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Abstract—The main task of most deployed wireless sensor
networks is data collection. While a number of solutions have
been designed for static networks, there are currently no widely
used data collection algorithms for mobile sensor networks. In
this paper, we concentrate on scenarios where many nodes,
both data sources and sinks, move along a certain track in one
direction, a scenario that is common in sports events. Rather than
designing a new protocol from scratch, we extend an existing
data collection protocol with lightweight mechanisms to make
it efficient for mobility. Our extensive simulations and results
in a testbed that includes mobile robots demonstrate that our
solution is able to achieve high packet delivery rates at low
energy consumption. For our target scenario, our solution more
than doubles packet delivery rates when the network is sparse.
Our solution also works well in scenarios with a higher degree
of mobility where nodes move according to a more demanding
random waypoint model.

I. INTRODUCTION

Most of the existing sensor network applications and pro-

tocols are designed to collect data from a number of sensors

distributed around a certain area. These sensor networks are

often static in the sense that nodes do not move. There are

also networks that incorporate some mobile nodes. In many

cases, there is one mobile node that acts as a base station and

travels closer to the data sources in order to save energy [1].

There are also scenarios where nodes are attached to mobile

objects, in many cases animals, for examples zebras [2] or

rats [3]. These networks often use delay-tolerant networking

approaches since there is no need for real-time data and since

the network is usually sparse and encounters are rare events.

In this paper we target another scenario namely data col-

lection for sensor networks where all nodes are mobile, both

data sources and sinks. In particular, we are interested in events

where all nodes move along one track in the same direction.

While there are many sports events with such movement

patterns one could also imagine a big hiking, nordic walking

or a roller blading event [4]. Even though many people

participating in such events carry mobile phones, for a third

party service provider that wants to offer services based on real

time data collected at the event, it is much cheaper and more

practical to equip the majority of the participants with cheap

sensor nodes rather than mobile phones and give a subset of

the nodes Internet access via e.g. GSM. This way, we have

a scenario where many mobile nodes including some base

stations move along the track in the same direction. In this

paper, we target reliable and energy-efficient data collection

in such networks.

Since in our scenario the degree of mobility [5] is quite

low, we opt for modifying a data collection protocol for static

sensor networks rather than designing a protocol from scratch.

Towards this end, we modify the Contiki Collect protocol [6],

a protocol similar to the Collection Tree Protocol (CTP) [7]

for Tiny OS, to make it more suitable for mobile scenarios.

We enhance Contiki Collect with mechanisms to detect and

repair loops since these occur more often in mobile than in

static scenarios. Furthermore, we also enable nodes to more

quickly find new parents as in mobile scenarios nodes often

move out of range. Moreover, we provide an implementation

for the Contiki operating system [8].

We perform experiments both in simulation and experiments

on real hardware on a sensor node testbed that includes

mobile robots. In the experiment we use two different MAC

layers: Contiki’s default MAC layer ContikiMAC [9] and an

implementation of A-MAC [10] for Contiki. Our results show

that the resulting protocol that we call Mobile Collect has low

overhead and is able to achieve a high packet delivery rate at

low cost in the target scenario where all nodes move along a

track in the same direction. When the network is sparse, the

packet delivery rate more than doubles with Mobile Collect

compared to the Contiki Collect protocol. We also perform ex-

periments using a more demanding random waypoint mobility

model with a higher degree of mobility [5]. Our experiments

show that Mobile Collect performs very well in such a scenario

when it is run on top of A-MAC: Mobile Collect is able to

sustain a high delivery rate of around 70% at a low energy

consumption of 10 mJ per received packet even in scenarios

where nodes move quite fast with speeds between 2 and 8

m/s.

The main contributions of this paper are:

• We design and implement Mobile Collect, a data collec-

tion protocol for scenarios where both sinks and sources

move along a track.

• We evaluate Mobile Collect both in simulation and on real

hardware in a testbed that includes mobile robots demon-

strating that Mobile Collect achieves a high delivery rate

at a low energy cost per received packet.

