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On metabolic networks and multi-omics integration 

Rasmus Ågren 
Systems and Synthetic Biology 
Department of Chemical and Biological Engineering 
Chalmers University of Technology 

Abstract 
Cellular metabolism is a highly complex chemical system, involving thousands of interacting 
metabolites and reactions. The traditional approach to understanding metabolism has been 
that of reductionism; by isolating and carefully measuring the involved components, the goal 
has been to understand the whole as the sum of its parts. This reductionist approach has 
successfully identified most of the components of metabolism but, unfortunately, it fails to 
capture the long-range and complex interactions that are essential for the functionality. 
Systems biology is an emerging research field which uses high-throughput data generation 
and mathematical modelling in order to apply a holistic, or network-centric, view on 
metabolism. One type of modelling framework, which is in line with this thinking, is genome-
scale metabolic modelling. These models, called GEMs, represent very valuable resources, 
but their applications have been limited due to the large manual effort required to reconstruct 
them. In this project, we have developed algorithms and software for streamlining the 
reconstruction process, as well as for novel applications of GEMs. More specifically, we here 
present: the RAVEN Toolbox, a software suite for automated reconstruction and quality 
control; the INIT algorithm, an algorithm for inferring GEMs for human cell types; an 
algorithm which integrates fluxomics and transcriptomics data in order to identify 
transcriptionally controlled metabolic reactions. 

The methods and software were used in a number of case studies to address real biological 
questions. These studies were: 1) Metabolic engineering of Saccharomyces cerevisiae for 
succinic acid overproduction. The predictions from the modelling were successfully validated 
experimentally. 2) Study of metabolic regulation in S. cerevisiae. This led to the identification 
of a small number of transcription factors and enzymes which were predicted to be controlling 
central parts of metabolism. 3). Penicillin production in Penicillium chrysogenum. This led to 
the reconstruction of the first GEM for P. chrysogenum, an important resource in itself, and to 
identification of metabolic engineering targets for more efficient production of penicillin. 4) 
Human cancer metabolism. This led to the identification of metabolic subnetworks which 
were predicted to be significantly more active in cancers, and to identification of potential 
drug targets for treatment. 5) Lipid metabolism in obesity. This led to new insights into the 
large-scale metabolic rearrangements associated with obesity, and to identification of possible 
therapeutic strategies. 6) Metabolism in non-alcoholic fatty liver disease. This led to the 
identification of serine deficiency as a central aspect of the disease, and to proposed 
therapeutic strategies for remedying it. 

The work put forward in this thesis has resulted in improvements on several important aspects 
of genome-scale metabolic modelling, and it has shown how the framework can be applied to 
gain novel biological insights. As such, it can contribute to further increase the role of the 
framework in modelling of human health and disease. 
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1 Introduction 
The first genome-scale metabolic model (GEM), for the bacteria Haemophilus influenzae, was 
published in the year 2000, nine years before I started my Ph.D. studies in 2009. During these 
years the models grew increasingly complex, with the first model for a eukaryote published in 
2003 and the first human model in 2007. Extensive method development also took place 
during this period, particularly for applications in metabolic engineering and strain design, 
where dozens of algorithms were developed. Some of these algorithms were quickly 
forgotten, while others proved themselves to be highly useful. The early successes in the field 
led to an ever larger number of GEMs being reconstructed, also for less well characterized 
organisms. After working with a GEM during my master’s studies I had identified a number 
of issues that I felt should be targets for further work. 

• Model reconstruction was labour-intensive and error-prone. Some of the 
published models, particularly for non-model organisms, were of rather low 
quality. I therefore started working on what later became the RAVEN Toolbox 
(Paper III), a software suite with focus on speeding up the reconstruction process, 
while at the same time ensuring a high-quality model. 

• GEMs were underused as scaffolds for omics integration. GEMs developed 
when the first genome projects were finished, which allowed for incorporating 
gene/transcript/protein/reaction relationships in metabolic networks. A GEM can 
therefore be viewed as a highly structured map of metabolism in a cell, from 
metabolites all the way up to the genes. This would make the GEM very well suited 
as a scaffold for integrating and interpreting omics data of different sorts. I started 
working on methods for integrating transcriptomics data and flux data from 
fermentations into GEMs. This resulted in an algorithm for finding reactions which 
are likely to be transcriptionally regulated (Paper II). 

• There were difficulties associated with modelling of complex organisms. My 
long-term goal when starting my studies was to model human metabolism and 
interactions between different tissues. This was associated with some issues that 
were not seen for simple prokaryotic organisms. Firstly, eukaryotes have their 
metabolism divided across subcellular compartments, and this information is not 
readily available. Secondly, most human cells do not actively divide, which makes 
the assumption of optimization of biomass yield, commonly used for microbial 
cells, unrealistic. Thirdly, different cell types have very different phenotypes even 
though they share the same genotype. It is therefore not possible to use the same 
GEM for all cell types, nor is it possible to reconstruct cell type-specific models 
only from the genome sequence. While attempting to deal with these issues I 
developed an algorithm for assigning sub-cellular localization in GEMs (Paper III) 
and the INIT algorithm for reconstruction of cell type-specific GEMs based on a 
multitude of omics types (Paper IV). 

The software and algorithms mentioned above were then used to study succinate production 
in Saccharomyces cerevisiae (Paper I), regulation of metabolism in S. cerevisiae (Paper II), 
penicillin production in Penicillium chrysogenum (Paper III), cancer metabolism in human 
(Paper IV), adipocyte metabolism in obesity (Paper V), and hepatocyte metabolism in non-
alcoholic fatty liver disease (Paper VI). Since the biological problems studied in this thesis 
span several areas there is no common background section. Rather, each problem is 
introduced in the corresponding results section. The background section represents a more 
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general review of the applications of genome-scale metabolic models and constraint-based 
modelling. 

1.1 Thesis structure 
This thesis represents a summary of a number of published scientific essays, a so-called 
compilation thesis. The thesis is divided into two parts: an extended summary and a 
compilation of research articles. Part one first puts the work in a larger scientific context by 
describing the field in which it is carried out, and the problems being studied in the field 
(sections 2.1 and 2.2). It then describes and explains the history and formulation of the main 
methodological framework underlying the work (section 2.3). After that follows an extensive 
examination and evaluation of the literature within areas relating to the work (section 3). This 
section does not address work carried out within the Ph.D. project. Part one is then concluded 
with a summary of the articles which form the basis for the thesis, and the results obtained in 
them (section 4). Lastly, some concluding remarks and future perspectives are presented 
(section 5). Part two contains the original research articles. The order of the articles follows 
the order in which the work was performed, rather than the order of publication. 
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2 Background 
Part of the work described in this thesis deals with methods for optimizing the genetic 
composition of microbial organisms in order to enable production of industrially relevant 
metabolites. It can therefore be said to belong to the field of metabolic engineering. Other 
parts of the work are about utilizing a holistic view of metabolism in order to integrate and 
understand large-scale data sets, which would put it closer to the field of systems biology. The 
following two sections briefly introduce those research fields in order to outline the 
foundation upon which the work is based. Section 2.3 describes and explains the 
methodological framework underlying most of the work. 

2.1 Metabolic engineering 
Metabolic engineering is about analysing and modifying metabolic pathways in order to 
achieve some objective; normally efficient production of industrially relevant compounds. 
Attempts to change the metabolism of microorganisms to suit our purposes have been carried 
out for a long time in the biotechnology industry, for example for amino acids and antibiotics 
production. These early attempts utilized chemical mutagenesis to speed up the evolution 
process, and creative selection techniques to steer evolution in the desired direction 
(Stephanopoulos et al., 1998). Such approaches can be very successful, as shown in the case 
of penicillin production, where the titre could be increased from 3-6 µM for the original strain 
identified by Fleming in 1928 to >75 mM in 1977 (Nielsen, 1995). However, the drawback 
with these techniques was that the underlying reasons for the change in phenotype remained 
unknown, which made it difficult to identify relevant constraints and pathways. In the late 
1980s and early 1990s molecular biology tools for making genetic modifications became 
available; enabling targeted modifications of metabolic pathways. This became known as 
metabolic engineering (Bailey, 1991). 

Mathematical concepts developed at about this time enabled quantification of the control each 
enzyme in a pathway had on the overall flux through the pathway, and for calculation of the 
theoretical production yields of metabolites in complex metabolic networks (see section 2.3). 
The general methodology in metabolic engineering, at least in its most traditional sense, is to 
apply mathematical modelling in order to identify constraints which could be limiting the 
production of the compound of interest. Such constraints could relate to for example substrate 
specificity of enzymes, product inhibition, medium composition, or redox balances. Once 
identified, genetic engineering is used to modify the genetic makeup of the organism in order 
to relax the constraints, leading to increased production of the compound of interest. Possible 
strategies include expression of heterologous enzymes, overexpression of endogenous 
enzymes, deletion of genes or modulation of enzymatic activity, transcriptional or enzymatic 
deregulation, and optimization of medium composition (Stephanopoulos et al., 1998). But 
metabolic engineering also has a broader ambition. It tries to answer questions such as: How 
can the most important parameters which define the phenotype be identified? How can that 
information be contextualized in the control architecture of the metabolic network? How can 
we redirect cellular metabolism towards something that is often detrimental or even toxic to 
the cell? How can the network structure and dynamics be used to propose rational genetic 
engineering targets? In order to provide answers to questions such as these, metabolic 
engineering takes a holistic view of metabolism and looks at the integrated metabolic 
pathways rather than at individual reactions in isolation. This mind-set is closely related with 
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systems biology (see section 2.2). Figure 2-1 shows some types of pathway manipulations 
which are commonly attempted in metabolic engineering. 

 
Figure 2-1. Examples of pathway modifications.   

An early example of aromatic amino acid production using recombinant Escherichia coli can 
serve as a case study of the metabolic engineering workflow. E. coli and many other 
microorganisms synthesize aromatic amino acids through the condensation reaction between 
phosphoenolpyruvate (PEP) and erythrose 4-phosphate to form 3-deoxy-D-
arabinoheptulosonate 7-phosphate (DAHP). Figure 2-2a shows the synthesis pathway of 
DHAP from glucose in E. coli. The first attempt to increase the production was made by 
screening of mutants which had deregulated product inhibition (Aiba et al., 1980). This was 
followed by overexpression of the enzymes DHAP synthase (Forberg and Haggstrom, 1987) 
and then also transketolase (Draths et al., 1992). However, the yields were still low. Forberg 
et al. (1988) then used a small metabolic model in order to identify the optimal flux 
distribution for DHAP production. This distribution can be seen in Figure 2-2a. It was 
predicted that 3 units of DHAP could be produced from 7 units of glucose. They identified the 
PEP phosphotransferase system, responsible for uptake of glucose, to be a suitable target. 
This system results in the conversion of PEP to pyruvate, which leads to a limitation in PEP 
for DHAP production. They further simulated the effect of introducing PEP synthase, which 
would regenerate the consumed PEP. The results can be seen in Figure 2-2b. The predicted 
yield would then rise to the double; 6 units of DHAP per 7 units of glucose. Patnaik and Liao 
(1994) then performed the suggested modification. The observed an almost two-fold increase 
in DHAP formation, from 52% yield to 90% yield, in excellent agreement with the 
predictions. This short example shows how powerful mathematical modelling and genetic 
engineering can be when used together. The field has developed tremendously since these 
early years, and both the dry lab and wet lab methods are now much more complex. The 
underlying thinking, however, remains the same. 
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Figure 2-2. Metabolic engineering of E. coli for production of DHAP.A) Theoretical maximal yield of DHAP on glucose 
for the wild-type strain. B) Theoretical maximal yield of DHAP on glucose for a genetically modified strain with 
recombinant PEP synthase inserted. PYR: pyruvate, PEP: phosphoenolpyruvate, G6P: glucose 6-phosphate, F6P: fructose 6-
phosphate, F16P: fructose 1,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GAP: glyceraldehyde 3-phosphate, X5P: 
xylulose 5-phosphate, R5P: ribose 5-phosphate, S7P: sedoheptulose 7-phosphate, DAHP: 3-deoxy-D-arabinoheptulosonate 7-
phosphate, Pps: PEP synthase, Tkt: transketolase, Ds: DAHP synthase. Adapted from Patnaik and Liao (1994). 

2.2 Systems biology 
The term systems biology has dual meanings. It can refer to an inter-disciplinary field which 
studies the interactions between components of complex biological systems. A central aspect 
in that interpretation is the concept of emergent properties. Emergence is the way complex 
patterns or behaviours arise from multiple relatively simple interactions. A classical example 
would be swarming. Each member of the swarm makes its decisions based on a few simple 
inputs, such as the proximity and speed relative to its neighbours, but the overall behaviour of 
a swarm can be awe-inspiring. Or in the words of physicist Doyne Farmer: “It’s not 
magic...but it feels like magic” (Waldrop, 1992). 

Systems biology claims to be particularly well posed to identify and study emergent 
properties, owing to its network-centric view. The underlying assumption is that biology itself 
has a strong link to emergence; due to the role evolution has in the growth of complexity in 
the natural world. 

"[In] evolutionary processes, causation is iterative; effects are also causes. And this is 
equally true of the synergistic effects produced by emergent systems. In other words, 
emergence itself... has been the underlying cause of the evolution of emergent 
phenomena in biological evolution; it is the synergies produced by organized systems 
that are the key.” (Corning, 2012) 

The second interpretation of the term systems biology is as a paradigm within biological 
sciences. It is then normally presented as the antithesis of the classical reductionist paradigm 
in the scientific method. The perceived limitations of the reductionist view has been described 
by Sauer et al. (2007) .   

“The reductionist approach has successfully identified most of the components and 
many interactions but, unfortunately, offers no convincing concepts and methods to 
comprehend how system properties emerge.” 
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In practice, the systems biology approach, whether as a research field or as a scientific 
paradigm, often boils down to measuring multiple components simultaneously and then 
integrating the data with mathematical models. The field is therefore reliant on high-
throughput measuring techniques such as metabolomics, transcriptomics and proteomics, as 
well as on methods from bioinformatics and computational biology. 

As with most research fields there is no clear time point at which to put its birth. The 
ancestors of systems biology include the study of enzyme kinetics in the early 1900s 
(Michaelis et al., 2011) and the application of control theory to biological systems in the 
1960s and 1970s (Heinrich et al., 1977). Denis Noble, who developed the first mathematical 
model of the working heart in 1960, is considered to be an early pioneer in the field. 
However, it was not until the 1990s, when the completion of the first genome projects resulted 
in large amounts of high quality data while at the same time computational power exploded, 
that the field really took off (Tomita et al., 1997). Much of the work being done in systems 
biology is data driven rather than hypothesis driven, although this is by no means a 
requirement. Figure 2-3 illustrates the workflow commonly referred to as the systems biology 
cycle. 

 
Figure 2-3. The systems biology cycle. Based on Kitano (2002a, b). 

2.3 Constraint-based modelling 
Mathematical modelling has been used to study metabolism for at least 100 years, since 
Michaelis and Menten derived their famous equation for enzyme kinetics in 1913. When the 
kinetic parameters for a large enough number of enzymes had been estimated, it was possible 
to formulate small models which could describe the basic metabolic functions of a living cell 
(Othmer, 1976). However, the data on kinetic parameters was fragmented, and the models 
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could be sensitive with respect to measurement errors (not to mention the problems associated 
with using in vitro measurements to estimate in vivo kinetics). There was a need to develop a 
mathematical framework to deal with uncertainty in data, and to quantify the control each of 
the enzymes had in the model. This led to the development of metabolic control analysis 
(MCA) (Heinrich et al., 1977). 

The framework was mainly applicable to small networks, and the availability of kinetic 
parameters continued to be limiting. If only the steady state metabolic fluxes inside the cell 
were of interest (rather than the dynamic change in metabolite pools) then those could be 
estimated in a method called metabolic flux analysis (MFA) (Aiba and Matsuoka, 1979). The 
method relies on measuring the rates of production/consumption of metabolites (called 
exchange fluxes) in the growth medium. If the set of possible enzymatic conversions is 
known, then the internal fluxes can be fitted from the exchange fluxes by linear regression. 
However, this requires that enough exchange fluxes are measured so that the resulting 
equation system is determined. Another issue was the determinability of fluxes in parts of the 
metabolism where there were cyclic or parallel reactions. By using isotope labelled substrates 
it was possible to track each atom, rather than each metabolite, through the metabolic 
network. This allowed for better resolution and more comprehensible models, but the 
fundamental limitations of the method remained (Wiechert, 2001). In a review paper entitled 
“Flux analysis of underdetermined metabolic networks: the quest for the missing constraints” 
Bonarius et al. (1997) describe how additional constraints, such as co-factor balancing or 
reaction reversibility, were incorporated in order to reduce the degrees of freedom and have a 
determined model. A large step forward was taken when the models were constrained to be 
optimal with respect to some cellular objective (Fell and Small, 1986). This formed the 
foundation for constraint-based modelling (CBM) of metabolism. 
If the traditional approach to metabolic modelling is to describe the components of a model in 
such detail that the model correctly represents the phenotype, then the constraint-based 
approach is rather to impose increasingly detailed constraints on the solution space so that 
only relevant phenotypes are feasible. The term CBM is, at least when applied to metabolic 
modelling, largely synonymous to flux balance analysis (FBA), although FBA is a more 
narrow term. There are multiple excellent reviews describing the assumptions and 
mathematical formulation behind FBA (Varma and Palsson, 1994b; Edwards et al., 2001; 
Price et al., 2003). The following section will describe the methodology by using a small 
hypothetical metabolic network (see Figure 2-4a). 
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Figure 2-4. Principles of FBA.A) A small metabolic network. The network is comprised of 10 reactions (out of which 6 are 
internal), 12 metabolites (out of which 8 are internal) and it contains two compartments. The subscripts of the metabolites 
indicate which compartment they belong to. r1, r2, r4 and r10 are exchange reactions. r6, r7 and r9 are reactions which transport 
metabolites between compartments. Note that while, for example, C1 and C2 represent the same chemical compound they are 
regarded as unique metabolites for modelling purposes. Also note that the stoichiometries of the enzymatic conversions are 
expressed in the network (see r8). B) The feasible solution space is shown for the reactions r1, r2, and r10. All points in the 
blue cone represent feasible solutions given the constraints. As additional constraints are imposed the solution space becomes 
narrower. 

