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Abstract

This thesis presents an investigation of near-accident behavior of truck drivers,
with and without support from an electronic stability control (ESC) system.
A critical scenario, involving both collision avoidance and vehicle stabiliza-
tion on a low-friction surface, was studied in a driving simulator. The sim-
ulator experiment included a novel experimental paradigm, in which several
measurements of critical maneuvering were generated per test subject.

In this paradigm, ESC was found to provide statistically significant re-
ductions of skidding and control loss, and the drivers were found to employ
similar strategies for steering control as when they experienced the same sce-
nario unexpectedly. These findings imply that the system should provide
stability improvements also in unexpected maneuvering, something that has
not been previously demonstrated for heavy truck ESC.

A review of existing driver behavior models that can be used in simulation-
based testing of active safety systems (such as, for example, ESC) is also
presented. The review showed that, while a wide range of models has been
proposed, the generated behavior can sometimes be more similar between
models than what the model equations may suggest. Validation of models
on actual near-accident behavior of real drivers has so far been very limited.

Here, it is shown that an existing model of steering can reproduce the
stabilization steering behavior observed in the simulator study. It is also
demonstrated how this model can be mathematically linked to vehicle dy-
namics concepts, increasing its usefulness in applied contexts.

Keywords: Active safety, electronic stability control, heavy trucks, system
evaluation, driving simulators, driver behavior, driver models
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Chapter 1
Introduction and motivation

Any adult individual in modern society is well aware that road traffic occa-
sionally leads to accidents, causing economic costs, injuries and sometimes
even death. Most would agree that this is a serious problem, but exactly
how serious is it? One can take at least two perspectives when answering
this question, both highly relevant, but in a sense leading to different answers.

From a global or societal perspective, road safety is a major challenge.
In 2004, more than one million people died in vehicle crashes, making road
traffic accidents the ninth most common cause of death, worldwide, and the
predicted ranking for 2030 is a fifth place [99]. Counting both fatalities and
injuries, costs for crashes are estimated to amount to 1-3 % of countries’
gross domestic products [100].

However, from the perspective of the individual driver, accidents are very
rare, and many drivers never crash at all during their lifetime. In the U.S.,
a police-reported crash with person injury occurs only once every 3 million
kilometers of driving, and the same figure for Sweden is once every 5 million
kilometers [69]. Given such figures, one must admit that the average driver
is impressively proficient at avoiding crashes.

This can to some extent seem odd, since it is also well established that
when road traffic accidents do occur, human behavior almost always plays
an important role, in the form of for example inattention, excessive speed-
ing, or inadequate evasive maneuvering [50,87]. Furthermore, based on such
insights, recent accident prevention efforts by governments, industry, and
academia, have placed a major emphasis on active safety technologies.
These technologies provide warnings or control interventions with the aim
of improving driver behavior or mitigating the effects of inadequate driver
behavior, at the rare occurrences of a risk of for example vehicle instability,
collision, or road departure [6, 37,38].

1



2 Chapter 1. Introduction and motivation

As with any technology, active safety systems need evaluation, in order
to determine to what extent they fulfil their intended purpose of reducing
frequency or severity of crashes. System developers need to carry out forma-
tive evaluation [55], in order to be able to optimize a system before making
it available on the market, and governments, insurance agencies, and vehicle-
buyers need summative evaluations [55] of the end-product, to know what
it is worth, whether to subsidize it, or if it should perhaps even be made
mandatory by law.

The high-level, societal perspective on accidents clearly motivates the
efforts invested in active safety systems, but the low-level, driver perspective
highlights a possible difficulty in their evaluation. How does one evaluate a
system when its performance depends crucially on the interplay with human
behavior, in situations that, from a first-person perspective, practically never
occur?

The research work reported in this thesis aims, in general, to address
this challenge by studying behavior in near-accident situations, and creat-
ing mathematical models describing it. Such driver behavior models can,
for example, allow active safety evaluation based on computer simulation of
relevant crash scenarios [8, 82]. In order to maintain a manageable scope of
behaviors to study and model, this thesis focuses on evaluation of electronic
stability control (ESC) for heavy trucks, in one specific accident scenario.

The remainder of this chapter provides brief introductions to ESC sys-
tems, the general state of knowledge with regards to driver behavior in ac-
cident situations, and existing methods for evaluation of active safety. At
the end of the chapter, the main research questions and the general research
approach are introduced, and an outline is provided for the rest of the thesis.

1.1 Electronic stability control

In normal driving, a road vehicle travels roughly in the direction in which its
front wheels are pointing, with close to horizontal alignment (zero pitch and
roll angles). Any departures from this normal state are typically only tempo-
rary, thanks to stability properties of the vehicle, or corrective responses from
the driver. However, in some situations, deviations from the normal state
may increase in magnitude, either monotonously or in an oscillatory fashion,
and then vehicle instability can be said to have occurred [27]. Typical
examples include high speed driving in curves, leading to roll-over (roll in-
stability), or steering maneuvers beyond what is feasible given the available
friction between road and tires, causing skidding (yaw instability).

The ability of human drivers to prevent or counteract such instabilities
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A

Wheel brakes

applied by ESC

Figure 1.1: Schematic illustration of typical yaw stability control interventions
of the electronic stability control (ESC) system of a rigid truck, during a collision
avoidance maneuver on a low friction road surface. A and B are examples of
understeering, where the low friction causes the truck to turn less than intended by
the driver. In C, the built-up rotation of the truck insteads leads to oversteering.
In all three cases, ESC applies braking at individual wheels to achieve the intended
motion. (See e.g. [84].)

is limited by, at least, neuromuscular reaction times and movement speed
limitations [58], a lack of sensory input regarding the exact state of the
vehicle and its individual wheels, and rather blunt means of control (steering
wheel and pedals, mainly). ESC systems, on the other hand, are designed
not to have any of these limitations, and may include sub-systems both for
roll stability control (RSC) and yaw stability control (YSC).

