

 Chalmers Publication Library

Copyright Notice

©2013 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/),

where it is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec.

8.1.9 (http://www.ieee.org/documents/opsmanual.pdf)

(Article begins on next page)

MAC Delay in Belief Consensus for
Distributed Tracking

Christopher Lindberg∗, L. Srikar Muppirisetty∗, Karl-Magnus Dahlén†, Vladimir Savic‡, Henk Wymeersch∗
∗Department of Signals and Systems, Chalmers University of Technology,

Gothenburg, Sweden, e-mail: {chrlin,srikar.muppirisetty,henkw}@chalmers.se
†HiQ Consulting, Gothenburg, Sweden, e-mail: karl-magnus.dahlen@hiq.se

‡Department of Electrical Engineering, Linköping University, Linköping, Sweden, e-mail: vladimir.savic@liu.se

Abstract—In target tracking applications where many sensors
must have a common view of the target’s state, distributed
particle filtering with belief consensus is an attractive solution.
It allows for a fully distributed, scalable solution, guarantees
consensus in connected networks, and converges fast for network
with high connectivity. However, for medium access control, high
connectivity is detrimental, possibly leading to a different con-
vergence/performance trade-off. We study the delay/performance
trade-off of distributed particle filtering with belief consensus
in the presence of time division medium access control. We
found that for small networks, (i) the impact of max-consensus
should be accounted for; (ii) a simple round-robin schedule
combined with a large communication range gives the best
delay/performance trade-off.

I. INTRODUCTION

An important application of wireless sensor networks
(WSN) is to cooperatively track changes in an environment
or of an object over time, by taking individual sensor’s mea-
surements and combining these to form a global estimate. This
sensor fusion can be implemented in a fully distributed way to
improve robustness to node and link failures, to achieve a high
degree of scalability, to evenly distribute energy consumption
in the network, and to ensure that a global estimate can be
accessed from any sensor in the WSN [1].

Under certain conditions, distributed methods based on
the Kalman filter can be applied [2]. However, due to non-
linearities or non-Gaussian noise, algorithms based on particle
filters are a popular choice for distributed tracking (see [1] for
a recent overview). Such a distributed particle filter (DPF)
generally utilizes some form of distributed belief consensus
(BC) algorithm to ensure agreement among sensor nodes
about the target’s state. In [3], every sensor has the same
set of particles at every time step (achieved through proper
seeding of random number generators) and relies on average
belief consensus to agree on the particle weights. In [4], a
consensus based algorithm for distributed target tracking is
combined with a cooperative self-localization method based
on non-parametric belief propagation to improve the results
of both tasks. Average consensus can also be applied to
other parameters, such as the parameters of the posterior
distributions [5], [6] or the likelihood functions [7], [8].

The convergence behavior of consensus algorithms with
different practical impairments is well-studied in the literature.
Example include quantization [9]–[11] and packet loss [12].

The convergence rate is generally studied by investigating
the flow of information through the network, though little is
known regarding the impact of packet collisions or medium
access control (MAC) [1]. To the best of our knowledge,
this issue is only studied in [13], where it was shown that
for dense, two-dimensional networks, the convergence rate
asymptotically no longer depends on the communication ra-
dius when scheduling is accounted for. However, it is not clear
if this conclusion is valid for target tracking applications in
small and medium-sized networks with specific performance
requirements.

In this paper, we investigate how MAC delay and perfor-
mance trade-off in a DPF with belief consensus. In partic-
ular, we consider different communication ranges, and form
collision-free broadcast schedules. Each execution of such a
schedule corresponds to one consensus iteration. This allows
us to determine the time to execute a certain number of
consensus iterations. In combination with the performance
degradation with respect to a centralized solution, we are able
to determine the time required to achieve a certain required
performance.