A mass balance over a metabolite can be expressed in the general form: 

DilutionnConsumptioGenerationOutputInputonAccumulati −−+−=  (1) 

Or in a more mathematical form as: 

iinconsumptioigenerationioutiin
i xvvvv

dt
dx µ−−+−= ,,,,  (2) 

In (2) the rate of accumulation of metabolite xi is defined as the rate by which it is taken up 
(vin,i), minus the rate by which it is excreted (vout,i), plus the rate by which it is generated 
(vgeneration,i) and minus the rate by which it is consumed (vconsumption,i). The dilution term (µxi) 
accounts for the decrease in concentration that comes from the fact that a cell expands as it 
grows. Because the intracellular concentrations of most metabolites are very low compared to 
the fluxes affecting them, the dilution term can generally be neglected (Stephanopoulos et al., 
1998). This gives: 
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inconsumptioigenerationioutiin
i vvvv

dt
dx

,,,, −+−=  (3) 

 

For metabolite D2 in the figure above, for example, the equation would then read: 

98
2 2 rr

dt
dD

−=  (4) 

This relationship can be expressed in a matrix notation to represent the mass balances for all 
metabolites 

vSx
⋅=

dt
d  (5) 

In (5) S is a matrix which contains the stoichiometric coefficients that define the metabolic 
network. This matrix is referred to as the stoichiometric matrix. v is a vector with the rate for 
each reaction and x is a vector with the resulting changes in concentrations with respect to 
time for each of the internal metabolites. FBA is based on the assumption that the time scale 
for changes in the internal metabolite pools (typically seconds or minutes) is much faster than 
the time scale for growth or for changes in the environment (typically minutes or hours). It is 
therefore reasonable to assume that the internal metabolites are in steady state (meaning that 
their change in concentration is 0) (Varma and Palsson, 1994b). Equation (5) then simplifies 
to: 

vS0 ⋅=  (6) 

For the small network in Figure 2-4a this would look like: 
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In MFA the objective would now have been to measure a sufficiently large number of fluxes 
to have a determined model. With 10 variables (the unknown fluxes) and 7 equations (mass 
balances around the internal metabolites) the system has 10-7=3 degrees of freedom (if all 
reactions were linearly independent). 3 fluxes would therefore have to be measured. In FBA 
the objective is instead to constrain the system to narrow the set of feasible flux distributions. 
One fundamental constraint is imposed by the thermodynamics (e.g. effective reversibility or 
irreversibility of reactions). In the example network all reactions are irreversible and it 
therefore holds that: 

0≥v  (8) 
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For FBA to be effective three criteria have to be met: 1) the metabolic network should 
correctly describe the metabolic capabilities of the organism being studied, 2) the constraints 
should correctly describe the physiological limitations that the system operates under, 3) the 
objective function should correctly describe the objective which the cell strives to achieve. 
The first point is discussed in detail in section 3.3. The second and third points are discussed 
below. 

Figure 2-4b shows the effect of imposing additional constraints on the model. In the left panel 
the uptake rates of metabolites A1 and B1 are constrained to be ≤1. This defines a feasible 
cone of solutions, here shown in blue. Note that not all combinations of values for r1, r2 and 
r10 are allowed, since their relationships are defined by the stoichiometry of the reactions. 
Constraints on uptake or excretion rates are the most widely used type and they are commonly 
based on experimentally measured fluxes. In the right panel an additional constraint has been 
imposed; that the sum of r1 and r2 should be ≤1. This cuts the cone and further reduces the set 
of allowed flux distributions. There have been many attempts to define constraints that are 
biologically relevant and which do not require expensive and difficult in vivo measurements 
of enzymatic capabilities. Examples include: physical constraints such as diffusion rates; a 
general upper limit on enzyme capability and molecular crowding constraints (Beg et al., 
2007); binary regulatory constraints on which enzymes can be active under a given condition 
(Covert et al., 2001); energy balancing to exclude thermodynamically infeasible solutions 
(Beard et al., 2002); thermodynamic constraints based on the standard Gibbs free energies of 
formation (ΔGf

0) for metabolites (Henry et al., 2006). 

How does a cell adjust its intracellular fluxes given the constraints that it is under? In FBA it 
is assumed that cell metabolism functions according to some objective, and that such an 
objective can be defined as a linear combination of the reaction rates. 

boundsuppervboundslower
vS0

vcT

≤≤
⋅=toSubject

Maximize
 (9) 

In (9) c is a vector with coefficients for each of the reactions. The expression cTv then 
becomes the product of the flux and the objective coefficient, summed over all reactions. The 
system defined in (9) can be efficiently solved, also for very large problems, by using linear 
programming (Karp, 2008). There have been many studies on what constitutes a good 
objective function. Some of the first suggestions were rather basic, such as to maximize the 
NADPH production or minimize the ATP production (Bonarius et al., 1997). When the 
molecular composition of biomass could be quantified in sufficient detail it was possible to 
use maximization of growth as an objective (Varma and Palsson, 1994a). This objective 
proved to be a very good approximation, and still remains by far the most commonly used 
objective for modelling of microbial cells. More complex objectives, such as maximization of 
entropy production (Henry et al., 2006) or combinations of several of the objectives 
mentioned here (Schuetz et al., 2012) have been proposed since then. 

The idea that a complex system such as a living cell can be modelled from a small set of 
physiological constraints and some general objective remains very appealing. It is therefore 
likely that the quest for ever more detailed constraints and more predictive objective functions 
will continue also in the future. 
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3 Applications of genome-scale metabolic models 
In the previous chapter, a small metabolic model with 10 reactions was used to show the 
principles behind FBA and CBM. However, the models used in practice are anything but 
small; rather, they contain thousands of reactions and metabolites. Ever since genome 
sequencing took off in the 1990s is has, at least in theory, been possible to identify each 
enzyme that exists in an organism, and thereby infer a metabolic network which describes the 
full metabolic capabilities of the organism (Schilling et al., 1999). These models have 
therefore come to be known as genome-scale metabolic models (GEMs). 

 
Figure 3-1. Introduction to GEMs. A) The layout of a genome-scale metabolic model (GEM). A GEM can be viewed as a 
highly structured map of how metabolism is controlled at different levels. At the bottom are the metabolic reactions and the 
metabolites which they involve. Each reaction can then be catalysed by zero or more enzymes. The enzymes are further 
linked to the corresponding transcripts, which in turn are linked to the corresponding genes. B) The two main applications of 
GEMs. In CBM the GEM is viewed as an equation system which describes how metabolism in a cell operates. In topological 
analysis the GEM is viewed as a map of how components in a cell interact with each other.  

Figure 3-1a describes the general layout of GEMs. GEMs can be viewed as detailed maps of 
connections between the different levels of metabolism. Thereby they can provide a 
mechanistic description all the way from the metabolites, via reactions, enzymes and 
transcripts, up to the genes. Model elements at all levels can be extensively annotated so that 
GEMs can serve as highly structured databases. Figure 3-1b shows the two main application 
categories for GEMs. The following two sections will discuss how GEMs can be used for 
CBM (section 3.1) and for topological analysis/data integration (section 3.2). Section 3.3 
deals with the reconstruction of GEMs; a very complex and time-consuming process. 

3.1 C onstraint-based modelling using G E Ms 

More than 100 algorithms for constraint-based modelling using GEMs have been published, 
as described in detail in an excellent review by Lewis et al. (2012). An in depth description of 
these algorithms would be outside the scope of this thesis, but has been extensively covered 
elsewhere (Price et al., 2004; Durot et al., 2009). Instead, this section will describe one 
algorithm each for a number of optimization frameworks, in order to illustrate the breadth of 
the available methods. The categories will be: 1) linear programming (LP), 2) quadratic 
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programming (QP), 3) mixed-integer linear programming (MILP), 4) bi-level programming 
(BLP), and 5) heuristic methods. 

Linear programming. Linear programming represents the most fundamental of the 
optimization frameworks; so much that to many people CBM is synonymous to linear 
programming. The most widely used LP application is flux balance analysis (FBA) (see 
section 2.3). The approach relies on defining a linear objective function to be optimized, and 
then finding one solution (among the many) that is optimal with respect to the objective. An 
important advantage compared to the frameworks below is that LP problems can be solved to 
optimality very efficiently, even for large models. The objective function used for 
microorganisms is normally the maximization of the specific growth rate, which is consistent 
with the evolutionary advantage of the fastest growing species (Edwards et al., 2001). When 
used for strain design in metabolic engineering, the general approach is to iteratively remove 
enzymes from the GEM and then observe if the model produces the compound of interest as 
an effect of maximization of the growth rate. An example of this approach is in Lee et al. 
(2005), where the authors used FBA to suggest gene knockouts in E. coli with the purpose to 
overproduce succinic acid. The suggested modification involved a triple deletion to reduce the 
flux from PEP to pyruvate. When validated experimentally it resulted in a sevenfold increase 
in production of succinic acid. 

Quadratic programming. Quadratic programming is similar to LP, but with the possibility 
of having quadratic terms in the objective function. This allows for minimization or 
maximization of the difference between fluxes, i.e. minimize (vi – vj)2. The most widely used 
application of this optimization framework is Minimization of metabolic adjustment 
(MOMA) (Segre et al., 2002). The underlying assumption in MOMA is that following a 
perturbation, such as deletion of a gene, the cell strives to minimize the distance from its flux 
distribution to the flux distribution of the non-perturbed cell. In a fascinating study, 
Wintermute and Silver (2010) used MOMA to study synthetic mutualism in auxotrophic E. 
coli mutants, and how they can complement one another's growth by cross-feeding of 
essential metabolites. 

Mixed-integer linear programming. Mixed-integer linear programming (MILP) is based on 
LP, with the additional feature that variables can be constrained to only take integer values. 
MILP has found extensive use in algorithms for model reconstruction and gap filling (see 
section 3.3), since it is possible to formulate problems where a variable takes the value 1 if a 
reaction is included in a model and a value 0 if it is excluded. An algorithm which uses MILP 
for strain design is Regulatory on/off minimization (ROOM) (Shlomi et al., 2005). The 
underlying assumption is similar to MOMA, but rather than minimization of the distance 
between the flux distributions, the cell is assumed to strive to minimize the difference in 
which reactions are active/passive. ROOM has been shown to give slightly better predictions 
when compared to MOMA, but at the cost of being significantly more computationally 
intensive (Shlomi et al., 2005). 

Bi-level programming. Bi-level programming represents optimization problems where one 
problem is embedded in another one. In this context it normally means optimization of some 
objective while the model is constrained to be optimal with respect to some other cellular 
objective. The first implementation of this optimization framework, OptKnock, has proven to 
be a very powerful tool for strain design (Burgard et al., 2003). In OptKnock, the objective 
function is maximization of production of some relevant compound. In order to achieve this, 
the algorithm removes reactions so that production is stoichiometrically linked to optimal 
growth. For a small number of gene deletions this could be iteratively tested for in a brute-
force approach, as described in the linear programming section. The strength of OptKnock is 
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that also combinations of relatively large numbers of gene deletions can be evaluated. At its 
foundation OptKnock is implemented as a MILP problem. OptKnock was used by Fong et al. 
(2005) in a study on lactate overproduction in E. coli. The algorithm suggested a triple 
deletion strategy resulting in 1) disabled ethanol and acetate production, 2) increased 
production of pyruvate and NADH, which are the precursors for lactic acid, 3) coupled uptake 
of glucose to the conversion of PEP to pyruvate. This deletion strategy, after a round of 
adaptive evolution, resulted in lactate titres of 0.87 to 1.75 g/L when the cells were grown in 2 
g/L glucose. 

Heuristic methods. Heuristic optimization methods are used for quickly finding an 
approximate solution; trading away optimality, completeness, accuracy, and/or precision. 
These methods also have the strength that they can make use of more general objective 
functions, not only the linear or quadratic forms described above. One example of a heuristic 
algorithm for strain design is OptGene (Patil et al., 2005). It is based on randomly introducing 
perturbations to a population of GEMs, and then letting them compete and mate with each 
other based on their fitness. This approach is called evolutionary programming. OptGene has 
been applied to suggest metabolic engineering strategies for sesquiterpene production in 
Saccharomyces cerevisiae (Asadollahi et al., 2009). 

3.2 Data integration using GEMs 
A number of algorithms have been developed for the purpose of using GEMs as scaffolds for 
data integration and interpretation. An in depth description of these algorithms would be 
outside the scope of this thesis, but has been extensively covered elsewhere (Joyce and 
Palsson, 2006; Durot et al., 2009). Instead, this section will describe one or two algorithms 
each for three important types of omics data in order to illustrate the concept. 

Fluxomics. Measured intracellular fluxes, for example using 13C labelled substrates, represent 
a data type that is directly applicable to integration with GEMs. In order to go from measured 
labelling patterns in metabolites to fluxes, an atom mapping model is used. These models are 
similar to GEMs in that they are stoichiometric models of metabolism, but they can track each 
atom though the network, rather than each metabolite. They are traditionally rather small 
models, and only built for central carbon metabolism. This causes some problems, for 
example with co-factor balancing. GEMs have therefore been used to expand and complement 
atom mapping models, in order to also take more peripheral metabolism into account (Suthers 
et al., 2007). As discussed in section 2.3, a driving force in CBM is the hunt for ever more 
precise objective functions. Burgard and Maranas (2003) developed an algorithm, ObjFind, 
which makes use of fluxomics data to try to infer the cellular objectives that could have given 
rise to the phenotype. They found that regardless of the growth condition, maximization of 
growth was the objective that best fitted the data. This is good news for FBA; since the 
methods is based on that there are simple objectives which hold for a wide range of 
conditions.  

Metabolomics. Large-scale quantification of internal metabolites has been made possible 
thanks to developments in mass spectrometry and NMR technology. Since GEMs are based 
on the assumption that metabolite pools are in quasi-steady state, the concentrations of 
metabolites are not immediately possible to integrate into GEMs. Instead, the main use of 
metabolomics data has been to evaluate the capabilities of the GEM (can the model produce 
the detected metabolites?). This can then lead to directed search for the missing functions, 
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thereby generating new biological knowledge as well as improving on the model (Oh et al., 
2007). Metabolomics has also been used together with estimated Gibbs free energies of 
formation for metabolites in order to predict reaction directionality (Kummel et al., 2006a). 

Transcriptomics. As discussed in section 3.3.2, there is not a good correlation between 
transcript level and flux, owing to the several layers of regulation between them (Akesson et 
al., 2004). It is therefore difficult, or impossible, to directly use the expression levels to 
modify the model constraints, although several attempts have been made. The most common 
use of transcriptomics data is therefore to classify genes in a binary fashion; either as 
expressed or non-expressed (see the part about GIMME in section 3.3.2). An alternative 
approach, developed by Patil and Nielsen (2005), uses the data in a different way. Rather than 
looking at the expression level, they look at the significance of differential expression 
between two conditions, and make use of the network topology to analyse the data. The 
method works by first converting the metabolic network into a bipartite graph. In a bipartite 
graph the metabolites are connected to genes based on the reactions in which they participate. 
A meta-analysis is then performed for each metabolite by testing if the genes that it is 
associated to are differentially expressed when taken as a group (known as gene set analysis). 
If so, then the metabolite is classified as a Reporter. Reporter metabolites can be said to 
represent “hot spots” in metabolism around which transcriptional changes occur. Reporter 
subnetworks, presented in the same paper, is an algorithm with a somewhat similar mind-set. 
Both algorithms are described in Figure 3-2. The most well-known use of metabolic network 
topology is elementary flux modes (EFMs) (Schuster et al., 1999) and its cousin extreme 
pathways (EPs) (Schilling and Palsson, 2000). These are minimal sets of reactions which can 
operate in steady state in a metabolic network. A critical drawback is that the enumeration of 
EFMs or EPs is very computationally demanding, and the method is therefore only applicable 
for medium-sized networks. In an approach conceptually similar to Reporter subnetworks, 
Schwartz et al. (2007) used EFMs to aid in interpretation of transcriptomics data. Rather than 
calculating a p-value for the set of enzymes in a subnetwork, they calculated it for the set of 
enzymes in each EFM. The approach was then applied to study stress responses in S. 
cerevisiae.  
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Figure 3-2. The Reporter metabolites / Reporter subnetworks algorithms. For Reporter metabolites, the metabolic 
network is converted into a bipartite graph, where each metabolite is connected to the genes for the reactions it participates 
in. A metabolite can then be scored based on the p-values for differential expression for the genes connected to it. If there is 
an overall significant change then the metabolite is a Reporter. For Reporter subnetworks, the metabolic network is converted 
into a unipartite enzyme interaction graph. A simulated annealing algorithm is then applied in order to find sets of connected 
enzymes which exhibit an overall significant change in expression. The metabolic network involving those enzymes can then 
be reconstructed from the original metabolic network. These are called Reporter subnetworks. Adapted from Patil and 
Nielsen (2005). 

3.3 Reconstruction of GEMs 
The reconstruction process of GEMs is traditionally very labour- and time-intensive, spanning 
from several months for a well-studied bacteria to several years for a human model (Duarte et 
al., 2007). The very aspects that make GEMs so powerful, their scope and multi-level 
structure, are also what makes the reconstruction process so complex. This section gives an 
overview of the traditional approach, where models are manually reconstructed from genomic 
and bibliomic data in a bottom-up manner. The two subsections describe top-down 
approaches for microbial and cell type-specific models, respectively. 

There has been a multitude of published descriptions of the reconstruction process, but one 
has had a particularly large impact on the field. In a review in Nature Protocols, Thiele and 
Palsson (2010) collected existing reconstruction practices and summarized them in a 96 step 
standard operating procedure (SOP). Figure 3-3 depicts the most important steps of the 
reconstruction process. 

Metabolic network

Metabolic graph

Enzyme interaction 
graph

Reporter metabolites

Reporter subnetwork

NADH[c]
ethanol[c]
acetyl-CoA[m]
acetaldehyde[c]
glycerol[c]
glucose 6P[c]



On metabolic networks and multi-omics integration 

 

16 

 

 
Figure 3-3. The GEM reconstruction process.   

The level of detail required for reconstruction of a GEM is in a sense rather low, only the 
reaction stoichiometries and directionalities and the associated enzymes catalysing each 
reaction. This can be contrasted to the large number of kinetic parameters required for 
reconstruction of dynamic models. The reconstruction starts with the retrieval and organizing 
of the necessary input data. Depending on the organism, the availability and amount of data 
differs. The minimal required input can be said to be a sequenced genome and some amount 
of known physiological data, such as growth conditions. In general, the better the availability 
of physiological, biochemical and genetical data, the better the predictive ability of the model. 
Some data types which can be very valuable if they are available include: 13C fluxomics data, 
measured subcellular localizations, or gene knockout libraries. The next step is the generation 
of a draft model. That starts by going through each of the annotated genes and deciding 
whether its function is within the scope of the reconstruction. Normally, only metabolic 
enzymes are included. There are also grey areas, such as DNA methylation, protein 
phosphorylation or complex glycan metabolism, which are often excluded from the GEM, 
even though they can be viewed as metabolic functions. The enzymes are then mapped to 
their respective metabolic reactions. This step is often performed via EC numbers, followed 
by retrieval of reactions from reaction databases such as KEGG (Ogata et al., 1999) or RHEA 
(Alcantara et al., 2012). It is important to note that EC numbers refer to the type of chemical 
transformation in a reaction, not the enzyme class which performs the conversion. For 
example, both ethanol dehydrogenase and choline dehydrogenase have EC number 1.1.1.1, 
since they both act on primary alcohols and use NAD+ as a co-factor. This mapping is 
therefore not exact, and should be viewed as a first draft. The process described above is for 
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an annotated genome. If the genome for the organism of interest is not annotated, a first step 
would then be to use one of the many genome annotation pipelines which have been 
developed (Stein, 2001). 