• Our results also show that even in scenarios with a higher

degree of mobility such as a random waypoint model,

data collection is possible without using a MAC layer



that is designed for mobile sensor networks. Instead, the

lightweight mechanisms we use to enhance an existing

data collection protocol for static networks are sufficient

to achieve good performance in many scenarios.

The paper proceeds by discussing related work in the next

section. Section III explains our major design choices. We

present simulation results in Section IV and results in a testbed

with real hardware in Section V before we conclude the paper.

II. RELATED WORK

We divide the related work in three main areas: approaches

that are based on delay-tolerant networking (DTN) and ap-

proaches that consider mobility of the data sink as well as

MAC layers designed for mobility.

A. Delay-tolerant networking approaches

Mo and Fall early suggested to use delay-tolerant ap-

proaches in wireless sensor networks [11]. Many applications

have been developed following this approach, in particular

in the area of wildlife monitoring. ZebraNet is one of these

wild life monitoring applications where the sensor nodes are

attached to zebras [2]. The data is distributed among the

zebras’ nodes until a mobile sink node (usually attached to a

vehicle) comes in the vicinity of the zebras to collect their data

for off-line data analysis. Also Ratpack uses a similar delay-

tolerant networking approach for data collection [3]. Similar

to our approach, in these applications all nodes are mobile. In

contrast to our approach that opts for low delay, they collect

the data for off-line analysis.

Similar to delay-tolerant networking are the concepts of data

muling and opportunistic networking. A number of researchers

have employed these concepts to collect data with mobile

muling entities [12], [13], [14].In these approaches some of

the sensor nodes are not mobile but the forwarding nodes are.

In our approach, also the sensor nodes are mobile and we aim

towards data collection with low delays.

B. Mobile sinks

There are a number of protocols that consider sink mobility.

Probably the most well-known protocol is the Whirlpool

Routing Protocol (WARP) [15]. WARP is an extension of

CTP. When a sink moves the existing distance vector tree

searches an old location to find a possible neighbor node with

connection to the sink node. Then it quickly switches to this

neighbor which has a path to the sink node. Another class of

sink mobility works are those that consider mobile sinks as

data collectors and where the research challenge is to compute

optimal paths for the sink through the sensor network to mini-

mize the energy consumption of the network as a whole. While

most of the approaches have been evaluated in simulation

only, Mudigonda et al. have experimentally compared several

approaches [1]. In contrast to these approaches, we consider

scenarios where not only the sink but all nodes are mobile.

C. MAC Layers for Mobility

There are quite a few MAC layers specifically designed for

mobile scenarios. These include MMAC [16], MS-MAC [17]

and AM-MAC [18]. All of these MAC protocols are evaluated

by simulation only whereas we also provide implementations

on real hardware. Furthermore, our results also indicate that

in many scenarios a dedicated MAC layer for mobility is not

necessary. Note that for example, the simulations in MMAC

were performed with an average speed of 0.1 m/s [16] whereas

in our experiments nodes move much faster.

III. DESIGNING MOBILE COLLECT

Mobile Collect introduces adaptive routing mechanisms to

extend collection tree protocols to the mobile domain. Our

target scenario (see Section I), has a number of key properties:

(1) Nodes are rarely disconnected if the network is dense

enough. Hence, while the topology itself changes frequently, a

node commonly has a couple of other nodes in communication

range. (2) Nodes stay in range over time periods of tens of

seconds to minutes. In our evaluation we show that these two

observations enable us to achieve high reliability and energy

efficiency without the need to develop a new protocol or

integrate mechanisms from Delay Tolerant Networking (DTN).

We base our work on Contiki Collect, a data collection

protocol for the Contiki OS similar to the Collection Tree

Protocol (CTP) [7]. As CTP, Contiki Collect uses ETX as

a route selection metric. In contrast to CTP that uses the

4-bit link estimator to estimate the ETX, Contiki Collect

uses explicit unicast probe messages which simplifies the

discovery and utilization of new paths [6]. Hence, we assume

that Contiki Collect is more efficient than CTP in dynamic

topologies even though none of the protocols is primarily

designed for mobile scenarios.

In this section we first identify the key challenges in

mobile scenarios that reduce protocol performance. Next, we

introduce our adaptive extensions.

