ

21/2

[ −ie−iφs ieiφs

−ie−iφs −ieiφs

]
.

(30)
One can derive Eq. (30) from Eq. (29) by making the replacements eiφs → ieiφd , eiφd → ieiφs and
eiφδ → e−iφδ .

It only remains to rewrite Eq. (25) in the canonical form of Eq. (3). By combining Eqs. (25)
and (27), one finds that the transfer matrices

M =

[
μ11 0
0 μ22

]
=

[
eμ 0
0 e∗μ

]
, (31)

N =

[
0 ν12

ν21 0

]
=

[
0 eν

e∗ν 0

]
. (32)
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These matrices have the Schmidt-like decompositions

M =
1

21/2

[
eiφδ ieiφδ

e−iφδ −ie−iφδ

][
μ 0
0 μ

]
1

21/2

[
1 1
−i i

]
, (33)

N =
1

21/2

[
eiφδ ieiφδ

e−iφδ −ie−iφδ

][
ν 0
0 ν

]
1

21/2

[
1 1
i −i

]
. (34)

It is the difference between the last matrices in Eqs. (33) and (34) that allows M to be diagonal
and N to be off-diagonal. Decompositions (33) and (34) are not quite in canonical form, because
the elements of the diagonal matrices (μ and ν) are complex. However, by generalizing the
derivation of Eq. (10), one obtains the Schmidt decompositions

M =
eiφs

21/2

[
eiφδ ieiφδ

e−iφδ −ie−iφδ

][ |μ | 0
0 |μ |

]
e−iφd

21/2

[
1 1
−i i

]
, (35)

N =
eiφs

21/2

[
eiφδ ieiφδ

e−iφδ −ie−iφδ

][ |ν | 0
0 |ν |

]
eiφd

21/2

[
1 1
i −i

]
. (36)

For reference, decompositions (29), (30), (35) and (36) are not unique.
At this point, it is instructive to introduce the superposition modes

x± = (x1 ± x2)/21/2. (37)

By combining Eqs. (19), one obtains the superposition-mode equations

dzx± = iδsx±+ iδdx∓± iγx∗±, (38)

where the mismatch coefficients δs = (δ1 +δ2)/2 and δd = (δ1 −δ2)/2. For the special case in
which δd = 0, the sum (+) and difference (−) modes evolve independently: Each mode under-
goes a one-mode parametric process that is governed by Eq. (4) or (6). Because the coupling
coefficients in Eqs. (38) differ by a factor of −1, the input phases required for stretching differ
by π/2, as do the input phases required for squeezing. This method of analysis fails for the
general case in which δd �= 0. However, the concept of a superposition mode remains useful.

Decompositions (35) and (36), which are valid for arbitrary values of δd , show that it is
appropriate to measure the input sideband phases relative to the (common) reference phase φd ,
as did decomposition (29). With this convention, the real quadrature of the sum mode and the
imaginary quadrature of the difference mode are stretched. It follows from Eq. (4), in which the
transfer functions are non-negative by construction, that the imaginary sum quadrature and the
real difference quadrature are squeezed.

In summary, the Schmidt decompositions (17), (29), (35) and (36) reveal automatically
the input-phase conditions required for stretching and squeezing [26]. The decompositions of
the augmented and standard transfer matrices feature stretched and squeezed modes, whereas
the decompositions of the canonical matrices feature only stretched modes (from which the
squeezed modes can be deduced). These decompositions also lead to the concept of super-
position modes: The Schmidt modes of a system are the natural superposition modes of that
system.

3. Basic theory of Schmidt decompositions

In the preceding section, the Schmidt decompositions of two simple parametric processes were
determined explicitly, and were shown to have interesting and useful properties. In this section,
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the basic properties of such decompositions are established for arbitrary parametric processes.
The evolution of a conservative system of m coupled modes is governed by the Hamiltonian

H = X†JX +X†KX∗+XtK∗X , (39)

where X is an m× 1 mode-amplitude vector, and J and K are m×m coefficient matrices. In
order for the first term on the right side of Eq. (39) to be real, J must be Hermitian. The sum of
the second and third terms is real by construction, and one can always write these terms in such
a way that K is symmetric. For reference, J is specified by (up to) m2 real parameters, whereas
K is specified by m(m+1) real parameters. By applying the (complex) Hamilton equation

dzX = i∂H/∂X† (40)

to Hamiltonian (39), one obtains the CME

dzX = iJX + iKX∗. (41)

(The complex Hamiltonian formalism is reviewed in the Appendix.) Equation (41) depends
linearly on X and X∗, so its solution can be written in the IO form

X(z) = M(z)X(0)+N(z)X∗(0), (42)

where M and N are m×m transfer matrices. [Equation (41) is just Eq. (1), with A = iJ and
B = iK, and Eq. (42) is just Eq. (2), repeated for convenience.] For the special case in which
m = 1, J = δ and K = γ , and Eq. (41) reduces to Eq. (5).

