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Abstract

We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that
allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG
database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for
visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the
results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction
of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a
genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The
model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and
1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential
metabolic engineering targets for maximization of penicillin production.
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Introduction

Genome sequencing projects have in recent years contributed

enormously to our understanding of the metabolic capabilities of

cellular systems. Functional annotation of the gene products allow

for reconstruction of genome-scale metabolic models (GEMs) that

summarize these metabolic capabilities in a consistent and

compact way [1,2]. A number of mathematical tools, including

sampling of available metabolic states [3,4] and methods borrowed

from computational geometry [5], have been developed to analyze

the resulting networks and to gain insight into the complex

interactions that give rise to the metabolic capabilities. GEMs have

also been used extensively for simulation of metabolism, partic-

ularly for metabolic engineering purposes [6,7]. Since these

models connect metabolites, proteins, and genes they are

particularly well suited for the integration of metabolomics,

proteomics, and genomics which is, in a sense, the goal of systems

biology [8,9].

The foundation of a GEM is the functional annotation of the

genes. The first GEMs were primarily for model organisms for

which direct evidence exists in the literature for a large proportion

of the genomically encoded functions [10,11]. However, as the

number of genome sequencing projects increases there is a

growing demand of GEMs for less well known organisms. These

models must by necessity be built largely relying on protein

homology to more well-characterized organisms [12]. This,

together with the large amount of manual work that is involved

in a strict bottom-up reconstruction, has sparked interest in more

automated approaches to model reconstruction. There are now a

number of tools available for automated annotation of genes

[13,14]. However, the annotated genes must be linked to

metabolic reactions in a way so as to generate a functional

metabolic model. This includes the addition of spontaneous

reactions and non-carrier mediated transport across membranes as

well as sub-cellular localization of enzymes. Most importantly, the

model must also be constructed in a way so that all reactions are

balanced and well-connected [15]. This tends to become a

problem if the gene-reaction relationship is automatically inferred

from databases, partly due to differences in metabolite naming,

but mainly because of how complex carbohydrates and complex

lipids are represented. Because of the aforementioned issues it

makes sense to use previously reconstructed models as templates

for new GEMs. Here we present the RAVEN Toolbox, which

allows the user to input GEM(s) for one or more template

organisms, their corresponding protein sequences, and the protein

sequences of the target organism. A GEM for the target organism

is then constructed based on orthology between the protein

sequences of the target organism and the organisms of the

template models. Metabolic functions not present in the template

models can obviously not appear in the new model, and to account

for these missing reactions the RAVEN Toolbox also includes a

functionality that matches proteins to KEGG Orthology (KO)

categories [16] by using Hidden Markov models to capture the

representative amino acid pattern in each KO. The resulting

metabolic network can be used for automatic or manual gap

filling, or it can be used on its own as a draft network.
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Several approaches which also aim at generating GEMs from

either a template model or from a general database have been

published [17–20]. Table 1 summarizes the capabilities of the

RAVEN Toolbox compared to some other published approaches

when it comes to automatic reconstruction. However, the largest

difference is maybe not in the approaches taken, but in that the

RAVEN Toolbox is a complete software for all tasks involving

reconstruction and simulation of GEMs. In this aspect the RAVEN

Toolbox is more similar to the COBRA Toolbox, but with extensive

reconstruction capabilities [21]. Even though the RAVEN Toolbox

can be used for fully automated reconstruction, in a manner similar

to Model SEED, the intended purpose is to make use of the

extensive quality control and gap identification/gap filling features

for increasing the quality of reconstructions, as well as for decreasing

the time needed for reconstructing high-quality models.

The RAVEN Toolbox was evaluated for its ability to

reconstruct a GEM for the well studied yeast Saccharomyces cerevisiae,

and the resulting GEM was compared with a manually

reconstructed model. Thereafter the RAVEN toolbox was used

for the reconstruction of a GEM of the industrially important mold

Penicillium chrysogenum. The Penicillium genus encompasses species of

great economical, medical, and environmental importance [22].

Members of the Penicillium genus serve important roles in the food

industry, both as some of the main spoilers of fresh vegetables and

as essential actors in the production of blue cheeses. Most

importantly though, they are sources of major antibiotics,

particularly penicillin and griseofulvin.

The industrial production of b-lactam antibiotics, such as

penicillins and cephalosporins, is one of the success stories of

biotechnology. Today the b-lactams represent one of the largest

biotechnological products in terms of value, with sales of about

USD 15 billion [23]. The industrial P. chrysogenum strains have

been subjected to 50 years of directed evolution to increase the

yields and titers of penicillin, with great cost reduction and

productivity gain, but the yields are still far from the theoretical

maximum [24]. A GEM of P. chrysogenum could aid in identification

of metabolic bottlenecks as well as in elucidating the underlying

reason for the significantly better performance of industrial strains

compared to low producing strains.

Results

The RAVEN Toolbox
A software suite named the RAVEN Toolbox (Reconstruction,

Analysis, and Visualization of Metabolic Networks) was developed.

The toolbox is a complete environment for reconstruction,

analysis, simulation, and visualization of GEMs and runs within

MATLAB. The software imports and exports models in two

formats: the widely used Systems Biology Markup Language

(SBML) format [25] and a Microsoft Excel model representation.

Both these formats allow for extensive annotation of model

components, such as International Chemical Identifier strings

(InChI) [26] for metabolites or database identifiers for reactions

and genes. The native model format for the RAVEN Toolbox

follows the format of the yeast consensus metabolic network [27],

but models in the COBRA Toolbox format can also be imported

[21]. The Microsoft Excel representation enables the user to set

simulation parameters such as bounds and objective function

coefficients directly in the spread sheets. This simplifies the

modeling process for users not comfortable with working within a

scripting environment, as well as providing a simpler, but less

rigorous, model format compared to SBML. The software,

together with a manual, a set of tutorials and a detailed description

of the supported file formats is available through the BioMet

Toolbox [28] (http://www.sysbio.se/BioMet). Figure 1 summa-

rizes the capabilities of the RAVEN Toolbox.

Table 1. Comparison between the RAVEN Toolbox and other software for automatic GEM reconstruction.

RAVEN Model SEED [20] AUTOGRAPH [18] IdentiCS [60] GEM System [17]

Includes general network X X X X

Generates functional models X X

Assigns sub-cellular localization X

Can use user defined models X X

Integrates gap filling X X X

Offline software X X

Includes visualization X X X

Gene prediction X X

doi:10.1371/journal.pcbi.1002980.t001

Author Summary

Genome-scale models (GEMs) are large stoichiometric
models of cell metabolism, where the goal is to incorpo-
rate every metabolic transformation that an organism can
perform. Such models have been extensively used for the
study of bacterial metabolism, in particular for metabolic
engineering purposes. More recently, the use of GEMs for
eukaryotic organisms has become increasingly wide-
spread. Since these models typically involve thousands of
metabolic reactions, the reconstruction and validation of
them can be a very complex task. We have developed a
software suite, RAVEN Toolbox, which aims at automating
parts of the reconstruction process in order to allow for
faster reconstruction of high-quality GEMs. The software is
particularly well suited for reconstruction of models for
eukaryotic organisms, due to how it deals with sub-cellular
localization of reactions. We used the software for
reconstructing a model of the filamentous fungi Penicillium
chrysogenum, the organism used in penicillin production
and an important microbial cell factory. The resulting
model was validated through an extensive literature
survey and by comparison with published fermentation
data. The model was used for the identification of
transcriptionally regulated metabolic bottlenecks in order
to increase the yield in penicillin fermentations. In this
paper we present the RAVEN Toolbox and the GEM for P.
chrysogenum.