A. Challenges in Mobile Scenarios

Based on experimental traces from both simulation and

deployments, we identified the following key challenges in

mobile settings.

1) Timeout Handling: After sending a packet, Contiki

Collects waits for a predefined time (retransmission timeout)

to receive an acknowledgment. If this timeout triggers, it

retransmits the packet for a predefined number of tries. The

protocol associates the packet loss with decreased link quality.

Hence, on a timeout it increases the routing metric (ETX) to

punish the timed-out route. However, in mobile settings, the

majority of packet losses do not come from decreased link

quality, but from nodes moving out of range. Hence, instead

of retransmitting packets for a number of times, we argue that

a timeout should trigger a node switching to a new route.

2) Routing Loops: Contiki Collect makes use of the same

approach as CTP to detect loops: Packets should only traverse

the routing tree along a decreasing routing gradient. Hence,

a forwarder shall have a lower routing metric than previous



nodes. If a forwarder receives a packet from a child node that

has a lower routing metric than itself, the forwarding node

will send a notification to the child node. The child node then

either updates its routing metric or selects another parent. In

our experiments we noted that this technique is not sufficiently

agile for mobile scenarios.

B. Introducing Mobile Collect

After identifying the key challenges for Contiki Collect, we

introduce our extensions to ensure high reliability and energy

efficiency in mobile settings: (1) Parent switch on timeout and

(2) avoiding routing loops.

1) Parent Switch on Timeout: In mobile scenarios, we

assume that a timeout indicates that the target node has disap-

peared from the communication range of the sending node.

Thus, instead of punishing the timed-out route by slightly

increasing its routing metric ETX, we increase the ETX to

the maximum value which enforces a parent switch. Next,

the source node applied two strategies to repair the routing

topology:

• Local Repair: If the node has other potential parents in

its routing table, it will try to connect to one offering

the best routing progress and broadcast its new routing

metric to its child nodes (see Figure 1a). Child nodes may

reconnect to other parents, if these offer better routing

progress when compared to the new routing metric of

the current parent.

• Global Repair: If the local repair fails, the node will

by setting its routing metric to the maximum value,

signal its child nodes that it is not available anymore for

forwarding (see Figure 1b). Based on their routing table

entries (or after discovering new neighbors) nodes will

connect to new parents and repair the routing topology

(see Figure 1c).

Overall, these techniques are also applied in both CTP and

default Contiki Collect. However, Mobile Collect employs

it significantly more aggressive as it switches parents after

a single timeout. While this agility allows Mobile Collect

to cope with high degrees of topology dynamics, it also

introduces an increased risk of loops, which we discuss next.

2) Avoiding Routing Loops: The dynamic topology caused

by the mobility of nodes in our application scenarios and the

agile parent change in Mobile Collect, increase the risk of

routing loops (see example in Figure 2). In this section we

discuss our extensions to avoid loops. If a packet is trapped in

a routing loop, it repeatably traverses it until its time to live

(TTL) expires and it is dropped. Hence, routing loops strongly

decrease reliability while increasing network load and energy

consumption.

Mobile Collect extends Contiki Collect by enabling a node

to track the parents of all its neighbors. Thus, nodes in

Mobile Collect announce the IDs of their parents in their

routing beacons. This allows us to implement two mechanisms

to prevent loops: (1) sibling suppressions and (2) triangle

suppression.
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Fig. 2: Loop Example: an update message of the routing metric

is not received by all neighbors (white arrow marks packet

loss, numbers next to a node indicates its routing table entries).

As Node 3 looses its connection to the sink, it signals to its

sibling to disconnect. As node 5 did not receive this update, it

still announces that it can provide a route to the sink. Hence,

node 4 connects to it and consequently node 3 connects to

4. Mobile Collect prevents these loops. Note that, a parent

change triggers a node to broadcast its new routing metric.

• Sibling Suppression: Upon loosing its parent, a node

also disconnects from all other nodes that share this

parent. Thus, it blocks connecting to these until they have

updated their routing metric after finding a new parent.