Alternatively, one can write Eq. (41) and its conjugate as the augmented matrix equation

dzY = iLyY, (43)

where the 2m×1 mode vector and 2m×2m coefficient matrix are

Y =

[
X
X∗

]
, Ly =

[
J K

−K∗ −J∗

]
, (44)

respectively. The solution of Eq. (43) can be written in the IO form

Y (z) = Ty(z)Y (0), (45)

where Ty is the 2m×2m transmission matrix. If Ly is a constant matrix, then

Ty(z) = exp(iLyz). (46)

Because Eq. (43) describes two copies of the same process (the original and its conjugate), the
m×m blocks of Ty are the transfer matrices M and N, which appeared in Eq. (42), and their
conjugates [see Eq. (15)]. Clearly, Eqs. (43)–(46) are generalizations of Eqs. (11)–(14).

In general, each component of X is coupled to every component of X and X∗. However, there
are many important systems in which a subset of the components of X (denoted by X1 and
called the signal vector) is coupled to itself and a different subset of X∗ (denoted by X∗

2 and
called the idler vector). Such systems, which include the MI- and PC-based systems described
in the introduction, are governed by the Hamiltonian

H = X†
1 J1X1 +X†

2 J2X2 +X†
1 KX∗

2 +Xt
1K∗X2, (47)

where J1, J2 and K are coefficient matrices. J1 and J2 are Hermitian, whereas K is arbitrary.
For definiteness, suppose that X1 and X2 are n× 1 vectors, where 2n ≤ m, so J1, J2 and K are
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n× n matrices. Then J1 and J2 are each specified by (up to) n2 real parameters, whereas K is
specified by 2n2 real parameters. By applying the Hamilton equations

dzXj = i∂H/∂X†
j (48)

to Hamiltonian (47), one obtains the CMEs

dzX1 = iJ1X1 + iKX∗
2 , dzX2 = iJ2X2 + iKtX∗

1 . (49)

The solutions of Eqs. (49) can be written in the IO forms

X1(z) = M11(z)X1(0)+N12(z)X
∗
2 (0), X2(z) = M22(z)X2(0)+N21(z)X

∗
1 (0), (50)

where M11, N12, M22 and N21 are n× n transfer matrices. For the special case in which n = 1,
J1 = δ1, J2 = δ2 and K = γ , and Eqs. (49) reduce to Eqs. (19).

Alternatively, Eqs. (49) can be rewritten as the standard matrix equation

dzX = iLxX , (51)

where the 2n×1 mode vector and 2n×2n coefficient matrix are

X =

[
X1

X∗
2

]
, Lx =

[
J1 K

−K† −J∗2

]
, (52)

respectively. The solution of Eq. (51) can be written in the IO form

X(z) = Tx(z)X(0), (53)

where Tx is the 2n×2n transmission matrix. If Lx is a constant matrix, then

Tx(z) = exp(iLxz). (54)

The n× n blocks of Tx are M11, N12, N∗
21 and M∗

22 [see Eq. (27)]. Clearly, Eqs. (51)–(54) are
generalizations of Eqs. (23)–(26).

Although the special system described by Eq. (51) is of lower order that the general system
described by Eq. (43), its mathematical structure is more complicated, because the diagonal
blocks of Lx are not necessarily equal and the off-diagonal blocks are not necessarily symmetric,
as are the corresponding blocks of Ly [Eqs. (44) and (52)]. Hence, we will derive the properties
of the special system and deduce the corresponding properties of the general system.

The special system is defined by Eqs. (51) and (52). Although Lx is not Hermitian, it is
closely related to Hermitian matrices. Define the (spin-like) matrix

S =

[
I 0
0 −I

]
. (55)

Then it is easy to show that Lx = SH1 = H2S, where H1 and H2 are different Hermitian matrices.
Because S = S† = S−1, the first of these equations implies that

SLx = L†
xS. (56)

Equation (56) has several important (mathematical and physical) consequences.
In two-mode amplification, the Manley-Rowe-Weiss (MRW) variable c = |x1|2 − |x2|2 is

conserved [33, 34]. The classical (quantal) interpretation of this result is that the difference
between the action (photon) fluxes of the signal and idler is conserved (sideband photons are
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produced in pairs). In the present context, the MRW variable C = X†
1 X1 −Xt

2X∗
2 = X†SX . By

combining this definition with Eq. (51), one finds that

dzC = iX†(SLx −L†
xS)X . (57)

Thus, Eq. (56) is both a necessary and sufficient condition for the conservation of action (pho-
ton) flux.

Starting from Eq. (56), one can prove by induction that

SLn
x = (L†

x)
nS. (58)

By combining Eqs. (54) and (58), one finds that

STx(−z) = T †
x (z)S. (59)

Equation (54) implies that
Tx(−z) = T−1

x (z), (60)

independent of the properties of Lx. By using this result, one can show that Eq. (59) is equivalent
to the equations T−1

x (z) = ST †
x (z)S and Tx(z)ST †

x (z) = S. The first equation provides a useful
formula for the inverse transfer matrix (if the forward matrix is known, so also is the backward
matrix), whereas the second provides a link to the theory of Hamiltonian systems (which will
be described in Sec. 4).