The RAVEN Toolbox
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The software has three main foci: 1) automatic reconstruction of

GEMs based on protein homology, 2) network analysis, modeling

and interpretation of simulation results, 3) visualization of GEMs

using pre-drawn metabolic network maps.

Automated reconstruction of GEMs based on protein

homology. Previously published GEMs represent a solid basis

for metabolic reconstruction of models for new organisms, in

particular if the organisms are closely related and therefore share

many metabolic capabilities. The main advantage of using existing

models compared to reaction databases, such as KEGG or

BRENDA [29], is that they contain information that can be

difficult to obtain in an automated manner, in particular

directionality and compartmentalization. There have been

attempts to predict the directionality of reactions based on the

estimates of the standard Gibbs energies of formation for the

involved metabolites [30]. However, we believe that manually

reconstructed networks for related species can be a more reliable

source of directionality information. The same is true for

compartmentalization. Even though the RAVEN Toolbox con-

tains methods for inferring subcellular localization based on

predictors, it is to be viewed as an aid rather than an exact method.

GEMs are also typically constructed for modeling purposes, which is

not the case for reaction databases. The downside is that only

reactions present in the template models can be included. The

RAVEN Toolbox therefore contains two approaches for automatic

generation of draft models; while the method mentioned above relies

on the metabolic functions represented in previously published

models, the complementary method uses the KEGG database for

automatic identification of new metabolic functions that are not

included in the published models.

The first approach lets the user supply a number of existing

GEMs and FASTA files with protein sequences for the template

models and for the organism of interest. The software then

generates a draft model based on protein orthology. The default

implementation uses bi-directional BLASTp [31] for evaluation of

protein homology, but the software also supports other homology

measurements as long as a score can be assigned to each pair wise

protein comparison. The resulting model can be exported as a

SBML file or be used in MATLAB for simulation and further

analysis.

The second approach is also based on protein homology but

requires no template models. Instead it relies on the information

Figure 1. The RAVEN Toolbox. The software allows for reconstruction of GEMs based on template models or on the KEGG database. The resulting
models can be exported to a number of formats, or they can be used for various types of simulations. The RAVEN Toolbox has a strong focus on
quality control. Visualization of simulation result and/or integration of other types of data can be performed by overlaying information on pre-drawn
metabolic maps. The software also implements the INIT algorithm, which is a powerful approach for reconstruction of tissue-specific models [59].
HMM: Hidden Markov model, LP: Linear programming, QP: Quadratic programming, MILP: Mixed-integer linear programming.
doi:10.1371/journal.pcbi.1002980.g001

The RAVEN Toolbox
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on protein sequences and on the assigned metabolic reactions that

is available in the KEGG database. The method makes use of the

KEGG Orthology (KO) IDs, which are manually annotated sets of

genes that encode some specified metabolic function. Each KO is

associated with a number of metabolic reactions. The aim of the

present method is to assign genes to these KOs based on the

consensus protein sequence. The tool first downloads all relevant

parts of the KEGG database to a local directory and parses these

files to generate a GEM representing a metabolic network across

all of the species annotated in KEGG, i.e. this would lead to a

network comprising 7029 metabolites, 8398 reactions and 843369

genes, when using the most current version of the KEGG

database. A GEM for the organism of interest is then constructed

by choosing a subset of this larger model and linking the reactions

with the corresponding genes. The protein sequences for each KO

are retrieved and aligned using MUSCLE [32]. The user has the

option to only use genes from organisms of a given phylogenetic

distance from the target organism, e.g. only fungal genes or only

eukaryotic genes. A hidden Markov model is then generated based

on the sequences for each KO using HMMER [33]. The final step

is the querying of the set of HMMs with the protein sequences of

the organism of interest. If a gene has a significant match to one

KO, the reactions associated to that KO are added to the model

together with the corresponding gene. This process is fully

automated, and the user only needs to supply a FASTA file with

protein sequences. Users who do not subscribe to KEGG can

download pre-trained HMMs for eukaryotes and prokaryotes

through the BioMet Toolbox (http://www.sysbio.se/BioMet).

These HMMs are based on the last open version of KEGG.

More advanced users can set parameters that affect how genes are

mapped to KOs and how general, unbalanced, or otherwise

problematic reactions from KEGG should be dealt with.

Model analysis and simulation. The approach proposed

above will facilitate and accelerate the generation of a draft

metabolic network reconstruction. The automated reconstruction

can lead to some loss of control compared to a stricter manual,

bottom-up approach. It is therefore important to identify and fill

gaps in the model to ensure that the network is functioning as

required. In a high quality model all reactions should be able to

have a flux if all uptake and excretion reactions are allowed and

net synthesis of most metabolites should be possible (the exception

would normally be some co-factors). The second criterion is

important, since the large degree of freedom in GEMs allow for

internal loops where reactions can carry flux but where no net

consumption or synthesis of metabolites occurs. The RAVEN

Toolbox contains a number of methods to support the gap filling

process. The following section describes the suggested workflow for

gap identification and filling when starting from a draft network.

N Gap filling traditionally centers on adding reactions in order to

enable production of all precursors needed for biomass

production. However, it is equally important to ensure that

the model cannot produce anything when there is no uptake of

metabolites. The reactions which enable this type of behavior

are typically those which involve polymers, metabolite pools,

or other abstract metabolites but they can also simply be

erroneous reactions. A brute force solution would be to

exclude all reactions which are not elementally balanced, but

this could result in a large fraction of the network being

deleted, as many metabolites typically lack information about

elemental composition. The makeSomething and consumeSomething

functions identifies such reactions by solving the mixed integer

linear programming (MILP) problem of finding the smallest set

of reactions which results in the net synthesis or consumption

of any metabolite. The solutions can then be cross-referenced

to balancing information from getElementalBalance in order to

identify reactions which are both active and have wrong/

lacking composition. This process can also be done automat-

ically using removeBadRxns.

N After the user has added relevant exchange reactions

canProduce/canConsume can be used to generate a list of the

metabolites that can have net synthesis or consumption. Early

on in the reconstruction process it is likely that not all biomass

precursors can be synthesized. The function checkProduction can

be very useful in this situation. It calculates the smallest set of

metabolites which must have net synthesis in order to enable

net synthesis of all other metabolites. This gives the user

information such as ‘‘in order to synthesize biomass, you must

enable synthesis of valine and coenzyme A’’ or ‘‘if synthesis of

choline is enabled, the following set of metabolites could also

be synthesized’’. The function also allows the user to set rules

about merging compartments, since it can be easier to first

make sure that the model is functional with merged

compartments and deal with transport and sub-cellular

localization afterwards.

N Ideally all reactions should be able to carry flux if all relevant

exchange reactions are available. The function haveFlux can be

used to identify reactions which cannot carry flux, and also to

distinguish between reactions which cannot carry flux because

some substrate cannot be synthesized and those which cannot

carry flux because some product cannot be further consumed.

However, because of the many internal loops in GEMs it is

common that reactions can carry flux and appear well-

connected even if they are not connected to the rest of the

metabolic network. getAllSubGraphs can be used to identify such

subnetworks using Tarjan’s algorithm [34].

N The function fillGaps can be used to retrieve reactions from a

set of template models or from KEGG in order to generate a

functional network. The user can set constraints on their

model, such as that it should be able to produce biomass from

minimal media, and fillGaps will then solve the MILP problem

of including the minimal set of reactions from a set of template

models in order to satisfy the constraints. The same function

can be used to enable net synthesis of all metabolites or to

enable flux through all reactions. This approach is similar to

that taken in Model SEED, and enables fully automatic model

reconstruction. However, we suggest that GEM reconstruction

should be done iteratively and with manual input and that the

results from these algorithms are to be viewed as suggestions to

point the user in the right direction.