The network at this stage will most likely have a large number of issues which must be 
addressed. Potential issues include, but are not limited to: unclear metabolite naming, generic 
metabolites such as “an alcohol” or “fatty acid”, missing spontaneous conversions, wrongly 
assigned directionality of reactions, or generic stoichiometries such as “starch(n) + H2O => 
starch(n-1) + glucose”. Careful manual evaluation and modification of the reactions is used to 
clear up the reaction list. The reactions are then partitioned into the relevant subcellular 
compartments, and transport reactions are added based on literature and genomic evidence. 
Lastly, the chemical composition of biomass is determined based on measurements or 
literature. 

A number of quality controls are then performed in order to validate the model. In Figure 3-3 
these controls are categorized as internal or external, where internal relates to the inner 
workings of the network and outer to the capabilities for predicting the cellular phenotype. As 
GEMs are fundamentally mass balance models, it is critical that the reactions are elementally 
and charge balanced. This is trivial if the elemental composition is known, but that is not 
always the case, for example in the case of polymers. The model can then be tested for 
“stoichiometric inconsistencies”, meaning that there are reaction sets such as A → B and A → 
B + C (Gevorgyan et al., 2008). Other tests include thermodynamic and redox feasibility, so 
that the model cannot produce high energy compounds from low energy compounds or 
reduced compounds from oxidized compounds (Kummel et al., 2006b). There are a number 
of methods for identifying reactions which cannot carry flux or metabolites which cannot be 
produced, and to suggest strategies for connecting them (Mahadevan and Schilling, 2003; 
Reed et al., 2006; Satish Kumar et al., 2007; Kumar and Maranas, 2009; Brooks et al., 2012). 
This process is referred to as gap filling, and it is of central importance for the quality of the 
reconstruction. 

The metabolic capabilities of the model must then be evaluated by comparison to the known 
capabilities of the organism in question. This is referred to as external controls in Figure 3-3. 
Such controls include that the model can grow on media that the organism in question can 
grow on, that it can produce products that are known to be produced by the organism, and that 
it can perform other known metabolic functions of the organism. It is equally important to 
control that the model is not too flexible, so that it can perform functions that are known to 
not occur in the organism, or that it can grow faster than what is seen experimentally. Lastly, 
there are a small number of parameters which need to be fitted from experimental data. These 
include ATP maintenance costs and the P/O ratio. These parameters have to be validated to be 
within reasonable bounds. If all quality controls pass, then the model is functional and the 
reconstruction complete. If any of them fails, then the metabolic network has to be further 
modified. This is an iterative process, where the model is modified, validated, and modified 
again until a functional and high-quality model is achieved. This interplay between 
annotation, verification, and testing is a valuable process, as it results in the refinement of 
both the genome annotation and the reaction network. Table 3-1 lists some databases and 
resources that are widely used for reconstruction of GEMs. 
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Table 3-1. Databases and resources for reconstruction of GEMs. 
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direction 
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GPR 
association 

X X X   X X      X X X X X X   

GEM 
repositories 

                  X X 

Based on Durot et al. (2009) and Mardinoglu and Nielsen (2012). 

3.3.1 Automated reconstruction of microbial GEMs 

There have been a number of methods published for automating parts of the reconstruction 
process. Most or all of these methods aim primarily at automating the annotation step, but 
there are also methods that integrate parts of the quality control process as well. These 
methods make use of reaction databases and the connections between EC numbers and genes 
within such databases. One of the earliest such methods was Pathway Tools; a software for 
generating organism-specific databases from a general database (Karp et al., 2002). The input 
to the software is a set of genes annotated with EC numbers. Pathway Tools was not 
developed with GEM reconstruction in mind, but rather as a more general resource.  Other 
methods which also matched enzymes to reactions, but without the ambition to reconstruct 
GEMs, were IDENTICS (Sun and Zeng, 2004), which attempted to simultaneously annotate 
predicted ORFs and link them to reactions by using BLAST to match known metabolic genes 
to a non-annotated genome, and metaSHARK (Pinney et al., 2005), which used PSI-BLAST 
profiles rather than BLAST for the same purpose. The first software dedicated for GEM 
reconstruction was GEM System (Arakawa et al., 2006). GEM System first identified ORFs 
by using GLIMMER (Delcher et al., 1999), then matched the ORFs to known enzymes using 
BLAST. A metabolic network was then generated based on mapping to an internal database. 
GEM System also contained a simple algorithm for gap filling. AUTOGRAPH (Derrien et al., 
2007) is a software for inferring GEMs based on previously reconstructed GEMs for other 
species. The software that has had the highest impact by far is the Model SEED resource 
(DeJongh et al., 2007; Henry et al., 2010). Model SEED builds on the gene calling and 
annotation pipeline in SEED, and then uses an internal reaction database to map annotated 
genes to reactions. It also contains an automatic gap filling feature, where a generic biomass 
equation is assumed, after which the software applies a gap filling algorithm in order to 
ensure that the model can form biomass. 

The main advantage of using software like the ones described above is that it speeds up the 
reconstruction process. However, it is important to note that it comes at the cost of decreased 
control and insight over how and why different elements are included in the model. 
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3.3.2 Reconstruction of cell type-specific GEMs 

The cells of multicellular organisms can have very different phenotypes even though they 
share the same genotype. For example, the longest neural cells in a human can be more than a 
meter long (Fletcher and Theriot, 2004), while one of the smallest cell types, the erythrocytes, 
only measure 7-8 µm (Fabry et al., 1981). In order to model cellular metabolism, it is 
therefore necessary to reconstruct a GEM specifically for the relevant cell type. In practise, 
this is done by starting from a generic network for the organism in question, and then 
manually or algorithmically select a subset of enzymes which are thought to be present in the 
specific cell type. In 2007 two such generic GEMs were published for human: Recon 1 
(Duarte et al., 2007) and EHMN (Ma et al., 2007). A number of cell type-specific models 
have been manually reconstructed by using these models as scaffolds, including for liver 
(Gille et al., 2010), brain (Lewis et al., 2010), alveolar macrophage (Bordbar et al., 2010), 
and a multi-tissue model for hepatocytes, adipocytes and myocytes (Bordbar et al., 2011). The 
manual reconstruction process follows the same workflow as described in Figure 3-3. These 
examples are either rather small GEMs or for well-studied cell types, where there is a wealth 
of physiological literature available. 

In parallel to this there have also been a number of algorithms developed which aim at 
reconstructing cell type-specific GEMs in an automated manner based on high-throughput 
data. Note that the problem of inferring a cell type-specific network from a generic model is 
closely related to the problem of inferring an organism-specific network from a generic 
reaction database (as described in section 3.3.1). The difference is in the input data. While the 
organism-specific models are reconstructed based on protein homology, the cell type-specific 
models have to be reconstructed from omics data. Table 3-2 lists some relevant omics types 
and their respective advantages and disadvantages. The first of these algorithms was GIMME 
(Becker and Palsson, 2008). GIMME takes transcriptome data as input and removes reactions 
for which the expression levels for the genes are below some threshold. It then constrains the 
model to perform some function, after which is uses a gap filling algorithm to reinsert the 
required reactions so that the model can satisfy the constraints. The state of the art algorithm, 
MBA (Jerby et al., 2010), adds another layer of complexity by dividing the reactions with 
supporting evidence into two groups; one with reactions which must be included, and one 
with reactions that should be included. The algorithm then uses a gap filling algorithm to 
include as many reactions as possible from the second group while using as few reactions as 
possible for gap filling. These algorithms have been applied to reconstruct GEMs for liver 
(Jerby et al., 2010), kidney (Chang et al., 2010) and a generic cancer model (Folger et al., 
2011). 
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Table 3-2. Available omics types for reconstruction of cell type-specific GEMs. 

 Type Advantages Disadvantages 
Transcriptomics 
from DNA 
microarrays 

Relative Cheap, widely available, high 
throughput 

Low correlation between gene 
expression and protein level 

Transcriptomics 
from RNA-Seq 

Semi-
quantitative 

As above, but with the added benefit 
that the measurements are semi-
quantitative 

As above 

Proteomics Semi-
quantitative 

Direct evidence for the 
presence/absence of enzymes 

Expensive, not all proteins/cell 
types are currently covered 

Metabolomics Quantitative Detection of a metabolite indicates 
that the cell must possess the 
metabolic capabilities to synthesize it 
(or be able to import it from its 
surroundings) 

Detection of a metabolite says 
nothing about which pathways 
it was synthesized in, or about 
the fluxes involving it 

Fluxomics Quantitative Direct evidence for intracellular 
metabolic fluxes 

A metabolic model has to be 
used for fitting the fluxes, only 
available for central carbon 
metabolism 

Bibliomics Categorical Can be very reliable if based on high-
quality experimental data 

Time- and labour-intensive to 
retrieve and organize the data 
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4 Results and discussion 
In the following sections I will summarize the publications underlying the thesis and discuss 
their contribution to the field. The publications could broadly be divided to deal with GEMs 
applied to metabolic engineering of fungi (section 4.1) and GEMs applied to human health 
and disease (section 4.2), although there are plenty of links between them. Each section is 
preceded by a short review of research previously carried out in the field. 

4.1 GEMs applied to metabolic engineering of fungi 
Fungi have been used by humans since ancient time for production of cheese, bread, beer, 
wine and soy sauce. Today they are used in many industrial processes, such as the production 
of enzymes, vitamins, polysaccharides, alcohols, pigments, lipids, and glycolipids. Fungal 
secondary metabolites, in particular antibiotics, are extremely important to our health and 
nutrition and have tremendous economic impact (Adrio and Demain, 2003). The industrial 
production of β-lactam antibiotics by the mold Penicillium chrysogenum is one of the success 
stories of biotechnology, and represents one of the largest biotechnological products in terms 
of value, with dosage form sales of about USD 15 billion (Elander, 2003). Table 4-1 lists 
some important industrial applications of fungi and the species used. 

Much work has gone into metabolic engineering of fungi, partly owing to their large industrial 
relevance and partly because several fungi are important model organisms. In terms of 
genome-scale metabolic modelling most of the efforts have been centred on the yeast S. 
cerevisiae. To date there are ten published S. cerevisiae GEMs with different scopes and 
applications (Osterlund et al., 2012). GEMs have also been developed for the industrially 
relevant yeasts Pichia pastoris (Sohn et al., 2010), P. stipitis (recently renamed to 
Scheffersomyces stipitis) (Caspeta et al., 2012), Candida glabrata (Xu et al., 2013), and 
Yarrowia lipolytica (Loira et al., 2012) as well as for the model yeast Schizosaccharomyces 
pombe (Sohn et al., 2012). Three models have been reconstructed for filamentous fungi in the 
Aspergillus genus; namely A. niger (Andersen et al., 2008), A. oryzae (Vongsangnak et al., 
2008) and A. nidulans (David et al., 2008). 
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Table 4-1. Some industrial applications of fungi. 

Process Organism 
Pre-modern products  
Ang-kak Monascus purpurea 
Miso Aspergillus oryzae 
Ontjam Neurospora crassa 
Soy sauce A. oryzae, A. sojae 
Tempeh Rhizopus niveus 
Brewing and baking Saccharomyces cereviseae, S. carlbergensis 
Mold-ripened cheeses Penicillium roqueforti, P. camembetii 
  
Pharmaceuticals  
Penicillins P. chrysogenum 
Cephalosporin Cephalosporium acremonium 
Cyclosporin Tolypocladium inflatum 
Ergot alkaloids Claviceps purpurea 
Griseofulvin P. griseofulvin 
Mevalonin A. terreus 
Statins P. brevicompactum, P. citrinum, M. ruber, A. terreus 
Taxol Taxomyces andreanae 
  
Proteins  
α-Amylases A. niger, A. oryzae 

Cellulase Humicola insolens, P. funiculosum, Trichoderma viride 
Glucoamylases A. phoenicis, R. delemar, R. niveus 
Glucose oxidase A. niger 
Invertase A. niger, A. oryzae 
Laccase Coriolus versicolor 
Pectinase A. niger, A. oryzae, H. insolens 
Proteinases A. oryzae, A. melleus 
Recombinant enzymes M. miehei, M. Pusillus, Pichia pastoris, S. cerevisiae   
  
Organic acids  
Citric acid A. niger 
Itaconic acid A. terreus 
  
Solvents and fuels  
Ethanol S. cerevisiae 
Based on Bennett (1998); Adrio and Demain (2003); Choi et al. (2003). 

In an excellent review Osterlund et al. (2012) summarized the published applications of S. 
cerevisiae GEMs since the first model was made available in 2003. They classified its 
applications in four categories: 1) guidance for metabolic engineering and strain 
improvement, 2) biological interpretation and discovery, 3) applications of novel 
computational frameworks, and 4) evolutionary elucidation. Figure 4-1 builds on their 
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classification, but also includes non-Saccharomyces yeasts and filamentous fungi, as well as 
publications from after 2010. As can be seen, the first phase was completely dominated by 
work on S. cerevisiae. Around 2007 there seems to have been an increased interest in 
filamentous fungi and during the last couple of years there have been a number of studies on 
non-Saccharomyces yeasts. Another trend is that up until about 2009 many of the papers are 
about novel computational frameworks (category 3) and about evolutionary 
elucidation/comparative genomics (category 4). It is not until more recently that GEMs are 
widely used for strain engineering (category 1). This can indicate that the field has matured, 
and that the mathematical methods developed in the early years are starting to prove 
themselves and are now being used to solve concrete problems. 

 
Figure 4-1. Overview of applications of fungal GEMs. The available publications which make use of GEMs to study 
fungal metabolism were categorized as follows: 1) guidance for metabolic engineering and strain improvement, 2) biological 
interpretation and discovery, 3) applications of novel computational framework, and 4) evolutionary elucidation. Blue: S. 
cerevisiae, Yellow: Non-Saccharomyces yeasts, Red: Filamentous fungi. Partly adapted from Osterlund et al. (2012). 

In this section I present some of my work about genome-scale metabolic modelling applied to 
fungal metabolism. In Paper I we used genome-scale metabolic modelling to suggest knock-
out targets in S. cerevisiae for the purpose of succinic acid production. The targets were then 
validated experimentally. In Paper II we developed an algorithm for identifying 
transcriptionally regulated reactions, with the aim of aiding metabolic engineering. In Paper 
III we developed a software suite for automatic reconstruction of GEMs and used this 
software to reconstruct a GEM for Penicillium chrysogenum. The model was then used to 
suggest metabolic engineering targets which could improve penicillin production. 
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4.1.1 Paper I: Genome-scale modelling enables metabolic 
engineering of Saccharomyces cerevisiae for succinic acid production 

The US Department of Energy has identified succinic acid as an added-value chemical 
building block, with an estimated 15,000 t/year world-wide demand. The demand was 
predicted to grow to 270,000 t/year, representing a >2 billion USD annual market (Willke and 
Vorlop, 2004; McKinlay et al., 2007). Succinic acid is currently used industrially in a variety 
of applications, such as surfactant, ion chelator, and as additive in the pharmaceutical and 
food industries. Currently, the only succinic acid derived from fermentation is that which is 
used in the food market, while the bulk is petrochemically produced from butane through 
maleic anhydride (McKinlay et al., 2007). 

Several biotechnology and metabolic engineering efforts have focused on overproduction of 
succinic acid in prokaryotes (Song and Lee, 2006). These bacterial hosts all grow at neutral 
pH, which results in secretion of the salt form, succinate, rather than the acid form. A costly 
acidification and precipitation step is then required in order to produce succinic acid, which is 
the desired product. This is a general concern when using bacterial cells for production of 
organic acids (Sauer et al., 2008). One way to approach this issue could be to use the yeast 
Saccharomyces cerevisiae as a host. S. cerevisiae is a well-established, generally regarded as 
safe, and robust industrial production host. It is capable of growth on a variety of carbon 
sources, both aerobic and anaerobic, and it has a large pH operating range (3.0-6.0). Since it is 
capable of growth at such low pH it could be used to produce the desired acid form directly 
and thereby circumventing the acidification step. However, unlike the bacterial hosts 
described above succinate does not natively accumulate in S. cerevisiae. 

Succinate is a TCA cycle intermediate produced from the oxidation of succinyl-CoA by 
succinyl-CoA synthase, or from isocitrate in a reaction catalysed by isocitrate lyase in the 
glyoxylate shunt. It is then further oxidized to fumarate by succinate dehydrogenase, resulting 
in the formation of FADH2. Only limited work has been done on metabolic engineering of S. 
cerevisiae for production of succinate. The most successful work to date has been by Raab et 
al. (2010). They pursued an oxidative production route by a quadruple deletion of SDH1, 
SDH2, IDP1, and IDH1. This led to an interrupted TCA cycle and flux being redirected 
through the glyoxylate cycle instead, thereby resulting in succinate production. They could 
demonstrate a 0.07 C-mol/C-mol glucose succinate yield following this approach. 

In Paper I we used FBA to propose gene deletion strategies for succinate overproduction. 
The main strategy was to optimize for biomass formation under constrained glucose uptake, 
and then observe the resulting succinate yield under a variety of conditions. Unlike the 
previously mentioned study, we focused primarily on anaerobic fermentation conditions, 
since it is a large advantage to be able to run industrial fermentations anaerobically. The three 
most promising single gene deletion strategies, identified under anaerobic glucose 
fermentation conditions, were experimentally evaluated. These strains were then 
physiologically and transcriptionally characterized in order to gain further knowledge into the 
C4 acid production by S. cerevisiae. 