II. SYSTEM MODEL

A. Sensor and Target Model

We consider a WSN deployed in a surveillance area. The
WSN consists of Ns static sensors with known positions,
where the position of the n-th sensor is denoted by zn.
The target is described by its state xt, with known a priori
distribution p(x0). The target moves in discrete time slots1

according to the following mobility model

xt = f(xt−1,ut), (1)

where f(·) is a mobility function, and ut is process noise. At
time t, a subset Mt of sensors can measure some physical
quantity related to the state of the object, e.g., range, speed,
or angle. Here, we will consider Mt as the sensors within
sensing range r from the target. We denote the measurement
of sensor n at time t by

yn,t = gn(xt,vn,t), (2)

1We assume sufficient synchronization among the nodes to enable time
division scheduling (see Section IV).

where vn,t is observation noise, assumed to temporally white
and independent from sensor to sensor. We have omitted the
dependence of gn(·) on the known sensor position zn for no-
tational convenience. We further introduce yt = {yn,t}n∈Mt

.
The goal of the sensor network is for every sensor to determine
b(xt)

.
= p(xt|y1:t).

B. Communication Model

Sensors can communicate with neighboring sensors within
communication range r [14], using packets containing Ndata

bits, sent with a rate Rdata bits/s. Communication is over a
common channel and is coordinated through a time-division
multiple access (TDMA) protocol. All transmissions that do
not collide are assumed to be error-free.

III. TARGET TRACKING

We use a Bayesian filtering approach, where we recursively
determine

p(xt|y1:t−1) =

ˆ

b(xt−1)p(xt|xt−1)dxt−1, (3)

in which p(xt|xt−1) is obtained from (1), and

b(xt) ∝ p(xt|y1:t−1)p(yt|xt) (4)

= p(xt|y1:t−1)
∏

n∈Mt

p(yn,t|xt), (5)

where the last transition is due to the independence of the
measurements, and where p(yn,t|xt) is obtained from (2). We
initialize (5) with p(xt|y1:t−1) = p(x0) for t = 0. To enable
efficient computation of (3)–(5), we resort to a particle filter
solution [15].

A. Centralized Tracking

We first describe a centralized particle filter (CPF), in which
at every time slot, a fusion center (FC) collects all observations
from the sensors to determine b(xt). At the end of time
slot t − 1, the fusion center has a particle representation of

b(xt−1), given by {x(k)
t−1, w

(k)
t−1}

Np

k=1. To compute a particle
representation of b(xt), the FC proceeds as follows: (i) for

every particle x
(k)
t−1, we generate a new particle x

(k)
t from a

proposal distribution q(xt|x
(k)
t−1); (ii) we adjust the weight of

the k-th particle as

w(k)
t ∝ w(k)

t−1

p(yt|x
(k)
t)p(x(k)

t |x(k)
t−1)

q(x(k)
t |x(k)

t−1)
, (6)

assuming the weights are normalized; (iii) the estimate of xt

is given by

x̂t =

Np
∑

k=1

w(k)
t x

(k)
t . (7)

(iv) to avoid degeneracy problems, resampling is com-
monly applied, resulting in Np equal-weight samples

{x(k)
t , 1/Np}

Np

k=1, which form a particle representation of
b(xt).

While in general q(xt|x
(k)
t−1) can also depend on yt, a pop-

ular choice for q(xt|x
(k)
t−1) is p(xt|x

(k)
t−1), so that the particles

{x(k)
t , w(k)

t−1}
Np

k=1 can be interpreted as a particle representation

of p(xt|y1:t−1), and (6) reverts to w(k)
t ∝ w(k−1)

t p(yt|x
(k)
t). It

should be noted that (6) can be further expanded as (assuming

sampling from p(xt|x
(k)
t−1))

w(k)
t ∝ w(k)

t−1

∏

n∈Mt

p(yn,t|x
(k)
t). (8)

B. Distributed Tracking using Belief Consensus

As the use of a fusion center is not scalable for large
WSN, we consider a DPF [1]. Assuming each sensor has

access to the same particle representation {x(k)
t−1, w

(k)
t−1}

Np

k=1,

and uses the same proposal density q(xt|x
(k)
t−1), the distributed

particle filter (DPF) with standard belief consensus (SBC)

is able to recursively compute {x(k)
t , w(k)

t }Np

k=1 in a fully
decentralized manner, such that every node has the same
particle representation of b(xt). DFP-SBC operates as follows:

1) Sampling: Every sensor generates the same samples x
(k)
t

from q(xt|x
(k)
t−1). This can be achieved by setting the

seed state in the pseudorandom number generators of
the sensors equally.