The Schmidt decomposition theorem [16] states that the transfer matrix Tx =V DU†, where U
and V are unitary, and D is positive and diagonal. (Positivity is required because Tx is invertible.)
The columns of U (input Schmidt vectors) are the eigenvectors of T †

x Tx, the columns of V (out-
put Schmidt vectors) are the eigenvectors of TxT †

x and the entries of D (Schmidt coefficients)
are the square roots of the (common) eigenvalues of T †

x Tx and TxT †
x . The stated decomposition

is not unique: One can multiply the columns of U and V by the same set of phase factors, and
one can permute (reorder) the columns of U and V in the same way, without invalidating the
decomposition. Notice that the input vectors of T †

x are the eigenvectors of TxT †
x and the out-

put vectors of T †
x are the eigenvectors of T †

x Tx. Hence, the input (output) vectors of T †
x are the

output (input) vectors of Tx and the Schmidt coefficients of T †
x equal those of Tx.

Before determining the Schmidt decomposition in its entirety, we pause to prove an important
result about the Schmidt coefficients. For any matrix A,

det(λ I −A) = det[S(λ I −A)S] = det(λ I −SAS). (61)

Hence, pre- and post-multiplying a matrix by S does not change its eigenvalues. (Furthermore,
if E is an eigenvector of A, then SE is an eigenvector of SAS.) For any invertible matrix A and
any other matrix B,

det(λ I −AB) = det[A−1(λ I −AB)A] = det(λ I −BA). (62)

Hence, interchanging two matrices does not change the eigenvalues of their product. Equation
(62) implies that T †

x Tx and TxT †
x have the same (positive) eigenvalues, and the identity T−1

x =
ST †

x S implies that

(T †
x Tx)

−1 = T−1
x (T †

x )
−1 = (ST †

x S)(STxS) = S(T †
x Tx)S, (63)

(TxT †
x )

−1 = (T †
x )

−1T−1
x = (STxS)(ST †

x S) = S(TxT †
x )S. (64)

Hence, if λ is an eigenvalue of T †
x Tx or TxT †

x , so also is λ−1. (Furthermore, if E is the eigenvec-
tor associated with λ , then SE is the eigenvector associated with λ−1.) Because the Schmidt
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coefficients of Tx are the square roots of these eigenvalues, they always occur in reciprocal pairs,
as they did in Eqs. (17) and (29).

We now return to the Schmidt decomposition. Equations (59) and (60) impose several con-
straints on the block matrices M11, N12, N21 and M22, which allow the decomposition to be
determined. The former equation implies that

Tx(−z) =

[
M11(−z) N12(−z)
N∗

21(−z) M∗
22(−z)

]
= ST †

x (z)S =

[
M†

11(z) −Nt
21(z)

−N†
12(z) Mt

22(z)

]
. (65)

By equating the blocks in Eq. (65), one finds that

M11(−z) = M†
11(z), N12(−z) =−Nt

21(z),

M22(−z) = M†
22(z), N21(−z) =−Nt

12(z). (66)

Notice that Eqs. (66) reduce to Eqs. (9) and (22) in the appropriate limits. The latter equation
implies that

T−1
x (z)Tx(z) =

[
M†

11 −Nt
21

−N†
12 Mt

22

][
M11 N12

N∗
21 M∗

22

]

=

[
M†

11M11 −Nt
21N∗

21 M†
11N12 −Nt

21M∗
22

Mt
22N∗

21 −N†
12M11 Mt

22M∗
22 −N†

12N12

]
=

[
I 0
0 I

]
, (67)

Tx(z)T
−1

x (z) =

[
M11 N12

N∗
21 M∗

22

][
M†

11 −Nt
21

−N†
12 Mt

22

]

=

[
M11M†

11 −N12N†
12 N12Mt

22 −M11Nt
21

N∗
21M†

11 −M∗
22N†

12 M∗
22Mt

22 −N∗
21Nt

21

]
=

[
I 0
0 I

]
. (68)

The block matrices have the Schmidt decompositions M11 = V11D11U†
11, N12 = V12D12U†

12,
N21 = V21D21U†

21 and M22 = V22D22U†
22. By substituting these decompositions in the diagonal

terms in Eqs. (67) and (68), one finds that

U11D2
11U†

11 −U∗
21D2

21Ut
21 = I, (69)

U∗
22D2

22Ut
11 −U12D2

12U†
12 = I, (70)

V11D2
11V †

11 −V12D2
12V †

12 = I, (71)

V ∗
22D2

22V t
22 −V ∗

21D2
21Vt

21 = I. (72)