Figure 4-2 shows a comparison of the simulated specific growth rate and specific 
productivities compared to data generated by using the reference S. cerevisiae CEN.PK113-
7D and BY4741 under aerobic and anaerobic glucose batch fermentations. As can be seen, the 
growth rate is predicted well, as is the ethanol production. However, the model is unable to 
capture the glycerol formation under aerobic conditions, and it underestimates the formation 
also under anaerobic conditions. This is due to the inability of the model to describe the 
Crabtree effect, as discussed earlier by Akesson et al. (2004). 
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Figure 4-2. Comparison between experimental and simulated fermentation data. Comparison of the specific growth rate 
and specific productivities for simulated data and experimental data generated using the reference S. cerevisiae CEN.PK113-
7D and BY4741 under aerobic and anaerobic glucose batch fermentations. For the conditions, simulation aerobic1 and 
simulation anaerobic, the rO2 was constrained to 1.8 mmol-O2/g-DCW/h and 0.016 mmol-O2/g-DCW/h, respectively. For 
aerobic experimental data the specific glucose uptake rate was 91.2 C-mmol/g-DCW/h for CEN.PK113-7D. For anaerobic 
experimental data the specific glucose uptake rate was 93.1 C-mmol/g-DCW/h for CEN.PK113-7D and 89.7 C-mmol/g-
DCW/h for BY4741. For all simulation conditions the glucose uptake rate was constrained to 91.2 C-mmol/g-DCW/h. 

Overproduction of succinate was simulated using the conditions previously described. Under 
aerobic conditions there were no single gene deletions which resulted in succinate production. 
Double gene deletions resulted only in minor improvement of succinate production. Figure 
4-3 presents the top single gene deletions for succinate overproduction under anaerobic 
conditions. There is a small but significant predicted yield on substrate for the gene deletions 
Δoac1, Δmdh1, and Δdic1 (0.033 C-mol/C-mol glucose). The increase in succinate yield 
resulted in nearly no impact on growth rate (0.28h-1 vs. 0.30h-1, single gene deletion vs. 
reference case simulation, respectively). The strains Δoac1, Δmdh1, and Δdic1 are viable null 
mutants, and their annotation is well known, encoding for an inner mitochondrial membrane 
transporter (Oac1p), malate dehydrogenase (Mdh1p), and an inner dicarboxylate 
mitochondrial transporter (Dic1p), respectively (Cherry et al., 1998). 

In order to investigate if the single gene deletions identified in silico resulted in more 
succinate production, the corresponding strains were cultivated anaerobically in 2L well 
controlled fermenters. A comparative analysis between simulation and experimental results 
are presented in Figure 4-3. There is a fair agreement between model predictions and 
experimental data. Focusing more closely on the specific succinate productivity, the reference 
case, Δmdh1, and Δoac1 experimentally determined yields are significantly lower than 
expected based on model simulations. The Δdic1 case, however, demonstrated a significantly 
higher yield of succinate compared to the reference case (0.02 vs. 0.00 C-mol/C-mol glucose, 

                                                 
 

1 The condition here referred to as “aerobic” corresponds to the condition referred to as “semi-aerobic” in Paper 
I. The original “aerobic” was for totally unconstrained oxygen uptake; a condition which badly represented the 
experimental data and which therefore is not discussed further here. 
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Δdic1 vs. reference, respectively), and was in line with the in silico prediction (0.02 vs. 0.03 
C-mol/C-mol glucose, Δdic1 experimental vs. Δdic1 simulation, respectively). This represents 
a significant improvement in succinate productivity based exclusively on a novel in silico 
prediction. 

 
Figure 4-3. Experimental and simulated data for reference strain, Δoac1, Δmdh1, and Δdic1 strains. Summary of the 
specific growth rate (SGR) and specific consumption/productivity for major products (glucose, ethanol, carbon dioxide, 
acetate, glycerol, succinate, pyruvate, and oxygen) for both experimentally determined data of anaerobic batch glucose 
fermentations and the corresponding anaerobic simulation data. The panels show the BY4741 reference strain and the single 
gene deletion strains Δmdh1, Δdic1, and Δoac1. In general, the simulated growth rates are in very good agreement with the 
experimental values. The Δdic1 mutant results in some succinate production. 

To gain further insight into the performance of each strain, DNA microarray profiling was 
performed for the anaerobic batch glucose fermentations. The complete list of differentially 
expressed genes2 for Δdic1 and Δmdh1 were submitted for metabolic pathway annotation 
using the SGD Pathway Expression Viewer and Reactome databases (Paley and Karp, 2006; 
Matthews et al., 2009). Only a rather small number of metabolic genes were identified in 

                                                 
 

2 The number of differentially expressed genes for the Δoac1 strain compared to the reference strain was very 
low, and consequently suggests that deletion of Δoac1 causes virtually no transcriptional, and consequently, 
physiological differences compared to the reference BY4741 strain. No further analysis of the transcriptional 
data was performed for this strain. 
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Δdic1 and Δmdh1 compared to the reference; a total of 10 and 20 genes respectively. Perhaps 
more striking is that there is an overlap of 9 metabolic genes between Δdic1 and Δmdh1. The 
only differentially expressed gene present in the Δdic1 condition, not present in the Δmdh1 
condition, is DIC1. 

The identified metabolic engineering strategies through Δdic1, Δmdh1, and Δoac1, suggest a 
common mechanism. Mitochondrial redox balance must be maintained, and while respiratory 
metabolic activity under anaerobic conditions is reduced compared to aerobic conditions, 
some activity is required to support glutamate/glutamine metabolism from α-ketoglutarate 
(Camarasa et al., 2003; Camarasa et al., 2007). This leads to the accumulation of 
mitochondrial NADH. During anaerobic metabolism, NAD+ regeneration occurs via the 
following pathways according to our simulations (where the subscript m denotes 
mitochondrial): 

phosphatephosphateHpMir
phosphatemalatephosphatemalatepDic

NADmalateNADHteoxaloacetapMdh
HteoxaloacetateoxaloacetapOac
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mm

mmmm
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Net reaction stoichiometry: ++→+ mm NADmalateNADHteoxaloaceta  

In the cytosol, malate is then converted to oxaloacetate, and the resulting NADH is converted 
to NAD+, resulting in the production of glycerol. The Δdic1 strategy, relying on deletion of 
the mitochondrial dicarboxylate carrier DIC1, catalyses the following transport reaction: 

succinatemalatesuccinatemalatepDic mm +→+:1  

Assuming DIC1 deletion, then the resulting simulated pathway is: 
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Net reaction stoichiometry: ++→+ mm NADsuccinateNADHfumarate  

The Δdic1 strategy relies heavily on the subcellular localization and function of Frds1p, 
soluble mitochondrial fumarate reductase, which continues to be poorly understood. However, 
recent work has suggested that a double deletion S. cerevisiae mutant, Δosm1Δfrds1, failed to 
grow under batch glucose anaerobic conditions. During anaerobic growth, FRDS1 expression 
in the wild-type was two to eight times higher than that of OSM1, suggesting that formation of 
succinate is strictly required for the re-oxidation of FADH2 and that its expression may be 
oxygen-regulated (Camarasa et al., 2007). There was a strong upregulation of CYC1 in both 
the Δdic1 and Δmdh1 mutants. CYC1 facilitates electron transfer from ubiquinone cytochrome 
C oxidoreductase to cytochrome C oxidase. This direction, which is the normal oxidative 
route and ends in reduction of O2, would not be possible under fully anaerobic conditions. The 
upregulation can therefore be viewed as a coping strategy to deal with the stress of redox 
imbalance. Deletion of CYC1 could therefore be a way to ensure that all NAD+ regeneration is 
coupled to succinate production. The strategies proposed here rely on the capacity for 
reductive TCA cycle activity under anaerobic conditions, and more specifically, the catalysis 
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of fumarate to succinate via fumarate reductase. There is evidence suggesting that S. 
cerevisiae can exhibit this metabolic state (Camarasa et al., 2003; Camarasa et al., 2007). 

In conclusion, a GEM was used to predict single and double gene deletion strategies which 
could lead to increased succinate production under a variety of conditions. Three of these 
strategies, all utilizing anaerobic fermentation conditions, were validated in vivo and one, 
Δdic1, was identified to lead to a significant improvement in succinate yield, in close 
agreement with the model prediction. However, the yield was not as high as what was 
reported by Raab et al. (2010) using a quadruple gene deletion strategy and the oxidative 
route (0.02 C-mol/C-mol glucose vs. 0.07 C-mol/C-mol glucose). Furthermore, physiological 
characterization and transcriptome analysis were used to aid in interpretation of the 
simulations and provide a mechanistic explanation of the results. The proposed mechanisms 
rely heavily on compartmental transport reactions and mitochondrial redox balancing. 
Transcriptional profiling suggests that succinate formation is coupled to mitochondrial redox 
balancing, and more specifically, reductive TCA cycle activity. While far from industrial 
titers, this proof-of-concept suggests that in silico predictions coupled with experimental 
validation can be used to identify novel and non-intuitive metabolic engineering strategies. 

4.1.2 Paper II: Sampling the solution space in genome-scale 
metabolic networks reveals transcriptional regulation in key enzymes 

Metabolic fluxes are the result of a complex interplay involving metabolite concentrations, 
enzyme kinetics, gene expression, and translational regulation. Due to these multiple layers of 
regulation, there is generally not a clear correlation between mRNA levels, enzyme levels, 
and the metabolic fluxes (Akesson et al., 2004). Only a rather small fraction of enzymes show 
a clear positive correlation between their transcription levels and the rates of the reactions that 
they catalyse. These reactions are said to have transcriptional regulation. 

In Paper II we propose a method which allows for identification of enzymes that show 
transcriptional regulation, and therefore represent suitable targets for metabolic engineering 
(up- or downregulation). The method is based on integration of gene expression data with flux 
data by transforming quantitative flux data into a genome-scale set of statistical scores 
analogous to those obtained from transcriptional profiling. This works by constraining a set of 
experimentally determined exchange fluxes in a GEM for the organism being studied. This is 
then done for each of the studied conditions, or for each of the strains investigated. A random 
sampling algorithm is then used to generate a set of internal flux distributions which all satisfy 
the experimentally determined exchange fluxes. By this approach it is possible to obtain 
means and standard deviations for each flux in the GEM, and from there it is then possible to 
derive p-values for the significance of flux change between conditions (Mo et al., 2009; 
Schellenberger and Palsson, 2009). These values can then be compared to the significance of 
change in gene expression for the corresponding enzymes. The comparison of flux change 
and gene expression allows for identification of enzymes showing a significant correlation 
between flux change and expression change (transcriptional regulation) as well as reactions 
whose flux change is likely to be driven only by changes in the metabolite concentrations 
(metabolic regulation). This workflow is described in more detail in Figure 4-4. 
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Figure 4-4. Workflow for identification of transcriptionally regulated reactions. The figure illustrates how the method 
can be applied to identify transcriptionally regulated reactions. Two fermentations experiments are performed; one for the test 
case and one reference. Gene expression levels are measured for the two cases using, for example, DNA microarrays. A 
statistical test is used for each of the genes to calculate the Z-score for differential expression between the cases. In parallel to 
this, key exchange fluxes are quantified. The corresponding exchange fluxes in two GEMs are then constrained to what was 
seen experimentally for each of the cases. Due to the high dimensionality of GEMs, and the redundancy in cell metabolism, 
there are many different internal flux distributions which all result in the measured exchange fluxes. A random sampling 
algorithm is applied to sample many such solutions from each of the two models. A Z-score for differential flux can then be 
estimated for each of the reactions from the difference in average flux divided by the square root of the sum of the variances. 
The Z-scores for differential expression/flux are then transformed into probabilities of change by using the cumulative 
Gaussian distribution. These probabilities are then used to calculate probabilities of having correlated gene expression and 
flux changes for the corresponding reaction. The enzymes in the network can then be classified as: 1) enzymes that have a 
significantly correlated change both in flux and expression level (reactions showing transcriptional regulation); 2) enzymes 
that show a significant change in expression but not in flux (post-transcriptional regulation); 3) enzymes that show significant 
changes in flux but not a change in expression (metabolic regulation).  

To evaluate our method we used data for S. cerevisiae. Data from growth on four different 
carbon sources (glucose, maltose, ethanol and acetate) in chemostat cultures and from five 
deletion mutants grown in batch cultures were used. This summary will only focus on the 
different carbon sources, and not on the deletion mutants. Table 4-2 shows the top scoring 
enzymes in the different categories for each of the carbon source shifts. 
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Table 4-2. Top scoring enzymes for transcriptional, post-transcriptional and metabolic regulation for changes in 
carbon source. The 10 top scoring enzymes in each group are shown (or fewer when less than 10 enzymes had a probability 
larger than 0.95). 

Carbon source 
shift 

Enzymes showing 
transcriptional regulation 

Enzymes showing post-
transcriptional regulation 

Enzymes showing 
metabolic regulation 

Glucose/Maltose • α-glucosidase MAL32 
• Low-affinity glucose 
transporter HXT4 

• Mevalonate kinase 
• Inosine-5'-monophosphate 
dehydrogenase IMD2 
• Asparagine synthetase 1 
• Glycerol-3-phosphatase 1 
• Uncharacterized deaminase 
• Nicotinate-nucleotide 
pyrophosphorylase 
• Mevalonate kinase 
• Nicotinate-nucleotide 
pyrophosphorylase 
• Glycerol-3-phosphate 
dehydrogenase 1 

• Acetate transport via 
proton symport 

Glucose/Ethanol • Phosphoenolpyruvate 
carboxykinase 
• Fructose-1,6-
bisphosphatase 
• Isocitrate lyase 
• Malate dehydrogenase 
• Citrate synthase 
• Ribose-5-phosphate 
isomerise 
• Low-affinity glucose 
transporter HXT4 
• External NADH-
ubiquinone oxidoreductase 2 
• Glucose-6-phosphate 
isomerase 

• Formate dehydrogenase 2 
• ATP-NADH kinase 
• Sulfate permease 1 
• Formate dehydrogenase 1 
• Dicarboxylate transporter 
• NADP-specific glutamate 
dehydrogenase 2 
• Uncharacterized deaminase 
• phosphogluconolactonase 3 
• 6-phosphofructo-2-kinase 2 
• Nucleoside diphosphate kinase 

• Fructose-bisphosphate 
aldolase 
• Triosephosphate 
isomerase 
• Pyruvate 
dehydrogenase E1 
subunit alpha 
• α-ketoglutarate 
dehydrogenase 
• Succinyl-CoA ligase 
subunit beta 
• Malate synthase 2 
• Glucose-6-phosphate 
1-dehydrogenase 
• Cytochrome b-c1 
subunit Rieske 
• Adenylate kinase 

Glucose/Acetate • Fumarate hydratase 
• Phosphoenolpyruvate 
carboxykinase 
• Fructose-1,6-
bisphosphatase 
• Isocitrate dehydrogenase 
• Succinate-semialdehyde 
dehydrogenase 
• Citrate synthase 
• Isocitrate dehydrogenase 
subunit 1 
• Pyruvate kinase 2 
• Low-affinity glucose 
transporter HXT4 

• Phospho-2-keto-3-
deoxyheptonate aldolase 
• Ribonucleoside-diphosphate 
reductase large chain 1 
• 6-phosphofructo-2-kinase 1 
• Glutamine-dependent NAD 
synthetase 
• Ribose-phosphate 
pyrophosphokinase 4 
• ATP-dependent permease 
AUS1 
• Fructose-2,6-bisphosphatase 
• Nicotinate-nucleotide 
pyrophosphorylase 
• Squalene monooxygenase 

• Fructose-bisphosphate 
aldolase 
• Triosephosphate 
isomerase 
• Ribose-5-phosphate 
isomerase 
• Inorganic 
pyrophosphatase 
• Adenylate kinase 
• Glutamate 
decarboxylase 
• 4-aminobutyrate 
aminotransferase 
• Tricarboxylate 
transport protein 
• Prephenate 
dehydrogenase 

 

In the glucose to maltose transition, only two enzymes showed transcriptional change 
correlated with their flux. The α-glucosidase Mal32p, which is responsible for the breakdown 
of maltose into glucose, was upregulated and the glucose transporter Hxt4p was 
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downregulated. Only very minor adjustments could be seen in terms of fluxes, and only 
enzymes directly related with the substrate uptake and utilization were detected. The changes 
in gene expression were also few and only 11 metabolic enzymes were significantly perturbed 
(without significant flux changes). 

The glucose to ethanol and the glucose to acetate shifts showed much more widespread 
changes in flux and expression. They therefore represent more interesting cases studies. In the 
glucose-ethanol transition 19 enzymes showed transcriptional regulation and 22 enzymes 
changed in expression but not in flux. For the glucose-acetate shift the same numbers were 33 
and 23, respectively. Among the enzymes showing transcriptional regulation, 14 were shared 
between the glucose-ethanol and glucose-acetate transitions. However, there was no overlap 
between the sets of enzymes which do not change in flux. Metabolic regulation was observed 
in 21 reactions for each case, out of which 8 overlap. 

The enzymes with transcriptional regulation clearly show a downregulation of enzymes 
involved in the uptake and utilization of glucose (e.g. glucose transporter Hxt4p or hexokinase 
2) and the upregulation of enzymes involved in gluconeogenesis (e.g. fructose-1,6-
biphosphatase) or the TCA cycle (e.g. succinate dehydrogenase or citrate synthase). Acetyl-
CoA synthetase 2, responsible for providing acetyl-CoA to the TCA cycle, is also identified 
as transcriptionally upregulated, as well together with ATP synthetase and external NADH-
ubiquinone oxidoreductase 2, which provide the necessary NAD+ needed for oxidation of 
ethanol or acetate in the cytoplasm and thereby maintaining the redox balance in the cell. 
Isocitrate lyase, a key component of the glyoxylate cycle, is also transcriptionally upregulated. 
This allows for net formation of malate, which can then be further converted to 
phosphoenolpyruvate (via oxaloacetate) in order to fuel gluconeogenesis. All these changes in 
fluxes are consistent with what is known about the changes in metabolism between growth on 
glucose to C2 carbon sources like ethanol and acetate. Interestingly, not all reactions 
associated with this shift in flux distributions are transcriptionally regulated. Rather, the cell 
has selected a small number of key reactions to regulate at the transcriptional level. 

We also performed an enrichment test in order to compare the transcription factors involved 
in the expression of the enzymes classified as having transcriptional regulation and the 
enzymes showing changes in expression but not in flux. We identified three transcription 
factors which were strongly overrepresented in the metabolic genes showing transcriptional 
regulation. In the glucose-ethanol transition, the transcription factors Gcr1p and Gcr2p both 
appeared in 11 transcriptionally regulated genes and in none of the other genes, whereas the 
transcription factor Hap4p appeared in 11 transcriptionally regulated genes and 5 of the other 
regulated genes. For the glucose-acetate transition these numbers were 15-0, 11-0 and 15-0 
for the same transcription factors. This can be interpreted as if certain transcription factors are 
particularly involved in the transcriptional regulation of metabolic fluxes. This implies that 
there is global regulation of major flux alterations, which is in agreement with what has been 
shown experimentally for galactose metabolism (Ostergaard et al., 2001). 