2) Local weight computation: Every sensor computes a
local weight

w(k)
n,t =

{

p(yn,t|x
(k)
t) n ∈ Mt

1 else.
(9)

3) Average weight consensus: The sensors run a two-stage

distributed consensus algorithm to compute
∏

n w
(k)
n,t =

∏

n∈Mt
p(yn,t|x

(k)
t), which is used to update the com-

mon weights w(k)
t in (6). The nodes first run average

consensus on logw(k)
n,t :

logw(k,i)
n,t = logw(k,i−1)

n,t (10)

+ ξ(r)
∑

u∈Nn

(

logw(k,i−1)
u,t − logw(k,i−1)

n,t

)

,

where ξ(r) is generally chosen to be smaller than the
inverse of the maximum node degree2 dmax(r), Nn

is the set of sensors in the neighborhood of sensor

n, and i is an iteration index, with logw(k,0)
n,t =

logw(k)
n,t . It can be shown that as i→+∞, logw(k,i)

n,t →
∑

n logw
(k)
n,t/Ns. Note that (10) involves every node

broadcasting
{

logw(k,i−1)
n,t

}Np

n=1
to all of its neighbors,

receiving logw(k,i−1)
u,t from all of its neighbors, and then

computing (10).
4) Max Weight consensus: After a pre-defined number of

iterations, say I , (10) is halted and max-consensus is run
to achieve exact agreement on the weights

logw(k,I+j)
n,t = max

u∈Nn

(

logw(k,I+j−1)
n,t , logw(k,I+j−1)

u,t

)

,

(11)

2To be more concrete, ξ(r) ∈ [0, 1/λmax], where λmax is the largest
eigenvalue of the graph Laplacian. We chose ξ(r) = 1/dmax(r), when
dmax(r) ≥ λmax and ξ(r) = 1/(dmax(r) + 1), when dmax(r) < λmax.

for j = 0, 1, 2, . . . Max-consensus is also imple-

mented by broadcasts, and converges to log w̃(k)
t =

maxn logw
(k,I)
n,t ≈

∑

n logw
(k)
n,t/Ns after Dr iterations,

where Dr is the graph diameter.

It should be noted that other exact consensus algorithms
can be executed instead of max-consensus, for example min-

consensus. How well log w̃(k)
t approximates the desired value

∑

n logw
(k)
n,t/Ns depends on I and the structure of the com-

munication graph. Multiplying log w̃(k)
t by Ns, taking expo-

nentials, and normalizing, gives us a fully distributed way to
compute (6).

IV. COMMUNICATION DELAY

In this section, we will determine the delay incurred when
performing I iterations of average consensus, followed by
Dr iterations of max-consensus, based on the communication
model from Section II-B. As both algorithms are based on
broadcasts, we first determine the time required for every
node to perform a broadcast. The time will be measured in
micro-slots. Note that an iteration takes multiple micro-slots
(depending on the schedule, and on the size of the packets),
and that in a time-slot I +Dr iterations are executed.

A. Time per Iteration

We represent the sensor network by a communication graph
G = (V,E) consisting of Ns vertices (nodes) and E edges,
where (n, n′) ∈ E, when n and n′ are within a distance of r.
We aim to find the minimum number of time slots required to
perform one broadcast for all the nodes in the network, based
on spatial time division multiple access (STDMA). In graph
theory, this is called node or vertex coloring. Vertex coloring
can be formulated mathematically as an integer programming
problem [16] as follows, assuming to have a maximum of
T = Ns slots available:

minimize
T
∑

τ=1

sτ (12)

s.t.
Ns
∑

n=1

snτ ≤ sτNs, ∀τ ∈ T (13)

T
∑

τ=1

snτ = 1, ∀n ∈ V (14)

snτ +
∑

k∈Nn

skτ ≤ 1, ∀n ∈ V, τ ∈ T (15)

sτ ∈ {0, 1}, ∀τ ∈ T (16)

snτ ∈ {0, 1}, ∀n ∈ V, τ ∈ T (17)

where sτ = 1 when a transmission occurs in micro-slot τ ,
snτ = 1 is one when node n broadcasts in slot τ . The
objective (12) aims to minimize the total number of micro-
slots. The constraints impose the following: (13) specifies that
the number of nodes scheduled in one slot should not be more
than the total number of nodes in the network; (14) states
that every node must be assigned a slot in the schedule; (15)
ensures that for successful transmission of a packet, a node