Employing this to the example depicted in Figure 2,

sibling suppression would prevent node 4 from choosing

node 5 as new parent, as both had node 3 as parent.

• Triangle Suppression: Additionally, we employ tradi-

tional triangle suppression to avoid routing triangles.

Knowing the parents of all its neighbors, a node avoids

closing a routing triangle. Hence, it protects node 3 from

choosing node 4 as parent. This approach is similar

to loop handling strategies used by traditional distance

vector routing protocols such as RIP [19].

Although it is desirable to prevent a loop creation rather

than detecting and repairing it, sometimes loop repairing is

inevitable. To repair a loop, we adhere to the mechanism used

in Contiki Collect: A forwarding node should always have

a lower routing metric than its predecessor. Otherwise, this

indicates a loop in the routing topology. In case a routing

loop is detected, a forwarding node sends a notification packet

to its predecessor to notify it about the forwarders routing

metric. However, this approach is not agile enough in mobile

scenarios. To avoid persistent loops, Mobile Collect extends

this by setting the routing metric of the forwarder to infinity,

forcing the predecessor to find a new parent.

Motivated by our initial analysis of shortcomings in Contiki

Collect in mobile settings, we show that by merely extending

two mechanisms in Contiki Collect we integrate mobility

(see Figure 3). First, agile parent switching allows us to

quickly adapt to topology changes. Second, our mechanisms

for loop avoidance ensure that our dynamic topologies remain

loop-free. Next, we show in our evaluation that these two

lightweight extensions enable reliable data collection in mobile

settings at low energy consumption.
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(c) Nodes reconnect after discovering new neigh-
bors.

Fig. 1: Basic mobility mechanism in Mobile Collect: Parent switch triggered by packet loss. Please note, when a node in

Contiki Collect has no parent, it engages in frequent beaconing to detect new neighbors. Also, in Mobile Collect a parent

change triggers a node to broadcast its new routing metric.
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Fig. 3: System diagram of Mobile Collect for sending a packet:

To enable reliable communication in mobile settings, we make

only a small number of extensions to Contiki Collect, these

are marked in gray.

IV. SIMULATIONS

In this section we present simulation results that demon-

strate the efficiency of Mobile Collect.

A. Simulation Setup

For our simulations we use the Contiki simulator COOJA

that simulates networks of Contiki nodes [20]. COOJA exe-

cutes deployable Contiki code, i.e., we run an implementation

of Mobile Collect that is also executable on real hardware.

We use BonnMotion [21] to generate the mobility scenarios

for our experiments. If not mentioned otherwise, we simulate

50 nodes out of which three are sink nodes. We simulate

with two different nodes speeds: A slower speed with node

speeds between 2 and 8 m/s and a faster one with node

speeds between 5 and 15 m/s which corresponds to speeds

ranging from quick walking to fast roller blading. When not

noted otherwise, Mobile Contiki uses ContikiMAC as the

MAC layer, as it is the default MAC layer in Contiki. Contiki

Collect always uses ContikiMAC since it is optimized for

ContikiMAC.

Additionally, we ported A-MAC to Contiki and use it as

MAC layer in Mobile Collect, as it promises an increased

performance in dense networks [10]. To integrate Mobile
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Fig. 4: In a static scenario Mobile Collect performs similar to

Contiki Collect which indicates low overhead.

Collect into A-MAC, we extended the probes of A-MAC by

one field: We announce the routing metric of a node in is

MAC-layer probes. As a result, we reduce the overhead of

beacons and metric updates, that are now part of the frequently

sent beacons.

B. Performance in Static Scenarios

In this experiment, we compare the efficiency of Mobile

Collect to Contiki Collect in a static scenario where nodes do

not move. The goal with this experiment is to evaluate the

overhead of Mobile Collect. The simulation scenario consists

of 100 nodes one of which is the sink node. We run three

rounds of simulations. Each run lasts about one simulated hour

during which nodes send around 5000 packets.

We depict the results in Figure 4. The results show that

Mobile Collect has roughly similar performance as Contiki

Collect. The energy consumption per packet of Mobile Collect

is slightly higher than Contiki Collect’s. This is expected

since Mobile Collect interprets packet loss and the subsequent

timeout as a loss of route and generates unnecessary beacon

packets which increases power consumption. As the topology

in this experiment is quite dense this happens frequently in

our scenario. In summary, the results show that the overhead

of Mobile Collect is low.