N In eukaryotes the enzymatic reactions are distributed between

different organelles. To determine which reactions occur

where is a difficult task, and one of the more time-consuming

steps in the reconstruction process. The RAVEN Toolbox

takes a first step towards speeding up this step by including a

method for assigning subcellular localization to enzymatic

reactions in an automated fashion. The algorithm aims at

assigning localization in a manner that is consistent with signal

peptide composition and physiochemical protein properties,

while at the same time maintaining a well-connected and

functional network. The default predictor is WoLF PSORT,

which is distributed with the RAVEN Toolbox [35]. A parser

for other predictors, such as CELLO is also included [36]. In

short, the algorithm works by generating fully connected

solutions, which are then scored based on the agreement to the

predicted localization and the number of transport reactions

which had to be included in order to have a connected

The RAVEN Toolbox
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network. The problem is solved using simulated annealing. A

more detailed description is available in Figure 2.

The RAVEN Toolbox also contains a number of methods for

performing simulations using GEMs. In this aspect it is similar to

the COBRA Toolbox [21]. Most of the features of COBRA

Toolbox are also present in the RAVEN Toolbox, with the

exception of dynamic FBA. This includes linear programming

such as FBA, quadratic programming such as MoMA, mixed

integer linear programming applications, and random sampling.

Utility functions such as setting constraints and objectives, adding

or removing model elements, presenting simulation outputs,

sensitivity analysis, screening for gene deletions, and fitting model

parameters such as maintenance ATP consumption are also

included. For a full description of all functions of the toolbox, see

the supplied manual. The RAVEN Toolbox uses MOSEK

(MOSEK ApS, Copenhagen, Denmark) for solving the underlying

optimization problems. MOSEK is proprietary software but a full

featured license is freely available for academic use.

Validation of the workflow. The RAVEN Toolbox pipeline

was validated by constructing a model for Saccharomyces cerevisiae, a

model organism for which several GEMs have been constructed.

To compare the quality of the automatically generated model to a

manually curated one, some kind of reference was needed. As all

models contain errors it would not be very relevant to simply

compare the similarity between the RAVEN Toolbox generated

model and a previously published model. Saccharomyces Genome

Database (SGD) was therefore used as a reference with respect to

the enzymes present in S. cerevisiae and their subcellular localiza-

tion. A model was generated from KEGG in a fully automatic

manner and then compared to the iIN800 model, a model which

has been shown to have excellent simulation capabilities [37]. It

should be noted that this fully automatic reconstruction is not how

the RAVEN Toolbox is intended to be used for reconstruction.

We suggest that the user view the output of each step as

suggestions, and manually fill gaps or fix problematic reactions.

However, we wanted to perform an evaluation of the overall

reconstruction feature of the RAVEN Toolbox.

Figure 2. Prediction of subcellular localization of reactions. Circles correspond to metabolites and lines correspond to reactions. Green lines
are reactions which are in their correct compartment according to the predictions. Red are reactions which are in an incorrect compartment and
orange are reactions where there is no strong indication for either compartment. A) There is a tradeoff between connectivity and agreement with
predicted localization. Network 1 represents the extreme case where connectivity is much more important than predicted localization scores. All
reactions are then localized to the cytosol. Network 2 represents the other extreme case where the reactions are localized only based on localization
scores and with no regard for connectivity. This would result in an unconnected network. Network 3 represents the case where the network is
connected, while still being in good agreement with the localization scores. The underlying assumption in the algorithm is that a good network is
characterized by being fully connected, in the sense that all metabolites are synthesized in at least one reaction and consumed in at least one
reaction, while still being in good agreement with the localization scores and relying on the smallest possible number of transport reactions to
achieve this. B) Summary of the localization algorithm. 1. The algorithm first randomly moves one gene product and its associated reaction(s) to
another compartment. The probabilities depend on the scores for the gene products in their respective compartments. 2. This may result in an
unconnected network. The algorithm then tries to find a small set of reactions which, when moved, reconnects the network. If moving these
reactions would result in a large decrease of fitness, then the network is connected by including transport reactions for some metabolites instead. 3.
The connected network is then scored as the sum of scores for all genes in their assigned compartment, minus the cost of all transport reactions that
had to be included in order to keep the network connected. The user can set the relative weight given to transport compared to gene localization.
The overall problem is solved using simulated annealing.
doi:10.1371/journal.pcbi.1002980.g002

The RAVEN Toolbox
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The model was generated using getKEGGModelForOrganism with

the settings to only use eukaryotic genes when training the HMMs,

a cutoff of 1e-30 when matching genes to the HMMs, and to

exclude reactions labeled as general or incomplete in KEGG. S.

cerevisiae genes were excluded in the training of the HMMs to

simulate reconstruction of an organism for which there is little

previous gene annotation. Not all unbalanced or erroneous

reactions were labeled as such, and this resulted in that the

KEGG model could produce some metabolites without any

uptakes. removeBadRxns identified 79 reactions which enabled such

production (see Table S1). Out of these 72 were unbalanced,

general or polymer reactions and as such were correctly removed.

7 reactions were correct, but lacked composition about the

metabolites (it is a setting in removeBadRxns whether it is allowed to

remove such reactions).

Based on experimental minimal media the model was allowed

uptake of glucose, phosphate, sulfate, NH3, oxygen and the

essential nutrients 4-aminobenzoate, riboflavin, thiamine, biotin,

folate, and nicotinate [38]. Uptake of the carriers carnitine and

acyl-carrier protein was allowed for modeling purposes (many

compounds are bound to them and therefore net synthesis of these

compounds is not possible without them). This was the only

manual step in the reconstruction of the yeast model.

The resulting model contained 1126 reactions, 1144 metabolites

and 713 genes (before compartmentalization). 521 (73%) of those

genes were shared with iIN800. 192 genes were unique to the

automatically reconstructed model and 91 genes were unique to

the iIN800 model (since there are no transport reactions in

KEGG, all transporters were excluded from iIN800 for the

purpose of this comparison). Figure 3 shows a classification of the

genes that are unique to either the automatically reconstructed

model or to iIN800 (see Table S2 for details). As can be seen, the

automatically reconstructed model has a significantly larger

proportion of enzymes compared to the published model.

Given the inputs the model could have net-synthesis of 476

(42%) of the 1144 metabolites (see Table S3 for details). As a

comparison, 456 (66%) out of 683 unique metabolites in iIN800

could be synthesized given the same inputs. Among the 476

metabolites were 19 out of the 22 standard amino acids (leucine,

methionine, and taurine could not be synthesized), the

nucleotides needed for RNA and DNA synthesis (ATP, GTP,

CTP, UTP, dATP, dGTP, dCTP, and dTTP), fatty acids,

sterols such as lanosterol and ergosterol, important co-factors

such as NADH, NADPH, FADH2 and CoA, and the building

blocks needed for cell wall assembly (UDP-glucose, UDP-N-

acetyl-D-glucosamine and mannose). The only major biomass

constituents that could not be synthesized were complex lipid

compounds such as phospholipids and sphingolipids. This is

because of the combinatorial nature of fatty acid metabolism

(given ,20 fatty acids there are 20!/2!(20-2) = 190 possible

versions of phosphatidylcholine) and how it is represented in

KEGG.

As the next step of the fully automatic reconstruction, fillGaps

was used to automatically fill gaps in the yeast network using the

full KEGG database as a template. This resulted in 45 reactions

being added, which in turn enabled the synthesis of 91 metabolites

that could previously not be synthesized (see Table S4). Among

them were the three amino acids that were previously missing. A

closer investigation of the reactions which were added (see Table

S5) showed that out of the 45 added reactions, 17 had evidence to

support that they should be included in the model, 9 had

inconclusive or missing evidence, and 19 reactions should not have

been included in the model. 5 of the 91 genes that were previously

unique to iIN800 were also added in this process.