An RSC system typically estimates the lateral acceleration of the vehi-
cle, and slows the vehicle down if a risk of roll-over is detected [70, 98]. A
typical YSC system works by comparing the current lateral movement or ro-
tation of the vehicle to what seems to be the intention of the driver, based on
current steering wheel input, and applies individual wheel brakes to achieve
the desired vehicle movement [84, 91]. Fig. 1.1 illustrates how YSC systems
may respond to understeering and oversteering of a rigid heavy truck
(as opposed to an articulated heavy truck, such as a tractor-semitrailer com-
bination) during collision avoidance and subsequent stabilization, which is
precisely the type of scenario studied in this thesis.

From 2014, an ESC system such as the one outlined above will be manda-
tory in all new heavy trucks in Europe [22]. Based on in-depth accident
studies, it has been estimated that 19 % of all heavy truck crashes in the
U.S. in 2001-2003 could have been prevented or mitigated by ESC [43].

1.2 Driver behavior and traffic accidents

How can one understand and describe behavior such as, for example, the
behavior exhibited by the truck driver in Fig. 1.1? On the conceptual level,
there is a wealth of theories and models that propose different ways of how
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Figure 1.2: Illustrations of key concepts of the conceptual framework of Ljung
Aust and Engström, in a hypothetical scenario where a driver perceives a drop
in road friction, and thus reduces vehicle speed to avoid experiencing feelings of
discomfort. After [56].

to best discuss driving, and sometimes also accidents [19, 65, 83, 90]. Here, a
conceptual framework proposed by Ljung Aust and Engström [56], with the
specific aim of supporting research in active safety, will be adopted.

In this framework, driving is viewed as adaptive behavior, the result
of a balance between motivation to fulfill high-level goals, such as reaching
the destination on time, and feelings of discomfort experienced in threat-
ening situations. The driver and vehicle can together be regarded as a joint
driver-vehicle system (JDVS) moving in the space of all possible states
of the driver, vehicle, and the environment (a DVE state space), and the
extent to which the JDVS can control the trajectory in this space is referred
to as situational control. The region(s) in DVE space in which the driver
does not experience any discomfort is called the comfort zone, and within
this zone the driver is content with good-enough, satisficing behavior. The
comfort zone is typically entirely contained within the safety zone, the re-
gion(s) of DVE state space outside which situational control is reduced to a
point where a crash is inevitable. Fig. 1.2 provides an illustration of these
ideas in an example scenario where a driver perceives a drop in road friction,
and adapts by reducing vehicle speed, to stay within the comfort zone and
keep a safety margin to the safety zone boundary.

In the framework of Ljung Aust and Engström, accidents are described, in
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general, as loss of situational control due to the driver failing to adapt prop-
erly to a current or changing DVE state. Furthermore, the main mechanisms
which may, alone or in combination, lead to such adaptation failures are sug-
gested to be (1) erroneous perception of the current safety zone boundary,
(2) overestimation of the ability of oneself or of the vehicle, (3) an incorrect
prediction of how a situation will develop over time, and (4) rapidly occur-
ring, unexpected events. Finally, the role of active safety systems is to help
the driver adapt to DVE state changes, in order to ensure that situational
control is maintained.

This type of general framework is needed to structure thinking and writ-
ing. However, if one wants a more detailed description of driver behavior, for
example to run computer simulations, there is a range of additional questions
that require very specific answers. What information on the current DVE
state do drivers perceive and use when controlling their trajectory in DVE
state space? How do they translate these sensory inputs to control actions,
and how can this be described mathematically? Another phenomenon that
cannot be neglected at this level is behavioral variability, i.e. variations
in behavior either between drivers, due to factors such as driving experi-
ence [12,20,46] or personality [85], or within a given driver depending on, for
example, factors such as fatigue [3] or effort [16,75].

There exists a wide range of detailed, simulation-ready models, providing
different answers to the questions listed above, and some of these models
also account to some degree for behavioral variability [31, 33, 74]. However,
these models typically address routine driving, leaving one potential source
of within-driver variability, highly relevant to this thesis, largely unexplored:
the shift from routine driving to more critical situations. In realistic or real
near-crash situations, drivers often exhibit a number of non-routine behav-
iors, such as unusually slow reactions, or no reactions at all, even to stimuli
that would seem to motivate immediate reactions [30, 52, 95]. Furthermore,
when reactions come, they may (in hindsight) seem improperly chosen, such
as braking and colliding when a steering maneuver could have avoided the
crash [2, 49], or may come in the form of overreactions [59, 98] or underreac-
tions not utilizing the full performance capabilities of the vehicle [2, 44, 49].
Some of the main candidates for factors explaining such behaviors include a
limited driver expectancy of the threatening situation, emotional arousal,
as in fear or panic, a high uncertainty of how other road users will behave, and
drivers having a very limited experience of severe maneuvering [7,14,30,49].