C. Performance under the Highway Mobility Model

In the experiment in this section we investigate the per-

formance of Mobile Collect for our target scenario, i.e.,

nodes moving together along a certain track but with different

speeds as in the Roller Blading scenario [4]. For the mobility
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Fig. 6: The delays with Mobile Collect are small.

generation, we extended BonnMotion with a unidirectional

highway model [22]. For our experiments we set the number

of lanes in the highway model to five.

The scenario includes 50 nodes with three of them being

sink nodes. We use ContikiMAC as the MAC protocol. In

the simulations we vary the transmission range of the nodes.

Based on the transmission range and output of BonnMotion

we calculate the density as the average node degree.

Figure 5 shows our results. The figure shows improved

performance for Mobile Collect compared to Contiki Collect.

The largest improvements are for low densities. For a node

degree of 1.7, the packet reception rate of Mobile Collect

is three times higher than that of Contiki Collect. Figure 5b

shows that also the energy consumption of Mobile Collect

per received packet is three times lower at this density. At

higher densities the difference between Mobile and Contiki

Collect decreases since high densities resemble static scenarios

in particular for the lower node speed. As expected, both data

collection protocols perform better at lower node speed. We

also perform experiments with A-MAC. As the results are

similar to the ones presented here we do not show them.

In contrast to approaches based on delay-tolerant network-

ing, our scenarios require data collection with short delays.

Figure 6 shows that most of the delays are lower than 400

ms. As expected, the delays are lower when the sensor nodes

move slower since more routes are lost when nodes move

faster and lost routes obviously increase the delay. Not shown

in the figure is the maximum delay of all packets that is less

than 3 seconds when the average speed of nodes is between 2

and 8 m/s and around 8.2 seconds for nodes that move with

an average speed between 5 and 15 m/s.

In summary, the results show that our design decisions

discussed in Section III improve the performance of Mobile

Collect in the target scenario and is able to provide data

collection with short delays.

D. Performance under the Random Waypoint Model

Although our main target scenarios are those where sensor

nodes move along a certain track in the same direction

(which corresponds to the unidirectional highway model), in

this experiment we also evaluate the performance of Mobile

Collect under random movement. Random movement is much

more challenging for data collection than moving along a track

and hence we want to explore the limitations of our approach.

In this experiment we use a random waypoint model [23]

with a pause time of zero as a mobility model and each node

chooses its random speed from a [2,8] m/s interval. As we

expect that in these scenarios the MAC layer has an impact on

performance, we evaluate Mobile Collect both on ContikiMAC

and A-MAC in this experiment.

The results in Figure 7 show that Contiki Collect’s packet

delivery rate increases as the density increases, similar to

what happens in the highway scenario, see Figure 5. Contiki

Collect’s packet reception rate is, however, always under 30%

even when the node density is high. These results show that

Contiki Collect cannot cope with the high degree of mobility

in this scenario.

The figure also reveals a behaviour that depends very much

on the MAC layer. The packet delivery rates of Mobile Collect

on both A-MAC and ContikiMAC show similar trends. They

increase steadily up to a node degree of around 3-4. Then

they decrease up to a node degree of about 7 to 8 where

Mobile Collect’s reliability increases on top of A-MAC but

plains out on top of ContikiMAC. At very low densities, the

network is very sparse but has a very low diameter, i.e., most

of the packets that are delivered are delivered in one hop as

our log files reveal. The average number of hops a packet

travels before it reaches the sink increases from around one to

3.5 as the density increases to 14. More hops have a negative

impact on reliability but this is partly compensated by the

higher density which makes it easier for a child to find parents

for the next hop.

The behaviour in Figure 8a explains why the packet delivery

rate for Mobile Collect on top of A-MAC increases for

higher node degrees. This figure shows that at high densities

the number of duplicate packets decreases with A-MAC.