should not transmit and receive at the same time; and, finally,
constraints (16) and (17) imposes the integer requirements on
the optimization variables. The above formulation is binary
integer programming (BIP), which we solved to optimality
using CVX [17] with support of MILP programming from
MOSEK [18]. The solution in terms of the number of micro-
slots is denoted by N∗

r . While our scheduler is centralized,
we note that for a distributed schedule, the number of micro-
slots will be at least N∗

r .
Rather than solving the optimization problem exactly, we

can also use dmax(r) + 1 ≤ N∗
r as a lower bound.

B. Total Time

The average consensus requires I iterations, and max-
consensus requires an additional Dr iterations, which varies
with r. In every micro-slot, we can send packets of Ndata bits,
at a rate of Rdata bits per second, thus taking Ndata/Rdata

seconds. Assuming the weights are quantized with q bits,
nodes broadcast qNp bits per iteration, requiring)qNp/Ndata*
packets, requiring)qNp/Ndata*Ndata/Rdata seconds. Hence,
the total duration to run DPF per time slot takes

TDPF [s] = Ntot,r)qNp/Ndata*Ndata/Rdata, (18)

where we have introduced the total number of micro-slots per
time slot Ts as

Ntot,r
.
= N∗

r (I +Dr) . (19)

Note that for tracking to operate, TDPF ≤ Ts, where Ts is the
time slot duration.

C. Relation Between Time and Performance

We consider a fixed number of nodes, Ns. The error in av-
erage consensus goes down exponentially with 1− ξ(r)λ2(r),
where λ2(r) is the spectral gap of the graph Laplacian. Hence,
after I iterations, the relative disagreement 3 0 < δ < 1 is [19]

δ ≈ (1− ξ(r)λ2(r))
I . (20)

In other words, to achieve a relative disagreement of δ, we
can solve (20) for I , substitute in (19), and find that in total
we require

Ntot,r =

(⌈

log δ

log (1− ξ(r)λ2(r))

⌉

+Dr

)

N∗
r (21)

micro-slots for average consensus and max-consensus. For
large r, λ2(r) → Ns, ξ(r) → 1/Ns, N∗

r → Ns, and
Dr → 1, so that the number of micro-slots will tend to
Ns, irrespective of δ. For r → rmin, the smallest radius
for a connected network, λ2(r) → 0, so that the number of
iterations is essentially)log δ*, and the total time becomes

3The relative disagreement is defined as

δ =

∥

∥

∥

∥

∥

logw
(k,i)
t −

1

N

∑

n

logw
(k,0)
n,t

∥

∥

∥

∥

∥

/

∥

∥

∥

∥

∥

logw
(k,0)
t −

1

N

∑

n

logw
(k,0)
n,t

∥

∥

∥

∥

∥

,

where logw(k,i)
t = [logw(k,i)

1,t , . . . , logw(k,i)
N,t

]T . Note that though δ
depends on the specific time t and the specific particle k, we simply write δ
for notational convenience.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

sensors
true track
CPF
r = 20 m, I = 0
r = 20 m, I = 8
r = 20 m, I = 128

x1[m]

x
2

[m
]

Fig. 1. The target movement through the area surveyed by the network, the
CPF estimate and 3 estimates using DPF-SBC with same communications
radius, but a different number of SBC iterations I . Clearly the DPF-SBC
estimates get better with respect to CPF as I increases.

Ntot,r = ()log δ*+Dr)N∗
rmin

micro-slots. Hence, for large
allowable disagreement, only when DrN∗

rmin
< Ns, it is

advantageous to have a small r. For very small allowable
disagreement, it is preferred to have large r.