Equation (69) can be rewritten as U11(D2
11 − I)U†

11 = U∗
21D2

21Ut
21. Because the unitary decom-

position of a Hermitian matrix is unique (apart from phase shifts and ordering), U∗
21 =U11 =U1

and D2
11−D2

21 = I. By continuing in this way, one finds that U12 =U∗
22 =U∗

2 and D2
22−D2

12 = I,
V12 =V11 =V1 and D2

11−D2
12 = I, and V ∗

21 =V ∗
22 =V ∗

2 and D2
22−D2

21 = I. Hence, D11 = D22 =
Dμ and D12 = D21 = Dν , where D2

μ −D2
ν = I. The equations associated with the off-diagonal

terms in Eqs. (67) and (68) are satisfied identically. By assembling the preceding results, one
finds that [35, 36]

Tx(z) =

[
V1DμU†

1 V1DνUt
2

V ∗
2 DνU†

1 V ∗
2 DμUt

2

]
. (73)

Notice that Eq. (73) does not define the overall phases of the blocks uniquely. If one were to
replace Uj and Vj by Ujeiφ j and Vjeiφ j , respectively, the diagonal blocks of the transfer ma-
trix would be unaltered, whereas the off-diagonal blocks would be multiplied by ei(φ1+φ2) and
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e−i(φ1+φ2). One can exploit this non-uniqueness to write some decompositions in particularly
simple ways.

For each of the n sets of Schmidt modes in decomposition (73), there are two Schmidt
coefficients (|μ | and |ν |) and four phase combinations (φv1 − φu1, φv1 + φu2, −φv2 − φu1 and
−φv2 + φu2). However, only one of the coefficients is independent (|ν |) and only three of the
combinations are independent. If one defines the reference phase (φv1−φv2−φu1+φu2)/2, then
the first and fourth combinations have the relative phases ±(φv1 +φv2 −φu1 −φu2)/2, whereas
the second and third combinations have the relative phases ±(φv1 +φv2 +φu1 +φu2)/2. Thus,
if the Schmidt modes are known, only 4n real parameters are required to specify the transfer
matrix. [The other 4n(n−1) parameters in the coefficient matrix specify the Schmidt modes.]
For the special case in which J1 = J2 and K = Kt , the signal and idler equations are identical, so
U1 =U2, V1 =V2 and the reference phase is 0. Thus, if the Schmidt modes are known, only 3n
real parameters are required to specify the transfer matrix. [The other 2n(n−1) parameters in
the coefficient matrix specify the Schmidt modes.] These results are consistent with Eqs. (15)
and (27), which apply to cases in which n = 1.

According to the Schmidt decomposition theorem, the Schmidt coefficients and input
Schmidt modes are determined by the eigenvalues and eigenvectors of the Hermitian matrix

T †
x Tx =

[
U1(D2

ν +D2
ν)U

†
1 U1(2Dμ Dν)Ut

2
U∗

2 (2Dμ Dν)U
†
1 U∗

2 (D
2
μ +D2

ν)U
t
2

]
. (74)

Short calculations show that this matrix has the eigensystem (written in block form)

D± = (Dμ ±Dν)
2, E± = [Ut

1,±U†
2 ]

t/21/2. (75)

Similarly, the coefficients and output modes are determined by the eigenvalues and eigenvectors
of the Hermitian matrix

TxT †
x =

[
V1(D2

ν +D2
ν)V

†
1 V1(2Dμ Dν)Vt

2
V ∗

2 (2Dμ Dν)V
†
1 V ∗

2 (D
2
μ +D2

ν)V
t
2

]
. (76)

Short calculations show that this matrix has the eigensystem

D± = (Dμ ±Dν)
2, E± = [Vt

1 ,±V †
2 ]

t/21/2. (77)

Notice that in both eigensystems E∓ = SE±, as was predicted after Eq. (64). Hence, if E± are
the eigenvectors of T †

x Tx or TxT †
x , then SE± = E∓ are the eigenvectors of ST †

x TxS or STxT †
x S. It

follows from Eqs. (75) and (77) that the transfer matrix (73) has the Schmidt decomposition

Tx(z) =
1

21/2

[
V1 V1

V ∗
2 −V ∗

2

][
Dμ +Dν 0

0 Dμ −Dν

]
1

21/2

[
U†

1 Ut
2

U†
1 −Ut

2

]
, (78)

where Uj, Vj, Dμ and Dν depend implicitly on z. Let X1 = U1X̄1 and X2 = U2X̄2, where X̄1 =
[x̄1 j]

t and X̄2 = [x̄2 j]
t . Then decomposition (78) implies that the (input) combinations x̄1 j + x̄∗2 j

are stretched, whereas the combinations x̄1 j − x̄∗2 j are squeezed. Notice that Eq. (78) reduces to
Eqs. (17) and (29) in the appropriate limits.

If the forward transfer matrix can be written in the form (73), the backward transfer matrix
can be written in the form

T−1
x (z) =

[
U1DμV †

1 −U1DνV t
2

−U∗
2 DνV †

1 U∗
2 DμV t

2

]
. (79)
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One could obtain Eq. (79) from Eq. (73) by interchanging the input and output modes, and
changing the sign of Dν . However, Dν is non-negative by construction, so this empirical rule is
not canonical.