There are two main causes for duplicate packets. First, an

acknowledgement for a packet is not received even though

the receiver has sent it. Second, a sender receives the same

packet again that it previously sent. In that case, the sender

drops the packet. The major reason for seeing more duplicate

packets with ContikiMAC is that the time it takes to finish a

packet exchange from the receiver’s probe to the reception

of the acknowledgement at the sender is much shorter for

A-MAC that uses hardware acknowledgements compared to

ContikiMAC that employs a CCA check before sending the

acknowledgement. Since ContikiMAC needs more time to

complete this data exchange, the receiver and sender have

often moved out of range which is the major reason for the

higher number of duplicate packets.

Another effect that comes into play is the number of lost

routes. The number of lost routes decreases when the density

increases for Mobile Collect (see Figure 8b). This explains

that the negative trend in reliability between densities of 4

to 8 does not continue when the density increases. Note that

even though A-MAC can much quicker connect to parents than

ContikiMAC, the absolute number of lost routes is higher for

A-MAC since the overall number of routes is much higher.

In Figure 7b we depict the energy consumption per packet

for the different protocols. The base cost of probing, i.e.,



0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Density (Average Node Degree)

R
e
li
a
b

il
it

y
 (

P
a
c
k
e
t 

D
e
li
v
e
ry

 R
a
te

)
With ContikiMAC

 

 

Mobile Collect: Speed=[2,8] (m/s)

Mobile Collect: Speed=[5,15] (m/s)

Contiki Collect: Speed=[2,8] (m/s)

Contiki Collect: Speed=[5,15] (m/s)

(a) Reliability

0 5 10 15

5

10

15

20

25

30

35

40

45

50

Density (Average Node Degree)E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 P

e
r 

S
u

c
c
e
s
s
fu

l 
P

a
c
k
e
t 

R
e
c
e
p

ti
o

n
 (

m
J
 /
 P

a
c
k
e
t)

With ContikiMAC

 

 

Mobile Collect: Speed=[2,8] (m/s)

Mobile Collect: Speed=[5,15] (m/s)

Contiki Collect: Speed=[2,8] (m/s)

Contiki Collect: Speed=[5,15] (m/s)

(b) Energy per packet
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Mobile Collect improves reliability and decreases energy consumption per received packet.
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Fig. 7: Reliability and energy performance of Mobile and Contiki Collect under the random waypoint mobility model. Mobile

Collect on top of A-MAC performs very well.

probing when there is no traffic, used in receiver-initiated

MAC protocols such as A-MAC is known to be higher than

the cost of short wake-ups performed by sender-initiated MAC

protocols such as ContikiMAC [10]. This is also shown in

Figure 8c that depicts the radio traffic in the air. The figure

shows that the traffic in the air is much higher in very sparse

networks which translates to the higher energy consumption

in Figure 7b for node degrees up to three. At higher densities,

A-MAC needs less beaconing which makes the traffic in the

radio channel decrease. ContikiMAC on the other hand has

problems setting up a tree which makes it send more beacons.

The beacons are broadcasted which is expensive in sender-

initiated protocols. Therefore, Mobile Collect on top of A-

MAC is more energy-efficient than on ContikiMAC for higher

densities.

In our scenarios with a lot of traffic, the energy consumption

per packet decreases when the reliability increases as for a

similar energy consumption more packets can be received

by the sink. Therefore, the energy consumption per received

packet is higher for Contiki Collect than for Mobile Collect.

Note, however, that packet losses can also contribute to low

energy consumption if packets are dropped at an early stage

and do not need to be forwarded by other sensor nodes.

Therefore, the energy consumption is not completely inversely

proportional to the reliability.

E. Comparison against DYMO

In this section we compare the performance of Mobile

Collect against DYMO [24]. DYMO is a dynamic MANET

routing protocol similar to AODV. We note that our com-

parison is not entirely fair since MANET protocols target

slightly different application scenarios and require a two-way

handshake before data can be delivered. DYMO, however, is

one of the few protocols that are suitable for our scenario and

that has an implementation for sensor nodes available.