The RAVEN Toolbox also contains a method for partitioning

enzymatic reactions to compartments in a manner that keeps the

network connected, but at the same time in agreement with the

results from predictors of protein localization (see Figure 2 for

details). The default predictor, WoLF PSORT, was used to predict

the protein localization of all ORFs in the FASTA file.

predictLocalization was then used to partition the network between

mitochondria and cytosol. The transport cost was set to 0.1. Table

S6 lists the genes for which the corresponding reactions were

assigned to the mitochondria. 119 gene products were assigned to

the mitochondria and the remaining 594 gene products were

assigned to the cytosol. Out of the 119 predicted mitochondrial

gene products, 72% were listed as mitochondrial in the SGD

based on experimental evidence. The same calculations for iIN800

give that 91 gene products are mitochondrial and that 83% were

listed as mitochondrial in SGD. Localization predictions based

only on primary protein sequences are not very exact, and the

resulting model from predictLocalization will not be totally biolog-

ically correct. The main issue is that all transport reactions are

formulated as passive diffusion, while in reality other types of

transport are also taking place. However, the method is able to

quickly generate a connected model where the enzyme localiza-

tions are in almost as good agreement to SGD as a published

model. This could be useful for many applications, such as when

using metabolic networks for integrating omics data, and it

constitutes a first step towards fully automated reconstruction of

eukaryote GEMs.

These results show both strengths and weaknesses of using a

fully automatic approach to reconstruction. A model capable of

producing all the needed building blocks for synthesis of protein,

RNA, DNA, and the cell wall was generated solely from a FASTA

file and with almost no manual input. The automated gap filling

identified 17 new reactions, out of which 8 were not present in the

published S. cerevisiae model. As was shown in Figure 3, the quality

in terms of included genes was as good or better compared to the

published model. On the other hand, the gap filling included 19

reactions which did not belong in the model, and complex lipids

could not be synthesized. The sub-cellular localization of enzymes

was up to par with the published model, but with the drawback

that all transport reactions were formulated as passive diffusion. In

a real situation a reconstruction should therefore be done in an

iterative manner, with manual input after each iteration (the user

would, for example, remove the 19 bad reactions from the

template model and then run fillGaps again).

Visualization of GEMs. Stoichiometric metabolic models

have been proven to generate remarkably good predictions when

it comes to the central carbon metabolism in microorganisms.

However, the lack of kinetic and regulatory information is a rather

large simplification and it is possible to get simulation results that

have little biological meaning (such as thermodynamically

disallowed loops). It is therefore imperative to understand the

underlying reasons for a change in predicted phenotype after a

perturbation such as a gene deletion. Due to the large

dimensionality of GEMs interpretation of flux distributions is a

rather daunting task. Visualization of fluxes can aid with

interpretation, as well as provide an instant overview of how the

system functions. Software that aims at network visualization

based purely on connectivity, such as Cytoscape [39] or

CellDesigner [40], cannot provide a comprehensible or well

organized image of GEMs due to their size. The RAVEN Toolbox

allows for visualization of simulation results based on manually

drawn maps. The maps are drawn in CellDesigner and each

reaction is labeled with the corresponding reaction identifier in the

model. The map can then be imported to MATLAB and the

The RAVEN Toolbox
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reactions are colored according to the change in the corresponding

flux between simulation conditions. Gene expression data can be

incorporated in the map to illustrate the correlation between flux

and gene expression. This will extraordinarily facilitate the

comparison and interpretation of flux distributions found for

different environmental conditions. The resulting map is exported

as a pdf-file. Figure 4 show a close up on penicillin metabolism in

the peroxisome overlaid on the full P. chrysogenum map (see

following section for details).

Comparative genomics of template species
In order to assign metabolic functions to the genes present in the

P. chrysogenum genome, sequence alignment analysis was per-

formed. Three fungi from the Aspergillus genus (A. oryzae, A. niger

and A. nidulans) were selected for sequence comparison based on

being closely related fungi outside of the Penicillium genus and on

having previously reconstructed GEMs (see Figure S1). Table 2

shows some genome characteristics of the Aspergilli in comparison

with P. chrysogenum. Initially pairwise comparison was done by

similarity searching of the protein sequences of P. chrysogenum

against the protein sequences known to be involved in the

metabolism of the three Aspergillus species as described in the

Methods section. With a chosen threshold of the E-value, identity,

and alignment length, a list of inferred metabolic functions was

generated. The results are summarized in Table 2. Pairwise

comparison shows that A. oryzae has the highest number of

sequence homologues of proteins with metabolic functions with P.

chrysogenum (915 sequences). This result suggests that metabolism of

A. oryzae is probably closer related to P. chrysogenum than A. nidulans

and A. niger which have less sequence homologues of 576 and 563,

respectively. Upon completion of the similarity searching, the

results suggest that 1143 genes in P. chrysogenum could be assigned

as orthologous metabolic genes from the three Aspergillus species

used for comparison. The large number of metabolic orthologues

indicates that the existing GEMs for closely related species could

be a sound foundation upon which to reconstruct the new model.

Reconstruction and comparative analysis of the P.
chrysogenum metabolic network

Using the RAVEN Toolbox the metabolic network of P.

chrysogenum metabolic network was reconstructed. The metabolic

network comprises 1471 unique metabolic reactions in four sub-

cellular compartments; extracellular, cytosolic, mitochondrial, and

peroxisomal (Table 3). 1006 ORFs are associated to the reactions, 89

of which participate in one of 35 protein complexes. In parallel to the

automatic reconstruction, an extensive literature study was per-

formed. In total 440 cited articles provide experimental evidence for

the majority of the reactions. All model components were extensively

annotated to adhere to the MIRIAM standard for biological models

[41]. The model was validated with respect to 76 important

metabolic functions (the supplementary file simulations.xls is an

input file to checkTasks, which was used to performed the validation).

There are 30 reactions in the model which cannot carry flux if all

uptakes are allowed, i.e. dead-end reactions (see Table S7).

According to the naming conventions for metabolic networks the

presented model is denoted as iAL1006 [42]. Table 3 shows the

division of model elements between the four compartments.

Figure 3. Overview of the genes which are unique to the automatically reconstructed model and iIN800, respectively. Saccharomyces
Genome Database was used to classify the genes. Green corresponds to genes where the function is well-defined and suited for GEMs, basically
enzymes involved in metabolism. Red corresponds to genes where the function is unknown, where the corresponding protein is not an enzyme or
where the function is in signaling rather than metabolism. These genes should normally not be present in a GEM. Blue corresponds to genes that are
putative enzymes or where the ORF is a functional enzyme in some strains but not in others. As can be seen, the automatically reconstructed model
has both a larger number of unique genes and a larger proportion of enzymes compared to the published model. For iIN800 some enzymatic genes
are further classified as ‘‘polymer’’, ‘‘lipid’’ or ‘‘membrane’’. These are parts of metabolism where an automatically generated model from KEGG would
have particular drawbacks compared to a manually reconstructed model. ‘‘Polymer’’ corresponds mainly to genes involved in sugar polymer
metabolism, which is an area that contains many unbalanced reactions in KEGG. Such reactions were excluded when the validation model was
generated, so the corresponding genes could not be included. The same holds for ‘‘lipid’’, where the reactions contain many general metabolites.
This also results in excluded reactions. ‘‘Membrane’’ corresponds to reactions which depend on one metabolite but in two different compartments.
This compartmentalization information is absent in KEGG so the equation becomes incorrect and it is therefore excluded.
doi:10.1371/journal.pcbi.1002980.g003
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Figure 4. Example of the visualization capabilities of the RAVEN Toolbox. The figure shows a small section of the Penicillium metabolic
map, depicting peroxisomal penicillin metabolism, superimposed on the full map. Rectangles correspond to reactions and ellipses correspond to
metabolites. The broad yellow line represents the peroxisomal membrane. Reactions are colored based on the log-fold change in flux between a
reference and a test case, where green represents a higher flux in the test case and red a lower flux. The positive direction of reversible reactions
(defined as from left to right in the model equations) is indicated by a red arrow head. For reactions carrying flux in any of the simulated cases, the
flux values are printed in the reaction box. The small squares to the right of some of the reactions correspond to the log-fold change of transcript
levels of the genes associated to that reaction. The gene-reaction relation is retrieved from the model structure and not implicitly specified in the
CellDesigner map.
doi:10.1371/journal.pcbi.1002980.g004

Table 2. Comparison of genome characteristics and metabolic function assignment between P. chrysogenum and three Aspergillus
species.