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a network of 25 sensors placed in a square
grid with a minimum distance of 20 m between two neigh-
boring sensors (see Fig. 1). The target’s state is given by its
two-dimensional position [x1,t, x2,t] and its two-dimensional
velocity [ẋ1,t, ẋ2,t], so that xt = [x1,t x2,t ẋ1,t ẋ2,t]T . At
time t = 0, the target state has a known circular Gaussian
a priori distribution p(x0), with standard deviation 2 meters
and a properly chosen mean. The target moves through the
area surveyed by the sensors according to a white Gaussian
acceleration model, described by

xt = Axt−1 +But, (22)

where

A =

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

, B =

T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts

(23)

where ut = [u1,t u2,t]T and u1,t, u2,t ∼ N (0, 0.04), the sam-
pling interval Ts = 1 second. The target moves for a duration
of 50 seconds. The sensing range is set to rsense = +∞, so
that all sensors collect range measurements every second

yn,t = ‖zn − (x1,t, x2,t)‖+ vn,t, (24)

where vn,t ∼ N (0, 1m2). The communication range r is var-
ied between the minimum and maximum distance separating

20 30 40 50 60 70 80
0

5

10

15

20

25

Lower bound
Optimal schedule

r [m]

n
r.

o
f

m
ic

ro
sl

o
ts

Fig. 2. The solid line shows the lower bound of micro slots for scheduling
a 5× 5 square network with 25 sensors placed 20 m apart. The rings shows
the achieved optimal schedule solving the optimization problem from Section
IV-A.

two sensors (i.e., r ∈ [20m, 114m]). The SBC algorithm
is evaluated for a fixed number of particles (Np = 256) a
varying number of iterations I ∈ {0, 1, 2, 4, . . . , 256}. Note
that I = 0 means that we only run max-consensus. In terms
of communication capabilities, we assume a packet size is set
to Ndata = 256 kB, a 28-level quantization (i.e., q = 8) of
the particle weights, and a data rate of Rdata = 500 kbit/s
leading to micro-slots of 4.1 ms.

As performance measure, we consider the degradation with
respect to the CPF, running with the same number of particles.
Let x̂t,C be the CPF estimate, and x̂t,D the DPF-SBC estimate
(which depends on I and r), then the relative error is defined
as

erel = E

{

‖x̂t,C − x̂t,D‖

‖x̂t,C − xt‖

}

, (25)

where the expectation is taken over a steady state time window
(here set between t ∈ [10 s, 40 s]). The relative error erel is
estimated through 200 Monte Carlo runs, where the target
track is kept constant, but new observations are generated in
each trial. The target track is visualized in Fig. 1. The total
time to run DPF-SBC per time slot is computed as stated in
(18), and the time to take the measurement is disregarded.

B. Simulation Results and Discussion

We first show some indicative performance results for r =
20 m, for varying number of iterations I ∈ {0, 8, 128} in
Fig. 1. We see that the CPF closely follows the true track, and
that DPF-SBC is able to achieve good performance for I ≥ 8.
When only max-consensus is performed (i.e., I = 0), large
tracking errors are visible.

Fig. 2 shows the number of micro-slots required to perform
one iteration in SBC, as a function of r. Both the outcome from
the optimization (12) as well as the lower bound dmax(r) + 1

10−2 10−1 100 101

102

103

r=20
r=40
r=46
r=84
r=114

erel

T
D
P
F

[m
s]

Fig. 3. The delay time in milliseconds plotted against the error for 5 different
communication ranges represented by the 5 curves, when performing exact
consensus by max-consensus. As we increase I the error decreases, but the
delay time increases.

10−2 10−1 100 101

102

103

r=20
r=40
r=46
r=84
r=114

erel

T
D
P
F

[m
s]

Fig. 4. The same simulations as in Fig. 3, but where min-consensus is run
instead of max-consensus to achieve exact consensus on the weights.

are shown. We see that the number of slots varies from 5 to
25 and that the lower bound is tight.

Fig. 3 shows the total time TDPF for different r, and a
varying number of iterations, as a function of the achieved
erel when running max-consensus in the final stage of the
algorithm. When I = 0, erel is independent of r but the
delay TDPF increases when r is reduced, as a reduction in
r results in a larger graph diameter. For a fixed r, increasing
I decreases the error exponentially. However, for a fixed I ,
increasing r does not always impact the error greatly. For
example, increasing r from 40 m to 46 m barely changes the
error but results in significant additional scheduling delays.
For this particular network, setting r = 46 m gives the

worst performance/delay trade-off. Selecting a communication
range that covers the whole network gives the best perfor-
mance/delay trade-off. An interesting thing to note is the
slow increase of the delay for small r. This highlights the
dominating effect of the max-consensus in the delay, when
the number of SBC iterations is small. The max-consensus
delay affects the smaller communication ranges to a much
larger extent due to the slower convergence of the max-
consensus in those networks, which is proportional to the
communication diameter of the network. This is an important
practical consideration.