We use TYMO, an implementation of DYMO in TinyOS, as

base for this evaluation. TYMO also supports duty cycling at

the MAC layer. Unfortunately, our initial experiments showed

that even in static scenarios where nodes do not move the

packet loss rate of TYMO with duty cycling is as low as

50%. Therefore, we disabled duty cycling for TYMO. In this

experiment we simulate 50 nodes, one of them a sink node.

All nodes move according our highway mobility model as

presented above.
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Fig. 8: Microbenchmarks that explain the performance of Mobile Collect
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Fig. 9: Mobile Collect achieves higher packet delivery rates

than TYMO

Fig. 10: Robots carrying sensor nodes are used for experiments

in the testbed.

The results in Figure 9 show that Mobile Collect achieves

a packet delivery rate close to 100% while TYMO delivers

only around 60% of the packets even at the lower speed. At

the higher speed, TYMO’s delivery rate decreases to roughly

50%.

V. EXPERIMENTS IN MOBILE TESTBED

In order to demonstrate that our algorithms also work on real

hardware we perform experiments in a testbed that includes

mobile nodes.

A. Experimental Setup

We conduct experiments using Sensei-UU, a sensor network

testbed that supports repeatable experiments involving mobile

sensor nodes [25]. In Sensei-UU, stationary sensor nodes are

complemented by mobile sensor nodes that are carried by

robots (see Fig. 10). The robots use markers on the floor
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Fig. 11: Mobile Collect delivers more packet from the mobile

robot at the same energy cost as Contiki Collect.

for navigation and localization. The robots’ movements are

controlled via a mobility script provided by the experimenter.

We set up the testbed with Tmote Sky sensor nodes in a

corridor in the Ångström building of Uppsala university. Two

clusters of four stationary sensor nodes are deployed at each

end of the corridor. We set transmission power to −3 dBm,

so that nodes from different clusters cannot communicate.

Depending on the experiment scenario, one or two mobile

sensor nodes travel along a straight track of 32 m length.

At each end of the track the mobile sensor nodes are within

communication range of the closest cluster only.

B. Experiments with one Mobile Robot

In the first experiment one robot moves from one cluster to

the other cluster. This robot acts as a data source. The purpose

of this experiment is to show that with Mobile Collect we

can quickly adapt routes when moving out of and in range

of the static part of the network. The results in Figure 11

show that almost all packets sent by the robot arrive at one

of the sinks with Mobile Collect while with Contiki Collect

the number of lost packets is quite high. The overall energy

cost is similar as shown in Figure 11b. This figure shows

the overall network energy consumption per received packet,

i.e., the sum of all individual’s nodes energy consumption

divided by the overall number of received packets. Note that

the energy consumption per received packet is similar to the

energy consumption per received packet under the highway

mobility shown in Figure 5b which shows that our simulation

results are accurate.
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Fig. 12: Mobile Collect delivers more packet from the mobile

robots at only slightly higher energy cost than Contiki Collect.

Our logs also show that while the robot is in the first cluster,

all packets are received independent of the algorithm used. As

the robot moves towards the second cluster, Mobile Collect is

able to buffer packets and then quickly route packets to the

sink in the second cluster while Contiki Connect keeps its old

routes and increases the ETX rather than using new routes.

C. Experiments with two Mobile Robots

In the next experiment we use two mobile robots that move

from the first to the second cluster. Both robots are data

sources, not sinks. One robot moves two meters ahead of

the other one. Figure 12 demonstrates the results. Also in

this scenario, Mobile Collect is able to deliver much more

data from the robots than Contiki Collect even though the

energy consumption per received packet is slightly higher. As

expected, when the leading robot comes close to second cluster

it updates its routes and delivers packets to the new sink. Very

soon also the second robot routes packets to the sink via the

first robot. As the send buffer of the first robot is almost full

this leads to a few packet drops and hence lower reliability

for Mobile Collect as in the previous experiment.

VI. CONCLUSIONS

In this paper we have demonstrated that a few lightweight

extensions to a standard collection protocol makes the protocol

suitable also for scenarios where all nodes, both sink and

sources, are mobile. We have evaluated our mechanisms

both through simulation and experiments on real hardware

and demonstrated high packet delivery rates at low energy

consumption.
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