The top scoring metabolically regulated reactions, both for the glucose-ethanol and glucose-
acetate shifts, are fructose bisphosphate aldolase and triosephosphate isomerase. These 
reactions are known to operate close to their equilibrium and they are therefore sensitive to 
changes in the metabolite pools, which is consistent with metabolic regulation of the fluxes. 
In the two shifts the direction of these reactions is inverted. This can only be explained by a 
decrease in the fructose-1,6-diphosphate pool and an increase in the glyceraldehyde-3-
phosphate and dihydroxyacetone pools. This hypothesis is supported by the fact that in 
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chemostat cultures there is not found to be any correlation between the glycolytic flux and the 
expression of the genes encoding for these two enzymes (Daran-Lapujade et al., 2007). 

In conclusion, the combined use of random sampling in GEMs and expression data allows for 
global identification of reactions which are either transcriptionally or metabolically regulated. 
The reactions exhibiting transcriptional regulation form a set of putative metabolic 
engineering targets, where enzyme overexpression or downregulation is likely to influence the 
flux through these reactions. The reactions exhibiting metabolic regulation points to parts of 
metabolism where the metabolite pools are possibly increasing or decreasing in connection 
with transcriptional changes, and thereby counteracting possible changes in enzyme 
concentration. This knowledge can be used to identify whether one should target changes in 
enzyme concentration (vmax changes), e.g. through overexpression, or changes in enzyme 
affinity (Km changes), e.g. through expression of heterologous enzymes, in order to alter the 
fluxes. 

4.1.3 Paper III: The RAVEN Toolbox and its use for generating a 
genome-scale metabolic model for Penicillium chrysogenum 

In Paper III we developed a software suite named the RAVEN Toolbox (Reconstruction, 
Analysis, and Visualization of Metabolic Networks), which aims at automating parts of the 
GEM reconstruction process in order to allow for faster and easier reconstruction of high-
quality GEMs. The software was then used for reconstructing a model of the ascomycetous 
fungi Penicillium chrysogenum, the organism used for industrial production of penicillin, and 
an important microbial cell factory. The resulting model was validated in an extensive 
literature survey and by comparison to fermentation data. The model was then used together 
with the algorithm presented in Paper II in order to identify transcriptionally regulated 
metabolic bottlenecks in penicillin fermentations. These bottlenecks can then be targets for 
metabolic engineering. 

The RAVEN Toolbox has three main foci: 1) automatic reconstruction of GEMs based on 
protein homology, 2) network analysis, modelling and interpretation of simulation results, 3) 
visualization of GEMs using pre-drawn metabolic network maps. Figure 4-5 summarizes the 
capabilities of the RAVEN Toolbox. 

Previously published GEMs represent a solid basis for metabolic reconstruction of models for 
new organisms, in particular if the organisms are closely related and therefore share many 
metabolic capabilities. The main advantage of using existing models compared to reaction 
databases, such as KEGG or BRENDA (Schomburg et al., 2002), is that they contain 
information which can be difficult to obtain in an automated manner, in particular 
directionality and compartmentalization. GEMs are also typically constructed for modelling 
purposes, which is not the case for reaction databases. The downside is that only reactions 
present in the template models can be included. The RAVEN Toolbox therefore contains two 
approaches for automatic generation of draft models; one which relies on the metabolic 
functions represented in previously published models, and one method which uses the KEGG 
database for automatic identification of new metabolic functions that are not included in the 
published models. 
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Figure 4-5. The RAVEN Toolbox. The software allows for reconstruction of GEMs based on template models or on the 
KEGG database. Subcellular localizations of reactions can be estimated based on signal peptides and other characteristics of 
the catalysing enzymes. The resulting models can be exported to a number of formats, or they can be used for various types 
of simulations. The RAVEN Toolbox has a strong focus on quality control. Visualization of simulation result and/or 
integration of other types of data can be performed by overlaying information on pre-drawn metabolic maps. The software 
also implements the INIT algorithm, which is a powerful approach for reconstruction of tissue-specific models (Paper IV). 
Figure taken from Agren et al. (2013a). 

In the first approach the software generates a draft model based on protein orthology using bi-
directional BLASTp (Altschul et al., 1990). The second approach is also based on protein 
homology but requires no template models. Instead it relies on the information on protein 
sequences and on the assigned metabolic reactions that is available in the KEGG database. 
The method makes use of the KEGG Orthology (KO) IDs, which are manually annotated sets 
of genes that encode some specified metabolic function. Each KO is associated with a number 
of metabolic reactions. The aim of the method is then to assign genes to these KOs based on 
the consensus protein sequence. This works by generating a hidden Markov model based on 
the sequences for each KO using HMMER (Eddy, 1998). The final step is the querying of the 
set of HMMs with the protein sequences of the organism of interest. If a gene has a significant 
match to one KO, the reactions associated to that KO are added to the model together with the 
corresponding gene. 

The approach proposed above will facilitate and accelerate the generation of a draft metabolic 
network reconstruction. However, the automated reconstruction can lead to some loss of 
control compared to a stricter manual, bottom-up approach. It is therefore important to 
identify and fill gaps in the model to ensure that the network is functioning as required. The 
RAVEN Toolbox therefore contains a number of novel methods to support the gap filling 
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process. Table 4-3 shows a comparison between the RAVEN Toolbox and some other 
software with similar functionalities. 
Table 4-3. Comparison between the RAVEN Toolbox and some other software for automated GEM reconstruction. 

 RAVEN Model SEEDa AUTOGRAPHb IdentiCSc GEM Systemd 
Includes general network X X  X X 
Generates functional models X X    
Assigns subcellular localization X     
Can use user defined models X  X   
Integrates gap filling X X   X 
Offline software X   X  
Includes visualization X   X X 
Gene prediction  X  X X 
aHenry et al. (2010); bNotebaart et al. (2006); cSun and Zeng (2004); dArakawa et al. (2006). Taken from Agren et al. 
(2013a). 

The P. chrysogenum metabolic network was reconstructed based on a combination of the 
automated reconstruction approaches in the RAVEN Toolbox, manual curation, and an 
extensive bibliomic survey. Three GEMs for closely related filamentous fungi, Aspergillus 
nidulans iHD666 (David et al., 2006), A. niger iMA871 (Andersen et al., 2008), and A. 
oryzae iWV1314 (Vongsangnak et al., 2008), were used as template models for the 
reconstruction of the P. chrysogenum model. The model comprises 1471 unique metabolic 
reactions in four subcellular compartments; extracellular, cytosolic, mitochondrial, and 
peroxisomal. 1006 ORFs are associated to the reactions, 89 of which participate in one of 35 
protein complexes. In parallel to the automatic reconstruction, an extensive literature study 
was performed. In total 440 cited articles provide experimental evidence for the majority of 
the reactions. The model was validated with respect to 76 metabolic functions known to occur 
in P. chrysogenum. 

 
Figure 4-6. Evidence level for the P. chrysogenum metabolic network. A) Properties of the reconstructed network. The 
top bar shows the support for the 1471 unique reactions (not counting exchange reactions) sorted by the type of evidence. 
The bottom bar shows the orphan reactions; reactions inferred without supporting ORFs or literature references. B) ORF 
classification. The ORFs in the model are classified into broad groups based on KEGG classification. 

Figure 4-6 summarises the literature support for the reactions in the model and shows a 
classification of the ORFs in the model based on KEGG Pathways. To illustrate the metabolic 
network, and to aid in interpretation of gene expression data and simulation results, a map of 
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the full model was drawn and annotated so as to be compatible with the visualization 
functions in the RAVEN Toolbox. 

We then used the GEM in a study of penicillin yields and in particular the relative importance 
of ATP and NADPH provision during penicillin production. In a second study we showed 
how the model can be used to integrate fermentation data with transcriptome data using the 
method developed in Paper II. 

The industrial P. chrysogenum strains have been subjected to 50 years of directed evolution to 
increase the yields and titers of penicillin, with great cost reduction and productivity gain, but 
the yields are still far from the theoretical maximum (Thykaer and Nielsen, 2003). Penicillin 
production is associated with an increased requirement of energy in the form of ATP; in the 
condensation of the three precursor amino acids to form the tripeptide ACV; in the reduction 
of sulfate; and when a side chain (the precursor molecule which is supplied to the media and 
which differs depending on the type of penicillin produced) is activated by ligation to 
coenzyme A. Penicillin production is also associated with a large requirement of NADPH, 
primarily needed for the reduction of sulfate, but also in the biosynthesis of valine and 
homoserine from α-ketobutyrate. Elucidating the impact increased ATP requirements have 
compared to the NADPH requirements is useful when choosing among possible metabolic 
engineering strategies. 

The maximum theoretical yield of penicillin on glucose with sulfate as the sulfur source was 
calculated to be 0.42 mol penicillin/mol glucose using the reconstructed GEM. To investigate 
the effect of ATP, an artificial reaction was included that allowed for ATP production from 
ADP without any energetic costs. This resulted in a yield of 0.52 mol penicillin/mol glucose, 
using sulfate as the sulfur source. The conclusion is that ATP availability has a relatively 
small effect on the yield. The shadow prices (how much the penicillin production can increase 
if the availability of a metabolite were to increase by a small amount) were calculated to be 
0.015 mol penicillin/mol ATP, 0.040 mol penicillin/mol NADPH, and 0.037 mol 
penicillin/mol NADH. 

NADPH and NADH are similar when it comes to energy content, but have different roles in 
the metabolism, where NADPH serves primarily anabolic roles and NADH primarily 
catabolic roles. NADPH is mainly produced in the pentose phosphate pathway, which makes 
NADPH somewhat more energetically expensive to regenerate compared to NADH. In order 
to investigate the relative importance of NADH and NADPH an artificial reaction was 
included that allowed for production of NADPH from NADH to simulate a potential increase 
of the NADPH availability. Simulations were then carried out maximizing first for growth 
and then for penicillin production. The resulting flux through the artificial reaction was 8.5 
times larger when maximizing for penicillin than when maximizing for growth. This 
demonstrates that the cells will have a much higher NADPH demand at high penicillin yields 
compared to normal growth conditions. Redirecting a higher flux through the pentose 
phosphate pathway and/or introducing NADH-dependent versions of NADPH-consuming 
enzymes could therefore be potential metabolic engineering strategies for achieving higher 
penicillin yields.  

For the direct identification of possible metabolic engineering targets a gene deletion analysis 
was performed by searching for sets of gene deletions that resulted in an increased yield of 
penicillin, and which would stoichiometrically couple penicillin production to growth. This 
was performed using FBA, and combinations of up to three gene deletions were evaluated 
(MoMA was also applied and gave similar results). The only targets which could be identified 
were the deletion of any of the genes responsible for breakdown of phenylacetic acid 
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(homogentisate 1,2-dioxygenase, maleylacetoacetate isomerase, or fumarylacetoacetase). 
Deletion of any of these genes resulted in a predicted 21% increase in penicillin production. 

 
Figure 4-7. Integrative analysis of a high and a low producing strain. Depicts synthesis pathways of penicillin and 
important precursors. Blue boxes correspond to reactions identified as being transcriptionally controlled and upregulated by 
the algorithm presented in Paper II. Metabolites around which significant transcriptional changes occur compared to a low 
producing strain are coloured red. SC: side chain (e. g. the precursor molecule phenylacetic acid). The biosynthesis of 
penicillin starts with the condensation of the three amino acids α-aminoadipate (an intermediate in the L-lysine biosynthesis 
pathway), L-cystein, and L-valine to form the tripeptide ACV. ACV is further converted to isopenicillin N. For the 
industrially relevant types of penicillin a side-chain is supplied to the media. This side-chain is activated by ligation to 
coenzyme A. In the last step of penicillin biosynthesis an acyl transferase exchanges the α-aminoadipate moiety of 
isopenicillin N with the side-chain, thereby generating penicillin and regenerating α-aminoadipate. Since L-cystein is a 
sulfur-containing amino acid penicillin production is also tightly associated with sulfur metabolism. [1] homocitrate synthase; 
[2] homocitrate dehydrase; [3] homoaconitate hydrase; [4] homoisocitrate dehydrogenase; [5] α-aminoadipate 
aminotransferase; [6] homoserine transacetylase; [7] O-acetylhomoserine sulfhydrylase; [8] cystathione-β-synthase; [9] 
cystathione-γ-lyase; [10] acetate CoA ligase; [11] acetolactate synthase; [12] ketol-acid reductoisomerase; [13] dihydroxy 
acid dehydrase; [14] branched chain amino acid transferase; [15] ACV synthase; [16] isopenicillin N synthase; [17] acyl CoA 
ligase (side chain dependent, reaction is for phenylacetate CoA ligase); [18] isopenicillin N N-acyltransferase; [19] sulfate 
permease; [20] sulfate adenyl transferase; [21] adenyl sulfate kinase; [22]  phosphoadenyl sulfate reductase; [23]  sulfite 
reductase; [24] thioredoxin reductase; [25] 3'(2'),5'-bisphosphate nucleotidase. 

In order to identify transcriptionally regulated metabolic bottlenecks we applied the method 
from Paper II and compared the high producing industrial strain DS17690, which has been 
developed by DSM, and the low producing reference strain Wis 54-1255 (Harris et al., 2006). 
Flux data and gene expression levels for aerobic, glucose-limited chemostat fermentation of 
DS17690 and Wis 54-1255 were used as input to the algorithm (van den Berg et al., 2008). 58 
fluxes were found to be significantly changed between the high and low production strains 
(p<0.05) and 612 genes were differentially expressed (p<0.005). 36 reactions were identified 
as having significantly higher flux and upregulated genes, i.e. they are likely to have 
transcriptional regulation of their fluxes. Figure 4-7 shows some of the most important 
reactions in penicillin biosynthesis together with the responsible enzymes. Reactions that 
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were identified as being transcriptionally controlled and upregulated are highlighted. In 
addition, the Reporter Metabolites algorithm was used to identify metabolites around which 
significant transcriptional changes occurred (Patil and Nielsen, 2005). These metabolites are 
highlighted in Figure 4-7 as well. 

As can be seen in Figure 4-7, a large proportion of the reactions identified as being a 
transcriptionally controlled are directly involved in penicillin metabolism (15 out of 38). This 
indicates that the capabilities of the industrial strain to produce penicillin to a large extent 
depend on the reactions closely related to penicillin metabolism, rather than more peripheral 
effects. Among these reactions are many of the reactions responsible for the synthesis of the 
amino acids that are precursors for ACV, as well as the two penicillin producing reactions 
isopenicillin N synthase and ACV synthase. This is consistent with a study on the gene copy-
number effect on penicillin production (Theilgaard et al., 2001). The phenylacetate:CoA 
ligase is high ranking but the acyl-CoA:isopenicillin N acyltransferase is absent, which is 
consistent with measurements of high activities of this enzyme and the low flux control 
estimated for this enzyme (Jorgensen et al., 1995b; Nielsen and Jorgensen, 1995). Several of 
the reactions involved in sulfate reduction are present, as well as the sulfate permease. It is 
interesting to note that none of the reactions in the pentose phosphate pathway are identified 
even though there is an increased demand for NADPH. 

We also found that the pathway from α-ketobutyrate to succinate is identified to have both 
increased flux and increased gene expression. α-ketobutyrate is a by-product of cysteine 
production via the transsulfuration pathway, and it is used for isoleucine biosynthesis. Under 
normal growth conditions the demand for cysteine is less than that for isoleucine, meaning 
that all α-ketobutyrate is converted into isoleucine. However, during high-level penicillin 
production the cysteine production far exceeds the need for isoleucine, requiring an 
alternative route for α-ketobutyrate consumption. This route involves the decarboxylation of 
α-ketobutyrate to yield propionyl-CoA, which then goes into the methylcitrate pathway, 
eventually resulting in succinate (Jorgensen et al., 1995a). Several of the reactions in this 
pathway are identified as transcriptionally controlled by the algorithm (2-methylcitrate 
synthase, 2-methylcitrate dehydratase, 2-methylisocitrate dehydratase, and methylisocitrate 
lyase). This finding strongly supports that the transsulfuration pathway is the dominating 
pathway for cysteine biosynthesis, even though the enzymes for the energetically more 
efficient direct sulfhydrylation pathway have been identified in P. chrysogenum (Ostergaard 
et al., 1998). 

In conclusion, the RAVEN Toolbox enables rapid reconstruction of high-quality models, 
which is not possible using a traditional manual approach. It is the first software which can be 
used to drive the model reconstruction process and which also contains extensive functions 
for simulations and analysis of results. The software and workflow was validated by 
reconstructing the first GEM for the industrially important fungi P. chrysogenum. This GEM 
was then used to gain novel insights in penicillin biosynthesis, and for suggesting metabolic 
engineering targets for increased penicillin yield. 

4.2 GEMs applied to human health and disease 
Abnormal metabolic states are at the origin of many diseases, such as diabetes, hypertension, 
heart diseases and cancer. Cancer and coronary diseases are the two main causes of death in 
the developed countries. It is expected that by 2030 close to 200 million persons (33% of the 
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total population) will be obese in the EU alone, and many of these will have one or more of 
the following co-morbidities: diabetes, hypertension, heart disease and increased risk of 
cancer. The direct (medical treatment) and indirect (inability to work) costs are estimated to 
amount to more than €100 billion per year (Rokholm et al., 2010; Caveney et al., 2011). 
These are all complex diseases, in the sense that they are the result of a large number of 
interacting molecular factors. This speaks in favour of taking a holistic approach rather than a 
more traditional reductionist one. Genome-scale metabolic modelling can therefore be a 
promising methodology for study of this type of diseases, but there are still obstacles to 
overcome. 

 
Figure 4-8. Overview of applications of GEMs in human health and disease. The available publications which make use 
of GEMs to study human health and disease can be categorized as follows: 1) Integration of high-throughput data for model 
construction. Several algorithms have been developed which use different types of omics data to reconstruct cell type-specific 
models as subsets from a generic model (Becker and Palsson, 2008; Shlomi et al., 2008; Wang et al., 2012). There have also 
been attempts to integrate human GEMs with microbial GEMs, either pathogens or gut microbiota (Bordbar et al., 2010; 
Heinken et al., 2013). 2) Mapping homologous genes for model construction. Much of medical research is carried out on 
mammals other than human. The high degree of homology between mammalian genes allows for reconstruction of GEMs for 
other mammals based on human GEMs (Sheikh et al., 2005; Seo and Lewin, 2009). 3) Contextualization of high-throughput 
data from pathological and drug-treated states. The work in this category uses GEMs as scaffolds for data analysis, rather 
than for predictive simulations. One such example is a study of the interactions between the tuberculosis bacteria and its host 
cell (Bordbar et al., 2010). 4) Simulation of pathological and drug-treated states. The work in the category uses GEMs for 
modelling, for example using FBA. Examples include simulations of hereditary metabolic diseases (Shlomi et al., 2009) and 
simulations of the effect of potential cytostatic drugs (Folger et al., 2011). Partly adapted from Bordbar and Palsson (2012). 