Does this mean that models of near-crash behavior ought to be fundamen-
tally different from non-emergency models? If yes, must evaluation of active
safety systems consider not only behavioral variability in general, but also
specficially factors such as expectancy, fear, uncertainty, and inexperience?
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1.3 Evaluation of active safety functions

Arguably, the only way of evaluating active safety that is completely valid,
from a driver behavior perspective, is to consider only naturalistic situa-
tions, as in real critical situations, in real traffic. The most straightforward
approach to doing so is to use accident statistics: After market introduction
of a safety system, one may simply wait for a sufficient number of accidents
to occur, and then investigate whether system-equipped vehicles are involved
in fewer or less severe crashes than other vehicles. In this way, passenger car
ESC has been reliably shown to prevent about 40 % of all crashes involving
loss of control [36].

A related approach, yielding more rich data sets, and thus allowing deeper
insights into system-related driver behavior, is to conduct field operational
tests (FOTs), in which logging equipment is installed in fleets of vehicles,
operated by normal drivers during extended periods of time [4,42]. One clear
limitation with this type of approach is the high cost. Furthermore, no FOTs
known to the author have targeted ESC. In addition, a necessary limitation
of any naturalistic evaluation approach is the requirement of having system
hardware and software at a maturity level that is sufficient for prolonged
use by end-users. In practice, this means that naturalistic evaluation will
typically be more summative than formative in character.

In order to perform formative evaluation, system developers often turn to
test tracks, where early prototypes can be subjected to controlled testing,
typically using experienced test drivers or driving robots. This is a frequent
approach to ESC evaluation, and a number of different predefined open-
loop steering wheel inputs1 or vehicle paths to follow have been proposed
for eliciting the types of vehicle instabilities targeted by ESC systems [43,54].
A main benefit of such evaluation is the relatively high repeatability, al-
lowing efficient comparison of the stability performance between alternative
versions of an ESC system, or between different ESC-equipped vehicles. Con-
sequently, this is also the approach used for type approval and safety rating
of on-market ESC [21,22,89].

However, it should be acknowledged that much realism in driver behavior
may have been sacrificed in order to reach this repeatability. It would seem
likely that steering robots executing predefined steering wheel movements,
or experienced test drivers following cone tracks, produce a much less varied
range of behaviors than normal drivers in near-crash situations. Furthermore,
it would presumably even remain to be proven that the specific range of
behaviors studied on the test track is at all represented in real traffic. This is

1The much used sine with dwell maneuver [47,89] is shown on the cover of this thesis.
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not to say that ESC systems evaluated on the test track do not provide real
benefits for traffic safety (as mentioned above, at least for passenger cars it is
clear that they do), but it could for example mean that a better performance
of ESC system A than ESC system B in a test track evaluation does not
guarantee that system A will provide the greater benefit in reality.

A kind of middle ground between naturalistic evaluation and test track
evaluation is offered by driving simulators. In driving simulation, a sample
from a population of normal drivers can be safely subjected to near-crash
scenarios that are, if not entirely unexpected and realistic, at least more so
than typical test track scenarios. A series of large simulator experiments
(up to two hundred subjects per experiment) on passenger car ESC have
been carried out at the U.S. National Advanced Driving Simulator (NADS)
[63, 72, 73, 94], showing significant reductions in loss of control crashes with
ESC.

To the author’s knowledge, there has been only one prior simulator study
on truck ESC [13]. This study failed to show a benefit of truck ESC, pos-
sibly because of a too small sample of ESC-relevant maneuvering. Indeed,
since considerable behavioral variability typically occurs in simulator-based
evaluation, any two measurements cannot readily be compared to each other
(such as they can, to a greater extent, on the test track), and large numbers of
measurements are therefore often needed in order to statistically confirm any
system effects. Consequently, cost is definitely also a concern in evaluation
with driving simulators, especially since driver expectancies for critical situ-
ations typically increase with exposure, making it difficult to validly record
near-crash behavior more than once per subject [17].

Possibly the most cost-efficient evaluation method of all, then, would be
to exclude the human drivers altogether, and replace them with mathemat-
ical models of human behavior. Using driver behavior models, relevant
scenarios can be simulated with even greater repeatability than on the test
track, as many times as wanted. This benefit of computer simulation as
an evaluation tool is well appreciated by ESC developers and researchers,
but so far the approach has generally been to simulate the same predefined
low-variability scenarios as on the test track, rather than realistic near-crash
scenarios [43, 64, 98, 101]. For other active safety systems, such as systems
warning or intervening in the case of lane departures or rear-end collisions,
there is a number of examples in the literature of simulation-based evaluation
aiming at reproducing realistic situations [8, 24, 29, 45]. However, the only
two ESC evaluations of this kind known to the author [15,66] were based on
driver models that in one case could only exhibit open-loop behavior [81],
and in neither case seem to have been validated on human behavior in critical
situations [53,81].
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1.4 Research questions and approach

As mentioned above, the general aim of the research work presented in this
thesis has been to create models that accurately describe behavior of drivers
in near-crash situations, in order to allow active safety evaluation based on
computer simulations.

The specific research questions addressed in this thesis are: (A) Does
heavy truck ESC provide a safety benefit to normal drivers in realistic near-
crash scenarios? (B) Is ESC more useful for some drivers than for others?
Both of these questions currently seem to be open, and the general approach
to attempt answering them has been to:

(i) Collect data on behavior of normal drivers in realistic near-crash situ-
ations.

(ii) Provide as complete answers as possible to the research questions, by
means of conventional statistical analysis of the obtained behavior data.

(iii) Develop mathematical models which can reproduce the observed driver
behavior.

(iv) Carry out computer simulations with these models, to make it possible
to answer the research questions in more detail.