Features ANi AO AN PC

Genome size (Mb) 30.1 37.2 34.9 32.2

Number of chromosomes/supercontigs 8 8 8 49

Number of total protein sequences 10 560 12 074 11 197 12 811

Functional assignments

Pairwise comparison ANi and PC AO and PC AN and PC PC

Number of protein sequence orthologuesa 5749 5614 5632 -

Number of metabolic orthologues based on COGb 1316 1471 1313 2330

Number of metabolic orthologues based on GEMsc 576 915 563 1143

ANi: A. nidulans, AO: A. oryzae, AN: A. niger, PC: P. chrysogenum.
aProteins were regarded as orthologues if E-value ,1e-30, identity .40%, sequence coverage .50%, and alignment length .200 amino acids.
bDescribed as being present in the functional category of metabolism based on the COG database [61].
cDescribed as being present in the corresponding previously published genome-scale metabolic model; A. nidulans iHD666 [52]; A. niger iMA871 [53]; A. oryzae iWV1314
[54].
doi:10.1371/journal.pcbi.1002980.t002
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Figure 5 summarizes the literature support for the reactions in

the model and shows a classification of the ORFs in the model

based on the KEGG pathways. The full list of reactions,

metabolites, and genes are supplied in Microsoft Excel format

and SBML format in Dataset S1. Both these formats are

compatible with the RAVEN Toolbox. To illustrate the metabolic

network, and to aid in interpretation of gene expression data and

simulation results, a map of the full model was drawn in

CellDesigner and annotated so as to be compatible with the

visualization functions in the RAVEN Toolbox. The CellDesigner

file is available in Dataset S1. Even though the map is drawn for

Penicillium metabolism it can be used as a template for generation

of maps for other organisms as well. Lastly, the P. chrysogenum GEM

has also been added to the model repository in the BioMet

Toolbox, which allows for a variety of analyses and simulations to

be carried out.

Comparison of fungal metabolic networks
To evaluate the similarity between the reconstructed network

and the template networks, the networks were compared with

respect to identical reactions and involved metabolites. Only A.

oryzae iWV1314 and A. niger iMA871 were used in the comparison

since only a small number of reaction were inferred from A.

nidulans iHD666. Figure 6 illustrates the results. 534 reactions were

unique to iAL1006. The large discrepancy between the models is

primarily because of differences in how lipid metabolism is

formulated and due to differences in localization. There are also

differences in how reactions catalyzed by protein complexes are

described, where one reaction for each subunit is formulated

rather than lumping the reactions. The difference in metabolic

capabilities between the models is therefore smaller than what is

indicated by the Venn diagrams (Figure 6). The unique

capabilities of the P. chrysogenum model are mainly in penicillin

metabolism and transport (data not shown). In general, the

reactions that were inferred from A. oryzae but not from A. niger are

predominantly involved in co-factor synthesis and in sugar

polymer metabolism. The reactions inferred from A. niger

iMA871 but not from A. oryzae iWV1314 are mainly involved in

lipid metabolism. The key statistics of the reconstructed P.

chrysogenum network compared to those of other fungal networks

is available in Table S8.

Biomass composition and parameter fitting
Growth is described as production of biomass, which in turn is

regarded as drain of the macromolecules and building blocks that

constitute the cellular components. The demand of each

component is estimated based on published data on the biomass

composition. The main components and their content within the

biomass are listed in Table 4 (see also Table S9 for a detailed

description). The cost of biomass production does not only include

synthesis of precursors and polymerization of macromolecules, but

also factors such as maintaining turgor pressure, transport costs,

protein turnover, and membrane leakage. These costs are

summarized as an ATP requirement for non-growth associated

maintenance, mATP, and for growth associated maintenance,

KxATP, i.e. ATP costs not directly associated with biomass

synthesis but associated with cell growth (can be maintenance of

membrane potentials across an expanding cell). These parameters

were determined by linear regression to glucose-limited chemostat

experiments in the presence of phenoxyacetic acid (POA) [43].

The values were hereby estimated to be 4.14 mmol ATP/g DW/h

for mATP and 104 mmol ATP/g DW for KxATP. The growth-

associated ATP cost is significantly higher than for the template

organisms (64 mmol ATP/g DW/h in A. niger iMA871). This could

possibly be an effect of the presence of phenoxyacetic acid, which

is added to the fermentation medium under industrial penicillin

producing conditions. It is believed that phenoxyacetic acid, being

a lipophilic weak acid, acts as a proton un-coupler which would

manifest itself as a high ATP maintenance cost [44]. The P/O

ratio is fitted by assigning the number of cytosolic protons needed

to synthesize one ATP by the F0F1-ATPase. This is a small

simplification since the number of protons pumped across the

mitochondrial membrane might also differ between organisms.

This parameter was estimated to 3.75 (3.88 in A. niger iMA871).

Figure S2 shows the agreement of model simulations with

experimental fermentation data after parameter fitting.

Simulations and integrative data analysis of penicillin
biosynthesis

A genome-scale metabolic model is a powerful tool that can be

used for exploring the metabolic capabilities of the cell, as well as

being used as a scaffold for integrative data analysis. Here we

present two case studies to illustrate the use of the reconstructed P.

chrysogenum model. The first case is a study of penicillin yields and

in particular the relative importance of ATP and NADPH

provision during penicillin production. In the second study we

show how the model can be used to integrate fermentation data

with transcriptome data using a recently published sampling

algorithm to aid in the interpretation of high-throughput data [4].

Penicillin yields. Penicillin production is associated with an

increased requirement of energy in the form of ATP; in the

condensation of the three precursor amino acids to form the

tripeptide ACV; in the reduction of sulfate; and when a side chain

(the precursor molecule which is supplied to the media and which

differs depending on the type of penicillin produced) is activated by

ligation to coenzyme A. Penicillin production is also associated with

a large requirement of NADPH; primarily needed for the reduction

of sulfate but also in the biosynthesis of valine and homoserine from

a-ketobutyrate. Elucidating the impact increased ATP require-

ments have compared to the NADPH requirements is useful when

choosing among possible metabolic engineering strategies.

Different types of penicillin can be produced by changing the

side chain that is supplied to the medium (e.g. supplementation of

Table 3. Network characteristics of the reconstructed
metabolic network of P. chrysogenum.

ORFs 1006

EC-numbers 627

Metabolitesa 1235

Extracellular metabolites 160

Cytosolic metabolites 728

Mitochondrial metabolites 242

Peroxisomal metabolites 105

Reactionsb 1471

Extracellular reactions 175

Cytosolic reactions 835

Mitochondrial reactions 324

Peroxisomal reactions 137

aExchange metabolites are not included.
bExchange reactions are not included. Transport reactions from the cytosol to
any other compartment are included in the count for that compartment, i.e.
mitochondrial transport reactions are regarded as mitochondrial reactions.
doi:10.1371/journal.pcbi.1002980.t003
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phenylacetic acid result in penicillin G and supplementation of

phenoxyacetic acid result in penicillin V). However, this has no

impact on the yield and it is therefore not necessary to specify the

type of penicillin being produced for theoretical evaluations. The

maximum theoretical yield of penicillin on glucose with sulfate as

the sulfur source was calculated to be 0.42 mol penicillin/mol

glucose using the reconstructed genome-scale metabolic model.