It is instructive to consider the decomposition of the backward matrix, which can be cal-
culated in (at least) three ways. First, Tx = V DU†, so the laws of matrix algebra require that
T−1

x =UD−1V †. Hence,

T−1
x (z) =

1

21/2

[
U1 U1

U∗
2 −U∗

2

][
Dμ −Dν 0

0 Dμ +Dν

]
1

21/2

[
V †

1 V t
2

V †
1 −Vt

2

]
. (80)

In decomposition (80), which is consistent with Eq. (79), the input and output modes are inter-
changed, as are the associated stretching and squeezing factors.

Second, the identity T−1
x = ST †

x S requires that

T−1
x (z) =

1

21/2

[
U1 U1

−U∗
2 U∗

2

][
Dμ +Dν 0

0 Dμ −Dν

]
1

21/2

[
V †

1 −Vt
2

V †
1 V t

2

]
. (81)

In decomposition (81), which is also consistent with Eq. (79), the input and output modes
are interchanged, as are the associated stretched and squeezed modes, but the stretching and
squeezing factors are unaltered.

Decompositions (80) and (81) are equivalent only because Schmidt decompositions are not
unique! To explore this issue, it is useful to define the permutation matrix

P =

[
0 I
I 0

]
. (82)

When P acts to the right on a matrix, it interchanges the row blocks of that matrix, and when P
acts to the left, it interchanges the column blocks. It is easy to verify that

D−1 = PDP. (83)

Decomposition (80) works by permuting the Schmidt coefficients so that stretched modes are
squeezed and vice versa. It is also easy to verify that

SU =UP, V †S = PV †. (84)

Decomposition (81) works by permuting the Schmidt vectors so that squeezed modes are
stretched and vice versa. These actions are equivalent ways to obtain the same result: In the
(common) inversion formula T−1

x = UPDPV †, the P matrices can act to the middle, or to the
outsides.

Third, the identity Tx(−z) = T−1
x (z) implies that there are simple relations between the for-

ward and backward Schmidt coefficients and vectors. Equations (73) and (79) do not determine
these relations uniquely. However, by applying the transformations

Dμ(−z)→ Dμ(z), Dν(−z)→ Dν(z), Uj(−z)→ iVj(z), Vj(−z)→ iUj(z) (85)

to Eq. (73), one does obtain Eq. (79). Transformations (85) allow Dμ and Dν to remain positive.
By applying them twice, one finds that Uj(z) → iVj(−z) → i2Uj(z) and Vj(z) → iUj(−z) →
i2Vj(z). These results are acceptable in the context of a Schmidt decomposition, because the
signs (phases) of the Schmidt modes are not unique. By applying transformations (85) to the
forward decomposition (78), one obtains a backward decomposition that is similar to decompo-
sition (81): The first unitary matrix is multiplied by i and the second is multiplied by −i, so the
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decompositions are equivalent. Notice that transformations (85) are consistent with Eqs. (17)
and (18), and Eqs. (29) and (30). In the former case u1 = u2 = eiφd and v1 = v2 = eiφs , whereas
in the latter case u1 = u2 = eiφd , v1 = eiφs+iφδ and v2 = eiφs−iφδ .

It only remains to rewrite Eq. (73) in the canonical form of Eq. (3). The transfer matrices are

M =

[
M11 0
0 M22

]
, N =

[
0 N12

N21 0

]
, (86)

where M11 and N12 are the upper blocks of Tx and N21 and M22 are the conjugates of the lower
blocks. It is easy to verify that

M =
1

21/2

[
V1 iV1

V2 −iV2

][
Dμ 0
0 Dμ

]
1

21/2

[
U†

1 U†
2

−iU†
1 iU†

2

]
, (87)

N =
1

21/2

[
V1 iV1

V2 −iV2

][
Dν 0
0 Dν

]
1

21/2

[
Ut

1 Ut
2

iUt
1 −iUt

2

]
. (88)

Relative to the basis vectors contained in U1 and U2, the real quadratures of the sum modes
and the imaginary quadratures of the difference modes are stretched. It follows from Eq. (4), in
which the transfer functions are non-negative by construction, that the imaginary sum quadra-
tures and the real difference quadratures are squeezed. These results are valid for the general
case in which J1 �= J2 and K �= Kt . Notice that Eqs. (87) and (88) reduce to Eqs. (35) and (36)
in the appropriate limit.