1.5 Contributions and thesis structure

This thesis addresses (i) and (ii) above, data collection and statistical analy-
sis, in Chapters 2 and 3, respectively. The author had the main responsibility
for the design of the data collection experiment, the basis of both Paper I
and Paper II. The author also carried out the statistical analyses reported
in Paper I, and was responsible for most of the writing. The author collabo-
rated with Benderius in determining the analysis approach for Paper II, and
assisted in the writing.

Chapter 4 of the the thesis partially addresses step (iii), on driver model-
ing. This includes a summary of the literature review reported in Paper III,
which the author prepared and wrote in collaboration with the other authors.

An overall discussion is provided in Chapter 5, including outlooks on
the work done to fully address steps (iii) and (iv). This work remains to
be described in forthcoming publications. Final conclusions are provided in
Chapter 6.



Chapter 2
An empirical study of critical
maneuvering

As discussed in the introductory chapter, driving simulators can strike a rea-
sonable balance between scenario realism on the one hand, and measurement
repeatability on the other. Data for this research were collected in Driving
Simulator II, a moving-base simulator at VTI (Swedish National Road and
Transport Research Institute) in Linköping, into which Volvo Trucks’ on-
market ESC system had been integrated. Driving experience, known to have
considerable effects on driving behavior and safety [12, 20, 46], was adopted
as a controlled source of behavioral variability, and a total of 48 subjects
were recruited into one novice group, from a local truck driving school, and
one experienced group (4-43 years of professional driving), from local hauler
companies.

Full technical details on the study are available in Paper I. This chapter
provides a summary, but also aims to give additional insights into the process
leading up to the final study design, a process that required consideration
of several challenging questions: How does one get a professional driver into
a situation where he or she may lose control of the vehicle? How can the
amount of collected data be maximized within the budget limitations of the
experiment? Is it possible to design a scenario in which drivers repeatedly
engage in the same type of maneuvering as in an unexpected scenario?

2.1 Selecting a simulated scenario

The choice of a critical scenario was based on three main factors: (a) traffic
safety relevance, given available accident statistics, (b) the degree to which

9



10 Chapter 2. An empirical study of critical maneuvering

the scenario could be expected to lead drivers into the intended vehicle in-
stabilities, and (c) the expected usefulness of an increased understanding of
driver behavior in the scenario.

Roll instability is more common in heavy truck crashes than yaw insta-
bility [43,92]. In the U.S., 55 % of control loss crashes in 2001-2003 involved
roll-over, 31 % involved loss of yaw control, and the rest (14 %) involved
both [43]. The typical pre-crash scenario for roll-over accidents was curve
negotiation with excessive speed. For yaw control loss crashes, the same
study found the most common scenarios to be curve negotation (36 %), col-
lision avoidance maneuvers (22 %), and heavy braking (22 %).

However, the previous study on truck ESC by Dela et al. (including the
author of this thesis) had been unsuccessful at getting truck drivers into
roll instability, despite using a scenario with an unexpectedly narrowing
curve [13, 62]. Furthermore, it was judged that the room for variability in
driver behavior, a main subject of this thesis, would be smaller in a high-
curvature scenario, both at high friction (roll instability) and low friction
(understeering yaw instability), than in a low-friction scenario capable of
generating oversteering yaw instability. Therefore, a study of realistic driver
behavior in an oversteering scenario was considered more valuable, with a
greater potential of providing a clear step forward from existing test track
evaluation methods and driver models.

Dela et al. [13] investigated a number of relevant scenarios capable of in-
ducing oversteering. A couple of these were similar to scenarios used in the
NADS studies on passenger car ESC [63,72,94], featuring obscured and sud-
denly appearing vehicles intended to motivate vigorous evasive maneuvers.
However, preliminary tests by Dela et al. indicated that these scenarios did
not work as expected in the truck context, since the truck drivers exhib-
ited highly successful adaptive behavior: Already at the first encounter with
the scenarios, the drivers updated either lateral position or speed enough to
maintain sufficient safety margins to any appearing vehicles. Therefore, Dela
et al. adopted a scenario where no such anticipatory adaptation was possi-
ble: a moose suddenly crossing the road. A main limitation of this scenario
was that many drivers did not at all steer to avoid the moose, and according
to some of the truck drivers this reflected a strategy of preferring an animal
collision over heavy lateral maneuvering.

Based on these prior experiences, the final choice, here, fell on the sce-
nario depicted in Fig. 2.1. In this scenario, originally proposed by Engström
et al. [18], an overtaking higher-speed vehicle suddenly brakes for no appar-
ent reason, causing a risk of rear-end collision This scenario has two main
strengths: (a) It features another human road user rather than an animal,
presumably reducing truck driver willingness to accept collision as a viable



2.2. Maximizing the amount of collected data 11

Tb

Tcut

v1

v2 = Rxv1

vcut

db

1. 2.

3. 4.

Figure 2.1: Left: Illustration of the critical scenario studied in this thesis,
adopted from [18]. A higher-speed passenger car (1) overtakes the truck, and at
preset time headways first (2, 3) cuts into the truck’s lane, and then (4) starts
braking, for no apparent reason. Right: A still from the recorded video data,
showing the winter environment in which the simulated avoidance scenario took
place, and a driver engaged in steering avoidance.

option. (b) It plays on the truck driver having a (highly reasonable) expec-
tation for the higher-speed car to drive away into the distance, reducing the
probability of safety margin-increasing adaptations [17].