This is in agreement with what has previously been published [45].

If the sulfur source is sulfite the maximal theoretical yield is found

to be 0.45 mol penicillin/mol glucose and if it is hydrogen sulfide

it is 0.51 mol penicillin/mol glucose. The difference between using

sulfite and hydrogen sulfide is relatively large and can be attributed

to the differences in NADPH cost (3 NADPH are consumed in the

sulfite reduction to hydrogen sulfide). This points to the

importance of NADPH availability for penicillin production. To

investigate the effect of ATP an artificial reaction was included

that allowed for ATP production from ADP without any energetic

costs. This resulted in a yield of 0.52 mol penicillin/mol glucose,

using sulfate as the sulfur source. The conclusion is that ATP

availability has a relatively small effect on the yield, comparable to

that of NADPH consumption in the sulfate reduction. The shadow

prices (how much the penicillin production can increase if the

availability of a metabolite were to increase by a small amount)

were calculated to be 0.015 mol penicillin/mol ATP, 0.040 mol

penicillin/mol NADPH, and 0.037 mol penicillin/mol NADH.

NADPH and NADH are similar when it comes to energy

content, but have different roles in the metabolism, where

NADPH serves primarily anabolic roles and NADH primarily

catabolic roles. NADPH is mainly produced in the pentose

phosphate pathway, which makes NADPH somewhat more

energetically expensive to regenerate compared to NADH. In

order to investigate the relative importance of NADH and

NADPH an artificial reaction was included that allowed for

production of NADPH from NADH to simulate a potential

increase of the NADPH availability. Simulations were then carried

out maximizing first for growth and then for penicillin production.

The resulting flux through the artificial reaction was 8.5 times

larger when maximizing for penicillin than when maximizing for

growth. This demonstrates that the cells will have a much higher

NADPH demand at high penicillin yields compared to normal

Figure 5. Evidence level for the P. chrysogenum metabolic network. A) Properties of the reconstructed network. The top bar shows the
support for the 1471 unique reactions (not counting exchange reactions) sorted by the type of evidence. The bottom bar shows the orphan reactions;
reactions inferred without supporting ORFs or literature references. B) ORF classification. The ORFs in the model are classified into broad groups
based on KEGG classification.
doi:10.1371/journal.pcbi.1002980.g005

Figure 6. Venn diagrams of model statistics for the template models A. oryzae iWV1314 and A. niger iMA871 and the P. chrysogenum
iAL1006 model. A) The number of chemically distinct metabolites shared and specific for the three models, not counting presence in multiple
compartments. B) The number of unique reactions shared and specific for the three models. The overlap with A. nidulans iHD666 is not shown here.
doi:10.1371/journal.pcbi.1002980.g006
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growth conditions. Redirecting a higher flux through the pentose

phosphate pathway and/or introducing NADH-dependent versions

of NADPH-consuming enzymes could therefore be potential

metabolic engineering strategies for achieving higher penicillin yields.

For the direct identification of possible metabolic engineering

targets a gene deletion analysis was performed by searching for sets of

gene deletions that result in an increased yield of penicillin, and which

would stoichiometrically couple penicillin production to growth. This

was performed using FBA, and combinations of up to three gene

deletions were evaluated (MoMA was also applied and gave similar

results). The only targets which could be identified were the deletion

of any of the genes responsible for breakdown of phenylacetic acid

(homogentisate 1,2-dioxygenase, maleylacetoacetate isomerase, or

fumarylacetoacetase). Deletion of any of these genes resulted in a

21% increase in penicillin production when maximizing for growth.

Identification of transcriptionally regulated metabolic

bottlenecks. The metabolism of cells is redundant in the sense

that different sets of metabolic reactions can be used to generate

the same net phenotype. A recently developed method aims at

finding potential metabolic engineering targets by identifying

genes that are differentially expressed between different cultivation

conditions and where the corresponding reactions exhibit signif-

icantly changed fluxes for the same conditions [4]. Changes in

expression level of such genes are then assumed to be likely to

result in altered fluxes. The algorithm finds these transcriptionally

regulated reactions by random sampling of the solution space,

after which it compares the statistics of the sampling with the

statistic of the mRNA expression. Here we applied this method to

compare the high producing industrial strain DS17690, which has

been developed by DSM, and the low producing reference strain

Wis 54-1255 (see Methods for details) [46].

A total of 58 fluxes were found to be significantly changed between

the high and low production strains (p,0.05) and 612 genes were

differentially expressed (p,0.005). Out of those, 36 reactions were

identified as having significantly higher flux and up-regulated genes

(see Table S10), i.e. they are likely to have transcriptional regulation

of their fluxes. Figure 7 shows some of the most important reactions

in penicillin biosynthesis together with the responsible enzymes and

the corresponding model IDs. Reactions that were identified as

probably being transcriptionally controlled and up-regulated are

highlighted. In addition, the Reporter Metabolites algorithm was

used to identify metabolites around which significant transcriptional

changes occurred [47]. These metabolites are highlighted in Figure 7

as well (see Table S11 for a full list of reporter metabolites).

As can be seen in Figure 7, a large proportion of the reactions

identified as being a transcriptionally controlled are directly

involved in penicillin metabolism (15 out of 38). This indicates that

the capabilities of the industrial strain to produce penicillin to a

large extent depend on the reactions closely related to penicillin

metabolism, rather than more peripheral effects. Among these

reactions are many of the reactions responsible for the synthesis of

the amino acids that are precursors for ACV as well as the two

penicillin producing reactions isopenicillin N synthase and ACV

synthase, which is consistent with a study on the gene copy-

number effect on penicillin production [48]. The phenylacetate:-

CoA ligase is high ranking but the acyl-CoA:isopenicillin N

acyltransferase is absent, which is consistent with measurements of

high activities of this enzyme and the low flux control estimated for

this enzyme [49,50]. Several of the reactions involved in sulfate

reduction are present as well as the sulfate permease. It is

interesting to note that none of the reactions in the pentose

phosphate pathway are identified even though there is an

increased demand for NADPH.

We also found that the pathway from a-ketobutyrate to

succinate is identified to have both increased flux and increased

gene expression. a-ketobutyrate is a by-product of cysteine

production via the transsulfuration pathway, and it is used for

isoleucine biosynthesis. Under normal growth conditions the

demand for cysteine is less than that for isoleucine, meaning that

all a-ketobutyrate is converted into isoleucine. However, during

high-level penicillin production the cysteine production far

exceeds the need for isoleucine, requiring an alternative route

for a-ketobutyrate consumption. This route involves the decar-

boxylation of a-ketobutyrate to yield propionyl-CoA, which then

goes into the methylcitrate pathway, eventually resulting in

succinate [45]. Several of the reactions in this pathway are

identified as transcriptionally controlled by the algorithm (2-

methylcitrate synthase, 2-methylcitrate dehydratase, 2-methyliso-

citrate dehydratase, and methylisocitrate lyase). This finding

strongly supports that the transsulfuration pathway is the

dominating pathway for cysteine biosynthesis, even though the

enzymes for the energetically more efficient direct sulfhydrylation

pathway have been identified in P. chrysogenum [51].