4. Unifying principles

The specific results derived in the preceding section are closely connected to the general prop-
erties of Hamiltonian dynamical systems [37,38]. To make these connections, one must rewrite
the CMEs (49) in the simplest form possible. By using the fact that J2 is Hermitian, one can
rewrite Hamiltonian (47) in the alternative form

H = X†
1 J1X1 +Xt

2J∗2 X∗
2 +X†

1 KX∗
2 +Xt

2K†X1, (89)

and by applying the alternative Hamilton equations

dzX1 = i∂H/∂X†
1 , dzX

∗
2 =−i∂H/∂Xt

2 (90)

to Hamiltonian (89), one can reproduce the aforementioned CMEs. Equations (89) and (90) are
equivalent to the Hamiltonian

H = X†GX (91)

and the single Hamilton equation

dzX = iS∂H/∂X†, (92)

where the mode vector and coefficient matrix are

X =

[
X1

X∗
2

]
, G =

[
J1 K
K† J∗2

]
, (93)

respectively, and the spin matrix S was defined in Eq. (55). Notice that G is Hermitian. (Conse-
quently, if L = SG, then SL = L†S.) Equations (91) and (92) are said to be in canonical form.
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Suppose that X ′ = T X , where T is an arbitrary transformation (change-of-variables) matrix.
Then, in component form,

dzx
′
i = ∑ jTi jdzx j

= i∑ j∑kTi jS jk∂H/∂x∗k
= i∑ j∑k∑lTi jS jkT ∗

lk∂H/∂x′∗l . (94)

A transformation is said to be canonical (symplectic) if the equation for x′i has the same Hamil-
tonian form as the equation for xi. Equation (94) shows that T is symplectic if and only if

∑ j∑k∑lTi jS jkT ∗
lk = Sil . (95)

Condition (95) can be rewritten in the matrix form

T ST † = S. (96)

If condition (96) is satisfied, then T−1 = ST †S and (T †)−1 = ST S. For reference, the set of
(nonsingular) matrices that satisfy condition (96) form a group with respect to multiplication.

Now suppose that T (z) is the transfer matrix for the system, which satisfies the evolution
equation

dzT = iSGT, (97)

together with the input condition T (0) = I. Then

dz(T
†ST ) = i(T †S2GT −T †G†S2T ) = 0, (98)

because G is Hermitian. Hence,
T †ST = S. (99)

Equation (99) implies that

(T X)†S(T X) = X†(T †ST )X = X†SX . (100)

Hence, the MRW variable X†SX is conserved. Equation (99) also implies that T−1 = ST †S and
(T †)−1 = ST S.

The transfer matrix must also satisfy the symplectic condition (96), because the Hamilton
equation (92) retains its form as X evolves. One can prove this statement directly. Alternatively,
by multiplying the identity T †ST = S by S(T †)−1 on the left and T−1S on the right, one can
show that S = (T S)S(ST †) = T ST †. Hence, the transfer matrix satisfies the symplectic condi-
tion, which is equivalent to the MRW condition (99). Notice that the proofs of the preceding
results were based on the assumption that T is a linear transformation, but not on the assumption
that G is a constant: The results remain valid when G is a function of z.

The key results of the preceding section are consequences of the identity T−1 = ST †S. For
example, if (T †T )E = λE, where λ �= 0, then

(T †T )SE = S(ST †S)(ST S)E = S(T †T )−1E = λ−1SE. (101)

Thus, not only do the Schmidt coefficients occur in reciprocal pairs, but there is also a simple
relation between the associated Schmidt vectors. The Schmidt decomposition (73) owes its
form to the constraints imposed on the blocks of the transfer matrix [Eqs. (67) and (68)], which
are just (ST †S)T = I and T (ST †S) = I. Decompositions (78), (79), (81), (87) and (88) all follow
directly from decomposition (73). Furthermore, if T =V DU†, then

T−1 = S(UDV †)S = (SU)D(SV )†. (102)
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It is always true that the input (output) vectors of T † are the output (input) vectors of T . Equa-
tions (101) and (102) show that the stretched modes for the forward transformation are the
squeezed modes for the backward transformation. These relationships guarantee that the com-
bined transformation is the identity transformation.

The preceding results show that the Schmidt decomposition of the transfer matrix owes its
(extremely useful) form to the symplectic properties of the associated evolution equation, which
is Hamiltonian. There are many physical processes for which knowledge of the underlying
mathematical (algebraic) structure facilitates the derivation of important physical results. Con-
sequently, it is worthwhile to review some definitions and make some specific connections.

Nonsingular matrices form a variety of groups with respect to multiplication. GL(m,C) is
the general linear group, whose members are m×m complex matrices. SL(m,C) is the special
linear group of degree m, whose members are unimodular (have determinant 1).

U(m) is the unitary group, whose members are m×m unitary matrices (which are complex
by definition). The actions of these matrices preserve the quadratic form X†X , where X is an
arbitrary m× 1 vector. SU(m) is the special unitary group of degree m, whose members have
determinant 1. It is sometimes called the unimodular unitary group. These groups occur in
models of conservative phenomena, in which X†X is the total power (or energy). For example,
U(2) and SU(2) underly polarization rotation, beam splitting, directional coupling and (stable)
frequency conversion.