Here, the scenario took place on a winter highway, with two lanes in the
truck’s driving direction, thus leaving room for a steering collision avoidance
to the left of the braking lead vehicle. Just before the lead vehicle started
braking, road friction was changed, without any visual indication to the truck
driver, from µ = 0.8, emulating a dry road surface, to µ = 0.25, emulating a
wet or icy road surface.

2.2 Maximizing the amount of collected data

Simulator-based evaluations of active safety systems often begin as follows
[17,18,51,73]: (a) Let the subjects get accustomed to the simulator, by means
of a training drive. (b) Then, instruct subjects to drive as usual, and do not
mention anything that could heighten expectancy for critical situations. (c)
After a while, trigger an unexpected critical situation, in which half of the
subjects are supported by the active safety technology, and the other half are
not. Such a procedure was adopted also in this experiment.

As mentioned above in Chapter 1, going beyond such a minimal approach,
and subjecting drivers to more than one critical situation may, in general,
raise validity concerns. Furthermore, it was expected that if the specific
scenario adopted here were to be repeated more than once per driver, behav-
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ioral adaptation such as witnessed by Dela et al. would quickly render the
scenario non-critical. However, only collecting one measurement per subject
would have been problematic, since it was not possible to involve hundreds
of subjects (in order to increase chances of observing statistically significant
effects of ESC). Also, discerning potential driver-specific behavior styles on
the basis of a single measurement per driver seemed difficult, if not impossi-
ble. Therefore, two extensions were made to the study, to allow collection of
additional data.

The first extension was the development of an instruction-based paradigm
for repeated collision avoidance, more similar to a typical psychology ex-
periment than a typical active safety experiment. After the first, unexpected
occurrence of the critical scenario, drivers were informed of the slippery road
condition, and of the presence or absence of ESC in their truck. This infor-
mation was given to avoid unwanted behavioral variability, caused by drivers
possibly deducing the same information themselves, gradually and at an in-
dividual pace. Furthermore, drivers were told that they should now continue
driving as before, that cars would continue to overtake them and sometimes
brake in front of them, but that in a majority of cases, braking the truck
without steering would be sufficient to avoid the collision. In cases where
braking would be insufficient, the truck drivers were instructed to try to
avoid the collision by steering. In practice, this experimental situation was
achieved by interspersing repetitions of the critical scenario with a catch
trial scenario, in which the lead vehicle only decelerated for a limited time
(down to a speed v3), and then instead applied a large forward acceleration.

This paradigm acknowledges the fact that repetition of near-crash events
will have effects on driver behavior. What it attempts to achieve is a situ-
ation where all drivers quickly reach the same expectancies, where multiple
measurements of behavior in the scenario can be made per driver, and where
at least the steering behavior can potentially be comparable between un-
expected and repeated scenarios. The top half of Fig. 2.2 illustrates the
full experimental sequence, allowing recording of one unexpected and twelve
repeated instances of collision avoidance for each driver.

The second extension, illustrated in the bottom half of Fig. 2.2, was the
inclusion of the adopted critical scenario at the very end of another, otherwise
unrelated, simulator experiment. The main part of this other experiment
had subjects drive in a summer environment, evaluating a lane keeping
assistance (LKA) function, providing warnings or steering wheel torque
interventions in the case of lane departures. After completion of this part
of the experiment, the simulated truck was moved to the winter highway,
and after having received the same instructions and having driven the same
initial stretch of road, these subjects also experienced the critical scenario.
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Figure 2.2: An illustration of the simulator study’s experimental procedure.
Each block marked “repeated” consisted of a randomized sequence of four overtaking
vehicles, eight catch trial scenarios, and six critical scenarios.

2.3 Scenario tuning

In order to probe the usefulness of ESC, the aim of the unexpected scenario
was to get as many of the truck drivers as possible to apply vigorous steering
maneuvers (of the type illustrated in Fig. 1.1). In order to determine how
to tune the scenario for maximum probability of such steering, a pilot study
was carried out, in AB Volvo’s fixed base driving simulator in Göteborg.

Also in this pilot study, the critical scenario was appended to the end
of another experiment, with twenty-five subjects. Each subject experienced
one out of six different versions of the scenario, with a specific combination
of how far ahead the lead vehicle braked, and how hard it braked (Tb and
db, in Fig. 2.1).

The data thus obtained included too few measurements per scenario ver-
sion for a quantitative analysis, but a qualitative analysis suggested the fol-
lowing rough model of observed behavior: Drivers applied braking after a
reaction time of about 1.5 s (consistent with the brake reaction times, for
unexpected events, reported in [30]). Then, about another 1.5 s after brake
initiation, drivers applied steering to the left. In practice, this meant that
when the scenario was aggressively tuned (e.g. Tb = 1.25 s and db = 0.45 g),
the drivers often collided without having applied any steering. Conversely,
in the least critical scenario versions (e.g. Tb = 2.25 s and db = 0.35 g), the
drivers had ample margins for a controlled and stable lane change. Interme-
diate scenario parameterizations, however, elicited large steering maneuvers
from a number of drivers, and consequently one of these (Tb = 1.5 s and
db = 0.35 g) was adopted for the full experiment.