Many of the methods developed for microorganisms, such as FBA, rely on the definition of a 
cellular objective. This is normally to grow as fast as possible given the available substrates. 
Since human cells do not grow uncontrollably those methods are not directly applicable. This 
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has led to that much of the work on genome-scale modelling of human cells has been focused 
on cancer; where the cells actually do grow uncontrollably (Folger et al., 2011; Shlomi et al., 
2011). Another issue, which is extensively discussed in section 3.3.2, is that different cell 
types have different phenotypes even though they share the same genotype. There is still no 
clear workflow for how to generate cell type-specific models and to ensure that they are of 
high quality. Because of these issues, and others, the application of genome-scale metabolic 
modelling to human health and disease is a less mature science compared to when applied to 
microbial systems. Much of the work is therefore still centred on method development. 
Bordbar and Palsson (2012) categorized the publications which use GEMs to study human 
metabolism into the following four categories: 1) integration of high-throughput data for 
model construction, 2) mapping homologous genes for model construction, 3) 
contextualization of high-throughput data from pathological and drug-treated states, 4) 
simulation of pathological and drug-treated states. Figure 4-8 describes these categories in 
more detail. 

In this section I present some of my work about genome-scale metabolic modelling applied to 
human health and disease. In Paper IV we developed an algorithm to reconstruct cell type-
specific active metabolic networks based on different types of omics data. We then generated 
a large number of GEMs for cancers and their corresponding healthy cell types, and 
performed a statistical analysis to identify metabolic subnetworks which were more prominent 
in cancers. In Paper V we reconstructed a GEM for adipocytes and used it to study metabolic 
features associated to obesity. In Paper VI we reconstructed a GEM for hepatocytes and used 
it to study metabolic features associated to non-alcoholic fatty liver disease. 

4.2.1 Paper IV: Reconstruction of genome-scale active metabolic 
networks for 69 human cell types and 16 cancer types using INIT 

In Paper IV we describe the generation of genome-scale active metabolic networks for 69 
different cell types and 16 cancer types using the INIT (Integrative Network Inference for 
Tissues) algorithm. We first built a generic database of human metabolism by merging and 
curating previously available GEMs and databases. We then developed an algorithm which 
integrates several types of omics data in order to generate active metabolic networks, 
catalogues of the metabolic reactions that are likely to be active in a given cell type, from this 
database. These networks represent a resource which can form the basis for simulation of 
metabolic interactions between organs, or act as scaffolds for interpretation of high-
throughput data. Lastly, we used these networks for a comparative analysis between cancer 
types and healthy cell types. This allowed for identification of cancer-specific metabolic 
features which constitute potential drug targets for cancer treatment. 

In order to provide a reliable and up to date GEM template for our tissue/cell type-specific 
metabolic networks, we first constructed the Human Metabolic Reaction (HMR) database, 
containing the elements of the previously published generic genome-scale human metabolic 
models  (Duarte et al., 2007; Ma et al., 2007), as well as the HumanCyc and KEGG (Ogata et 
al., 1999; Romero et al., 2005) databases. The HMR database has a hierarchical structure in 
which the genes are at the top and are linked to information about their tissue-specific 
expression profiles reported by Su et al. (2004) via BioGPS (Wu et al., 2009). Each gene is 
linked to its different splicing variants, which in turn are linked to their corresponding 
proteins. Each protein is linked to its tissue specific abundances in the Human Protein Atlas 
(HPA) (Berglund et al., 2008) and to the reactions they catalyse. The reactions are linked to 
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metabolites, which themselves are linked to their tissue specific information collected from 
the Human Metabolome Database (HMDB) (Wishart et al., 2007). In order to have an 
unambiguous characterization of metabolites and reactions, KEGG and InChI identifiers were 
used for standardization. Each reaction was assigned to one or several of the eight 
compartments included in the HMR database: nucleus, cytosol, endoplasmic reticulum, Golgi 
apparatus, peroxisomes, lysosomes, mitochondria and extracellular. In cases where the 
subcellular localization was absent from the template models it was inferred from 
immunohistochemical (IHC) staining in the HPA. For enzymes that were not in the HPA, 
Swiss-Prot and GO were used to infer localization. The HMR database was used to generate a 
fully connected generic human GEM, which contained 4,137 metabolites (3,397 unique), 
5,535 reactions (4,144 unique), and 1,512 metabolic genes. 

As previously discussed, there have been several algorithms for reconstruction of cell type 
specific GEMs published (see section 3.3.2). The INIT algorithm was tailored to use data 
from the HPA as the main evidence source for assessing the presence or absence of metabolic 
enzymes in each of the human cell types that are present in the HPA. In the HPA project, cell 
type specific high quality proteomic data is being generated based on immunohistochemistry 
(Uhlen et al., 2005; Berglund et al., 2008; Uhlen et al., 2010). Tissue specific gene expression 
(Su et al., 2004) was used as an additional source of evidence. Figure 4-9 show how INIT is 
used to select a subset of reactions from a generic model. The problem was formulated so that 
all reactions in the resulting model are able to carry flux. Instead of imposing the steady state 
condition for all the internal metabolites, as it is usually done, we allowed for a small positive 
net accumulation rate. The reason for this was that we preferred to have a network able to 
synthesize molecules such as NADH or NADPH, rather than only being able to use them as 
cofactors. If a metabolite was present in a cell type (according to the HMDB) a positive net 
production of this metabolite was imposed on the network in order to assure that all the 
reactions necessary for its synthesis are included in the cell type-specific model. A distinct 
advantage of the INIT algorithm compared to existing approaches such as GIMME (Becker 
and Palsson, 2008) or MBA (Jerby et al., 2010) (see section 3.3.2) is that it makes no 
predetermined classification of enzymes as either present or absent in the resulting model. In 
order to validate the output of the algorithm, the automatically generated hepatocyte model 
was compared with HepatoNet1 (Gille et al., 2010), a manually curated and functional model 
of hepatocyte metabolism. 
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Figure 4-9. Principle of the INIT algorithm. Depending on the evidence for presence/absence of a given enzyme/gene in a 
cell type, a score is calculated for the reaction(s) catalysed by that enzyme. In the example above, reactions for which the 
evidence indicates that it should exist in the cell type are coloured green. The opposite is true for the reactions coloured red. 
The aim of the algorithm is to find a subnetwork in which the involved genes/proteins have strong evidence supporting their 
presence, but at the same time maintaining a connected and functional network. This is done by maximizing for the sum of 
evidence scores under the constraint that all the included reactions should be able to carry a flux, and that all the metabolites 
observed experimentally (metabolite coloured blue in the example above) should be synthesized from precursors that the cell 
is known to take up. This is then implemented as a mixed-integer linear programming problem (MILP). In the example 
above, the three top reactions are excluded by INIT; despite that the last of them has evidence strongly supported its 
presence. This is because two other reactions would have to be included in order for it to be connected, and the net score 
would then be negative (4-3-2<0). The path via the blue metabolite to the end product at the bottom is also negative (2 -1-
2<0). However, since the blue metabolite is detected by metabolomics to exist in the cell it has to be synthesized in at least 
one reaction. The remaining pathway from the blue metabolite is then positive (2-1>0), and should therefore be included. The 
RAVEN Toolbox (Paper III) was used to perform the optimization and generate the cell type specific active networks. 

Since the Warburg effect was observed at the beginning of the 20th century, it has been 
known that cancer cells show characteristic metabolic features that make them different from 
healthy cells (Koppenol et al., 2011). This supposed metabolic similarity between cancer cells 
justified the development of a generic cancer GEM, which was used to identify potential drug 
targets against cancer proliferation (Folger et al., 2011). We used INIT to infer active 
metabolic networks for 16 different cancer types, which can be compared with the 24 healthy 
cell types that they come from (there are several healthy cell types for some of the tissues 
associated to the cancers) in order to identify metabolic features that are characteristic of 
cancer. A hypergeometric test was used to identify genes and reactions that tended to be 
present in most of the cancer-specific active metabolic networks and absent in most of the 
original healthy cell types. The p-values obtained from the hypergeometric test were used to 
identify Reporter Metabolites (Patil and Nielsen, 2005) that are significantly more involved in 
the metabolism of cancer cells. These lists of genes, reactions and metabolites are cancer-
specific features that are likely to be playing a specific role in proliferation of cancer cells and 
could be potential drug targets. Our comparative analysis between two sets of active 
metabolic networks can be seen as a high-throughput hypothesis generation method. These 
hypotheses are not based on mere correlations between cancer and the presence of a particular 
protein, but being based on the underlying metabolic network structure, and hereby our 
analysis provides a mechanistic interpretation about the possible role of each identified 
feature on the proliferation of cancer. 
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One of the most significant results from the Reporter Metabolites analysis is a much more 
pronounced metabolism of polyamines (PAs) such as spermidine, spermine, and putrescine in 
cancer cells. PAs play a variety of roles, of which several are related to oxidative stress, 
prevention and suppression of necrosis (Eisenberg et al., 2009). PAs have long been known to 
be of particular importance for rapidly proliferating cells, and as such its transport and 
synthesis have been thoroughly investigated as anti-cancer drug targets (Seiler, 2003b). 
Inhibition of single enzymes in the PA synthesis pathway has proved disappointing, due to 
extensive regulation of the system and use of exogenous PAs by the cancer cells. Second 
generation drugs instead work by targeting the transport system, by structural homology to the 
PAs themselves, or by linking other antineoplastic drugs to the PAs (Seiler, 2003a). 

Another high-ranking target is the isoprenoid biosynthesis pathway, in particular the 
intermediate geranylgeranyl diphosphate. This metabolite has been shown to promote 
oncogenic events due to its role in prenylation of important cancer proteins such as Ras and 
Rho GTPases (Sebti and Hamilton, 2000). Several drugs have therefore been developed to 
target the prenylation process (Philips and Cox, 2007) or the biosynthesis of geranylgeranyl 
diphosphate (Dudakovic et al., 2011). 

 
Figure 4-10. Metabolic subnetwork identified as being significantly more prominent in cancer tissues compared to 
their corresponding healthy tissues. Aminoacetone, which is a toxic by-product of amino acid catabolism, is converted to 
toxic methylglyoxal in a reaction that also result in hydrogen peroxide. The toxicity of methylglyoxal is relieved by two 
reaction steps involving ligation to glutathione and resulting in lactic acid. The generated hydrogen peroxide is taken care of 
by the enzyme biliverdin reductase. This is an example of how network-based analysis can lead to a more mechanistic 
interpretation of data. Figure taken from Agren et al. (2012). 

A third prominent group among the Reporter Metabolites is prostaglandins and leukotrienes 
together with the intermediate HPETE. These autocrine compounds are synthesized from 
arachidonic acid and are elevated in connection with inflammation. They have been shown to 
aid in cancer progression by promoting metastasis and by influencing the immune system 
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(Schneider and Pozzi, 2011). Of particular interest is prostaglandin E2, where both the 
synthesis and degradation have been investigated as promising targets for drug development 
(Eruslanov et al., 2009). 

The fact that so many of the identified targets correspond to well known and used drug targets 
indicates that the method is able to generate biologically relevant hypotheses. Of particular 
interest are therefore the Reporter Metabolites that are currently not targeted in cancer 
treatment. Among the top-scoring Reporter Metabolites we identified biliverdin and bilirubin 
(see Figure 4-10). Biliverdin reductase and the reactions catalysed by this enzyme also appear 
among the genes and reaction most enriched in the cancer networks. Biliverdin reductase is 
known to be a major physiologic cytoprotectant against oxidative stress (Baranano et al., 
2002). Cancer cells are known to be exposed to high oxidative stress resulting from the 
hydrogen peroxide generated during the oxidation of polyamines and other products of amino 
acid breakdown taking place in the peroxisome. Bilirubin is oxidized to biliverdin by 
hydrogen peroxide and subsequently reduced back to bilirubin by biliverdin reductase. This 
mechanism has been proven to be a major relief system for oxidative stress and could be 
considered a potential target against cancer proliferation. One of the hydrogen peroxide 
generating reactions taking place in the peroxisomes is the transformation of aminoacetone, 
which is an intermediate in the degradation of glycine, into methylglyoxal. Another source of 
methylglyoxal in cancer cells is from gluconeogenesis (Titov et al., 2010). Methylglyoxal is 
known to be a toxic compound (Kalapos, 1994) that has been proven to induce apoptosis in 
some cancer cell lines (Kang et al., 1996). Methylglyoxal also appeared among our top 
scoring reporter metabolites and both the gene coding for lactoylglutathione lyase (an enzyme 
that transforms methylglyoxal and glutathione into lactoylglutathione) and its associated 
reactions appear among the most enriched genes and reactions in the cancer active metabolic 
networks. Lactoylglutathione is further transformed into glutathione and lactic acid by the 
enzyme lactoylglutathione hydrolase (which also shows a significant enrichment in cancer 
metabolic networks with a p-value of 2e-3). The mentioned two enzymes seem to be playing a 
relevant role in relieving the toxicity generated by methylglyoxal and could be potential drug 
targets against cancer proliferation. Targeting these enzymes would have the same effect on 
cancer cells as using methylglyoxal as a drug, but the advantage is that there would be no 
toxicity effects of methylglyoxal on healthy tissues. 

In conclusion, the HMR database represents the most comprehensive generic human GEM 
(see Paper VI) to date and is an important resource in itself. The INIT algorithm was 
demonstrated to automatically generate active metabolic networks which were similar in 
scope compared to a high-quality manually reconstructed model. This was made possible by 
use of the enormous amount of proteomics data generated within the HPA project. The INIT 
algorithm was then applied to reconstruct GEMs for 69 cell types and 16 cancers; models 
which can form the basis for future work on modelling of human metabolism. The content of 
these models was analysed and we were able to identify a number of metabolic subnetworks 
which were significantly more prominent in cancers compared to their healthy counterparts. 
These subnetworks contained many known drug targets, but we were also able to identify a 
number of novel drug targets based on our analysis.   
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4.2.2 Paper V: Global analysis of human adipocyte metabolism in 
response to obesity 

Adipose tissue dysfunction or overload of its lipid storage capacity can lead to wide range of 
diseases (e.g. immunological and inflammatory diseases), including metabolic diseases such 
as obesity (Lago et al., 2007; Auffray et al., 2009). An increased understanding of the 
mechanisms behind obesity and related diseases would provide valuable insights into their 
etiology and pathogenesis, and could lead to new treatment strategies. In Paper V we 
reconstructed a GEM for adipocytes based primarily on adipocyte specific proteome data 
generated within the Human Protein Atlas (HPA) project (Uhlen et al., 2010). 

We expanded the coverage of the HPA to include the protein profiles of adipocytes found in 
breast and two different soft tissues and examined the spatial distribution and the relative 
abundance of proteins encoded by 14,077 genes in these tissues. A total of 17,296 affinity-
purified antibodies were generated and used for immunohistochemical staining of tissue micro 
array blocks. The proteome data was merged with previously published proteome data on 
adipocytes in order to increase the coverage. In total, we have proteome evidence for the 
presence/absence of proteins associated with 14,337 genes in adipocytes. The proteomics 
analysis resulted in evidence for presence of proteins associated with 7,340 genes. 

As discussed in section 3.3, the subcellular localization of reactions has large implications on 
the functionality of GEMs, as only a portion of metabolites can be transported between 
compartments. Furthermore, compartments can be individually redox and/or energy balanced. 
The HPA includes subcellular profiling data using immunofluorescence-based confocal 
microscopy in three human cancer cell lines of different origin. Here, proteins were classified 
into eight different compartments following our HMA standard (Paper IV): cytosol, nucleus, 
endoplasmic reticulum (ER), Golgi apparatus (GA), peroxisome, lysosome, mitochondria and 
extracellular space. Reactions were assigned to compartments through their association with 
proteins in these different compartments. 

In order to reconstruct a GEM for adipocytes, biochemical and genetic evidence was 
combined with data on protein expression and localization. HepatoNet1, a GEM for 
hepatocytes which is reconstructed based on the manual evaluation of the original scientific 
literature (Gille et al., 2010), was used as a starting point for our reconstruction process and 
used to generate an initial candidate list of network components. Firstly, metabolism of lipids 
and lipoproteins in Reactome, a manually curated and peer-reviewed pathway database (Croft 
et al., 2011), was merged into HepatoNet1. Secondly, the resulting network was combined 
with the evidence-based generic human models Recon1 (Duarte et al., 2007) and the 
compartmentalized EHMN (Hao et al., 2010). This combined reaction list resulted in an 
updated version of our Human Metabolic Reaction (HMR) database (Paper IV). The HMR 
database contains 6,049 metabolites in eight different compartments (3,162 unique 
metabolites), 8,107 reactions and 3,668 genes associated to those reactions. Thirdly, the 
existence of each protein coding gene associated to a reaction in HMR was assessed for the 
presence or absence in adipocytes using previously published and the here generated 
adipocyte-specific proteome data. This process provided us with a list of reactions that occur 
in adipocytes. Gaps in the resulting network were filled using the updated HMR database, 
public databases such as KEGG (Kanehisa et al., 2010) and HumanCyc (Romero et al., 2005) 
and manual evaluation of the literature about adipocyte metabolism. The RAVEN Toolbox 
(Paper III) was used for gap filling and quality control. This gap filling resulted in generation 
of iAdipocytes1809, which is a fully functional and connected GEM for adipocytes. In 
iAdipocytes1809, individual metabolites, rather than generic pool metabolites, for 59 fatty 
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acids (FAs) have been used. This allowed us to incorporate measured concentrations of 
different FAs in human plasma and adipocytes into the model. Figure 4-11 shows the 
reconstruction workflow. 

 
Figure 4-11. Schematic illustration of how a GEM for adipocytes may provide links between molecular processes and 
subject phenotypes. Here the GEM iAdipocytes1809 was reconstructed through the use of proteome, metabolome, lipidome 
and transcriptome data, literature based models (Recon 1, Edinburg Human Metabolic Network (EHMN) and HepatoNet1), 
and public resources (Reactome, HumanCyc, KEGG and the Human Metabolic Atlas). We first performed global protein 
profiling of adipocytes using antibodies generated within the Human Protein Atlas (HPA). We further used information on 
metabolome and lipidome data from the Human Metabolome Database (HMDB) and LIPID MAPS Lipidomics Gateway, 
respectively. The model was then used for the analysis of gene expression data obtained from subjects with different body 
mass indexes in the Swedish Obese Subjects (SOS) Sib Pair study and other adipose tissue relevant clinical data such as 
uptake/secretion rates in lean and obese subjects (see below). 