U(n,n) is the pseudo-unitary group, whose members are 2n × 2n complex matrices. The
actions of these matrices preserve the quadratic form X†SX , where X is an arbitrary 2n× 1
vector. (This group has a subgroup of diagonal matrices that are unitary, but most of its members
are nonunitary.) In the context of parametric amplification, X†SX is the MRW variable and Tx is
a member of U(n,n). SU(n,n) is the special pseudo-unitary group of degree 2n, whose members
have determinant 1. (This group also has a unitary subgroup.) In the aforementioned context, Ty

is a member of SU(n,n). Ty is also a member of the symplectic group Sp(2n), whose members
satisfy condition (96) and have determinant 1. (In the Appendix, it is shown that this definition
of the symplectic group is equivalent to the standard definition, which involves a different
auxiliary matrix.) The mathematical properties of continuous groups are described in [39, 40]
and several simple examples (including those mentioned above) are described in [41–44].

5. Summary

Parametric devices based on four-wave mixing in fibers perform many signal-processing func-
tions required by optical communication systems. In these devices, strong pumps drive weak
signal and idler sidebands, which can have one or two polarization components, and one or
many frequency components. The evolutions of these components (modes) are governed by
systems of coupled-mode equations [Eq. (1)], the solutions of which are specified by transfer
matrices [Eq. (2)]. Schmidt decompositions of these transfer matrices [Eq. (3)] determine the
natural input and output mode vectors of such systems, and the effects of the systems on the
associated mode amplitudes [Eqs. (4)].

In Sec. 2, two simple examples were considered: one- and two-mode parametric amplifica-
tion. The transfer matrices for these processes were determined explicitly, as were their Schmidt
decompositions. In the first process, different quadratures of the same mode are stretched and
squeezed (dilated), whereas in the second process, different combinations (superpositions) of
the signal and idler modes are dilated. These superpositions are the Schmidt modes. For every
mode (quadrature) that is stretched, there is another mode (quadrature) that is squeezed by the
same amount. Furthermore, simple relations exist between the transfer matrices for the forward
and backward processes [Eqs. (27) and (28)], and their Schmidt decompositions [Eqs. (29) and
(30)]. These properties turn out to be generic.
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In Sec. 3, the properties of Schmidt decompositions were derived from first principles, for
parametric processes that involve 2n modes (n is arbitrary). The coefficient matrix that appears
in the coupled-mode equation (51) has a symmetry property [Eq. (56)] that constrains the as-
sociated transfer matrix [Eq. (59)]. This constraint links the decompositions of the signal and
idler blocks, and allows the decomposition of the forward transfer matrix to be determined
[Eqs. (73) and (78)]. The transfer matrix involves 4n mode vectors, for the input and output
signal and idler, which are equivalent to 2n input and output Schmidt vectors (combinations of
the signal and idler vectors). In addition to these vectors, the transfer matrix involves (up to)
4n real parameters (n Schmidt coefficients and 3n phase factors). This number of parameters is
much smaller than the number required to specify the aforementioned coefficient matrix, which
is of order n2. If the forward matrix and decomposition are known, so also are the backward
matrix and decomposition [Eqs. (79) and (80)]: One obtains the latter entities from the former
by interchanging the input and output vectors, and interchanging the stretching and squeezing
factors.

In Sec. 4, the specific properties established for parametric processes were shown to be
general properties of Hamiltonian dynamical systems. The symplectic identity [Eq. (96)] was
shown to be equivalent to the Manley-Rowe-Weiss identity [Eq. (99)]. Either identity (together
with the laws of matrix algebra) is sufficient to establish the main properties of Schmidt de-
compositions: For every Schmidt mode that is stretched in a forward (or backward) transforma-
tion, there is another, closely related, mode that is squeezed by the same amount. Furthermore,
the forward and backward transformations have the same Schmidt coefficients, and the input
squeezed (stretched) modes for the backward transformation are the output stretched (squeezed)
modes for the forward transformation. These relationships guarantee that the combined trans-
formation is the identity transformation.

Not only do Schmidt decompositions provide physical insight into complicated parametric
processes, they also provide the mathematical means to optimize the performance of devices
based on these processes. In a forthcoming paper, several nontrivial examples relevant to current
research (including four-mode parametric amplification) will be discussed in detail.

Appendix: Real and complex Hamiltonian systems

Consider a real dynamical system with Hamiltonian H(q, p), where q and p are conjugate
variables. The Hamilton equations (for z-evolution) are

dz p = ∂H/∂q, dzq =−∂H/∂ p. (103)

By defining the vector variable X = [x1,x2]
t = [p,q]t , one can rewrite Eqs. (103) in the matrix

form
dzX = J∂H/∂X , (104)

where the auxiliary matrix

J =

[
0 1
−1 0

]
(105)

and the derivative of H is taken componentwise. Notice that J2 =−I.
Now consider the quadratic Hamiltonian

H = ᾱ p2/2+ β̄ pq+ γ̄q2/2, (106)

where ᾱ , β̄ and γ̄ are real constants (parameters). By applying the Hamilton equations (103) to
Hamiltonian (106), one obtains the linear evolution equations

dz p = β̄ p+ γ̄q, dzq =−ᾱ p− β̄q. (107)
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Alternatively, one can rewrite Hamiltonian (106) in the compact form

H = XtGX/2, (108)

where the coefficient matrix

G =

[
ᾱ β̄
β̄ γ̄

]
. (109)

Notice that G is symmetric. By applying the Hamilton equation (104) to Hamiltonian (108),
one obtains the matrix evolution equation

dzX = JGX , (110)

which is equivalent to the component equations (107).
Suppose that X ′ = T X , where T is an arbitrary transformation (change-of-variables) matrix.