What remained, then, was to set parameters for the repeated and catch
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1.5 s 1.5 s

0.8 s

0.4 s

Figure 2.3: Simple driver-vehicle simulation to choose parameters for the re-
peated scenario, in order to recreate roughly the same steering avoidance situation
as in the unexpected scenario. Brake onset of the lead vehicle occurs at time zero,
and the solid vertical lines indicate the times where truck drivers are expected to
initiate steering avoidance, in the two scenarios.

trial scenarios, such that drivers would repeatedly engage in roughly the
same type of steering as hoped for from the unexpected scenario. To this
end, a simple driver-vehicle model of repeated scenario behavior was used,
in which the truck driver starts braking 0.8 s after lead vehicle brake onset
(as suggested for expected braking stimuli, in [30]). Then, when the lead
vehicle reaches v3 without beginning to accelerate again, thus revealing to
the driver that this is not a catch trial, steering is initiated with a reaction
time of 0.4 s (loosely based on [30]). Scenario parameters were then manually
tuned to have steering of this model occur at approximately the same truck
speed, headway distance, and time to collision (TTC) as predicted for
the unexpected scenario. As illustrated in Fig. 2.3, this led to the adoption
of a slightly higher lead vehicle deceleration (db = 0.45 g) for the repeated
scenario, and a specific value selected for v3 (45 km/h) for the catch trials.



Chapter 3
Statistical analysis of driver behavior

In total, the data collection experiment provided 48 measurements of the
unexpected collision avoidance scenario, from 48 different drivers and, from
24 of these drivers, an additional 287 measurements of the repeated scenario.
Fig. 3.1 shows the totality of recorded vehicle trajectories, providing a qual-
itative impression of a data set which is constrained in terms of the general
type of maneuver being observed, yet diverse in terms of the exact control
behavior of drivers. The figure also shows distributions of TTC at steer-
ing initiation in the two scenarios, indicating that the preparations outlined
in the previous chapter were rather successful: In both scenarios, the most
common point of steering initiation was at a TTC between two and three
seconds, precisely as predicted by the simple driver-vehicle model illustrated
in Fig. 2.3.

Conventional methods for statistical hypothesis testing (t-tests, χ2-tests,
ANOVAs, and non-parametric alternatives when required [23]) were applied
to the various collected data variables, to examine the effects of driving expe-
rience and ESC on scenario outcome, and to compare driver behavior between
the unexpected and repeated scenarios. The technical details are available
in Paper I (focusing on driving experience and ESC), and Paper II (focusing
on scenario comparison). This chapter provides an overview of the most im-
portant results, and is concluded with a brief discussion on the limitations
of this type of analysis.

3.1 Results for the unexpected scenario

It is clear from Fig. 3.1 that collision avoidance behavior in the unexpected
scenario exhibited considerable variability. Despite all 48 drivers facing ex-

15
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Figure 3.1: Visualization of the critical maneuvering data collected in the un-
expected (top panels) and repeated (bottom panels) scenarios. The panels on the
left show the recorded truck trajectories, and the panels on the right show the dis-
tributions of time left to collision with the lead vehicle, when truck driver steering
first exceeded 15◦. Longitudinal position zero corresponds to the point at which the
truck’s front reached the rear of the lead vehicle.
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Figure 3.2: Truck trajectories (top panels), steering wheel input (middle pan-
els, note the variations in scale), and brake pedal input (bottom panels), for three
drivers, exemplifying the three typical behaviors observed in the unexpected sce-
nario. The arrows along the trajectories show the forward direction of the truck,
and thus indicate skidding (non-zero body slip angle) when pointing away from the
trajectory’s tangent. Longitudinal position zero corresponds to the point at which
the truck’s front reached the rear of the lead vehicle.
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Figure 3.3: Statistically significant effects of driving experience on reaction times
and collisions in the unexpected scenario. Error bars show 95 % confidence inter-
vals.

actly the same initial situation, the variations in response were, as illustrated
in Fig. 3.2, large enough to recreate all three typical behaviors observed in
the six scenario variants of the pilot study: braking only and colliding, brak-
ing and applying early safe steering, and braking and applying late and more
aggressive steering. In total, nine drivers (19 %) applied ESC-relevant
maneuvering, defined as maneuvering that triggered ESC interventions, or
would have triggered interventions, had ESC been active in the truck.

Thus, the effective sample of ESC-relevant behavior in the unexpected
scenario was small, and possibly for this reason, no statistically significant
effects of ESC on scenario outcome were found. Instead, the main findings in
the unexpected scenario were those illustrated in Fig. 3.3, showing that the
variations in initial collision avoidance response could to a large extent be
attributed to differences in driving experience. As could be expected based
on previous literature [12,78], the experienced drivers exhibited faster brake
reactions, and here this difference was present also in the steering reaction
times. This, in turn, led to a notable (and statistically significant) difference
in collision frequency: 80 % of the novice drivers collided with the lead
vehicle, but only 32 % of the experienced drivers. In Paper I, it is proposed
that the faster steering reactions of experienced drivers could be attributed
to prior exposure, during normal driving, to rear-end conflicts where steering
was a suitable maneuver. Such exposure could increase the expectancy for
and experience of steering avoidance, and make this type of response a more
readily available option in the scenario studied here.

In total, eleven drivers (23 %) did not attempt evasive steering at all,
a phenomenon that is well documented from previous experiments and ac-
cident reconstructions [2, 49]. A relevant question is whether these drivers
would never apply steering in this type of situation. Here, a further analysis,
illustrated in Fig. 3.4 suggested that this may not be the case. It is known
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Figure 3.4: Least-squares fit of log-normal distributions to cumulative steering
reaction times, in the unexpected scenario. The shaded region shows the range of
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that reaction times are often lognormally distributed [88], but Fig. 3.4 shows
that not only the reaction times to steering, but also the fractions of the
drivers who attempted steering at all (70 % and 82 %, for novice and expe-
rienced drivers, respectively) could be well explained by the same lognormal
distributions. In other words, the collected data were compatible with the
hypothesis that the drivers who did not steer simply had reaction times that
were so long that the collision occurred before steering initiation.