Discussion

The RAVEN Toolbox, a software suite for semi-automated

reconstruction and simulation of genome-scale metabolic models

was developed. The RAVEN Toolbox is the first software that

contains methods both for model reconstruction and for a wide

variety of simulation approaches. A visualization feature for

simulation results and a feature that allows the user to manipulate

metabolic models and set simulation parameters via Microsoft Excel

are provided in order to make the software easy to use. The RAVEN

Toolbox was evaluated for its ability to reconstruct GEMs by

generating a model for S. cerevisiae. The reconstructed model

compares well with a manually reconstructed model. This demon-

strates that the RAVEN Toolbox is useful for reconstruction of novel

models, in particular eukaryotic models, due to its feature for

automatic assignment of sub-cellular localization. We used the

RAVEN Toolbox to reconstruct a GEM for P. chrysogenum by using

three models for closely related fungal species. Extensive manual

Table 4. Biomass composition of P. chrysogenum.

Components Content (g/g DW)

Protein 0.45

RNA 0.08

DNA 0.01

Lipids 0.05

Phospholipids 0.035

Sterolesters 0.010

Triacylglycerides 0.005

Carbohydrates 0.25

Cell wall 0.22

Glycogen 0.03

Soluble pool 0.08

Amino acids 0.04

Nucleotides 0.02

Totala 0.90

a8% of the dry weight is constituted by ash [43]. The remaining 2% are other
soluble metabolites.
doi:10.1371/journal.pcbi.1002980.t004

The RAVEN Toolbox

PLOS Computational Biology | www.ploscompbiol.org 11 March 2013 | Volume 9 | Issue 3 | e1002980



validation of the model was performed; both to validate the

reconstruction method and to ensure a high-quality model. The

resulting P. chrysogenum model consists of 1471 reactions, 1235

metabolites and 1006 genes. 440 cited articles provide experimental

evidence for the majority of the reactions. Considerable efforts were

spent on standardizing and annotating the template models in order

to adhere to MIRIAM standards. The standardized template models

and the reconstructed P. chrysogenum model are available through the

BioMet Toolbox. This collection of fungal models, together with the

complementary method of generating metabolic networks based on

the KEGG database, constitutes an excellent platform for the

reconstruction of metabolic networks for other eukaryotic organisms.

Methods

The P. chrysogenum metabolic network was reconstructed based

on a combination of automated reconstruction approaches,

manual curation, and an extensive bibliomic survey. Figure 8

gives an overview of the whole reconstruction process.

Inferring reactions based on protein homology
Three GEMs for other filamentous fungi, A. nidulans iHD666

[52], A. niger iMA871 [53], and A. oryzae iWV1314 [54], were used

as template models for the reconstruction of a P. chrysogenum model.

Efforts were taken in order to standardize the template models to

facilitate the automatic reconstruction. This standardization

primarily involved metabolite naming, but also how to represent

more complex aspects of metabolism such as polymers and lipids. As

part of the standardization effort a large majority of the metabolites

were assigned database identifiers and chemical structure informa-

tion. This annotation step allowed for verification that all reactions

were elementally balanced, which in turn led to a number of

inconsistencies in the template models being corrected. The revised

Figure 7. Integrative analysis of a high and a low producing strain. Depicts synthesis pathways of penicillin and important precursors. Green
boxes correspond to reactions identified as being transcriptionally controlled and up-regulated by the algorithm (see text). Metabolites around which
significant transcriptional changes occur compared to a low producing strain are colored red. SC: side chain (e. g. the precursor molecule
phenylacetic acid). The biosynthesis of penicillin starts with the condensation of the three amino acids a-aminoadipate (an intermediate in the L-
lysine biosynthesis pathway), L-cystein, and L-valine to form the tripeptide ACV. ACV is further converted to isopenicillin N. For the industrially
relevant types of penicillin a side-chain is supplied to the media. This side-chain is activated by ligation to coenzyme A. In the last step of penicillin
biosynthesis an acyl transferase exchanges the a-aminoadipate moiety of isopenicillin N with the side-chain, thereby generating penicillin and
regenerating a-aminoadipate. Since L-cystein is a sulfur-containing amino acid penicillin production is also tightly associated with sulfur metabolism.
The corresponding model IDs for the enzymes are indicated within parentheses. [1] homocitrate synthase (r0683); [2] homocitrate dehydrase (r0684);
[3] homoaconitate hydrase (r0685); [4] homoisocitrate dehydrogenase (r0688); [5] a-aminoadipate aminotransferase (r0689); [6] homoserine
transacetylase (r0600); [7] O-acetylhomoserine sulfhydrylase (r0601); [8] cystathione-b-synthase (r0632); [9] cystathione-c-lyase (r0606); [10] acetate
CoA ligase (r0025); [11] acetolactate synthase (r0465); [12] ketol-acid reductoisomerase (r0653); [13] dihydroxy acid dehydrase (r0656); [14] branched
chain amino acid transferase (r0648); [15] ACV synthase (r0814); [16] isopenicillin N synthase (r0812); [17] acyl CoA ligase (side chain dependent,
reaction is for phenylacetate CoA ligase) (r0747); [18] isopenicillin N N-acyltransferase (r0813); [19] sulfate permease (r1408); [20] sulfate adenyl
transferase (r1151); [21] adenyl sulfate kinase (r1147); [22] phosphoadenyl sulfate reductase (r1148); [23] sulfite reductase (r1149); [24] thioredoxin
reductase (r0419); [25] 39(29),59-bisphosphate nucleotidase (r1150).
doi:10.1371/journal.pcbi.1002980.g007
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models for the three Aspergillus species are available as up-dates in

the BioMet Toolbox (http://www.sysbio.se/BioMet) [28].

A draft GEM for P. chrysogenum was then constructed based on

bidirectional best hits of BLASTp between the template model

proteins and their orthologues in P. chrysogenum using the RAVEN

Toolbox. Proteins were regarded as orthologues if E-value ,1e-

30, identity .40%, sequence coverage (.50%) and alignment

length (.200 amino acids).

The protein sequences of P. chrysogenum Wisconsin 54-1255

(annotation, version 1) were obtained from the EMBL database

(http://www.ebi.ac.uk/embl/). The protein sequences of A. nidulans

FGSC A4 (annotation, version 4) were taken from the Broad

Institute database (http://www.broadinstitute.org/annotation/

genome/aspergillus_group). The protein sequences of A. oryzae

RIB40 (annotation, version 1) were taken from the DOGAN

database (http://www.bio.nite.go.jp/dogan/project/view/AO).

The protein sequences of A. niger ATCC1015 (annotation, version

3) were taken from the JGI database (http://genome.jgi-psf.org/

Aspni5/Aspni5.home.html).

Gap filling
The first draft model based on homology to template models

contained gaps due to incorrect annotation in the template models

and lacked reactions in parts of metabolism that were unique to P.

chrysogenum (Figure 8). Therefore, another draft model was

generated from KEGG using the RAVEN Toolbox. An E-value

,1e-50 was used as cut off in the gene assignment. This model was

used for filling gaps in the draft network and for suggesting

metabolic pathways that were not included based on the template

models. No reactions were included based solely on presence in

the KEGG model, and gene assignments were only included after

careful manual validation against the NCBI RefSeq database.

Gaps in the draft metabolic network were identified using the

gap finding capabilities of the RAVEN Toolbox (Figure 8). The

initial network was rather disconnected and biomass production

from glucose was not possible. Firstly, the software was used to

identify which metabolites had to be connected in order to

produce biomass. This resulted in the addition of some sponta-

neous reactions from the template models. The second step was to

ensure that as many metabolites as possible could be produced.

When non-connected metabolites were identified, the KEGG

model was queried for candidate reactions which could connect

that metabolite. A targeted literature search was then conducted to

find evidence for the presence of such a reaction. In only few cases

this resulted in the addition of transport reactions based solely on

connectivity issues (,2%, see Figure 5). The final step was to use

the RAVEN Toolbox to identify reactions that could not carry a

flux during growth on any of the available carbon sources. There

are, however, sets of reactions that are included in the model even

though they cannot currently carry a flux. One such example is the

synthesis and loading of tRNA, which is included to allow for

possible future extension of the model to cover protein synthesis.