Finally, in Fig. 4, we show the performance/delay trade-
off when running min-consensus to achieve exact consensus
on the weights. We observe that min-consensus gives a gain
in performance over max-consensus. The difference in per-
formance is due to min-consensus being more similar to the
operation of multiplication of the weights than max-consensus.
Hence, min-consensus approximates the CPF better, which
leads to a smaller error for the considered scenario.

VI. CONCLUSIONS

We have studied the impact of TDMA scheduling delays in
distributed target tracking. Our focus was on the DPF-SBC,
which is known to benefit from highly connected networks,
but may suffer large scheduling delays, due to increased
interference. We found that for small regular networks, limited
communication ranges are not recommended, despite fast
schedules: they lead to slow convergence of the SBC, and also
require a relatively long delays for max-consensus. The best
performance/delay trade-off is achieved when the communica-
tion range is set to cover the whole network when the network
is small. For practical systems, where only few nodes will
be involved in DPF-SBC, our findings allow for very simple
scheduling, as only one sensor at the time can be allowed to
broadcast. For very large networks, highly irregular networks,
or networks with limited sensing range, this conclusion may
no longer hold, and warrants further investigation.

ACKNOWLEDGMENT

This research was supported in part, by the European
Research Council, under Grant No. 258418 (COOPNET),
the Swedish Research Council, under Grant No. 2010-5889,
the Swedish Foundation for Strategic Research (SSF), and
ELLIIT.

REFERENCES

[1] O. Hlinka, F. Hlawatsch, and P. Djuric, “Distributed particle filtering in
agent networks: A survey, classification, and comparison,” IEEE Signal
Processing Magazine, vol. 30, no. 1, pp. 61–81, 2013.

[2] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and
performance,” in IEEE Conference on Decision and Control, pp. 7036–
7042, 2009.

[3] S. Farahmand, S. Roumeliotis, and G. Giannakis, “Set-membership
constrained particle filter: Distributed adaptation for sensor networks,”
IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4122–4138,
2011.

[4] F. Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous
distributed sensor self-localization and target tracking using belief propa-
gation and likelihood consensus,” arXiv preprint arXiv:1211.6988, 2012.

[5] D. Gu, “Distributed em algorithm for gaussian mixtures in sensor
networks,” IEEE Transactions on Neural Networks, vol. 19, no. 7,
pp. 1154–1166, 2008.

[6] A. Mohammadi and A. Asif, “Consensus-based distributed unscented
particle filter,” in IEEE Statistical Signal Processing Workshop (SSP),
pp. 237–240, 2011.

[7] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. Shamma, “Belief consen-
sus and distributed hypothesis testing in sensor networks,” Networked
Embedded Sensing and Control, pp. 169–182, 2006.

[8] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and M. Rupp, “Dis-
tributed gaussian particle filtering using likelihood consensus,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3756–3759, 2011.

[9] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” Automat-
ica, vol. 43, no. 7, pp. 1192–1203, 2007.

[10] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[11] T. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
with dithered quantization,” IEEE Transactions on Signal Processing,
vol. 56, no. 10, pp. 4905–4918, 2008.

[12] V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection in sensor
networks with packet losses and finite capacity links,” Signal Processing,
IEEE Transactions on, vol. 54, no. 11, pp. 4118–4132, 2006.

[13] S. Vanka, M. Haenggi, and V. Gupta, “Convergence speed of the con-
sensus algorithm with interference and sparse long-range connectivity,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4,
pp. 855–865, 2011.

[14] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Discrete Mathematics, vol. 86, no. 1-3, pp. 165–177, 1990.

[15] M.S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, 2002.

[16] P. Värbrand, D. Yuan, and P. Björklund, “Resource optimization of
spatial tdma in ad hoc radio networks: A column generation approach,”
INFOCOM, 2003.

[17] CVX Research, Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0 beta,” Sept. 2012.

[18] The MOSEK optimization software, http://www.mosek.com/.
[19] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in

networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

	försättsblad IEEE2013
	175802