3.2 Results for the repeated scenario

In the unexpected scenario there were thus clear effects of driving experi-
ence, but not of ESC. For the repeated scenario, the opposite occurred. As
shown in Fig. 3.1, the repeated scenario frequently had drivers initiate steer-
ing avoidance from a position close to the lead vehicle (time to collision
between two and three seconds), giving a 76 % frequency of ESC-relevant
maneuvering1, and under these circumstances ESC was found to reliably im-
prove truck stability. Fig. 3.5 illustrates the observed statistically significant
improvements, in terms of maximum body slip angle (i.e. skidding; see
Fig. 3.2 for an illustration) and frequency of full control loss (departure
beyond a road shoulder, or a truck heading perpendicular to the road or
worse). There were no indications that these ESC benefits were due to learn-
ing effects (see Paper I for details). Interestingly, when analyzing the two

1The totality of ESC-relevant steering behaviors is shown on the cover of this thesis.
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Figure 3.5: Statistically significant effects of ESC on truck stability in the re-
peated scenario. Error bars show 95 % confidence intervals, which are here only
approximate, due to the data being non-normally distributed. The applied statisti-
cal tests, however, did not assume normality (see Paper I for details).

experience groups separately2, three out of four effects discernible in Fig. 3.5
remained statistically significant, but not the body slip angle effect for ex-
perienced drivers, thus suggesting a smaller benefit of ESC for these drivers.
Exactly why this occurred is not clear, but one possibility is that the control
strategies of the experienced drivers were less consistent with the built-in as-
sumptions of the ESC system. This could be due to the experienced drivers
having some very advanced steering strategies, but just as well to a tendency
of overly aggressive countersteering during skidding.

3.3 Comparing behavior between scenarios

Even if the reductions of skidding with ESC were smaller for experienced
drivers, ESC still reduced control loss significantly for both experience groups
separately. Why were none of these effects observed in the unexpected sce-
nario? If one wishes to prove the value of truck ESC systems, such observa-
tions would seem more useful, since the unexpected scenario is, arguably, a
better approximation of a near-crash situation in real traffic.

It may be that the lack of statistically significant effects was simply due
to the small effective sample of ESC-relevant behavior; an experiment with
hundreds of subjects may show significant stability improvements with the
system. However, there is another possibility that cannot be immediately
rejected: Driver behavior may have differed in some way between the two
scenarios, such that the ESC system was less capable of providing its intended
assistance in the unexpected scenario. Indeed, some authors have argued
that, in unexpected or unusual situations, behavior will shift to qualitatively

2Per-group analysis was carried out rather than testing for interactions, since ANOVA
assumptions were violated, necessitating the use of non-parametric tests.
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Figure 3.6: The top left panel shows the division of the observed steering behavior
into segments. I3 is the initial leftward evasive maneuver, and I4 is the subsequent
rightward alignment with the left lane (see Paper II for full details). The other
three panels show comparisons between unexpected avoidance (UA) and repeated
avoidance (RA), as well as the effect of repetition (RA 1-6), for the following
measurements: rate of 5◦ steering wheel reversals in I3 (top right), steering wheel
angle at t4 (bottom left), and maximum steering wheel angle rate in I4 (bottom
right). Error bars show 95 % confidence intervals for the mean.

different control modes, from the planned application of previously learnt
procedures, to more opportunistic or even random responses to the unfolding
situation [35].

This line of reasoning leads to the idea of comparing behavior between the
two scenarios. If it can be shown that unexpected and repeated scenario be-
havior is similar, it would seem likely that ESC benefits should be observed in
a larger study of unexpected maneuvering. Within the context of this thesis,
indications of behavioral similarity would also be valuable from another per-
spective: They would suggest that driver behavior models developed based
on the (much larger) set of repeated scenario data can be used to make pre-
dictions about unexpected situations. Additional statistical analyses were
therefore carried out. In order to ensure a meaningful between-scenario com-
parison, a selection process (described in detail in Paper II) was applied to
the recorded scenarios, leaving a rather small set of only eight drivers with
useful data from both scenarios.

Braking behavior in this data set was, as anticipated (see Section 2.3),
clearly different between the scenarios, with repeated scenario braking being
significantly earlier and harder. However, steering behavior was less affected.
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Figure 3.7: Individual steering behavior, retained between unexpected avoidance
(UA) and repeated avoidance (RA), for maximum steering wheel rate in segment
I4 (left panel), but not for steering wheel reversal rate in I3 (right panel).

As illustrated schematically in the top left panel of Fig. 3.6, there were some
typical features of the truck drivers’ steering responses, allowing a structured
quantitative description of the first evasion to the left, and the subsequent
rightward steering to align with the left lane. In this part of the maneuver, no
statistically significant differences were found between the two scenarios, in
terms of maximum steering wheel angles, maximum rates of steering wheel
movement, or steering wheel reversal rates (the frequency of steering
wheel corrections [61]). Also, there were no clear indications of learning with
repetition3. Fig. 3.6 shows a subset of the tests carried out.