Compartmentalization and transport
The model has four compartments: extracellular space, cyto-

sol, mitochondrion, and peroxisome. Reactions with unknown

Figure 8. Overview of the iAL1006 reconstruction process.
doi:10.1371/journal.pcbi.1002980.g008
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localization, or where the real localization is not represented by

one of the compartments in the model, were assigned to the

cytosol. Enzymes reported to be present in the cell wall were

assigned to the extracellular space, and those present in the

mitochondrial membrane were mainly assigned to the mitochon-

dria. The peroxisome was included primarily because of its role

in penicillin metabolism and b-oxidation of fatty acids. Transport

reactions between compartments were inferred mainly from the

template fungal models and backed up with literature evidence.

However, there were situations where a transport reaction had to

be included in order to have a functional network, even when no

literature evidence could be found. For enzymes reported to have

isoenzymes in several compartments, the ORF assignments to

each compartment were based on localization predictions from

CELLO [36] and pTarget [55].

Simulations
Unless otherwise specified, simulations were carried out using

unlimited uptake of oxygen, phosphate, sulfate, NH3, thiamin and

pimelate. The carbon source was glucose. Excretion of all

exchange metabolites was allowed. Biosynthesis of L-cysteine

was only allowed through the transsulfuration pathway. Since the

energy content of NADH and NADPH is similar it is possible that

cycles convert one into the other. These cycles normally take the

form of reversible reactions that can utilize either NADH or

NADPH. Since such futile cycles make it difficult to study

NADPH/NADH metabolism using GEMs, and since they are

probably not active in the cell, they were identified and blocked in

analogy to what has been done in previous models [10]. The way

by which they were identified was minimizing/maximizing for the

flux through an artificial reaction NADH+NADP(+), = .

NAD(+)+NADPH while not allowing for uptake of any carbon

source. Reactions were then identified and deleted until this

reaction could no longer carry a flux. The following reactions were

deleted: D-mannitol:NAD+ 2-oxidoreductase (r0181); ethanol:-

NADP+ oxidoreductase (r0019); ethanol:NAD+ oxidoreductase

(r0020); (S)-3-hydroxybutanoyl-CoA:NADP+ oxidoreductase

(r0081). None of these reactions can be expected to be active

during the studied conditions. Deletion of D-mannitol:NAD+ 2-

oxidoreductase does not inactivate the NADPH regenerating

mannitol cycle, which has a role in NADPH regeneration in many

fungal species [56].

The penicillin yields were calculated by setting the glucose

uptake rate to 1.0 mmol/gDW/h and maximizing for penicillin

production. Free ATP was simulated by including an artificial

reaction in the form ADP+Pi = .ATP+H2O.

Integrative analysis
A random sampling algorithm was applied in order to identify

transcriptionally regulated metabolic bottlenecks [4]. Flux data and

gene expression levels for aerobic, glucose-limited chemostat fermen-

tation of DS17690 and Wis 54-1255 were used as input to the

algorithm [57]. The exchange fluxes were fitted to the reported values

using a quadratic fitting. 5000 sampling iterations were performed for

each of the two strains. The expression data set of the study were

retrieved from GEO database (GSE9825) as CEL format then

normalized together with PLIER workflow (http://media.affymetrix.

com/support/technical/technotes/plier_technote.pdf). Two way AN-

OVA were employed to evaluate the differentially expressed genes

with respect to the strain (DS17690 and Wis 54-1255) with multiple

correction following [58]. The Reporter algorithm [47] was employed

to integrate the transcriptome data with the reconstructed GEM to

identify key metabolites in the network.

Supporting Information

Dataset S1 The iAL1006 genome-scale model of P. chrysogenum

in SBML and Excel formats, together with a metabolic map for

visualization and a task list for model validation.

(ZIP)

Figure S1 Proteome comparison of genomes in Fungi. ALR (the

ratio of alignment length to query sequence length): .0.50,

identity: .0.40. The red shades refer to protein homology that can

found within a genome (paralog). The green shades refer to

protein homology that can found between two genomes (ortholog).

(PDF)

Figure S2 Agreement of model simulations with experimental

fermentation data. Data from glucose-limited chemostat with defined

medium containing glucose, inorganic salts and phenoxyacetate.

(PDF)

Table S1 Reactions which were excluded from the general

KEGG model after running removeBadRxns. 72 reactions were

unbalanced, general or polymer reactions and were therefore

correctly removed. 7 reactions were correct in KEGG, but were

removed because they lacked metabolite composition (it is a setting

in removeBadRxns whether it is allowed to remove such reactions).

(PDF)

Table S2 Comparison of an automatically reconstructed model

for S. cerevisiae to a published model of the same organism (iIN800) in

terms of included genes. The table shows the genes that are unique

to either the automatically reconstructed or the manually

reconstructed model, and a classification of the genes into groups

that reflect how well suited they are for being included in a GEM.

Genes labeled as ‘‘enzymatic’’ should be included, while all other

groups should probably be excluded. For iIN800 some enzymatic

genes are further classified as ‘‘polymer’’, ‘‘lipid’’ or ‘‘membrane’’.

These are parts of metabolism where an automatically generated

model from KEGG would have particular drawbacks compared to

a manually reconstructed model. ‘‘Polymer’’ corresponds mainly to

genes involved in sugar polymer metabolism, which is an area that

contains many unbalanced reactions in KEGG. Such reactions

were excluded in the validation, so the corresponding genes could

not be included. The same is true for ‘‘lipid’’, where the reactions

contain many general metabolites, which also results in excluded

reactions. ‘‘Membrane’’ corresponds to reactions which depend on

any one metabolite in different compartments. This compartmen-

talization information is absent in KEGG so such a reaction would

read, for example, A+B = .A+C. ‘‘A’’ here might mean ‘‘A(cyto-

solic)’’ and ‘‘A(mitochondrial)’’, but since that information is

missing, the equation becomes incorrect and it is therefore excluded.

‘‘Signaling’’ corresponds to proteins which are primarily involved in

signaling, even though they might have an enzymatic capability.

(PDF)

Table S3 Metabolites which could be synthesized in the

automatically reconstructed S. cerevisiae model from minimal media

(glucose, phosphate, sulfate, NH3, oxygen, 4-aminobenzoate,

riboflavin, thiamine, biotin, folate, and nicotinate). Uptake of the

carriers carnitine and acyl-carrier protein was allowed for modeling

purposes (many compounds are bound to them and therefore net

synthesis of these compounds is not possible without them).

(PDF)

Table S4 New metabolites which could be synthesized in the

automatically reconstructed S. cerevisiae model from minimal media

after gap-filling. These metabolites were all present in the model

before the addition of new reactions.

(PDF)
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Table S5 Reactions which were added to the automatically

reconstructed S. cerevisiae model by fillGaps. Out of the 45 added

reactions 17 has evidence to support that they should be included

in the model, 9 has inconclusive of missing evidence, and 19

should not have been included in the model.

(PDF)

Table S6 Genes where their corresponding reactions were

localized to the mitochondria after running predictLocalization

(transport cost = 0.1). The color indicates whether the gene

product is mitochondrial in SGD, where green means that it

does, yellow that it is unclear, and red that it does not.

(PDF)

Table S7 Reactions which cannot carry flux even when all

uptake reactions are unconstrained.

(PDF)

Table S8 Comparison of metabolic models.

(PDF)

Table S9 Biomass composition calculations for P. chrysogenum.

(PDF)

Table S10 Reactions with significantly higher flux in DS17690

compared to Wis 54-1255 where the corresponding genes are also

up-regulated. Ranked by significance (p,0.05).

(PDF)

Table S11 Reporter metabolites when comparing the DS17690

and Wis 54-1255 strains. Ranked by significance. Top 40 best

scoring metabolites are shown.

(PDF)
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