Then, in component form,

dzx
′
i = ∑ jTi jdzx j

= ∑ j∑kTi jJ jk∂H/∂xk

= ∑ j∑k∑lTi jJ jkTlk∂H/∂x′l . (111)

Hence, the transformation is symplectic if and only if

∑ j∑k∑lTi jJ jkTlk = Jil . (112)

This condition can be rewritten in the matrix form

T JTt = J. (113)

If condition (113) is satisfied, then T−1 =−JT tJ and (Tt)−1 =−JT J.
Now suppose that T (z) is the transfer matrix for the system, which satisfies the evolution

equation
dzT = JGT, (114)

together with the input condition T (0) = I. Then

dz(T
tJT ) = TtJ2GT +TtGtJtJT = 0, (115)

because Jt =−J, J2 =−I and G = Gt . Hence,

T tJT = J. (116)

Conditions (113) and (116) are equivalent, and require that det(T ) = ±1. However, G is sym-
metric, so tr(JG) = 0 and det(T ) = 1. Hence, T is a member of Sp(2,R), the three-parameter
group whose members are symplectic 2× 2 matrices with determinant 1. [This group is iso-
mororphic to SL(2,R) and SU(1,1).]

To establish the connection between real and complex dynamical systems, one defines the
complex variables

a = (q+ ip)/21/2, a∗ = (q− ip)/21/2, (117)

in which case
p = i(a∗ −a)/21/2, q = (a∗+a)/21/2. (118)
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The Hamiltonian H(a,a∗) = H[q(a,a∗), p(a,a∗)], where a and a∗ are treated as independent
variables. By combining Eqs. (103), (117) and (118), one obtains the complex Hamilton equa-
tions

dza = i∂H/∂a∗, dza
∗ =−i∂H/∂a. (119)

By defining the vector variable X = [a,a∗]t , one can rewrite Eqs. (119) in the matrix form

dzX = iS∂H/∂X∗, (120)

where the auxiliary matrix S was defined in Eq. (55) and the derivative of H is taken compo-
nentwise. Equation (120) is equivalent to Eq. (104).

Now consider the quadratic Hamiltonian

H = δ |a|2 + γ(a∗)2/2+ γ∗a2/2, (121)

which also involves three (real) parameters (δ , γr and γi). By applying the Hamilton equations
(119) to Hamiltonian (121), one obtains the linear evolution equations

dza = iδa+ iγa∗, dza
∗ =−iδa∗ − iγ∗a. (122)

The first of Eqs. (122) is just Eq. (5), which describes one-mode squeezing. One can reconcile
the real and complex descriptions of this process by setting

ᾱ = δ − γr, β̄ = γi, γ̄ = δ + γr. (123)

Alternatively, one can rewrite Hamiltonian (121) in the compact form

H = X†GX/2, (124)

where the coefficient matrix

G =

[
δ γ
γ∗ δ

]
. (125)

Notice that G is Hermitian. By applying the Hamilton equation (120) to Hamiltonian (124)
componentwise, and reassembling the results, one obtains the matrix evolution equation

dzX = iSGX . (126)

However, it is easier to rewrite Hamiltonian (124) without the factor of 2, and differentiate it
with respect to X†, treated as a single (vector) variable. This approach was taken in the main
text.

Because Eqs. (110) and (126) are equivalent descriptions of the same system, their conse-
quences, prime among which are the symplectic identities, must also be equivalent. To prove
this result explicitly, define Xr = [p,q]t and Xc = [a,a∗]t . Then Xc = UXr, where the unitary
matrix

U =
1

21/2

[
i 1
−i 1

]
. (127)

It follows from these definitions that if Xr(z) = Tr(z)Xr(0), then Xc(z) = UTr(z)U†Xc(0), so
Tc(z) =UTr(z)U†. By multiplying Eq. (113) by U on the left and U† on the right, one finds that

U(TrJT t
r )U

† = (UTrU
†)(UJU†)(UTt

r U†) =UJU†. (128)

But UJU† = iS, so Eq. (128) is just Eq. (96). Thus, the real and complex symplectic identities
are equivalent, so the groups formed by Tr and Tc [Sp(2,R) and SU(1,1)] are isomorphic. This
equivalence extends to systems of 2n variables.
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