In iAdipocytes1809, 59 different common long and very long chain FAs in human plasma can 
be taken up as NEFAs and lipoproteins. The lipid related functionality of iAdipocytes1809 is 
summarized in Figure 4-12. The GEM was subject to extensive quality control by using the 
RAVEN Toolbox (Paper III), following the workflow in Figure 3-3. Even a well-connected, 
thermodynamically correct and balanced model may not be able to perform all relevant 
metabolic functions, or it may be able to perform functions that it should not do (such as 
synthesis of essential amino acids or fatty acids). The model was therefore validated for 250 
known metabolic functions of adipocytes, adapted from the definitions provided in connection 
with setting up HepatoNet1 (Gille et al., 2010). 
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Figure 4-12. Summary of the capabilities of iAdipocytes1809. Adipocytes store lipid mainly in the form of triacylglycerols 
(TAGs) and cholesterol esters (CEs). They form lipid droplets (LDs) in the post-prandial state (green arrows) and release 
them by degrading LDs in the post-absorptive state (blue arrows) in order to provide energy for other tissues. The released 
fatty acids (FAs) from adipocytes are transported to other tissues by albumin. The FAs are taken up from non-esterified FAs 
(NEFA) and lipoproteins, including chylomicrons, very-low-density lipoprotein (VLDL) and CEs together with cholesterol 
are taken up with low-density lipoproteins (LDL) and high-density lipoproteins (HDL) through lipoprotein lipase (LPL). CEs 
taken up from lipoproteins are degraded to cholesterol and FAs in lysosomes and transported to the endoplasmic reticulum 
and cytosol to be stored in LDs. Adipocytes also take up glucose to be used in the de novo synthesis of FAs (black arrows) 
that occurs at low level in adipocytes. LDs are rich in TAGs, CEs and an unknown neutral lipid that migrated between CEs 
and TAGs, ether neutral lipid monoalk(en)yl diacylglycerol (MADAG). LDs also contain small amounts of free FAs, 
cholesterol and phospholipids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 
ether-linked phosphatidylcholine (ePC), ether-linked phosphatidylethanolamine (ePE), lyso phosphatidylcholine (LPC), 
lysophosphatidylethanolamine (LPE), phosphatidylserine (PS) and sphingomyelin (SM). Formation of ePC, ePE, LPC, LPE 
and SM is included in iAdipocytes1809 but is not shown in figure. 

The function of iAdipocytes1809 was tested by estimating the formation of LDs based on 
clinical data for lean and obese subjects. Recently, McQuaid et al. (2011) measured the 
delivery and transport of FAs in adipose tissue using multiple and simultaneous stable-isotope 
FA tracers in lean and obese subjects groups over 24 hours period. Even though abdominally 
obese subjects have greater adipose tissue mass than control lean subjects, the rates of 
delivery of NEFAs were downregulated in obese subjects. Based on measurements of the 
uptake of glucose and TAG and the release of NEFAs over a 24 hour period we simulated the 
change in LD size. We found from our simulations that lean subjects have large dynamic 
changes in LD formation compared with obese subjects (see Figure 4-13c). Furthermore, we 
predicted a lower acetyl-CoA production in obese subjects (see Figure 4-13d). 
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Figure 4-13. Simulated lipid droplet and acetyl-CoA production. Uptake rates for glucose and TAGs and release rates for 
NEFAs in adipocytes for lean (A) and obese (B) subjects were used as lower and upper bounds for input reactions (McQuaid 
et al., 2011) together with amino acid uptake rates (Patterson et al., 2002), and the amounts of LDs (C) and acetyl-CoA (D) 
were predicted over a 24 h period. The dashed lines at time 0, 5, 10 hours represent breakfast, lunch and dinner, respectively, 
for each participant of the study. Figure taken from Mardinoglu et al. (2013). 

We then employed the iAdipose1809 GEM for the analysis of microarrays which profile the 
gene expression from subcutaneous adipose tissue of subjects from the Swedish Obese 
Subjects (SOS) Sib Pair Study. This study includes nuclear families with BMI–discordant 
sibling pairs (BMI difference ≥ 10 kg/m2). Besides the gene expression data from the SOS Sib 
Pair Study, additional clinical data (e.g. plasma and WAT lipid concentrations) were also 
incorporated into the model. By integrating gene expression data and adipose tissue 
uptake/secretion rates with the reconstructed GEM, we identified metabolic differences 
between individuals with different BMIs by using the concept of Reporter Metabolites (Patil 
and Nielsen, 2005) and transcriptionally controlled reaction fluxes (Paper II). 

The results from this analysis showed that the following pathway fluxes were transcriptionally 
downregulated in obese subjects: uptake of glucose, uptake of FAs, oxidative 
phosphorylation, mitochondrial and peroxisomal β-oxidation, FA metabolism, and TCA 
cycle. Furthermore, fluxes associated with beta-alanine metabolism were found to be 
transcriptionally downregulated in obese subjects. Previously it has been reported that blood 
flow, glucose uptake, release of NEFA and the extraction of TAG from plasma was 
significantly lower in abdominally obese subjects compared to lean subjects (McQuaid et al., 
2011). Most of these pathways are linked with mitochondrial dysfunction. Several therapeutic 
interventions, including antioxidants and chemical uncoupler treatments, have been shown to 
improve mitochondrial dysfunction (Kusminski and Scherer, 2012). 
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Mitochondrial acetyl-CoA plays a central role in different pathways in the mitochondria, 
where it reacts with oxaloacetate to form citrate. Citrate can then be transported from the 
mitochondria to the cytosol where it is participating in FA synthesis (Dean et al., 2009). 
Acetyl-CoA derived through other principal sources, including degradation of amino acid and 
ketone bodies and fatty acid oxidation processes are insufficient for FA synthesis. Increasing 
the acetyl-CoA concentration and eventually FA synthesis in adipose tissue of obese subjects 
results in whole body regulation of metabolism as reported by Cao et al. (2008). We therefore 
propose to boost the metabolic activity of mitochondria in the adipocytes of obese subjects by 
aiming to increase the availability of mitochondrial acetyl-CoA. 

As previously mentioned, beta-alanine metabolism came out as significantly changed between 
healthy and obese. The effect of beta-alanine as a dietary supplement was previously 
examined in football players and it is reported that it has effect on lean tissue accruement and 
body fat composition (Hoffman et al., 2006). Furthermore rat studies reported that beta-
alanine decreases the lipoprotein lipase (LPL) enzyme activity in adipose tissue which may 
help to decrease the uptake of FAs to be stored in adipocytes (Prabha et al., 1988). Our results 
suggest that increasing the level of beta-alanine in obese subjects may help to decrease the fat 
composition in obese subjects. 

Another high-ranking target for upregulated genes is ganglioside GM2. Gangliosides, one of 
the major glycosphingolipids in mammals, play major roles as mediators for cell to cell or cell 
to matrix recognition and regulate the transmembrane signal transducers and cell 
proliferation. Gangliosides in adipose tissues are also associated with insulin signalling 
mechanisms and it is reported that series of gangliosides GM2, GM1, and GD1a are 
dramatically increased in adipose tissues of obese mice (Tanabe et al., 2009). 

A third prominent group among the Reporter Metabolites for upregulated genes is the 
degradation products of heparan sulfate proteoglycans (HSPG) and keratan sulfate. These 
compounds are classified as glycosaminoglycans and attach to cell surface or extracellular 
matrix proteins. Keratan sulfate, a biomarker of proteoglycan degradation, can be expressed 
from stem cells in human SAT and its relevance with obesity has been reported earlier. It has 
been reported that catalytically active adipose tissue lipoprotein lipase (LPL) attaches to 
HSPG at the luminal surface of vascular endothelium (Olivecrona and Beisiegel, 1997; 
Lafontan, 2008) and hydrolyse the TAGs for uptake of FAs into the cell. The LPL moves 
between individual HSPG chains within the layer and this creates a high concentration of LPL 
along the surface layer of HSPG chains (Lookene et al., 1996). In the presence of heparin 
more LPL is secreted and increased secretion was balanced by decreased degradation of LPL. 
There are special mechanisms that inhibit LPL and one mechanism is that LPL forms 
complexes with FAs (Bengtsson and Olivecrona, 1980). During the LPL hydrolysis and 
accumulation of FAs in the cells, the LPL is sequestered into enzyme FA complexes, lipolysis 
is reduced and eventually the binding of LPL to heparan sulfate is broken. If a high-affinity 
ligand (e.g. FAs, heparin, apoCII) is available, the LPL detaches from the cell surface to 
heparan sulfate chains and without ligand in the medium, the LPL recycles into the cells 
where it is degraded. Furthermore, several studies have reported that more sulfated 
polysaccharide chains increase the affinity for binding of LPL (Olivecrona and Olivecrona, 
2009). One possible intervention strategy could therefore be to try to reduce the degradation 
rate of HSPG. 

In conclusion, the first human GEM with extensive lipid metabolism was reconstructed. This 
was made possible by close collaboration with groups that generated large-scale proteomics 
data for adipocytes and transcriptomics data for healthy/obese siblings. The model could 
correctly capture the reduced dynamics of lipid droplet formation in obese subjects and we 
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could see that this was associated to mitochondrial dysfunction. The model was then used 
together with the algorithm developed in Paper II and the Reporter Metabolites algorithm to 
identify metabolic differences between healthy and obese siblings. This led us to hypothesize 
that obesity could be treated with interventions aiming a reactivating the mitochondria by 
increasing the availability of acetyl-CoA. An alternative approach was to target the 
degradation of heparan sulfate proteoglycans. 

4.2.3 Paper VI: Identification of serine deficiency in non-alcoholic fatty 
liver disease through genome-scale metabolic modelling 

Hepatocytes have a wide range of physiological functions, including production of bile and 
hormones, removal of toxic substances, homeostatic regulation of the plasma constituents and 
synthesis of most plasma proteins (Gille et al., 2010). They are the most metabolically active 
cell types in human and play a major role in overall human metabolism. Deficiency or 
alterations in the metabolism of hepatocytes can lead to complicated disorders such as 
hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis and liver cancer, which are 
serious threats to public health (Baffy et al., 2012). NAFLD is considered as the hepatic 
manifestation of obesity and metabolic syndrome, and encompasses a spectrum of 
pathological changes; ranging from simple fatty liver (FL) to non-alcoholic steatohepatitis 
(NASH) (Neuschwander-Tetri and Caldwell, 2003). 

In Paper VI we reconstructed a consensus GEM for hepatocytes and applied it in order to 
suggest potential biomarkers and therapeutic targets for NAFLD. In parallel to this we built 
on the results from Paper IV and Paper V in order to reconstruct a generic human GEM. 

Several generic (non-cell type-specific) GEMs for human metabolism have been previously 
constructed (as discussed in Paper IV and section 3.3.2). One such generic model is the HMR 
database presented in Paper IV. However, neither of these generic networks contain 
extensive lipid metabolism, which is necessary in order to study the effect of lipids on the 
underlying molecular mechanism of NAFLD. In Paper V we reconstructed as GEM for 
adipocytes with a strong focus on lipid metabolism. In this paper we presented HMR 2.0, in 
which we had integrated all published human GEMs, the original HMR database, and the 
lipid metabolism from the adipocyte GEM from Paper V. The HMR 2.0 database is the 
largest biochemical reaction database for human metabolism in terms of number of 
reactions/genes/metabolites, as well as in terms of which parts of metabolism that are covered. 
This represents an important step forward since lipids have major effects on the development 
of several important metabolic diseases (Newgard, 2012). The functionality of the model was 
tested using the RAVEN Toolbox (Paper III), in the same manner as previously described for 
the adipocyte GEM. 

A draft hepatocyte GEM was then reconstructed from a subset of HMR 2.0 based on 
proteomics data from HPA and by using the tINIT algorithm (Paper IV and Agren et al. 
(2013b)). Previously, several GEMs for hepatocytes, including HepatoNET 1 (Gille et al., 
2010), iLJ1046 (Jerby et al., 2010), iAB676 (Bordbar et al., 2011) and iHepatocyte1154 
(Paper IV), have been reconstructed. The draft model was then expanded to contain all of the 
protein coding genes and associated reactions in the previously published liver models (Figure 
4-14a). In addition to the proteomics data and reactions from previously published models, 
protein coding genes were also included based on transcriptomics data and for connectivity 
reasons (Figure 4-14b). Lastly, additional clinical data for plasma and hepatocyte lipid 
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concentrations for individual FAs were incorporated into the model, resulting in the final 
iHepatocytes2260 GEM. 

iHepatocytes2260 differs from previously published hepatocyte GEMs primarily in terms of 
coverage in lipid metabolism. Among the new lipid related functions are uptake of the 
remnants of lipoproteins (chylomicrons, very-low-density lipoprotein (VLDL), low-density 
lipoproteins (LDL) and high-density lipoproteins (HDL)), the formation and degradation of 
lipid droplets (LDs) and secretion of synthesized lipoproteins (VLDL, LDL, HDL) (Figure 
4-14c, see also the corresponding functionality for adipocytes in Figure 4-12). The model was 
validating by simulating 256 different biologically defined metabolic functions (e.g. the 
synthesis of FAs, amino acids, cholesterol and bile acids) that is known to occur in 
hepatocytes. Furthermore, the ability of the model for performing gluconeogenesis was 
demonstrated using experimentally measured secretion rates for glucose and albumin and 
uptake rates for glycerol, lactate, amino acids and FAs in primary rat hepatocytes (Chan et al., 
2003). 

In the model reconstruction process, tINIT (Agren et al., 2013b) identified 61 genes (out of 
the 3,673 genes in the HMR 2.0 database) which had to be integrated into the model in order 
to maintain the functionality, even though they had been reported to be non-expressed in 
hepatocytes according to the HPA. We then re-analysed the immunohistochemistry (IHC) 
data for these 61 proteins and found that 20 (33%) of these proteins actually show presence in 
hepatocytes. Initial disconcordant data were due to the suboptimal titration of the antibody, 
misinterpretation of weak IHC staining or due to interference with other cell types besides 
hepatocytes present in liver (e.g. kupffer cells and sinusoids). Nine (15%) of the investigated 
proteins showed more concordant results to the mathematic model when re-analysed using 
another antibody targeting the same protein. 15 proteins (25%) with negative IHC data were 
kept as negative in HPA since limited literature was available, and/or concordant results were 
seen in subsets of the remaining panel of tissues included in the HPA high-throughput set up. 
The remaining 17 proteins (28%) are believed to be inaccurately assessed by IHC due to 
technical issues, such as antigen recognition due to antigen conformational changes, fixation 
or sub optimal antibody. We think this is an excellent example of how a holistic view of 
metabolism can lead to biological insights, in this case as a targeted way to improve on the 
quality of experimental data. 

NAFLD, and its most severe form NASH, is progressively diagnosed worldwide (Rector et 
al., 2008). It is tightly associated with obesity, type 2 diabetes, insulin-resistance, and 
hypertension and represents a severe risk for development of cirrhosis and hepatocellular 
carcinoma (Ascha et al., 2010). Despite its severe drawbacks, liver biopsy is still the most 
common procedure for diagnosing NASH (Machado and Cortez-Pinto, 2012). Thus, there is a 
need for identifying metabolic biomarkers to diagnose NASH, as well as to subcategorize the 
NAFLD patients without taking biopsies. A metabolic biomarker can be defined as a 
metabolite which is secreted to the blood where its level differs between two different states. 
We used the iHepatocytes2260 GEM as a scaffold for transcriptome analysis in an attempt to 
identify potential such biomarkers. 
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Figure 4-14. iHepatocytes2260 – a consensus GEM for hepatocytes. A) Venn diagram of the genes in iHepatocytes2260 
and previously published hepatocytes GEMs. 966 new protein coding genes were included in iHepatocytes2260, primarily 
based on proteomics evidence provided by HPA. B) Genes and associated reactions were included based on proteome 
evidence, previously published models, transcriptome evidence, or for connectivity reasons. The number of genes included 
based on each category is shown. C) iHepatocytes2260 contains extensive lipid metabolism that is known to exist in 
hepatocytes, in addition to other known metabolic pathways. In the model, 59 different individual fatty acids are used, rather 
than generic pool names, in order to allow the integration of lipidomics data. The model can uptake the remnants of 
chylomicrons, very-low-density lipoprotein (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL) 
and can form and degrade lipid droplets (LDs). Moreover the model can synthesis VLDL, LDL and HDL and secrete it to the 
blood. Some of the important elements of lipid metabolism are shown. 
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We retrieved liver gene expression data from 45 subjects out of which 19 were healthy, 10 
steatotic, 9 had NASH with FL and 7 had NASH without FL (Fisher et al., 2009; Lake et al., 
2011). We used the Piano package to compare gene expressions of NASH with and without 
FL to healthy subjects (Väremo et al., 2013). The iHepatocyte2260 GEM was then used with 
the Reporter Metabolites algorithm in order to identify metabolites around which 
transcriptional changes occur between healthy and diseased subjects (Patil and Nielsen, 2005). 
A total of 50 statistically significant metabolites were such identified. In addition to several 
known subsystems involved in the progression of NASH, e.g. cholesterol biosynthesis, folate, 
vitamin B6, porphyrin, nucleotide, eicosanoid and amino acid metabolism (Greco et al., 2008; 
Anstee and Day, 2012) we also identified several new Reporter Metabolites. These 
metabolites were involved in N-glycan metabolism and in the biosynthesis of the 
proteoglycan (PG) chondroitin sulfate (CS). PGs are composed of glycosaminoglycans, 
including CS and heparan sulfate (HS), and core proteins. 

 
Figure 4-15. Results from Reporter Metabolites analysis. The figure shows the biosynthesis of chondroitin sulfate (CS) 
and heparan sulfate (HS) in Golgi apparatus, as formulated in iHepatocytes2260, together with the relative gene expression 
level of NASH vs. healthy samples. Red arrows indicate over-expression of a gene, whereas green arrows indicate under-
expression. Non-significant changes (p-value>0.05) is indicated with black arrows. 

Figure 4-15 shows the reactions in the model which involves CS or HS and the relative gene 
expression for the corresponding genes. As can be seen, the genes responsible for the 
synthesis of CS are mainly upregulated in NASH subjects while the genes responsible for the 
synthesis of HS are mainly downregulated. CS and HS are implicated in cancer progression 
(Afratis et al., 2012), one of the most severe outcomes of NASH. Because of this, and because 
of the clear upregulation of one branch and clear downregulation of the other, we therefore 
suggested that the blood concentration of the metabolites associated with these pathways 
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might change accordingly, and that they are therefore potential biomarkers for diagnosing 
NASH. 

The Reporter Subnetworks algorithm was then applied to identify sets of metabolic reactions 
which exhibit transcriptional correlation after a perturbation (in this case NASH vs. healthy) 
(Patil et al., 2005). Figure 4-16a show the resulting subnetwork. As can be seen, amino acid 
metabolism has a prominent role (the non-essential amino acids serine, glycine, glutamate, 
glutamine, aspartate, asparagine, alanine and the essential amino acids valine and methionine 
are all present). Several metabolites involved in folate metabolism (e.g. tetrahydrofolate 
(THF), 5-methyl-THF, 5-formyl-THF and 5,10-methenyl-THF, 5,10-methylene-THF) were 
also identified, and these metabolites are involved in the interconversion of serine, glycine 
and glutamate. 

 
Figure 4-16. Results from Reporter Subnetworks analysis. A) The subnetwork identified using Reporter Subnetworks and 
gene expression data for NASH vs. healthy subjects. B) Some relevant reactions involved in serine biosynthesis and their 
corresponding change in expression. Red arrows indicate over-expression of the associated genes in NASH, whereas green 
arrows indicate under-expression. Non-significant changes (p-value>0.05) is indicated with black arrows. 

Moreover, phosphatidylserine (PS), an essential component for formation of lipid droplets 
(LDs), was identified through our analysis. LDs have diverse roles in the cell, such as serving 
as storage for TAG and CEs or protecting the cell from excess lipids or lipophilic substances 
that may be toxic (Farese and Walther, 2009). The enzymes phosphatidylserine synthases 
(PTDSS1) and (PTDSS2) that catalyse the production of PS by condensation of 
phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively, were 
significantly downregulated in NASH patients. The significant changes in the level of PS in 
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cirrhotic (severe stage of NASH) livers was previously reported in a study on changes in lipid 
species in subjects with cirrhotic livers compared with healthy controls (Gorden et al., 2011). 
Given that PS is essential for hepatocytes, we hypothesize that decreased activity of these 
enzymes may be associated with a decrease in the endogenous level of serine, which is the 
second most connected node in our identified Reporter Subnetworks. 

Serine is endogenously biosynthesized from a glycolytic intermediate, 3-phospho-D-
glycerate. This three-step process is catalysed by phosphoglycerate dehydrogenase (PHGDH), 
phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase (PSPH), as shown 
in Figure 4-16b. An alternative synthesis pathway is via the reversible interconversion with 
glycine through hydroxymethyltransferases (SHMT1) and (SHMT2). Serine can also be 
derived from the diet and the degradation of protein and/or phospholipids. 

Through differential analysis of transcriptomics data from the NASH patients, it was also 
observed that gene expression of several enzymes that use serine, including CBS (cysteine 
synthesis), SARS2 (aminoacyl-tRNA biosynthesis), SHMT1 and SHMT2 (glycine synthesis) 
were significantly downregulated (p-values < 0.05) whereas SPTLC1 and SPTLC2 
(sphingosine synthesis) were significantly upregulated. Downregulation of CBS that catalyses 
the conversion of serine and homocysteine to L-cystathionine and upregulation of MTR that 
condensates homocysteine to methionine through the use of 5-methyl-THF indicate that there 
are metabolic changes around homocysteine in NASH patients. Notably, it has been earlier 
reported that the plasma homocysteine level can be used for diagnosing NASH and 
classifying steatosis and NASH patients (Gulsen et al., 2005). It is not always straight forward 
to relate blood concentrations to gene expression levels of the involved enzymes, but our 
model-based analysis suggests a mechanistic explanation for this. 

Taken together, the results suggest that the changes in the level of PS in liver (Gorden et al., 
2011) as well as the relative increase in the homocysteine blood level (Gulsen et al., 2005) is 
caused by decreased level of endogenous serine. In order to test this hypothesis, we checked 
the expression level of enzymes that catalyse the biosynthesis of serine in the liver of NASH 
patients, and it was observed that the expression levels of PHGDH, PSAT1, PSPH in serine 
synthesis pathway (SSP) and SHMT1 and SHMT2 enzymes were significantly downregulated. 
Decreased levels of serine in NASH patients was supported by the plasma profiling of amino 
acids in NASH patients, and it was reported that the serine (15 % decrease, p-value=0.0568) 
level in the plasma is decreased (Kalhan et al., 2011). 

Equimolar amounts of serine and α-ketoglutarate (AKG) are synthesized in the SSP, and 
downregulation of reactions in SSP decrease the anaplerosis of glutamate to the TCA cycle in 
the form of AKG (Possemato et al., 2011). Decreased level of serine also causes an 
accumulation of upstream glycolytic intermediates (Chaneton et al., 2012), and a decreased 
flux of mitochondrial AKG is compensated by an increased flux of pyruvate to oxaloacetate 
in a healthy cell (see Figure 4-16b). In order to investigate the occurrence of this mechanism 
in NASH patients, we examined all mitochondrial reactions involving pyruvate as reactant in 
iHepatocytes2260. We found that the corresponding genes were downregulated for five out of 
seven such reactions. Furthermore, we investigated the expression of level of mitochondrial 
pyruvate carriers (MPC1 and MPC2) and mitochondrial AKG/malate carrier (SLC25A11) and 
it was observed that their expression levels were downregulated in NASH patients. These 
indicate that the mitochondrial metabolic activity of hepatocytes is decreased in NASH 
patients compared to healthy subjects. This is in agreement with findings in Paper V where 
we investigated the metabolic changes in the case of fat accumulation in adipocytes in 
response to obesity. 
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Based on our analysis, increasing the serine level in hepatocytes through the uptake of serine 
as a dietary supplement could be beneficial for NASH patients. Activity loss of PHGDH in 
SSP in the brain, which causes low serine and glycine levels and affects neuronal function, is 
reversed by serine supplementation (de Koning et al., 2004). The toxicity and the dosage of 
serine during its uptake through diet have been previously studied. Furthermore, long-term 
serine treatment decreased the homocysteine level in animal studies (Girard-Globa et al., 
1972) and in humans in a single dose situations (Verhoef et al., 2004). 

One other possible way to increase the serine level in order to offer the possibility for 
therapeutic interventions is activation of the enzymes in SSP or SHMT1 and SHMT2 that 
converts glycine to serine. Three different enzymes constitute the SSP and it is earlier 
reported that PSPH is the rate-controlling enzyme for the SSP in liver (Lund et al., 1985). 
Activation of the SSP through the amplification of PSPH may also decrease the flux through 
pyruvate and lactate formation in cytosol since increased pyruvate and lactate levels were 
previously reported in NASH patients (Kalhan et al., 2011). 

In conclusion, the HMR 2.0 database published in this paper is the most comprehensive 
general human GEM, and the only one which incorporates extensive lipid metabolism. By 
applying the tINIT algorithm (Agren et al., 2013b) in order to reconstruct a draft hepatocyte 
GEM, we found 61 proteins which the algorithm flagged as likely to have been misidentified 
in HPA. At least 51 (83%) of those proteins were indeed misidentified when the IHC 
stainings were re-evaluated and/or when tested for with different antibodies. This is an 
excellent example of how a network-centric analysis can pick up on targets which would not 
be possible to identify by other means. The reconstructed iHepatocyte2260 GEM was then 
applied to study metabolism in NASH. Our analysis suggests that it may be possible to 
diagnose NASH through identified metabolic biomarkers such as 5-methyl-THF, 5-formyl-
THF, CS, and HS levels in blood. Furthermore, the development of therapeutics techniques 
based on the enhancement of endogenous serine and AKG levels may correct the underlying 
etiology of NASH. This could be achieved by activation (or elevated expression) of PSPH 
and SHMT1 and inhibition of BCAT1. 
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5 Conclusions and future perspectives 

5.1 Conclusions 
In the introduction section I identified three key issues in need of more research. These were: 
1) model reconstruction is very labour intensive and error prone, 2) GEMs are underused as 
scaffolds for omics integration, 3) difficulties associated with modelling of complex 
organisms. 

In Paper I, genome-scale metabolic modelling was applied to succinic acid production in S. 
cerevisiae. The modelling was used to suggest single gene deletions, out of which three were 
validated experimentally. A central aspect in the study is the effect of oxygen on succinate 
production, where the simulations suggest that fully anaerobic conditions are necessary. One 
of the gene deletions, Δdic1, led to a significant succinate yield, in close agreement with the 
model predictions. However, the yield was not as high as what had previously been achieved 
by utilizing a quadruple deletion strategy and aerobic conditions (0.02 C-mol/C-mol glucose 
vs. 0.07 C-mol/C-mol glucose). A distinct advantage over that strategy is that anaerobic 
fermentations are preferred industrially. Both these strategies result in far less succinate than 
what is possible in bacterial hosts, and the result can therefore be seen mainly as proof of 
concept. The most interesting result, in my opinion, is rather that the study provides some 
clues on the roles of Frds1 and reductive TCA cycle in mitochondrial NAD+ regeneration 
under anaerobic conditions, which is still not fully elucidated. 

Paper I represents an excellent example of how powerful the systems biology cycle (see 
Figure 2-3) can be. Fermentation data for the wild-type was used to constrain a GEM, which 
was then used to study product formation under different conditions. The resulting flux 
distributions were visualized and analysed, and the simulation parameters were adjusted until 
the model correctly predicted the phenotype. Simulations were used to form hypotheses and 
predict the yields of product following the suggested perturbations. The predictions were then 
validated experimentally. Lastly, the experimental results were used to suggest further studies 
and identify parts of the model that might need to be revised. 

One of the key issues that warranted further investigation, as identified in the introduction, 
was that the potential of GEMs to act as scaffolds for data integration was being underused. 
This gave the motivation for us to develop the algorithm in Paper II, which aims at 
integrating fermentation data with gene expression data, with the purpose of identifying 
transcriptionally controlled reactions. Such reactions could then form suitable targets for 
metabolic engineering. The algorithm was applied to study shifts in carbon sources in S. 
cerevisiae as a validation case. We identified three transcription factors which specifically 
regulated enzymes in transcriptionally controlled reactions. This implies that there is a global 
regulation of major flux alterations, which is highly relevant for metabolic engineering 
purposes. 

Any textbook or review on metabolic engineering will have a figure on how modelling and 
experimental efforts interact and feed off the results from each other (as does this one, see 
Figure 2-3). However, this represents an ideal case and not necessarily how it works in 
practice. Instead, much of the modelling is based on pre-existing data from literature. A 
powerful aspect of the algorithm is therefore that it relies on data that is very widely available. 
The flexibility of the algorithm was shown in Paper III, Paper V, and Paper VI. 
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In Paper III we reconstructed a GEM for the filamentous fungi Penicillium chrysogenum and 
used it to study penicillin biosynthesis. The algorithm from Paper II was applied for 
comparison of an industrial high-producing strain and the wild-type strain in order to identify 
potential targets for increasing the penicillin yield. 36 reactions were identified as being 
transcriptionally controlled and upregulated in the industrial strain. They are therefore 
potential targets for further overexpression. We also identified three single gene deletions 
which were predicted to result in a 21% increase in penicillin production. In addition, we 
found strong evidence that in the industrial strain the transsulfuration pathway is the 
dominating pathway for cysteine biosynthesis, even though the enzymes for the energetically 
more efficient direct sulfhydrylation pathway have been identified in P. chrysogenum. This 
also represents an interesting target, as cysteine synthesis can be a limiting step in penicillin 
production. 

The GEM for P. chrysogenum was reconstructed and validated using the RAVEN Toolbox. 
The software aims at automating parts of the GEM reconstruction process in order to allow 
for faster reconstruction of high-quality GEMs. It was developed to address the first issue 
identified in the introduction; model reconstruction is very labour intensive and error-prone. 
The RAVEN Toolbox has three main foci: 1) automatic reconstruction of GEMs based on 
protein homology and integrated quality control, 2) network analysis, modelling and 
interpretation of simulation results, 3) visualization of GEMs using pre-drawn metabolic 
network maps. It contains a number of novel approaches for gap filling, assignment of 
subcellular localization of reactions, and mapping of genes based on homology. This software 
represents by far the largest single part of the work carried out during my Ph.D. studies. As 
described in section 3.3, a number of other software and algorithms have been published 
which are partly overlapping with the RAVEN Toolbox in terms of functionality. The 
fundamental difference between the RAVEN Toolbox and those software is that it is not just a 
software for automatic reconstruction; it is a software for working with reconstruction. 

In Paper IV we built a very comprehensive database of human metabolism, and then 
reconstructed cell type-specific models as subsets of this generic database. We did this by 
developing an algorithm which integrates different omics types, such as proteomics, 
transcriptomics and metabolomics, and then generates models which are in agreement with 
the data. The algorithm, INIT, was tailored to use large-scale proteomics data generated 
within the HPA project. The workflow was validated by an extensive comparison to a 
manually published high-quality model. We then applied the algorithm to reconstruct models 
for 69 cell types and 16 cancers. The models were then analysed in order to identify 
subnetworks which are more prominent in cancers. Such networks can be potential targets for 
treatment. The solutions contained several well-known targets and a few novel ones. 
Particularly, we found a network dealing with detoxification of aminoacetone, which we 
propose as a target for therapeutic intervention. 

The papers described above, with the exception of Paper I, are primarily resource and 
methodology papers. The sampling algorithm, the P. chrysogenum GEM, the RAVEN 
Toolbox, the INIT algorithm, and the cell type-specific GEMs are arguably larger 
contributions to the scientific community than the biological interpretations drawn from 
applying them. The last two papers have a stronger biological component, and show how the 
methods and resources developed in the first set of papers can be applied. 

In Paper V we reconstructed a GEM for adipocytes based on proteomics data generated 
together with our collaborators in the HPA project. The model represents a significant step 
forward since it is the first human GEM with extensive lipid metabolism incorporated. The 
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model was built on the generic database developed in Paper IV and validated in the RAVEN 
Toolbox (Paper III). The model could correctly capture the reduced dynamics of lipid droplet 
formation in obese subjects, and we could see that this was associated to mitochondrial 
dysfunction. The model was then used together with the algorithm developed in Paper II to 
identify metabolic differences between healthy and obese siblings. This led us to hypothesize 
that obesity could be treated with interventions aiming a reactivating the mitochondria by 
increasing the availability of acetyl-CoA. An alternative approach was to target the 
degradation of heparan sulfate proteoglycans. 

An important lesson from this project was how important it is to have collaborators in the 
medical field. The reconstruction of such a high-quality model would not have been possible 
without the large-scale proteomics data generated specifically for this purpose. The study 
represents an excellent example of the usability of GEMs as scaffolds for omics integration, 
as is shown in the study on metabolic differences between healthy and obese siblings. 

In Paper VI we built on the model developed in Paper V and adapted it to hepatocytes by 
using INIT (Paper IV and Agren et al. (2013b)). During this step the algorithm included 61 
proteins in the model even though the proteomics data suggested that they did not exist in 
hepatocytes. At least 51 (83%) of those proteins were indeed misidentified when the IHC 
stainings were re-evaluated and/or when tested for with different antibodies. This is an 
excellent example of how a network-centric analysis can pick up on targets which would not 
be possible to identify by other means. The model was then applied to study metabolism in 
patients with non-alcoholic fatty liver disease. Our main findings pointed to a central role of 
serine, and we proposed that enhancement of endogenous serine levels may correct the 
underlying etiology of the disease. 

A number of methods have previously been developed in order to deal with the three issues 
set forward in the introduction (as described in detail in section 3). Despite that, I hope to 
have shown that the work put forward in this thesis has contributed in some small amount to 
solving them, and that in doing so it has also resulted in novel biological insights. 

5.2 Future perspectives 
During the last couple of decades the constraint-based approach to modelling has proven to be 
very well-suited for metabolic engineering purposes. More recently, it has also started to 
prove its applicability to human health and disease. Extensive method development has been 
carried out in order to improve on the quality of GEMs and reduce the efforts involved in 
reconstructing them, part of which has been performed within this Ph.D. project. This has 
lowered the bar for reconstructing high-quality models, and GEMs for prokaryotes can now 
be routinely reconstructed with little manual input. Much effort has also gone into the 
development of methods for guiding metabolic engineering and strain design. Although by no 
means solved problems, there now exists so many algorithms for these purposes that I would 
suggest that the field turns its attention to some other remaining challenges while survival of 
the fittest sorts out the most applicable algorithms. 

One issue that I think is of paramount importance is that of transport reactions. The fraction of 
transport reactions is often >20% for eukaryotic models and the evidence level for them is 
significantly worse than for the enzymatically catalysed reactions. These reactions are 
routinely included “for connectivity reasons”. This has large implications for modelling of 
eukaryotic organisms, since much of the complexity of metabolism comes from the 
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compartmentalization of redox, charge and energy balancing. A large-scale screening effort of 
transporter substrate specificity, membrane localization and transport direction for a 
eukaryotic model organism would be immensely valuable for the field. 

For applications in human health and disease there are two issues that I think warrant special 
attention. The first is the absence of a standard operating procedure (SOP) for reconstruction 
of cell type-specific GEMs. The development of detailed SOPs for reconstruction of microbial 
models had a hugely positive effect on the field, and a similar push is needed for multicellular 
organisms as well. The second issue deals with data availability. Since constraint-based 
modelling has evolved in close interaction with metabolic engineering, which allows for 
carefully set up fermentations and quantification of internal and/or external fluxes, many of 
the methods are based on fluxomics data. However, this is not a common experimental setup 
for cultivation of mammalian cells, which are most often grown in complex media with no 
quantification of exchange fluxes. It would be highly relevant for the field with a medically 
oriented project tailored to supply the data best fitted for constraint-based modelling. This 
would serve as an example, both to the medical field and to the metabolic engineering field, 
of the capabilities of constraint-based modelling of human cells. 

A third area which I’m confident will be a future focus is that of interactions between models 
with different objectives. Possible applications include interactions between organs, bacteria 
in mixed fermentations such as in the gut, cells with the same genotype but with different sets 
of expressed genes due to stochastic noise, or between pathogens and their hosts. The first 
steps towards this goal have already been taken, but there is a long way left. 

Lastly, I think the field is approaching maturity when it comes to microbial systems, but that 
it has yet to prove itself when it comes to medical applications. A large proportion of the 
published papers are still based on some type of novel algorithm or method, and there are not 
all that many examples of applications of known methods to provide answers to concrete 
biological questions. The modelling is still mainly used for data analysis/mining, and not 
interactively and iteratively for testing hypotheses and generating new data. A few success 
stories would open up for more funding and collaborations. 

To conclude, the field has developed immensely in the short few years that I have worked in 
it. All the signs point to that the coming years will be just as exciting. 
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