Another relevant question is whether individual differences in steering
behavior were preserved in the shift from unexpected to repeated steering.
As exemplified in the left panel of Fig. 3.7, this was the case for maximum
steering wheel angles and rates: Most notably, the two drivers who applied
aggressive steering wheel movements in the unexpected scenario, did so to
similar extents also in the repeated scenario. However, as seen in the right
panel of the same figure, steering wheel reversal rates in the repeated scenario
were lower for most drivers. A decrease in reversal rate can be interpreted
as more smooth steering, providing a possible link to the concept of con-
trol modes, and to the idea of experience and expectancy leading to control
behavior which is more open-loop and smooth in nature [20,35].

3Statistical hypothesis testing of learning effects was not performed, but correlation
with repetition was |r| < 0.2 for all examined variables.
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3.4 Limitations of the statistical analysis

The analyses presented above provide partial answers to the research ques-
tions formulated in Chapter 1: ESC has been shown to enhance truck stabil-
ity in a repeated rear-end scenario, for novice and experienced drivers, but
slightly less for the latter group. Furthermore, there seems to be more sim-
ilarities than differences between behavior in the repeated and unexpected
scenarios, suggesting that it may be possible to generalize between the two
experimental settings. However, some clear limitations remain.

First, the division of the subjects into two groups, based on driving expe-
rience, is rather crude. Even if ESC provides support to the average novice or
experienced driver, this does not show that ESC is equally helpful for every
single individual. Indeed, for seven (29 %) of the twenty-four drivers in the
ESC experiment, average skidding increased slightly with ESC. Here, how-
ever, one runs into a problem of too little data. Six measurements with ESC
and six without is not enough to show a statistically significant effect of ESC
even for the driver where the difference between ESC off and ESC on was
the greatest. Currently, data are too scarce to clarify statistically whether
the observed between-driver differences in ESC performance were due to
any interesting differences in driver control strategies, or whether they were
just random occurrences caused by the natural variability inherent in hu-
man behavior. For example, the drivers concerned may just have happened
to initiate steering slightly later, on average, in the repetitions with ESC,
making the stabilization task faced in these repetitions more difficult. Given
such limitations in repeatability, it may be virtually impossible to study the
benefit of ESC for individual drivers using statistical analysis alone.

Second, one thing that statistical hypothesis tests can definitely not be
used for, is to demonstrate the absence of an effect4. Thus, the fact that no
statistically significant behavioral differences were found between the unex-
pected and repeated scenarios does not prove that there were no such differ-
ences. The value of the comparative analyses is further constrained by the
necessary limitations in the number of included drivers, and the exclusion of
the later, stabilization-oriented phases of steering, where behavior was more
diverse and less easy to quantify on a high level, such as in Fig. 3.6.

The remainder of this thesis will be devoted to showing how driver behav-
ior models can (a) be used to provide more positive and complete evidence
of behavioral similarity, and (b) allow a more detailed study of individual
driver behavior in relation to an active safety system such as ESC.

4In the terminology of statistical analysis: One can fail to reject the null hypothesis,
but one cannot prove it.



Chapter 4
Analysis of driver behavior using
models

In science, the term model generally refers to “a simplified description of a
system or process” [1]. In this sense, science often consists of constructing
and testing models, describing some specific systems or processes of inter-
est, either in terms of their internal functioning or their observable outcomes
(or both). The aim of driver behavior modeling is to provide such descrip-
tions of the systems and processes relevant to human vehicle driving. The
conceptual framework of Ljung Aust and Engström outlined in Chapter 1
clearly shares this aim, and could therefore be referred to as a conceptual
driver behavior model. Statistical descriptions of driver behavior phe-
nomena, such as those provided in Chapter 3, could be termed statistical
driver behavior models, and descriptions at a level of detail sufficient for
computer simulation will here be referred to as simulation-ready driver
behavior models1.

The first section of this chapter provides an overview of currently avail-
able simulation-ready models, summarizing the literature review in Paper III,
but with an emphasis on models of steering. The subsequent sections present
previously unpublished work, demonstrating the ability of an existing driver
model to reproduce the steering behavior observed in the ESC experiment
presented in the previous chapters. A final section then provides mathemat-
ical derivations relating this model to vehicle dynamics.

1Developers of active safety systems sometimes use the term driver model for referring
to a real-time estimate of a driver’s current state or intentions [41]. While such an estimate
is, in a sense, also a “description of systems or processes” related to the driver, this use of
the term is not adopted here.

23
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4.1 Existing models of near-accident driver

behavior

At the outset of this research project, it was clear that a wealth of driver
behavior models was already in existence. However, it was less clear how
many of these existing models had been tested in simulation of near-accident
situations, and, even more importantly, how many of them had been verified
to reproduce near-accident behavior of human drivers. Therefore, a system-
atic review of recent literature (publication year 2000 or later) was carried
out. Over 5000 database search hits were considered, and after a structured
filtering process, in which the scope was limited to models of behavior in
near-collision situations, around 100 relevant models remained. These mod-
els, describing driver braking or steering control behavior (sometimes both)
in reaction to a collision threat, were summarized and discussed in Paper III.

A rather surprising finding from the review was that, despite the large
number of existing models, actual simulation-based comparisons of models
have been very rare in the literature. Therefore, in Paper III, such com-
parisons were carried out between some of the reviewed models, in selected
traffic scenarios. These comparisons indicated that models may sometimes
be more similar to each other than what the model equations could be taken
to suggest. The most striking example concerns the timing of deceleration
initiation by a driver who is catching up with a slower or stationary lead
vehicle: The left panel of Fig. 4.1 shows how three models, mathematically
very different from each other, predict the same general pattern of how decel-
eration timing is affected by vehicle speed. As a further example, the right
panel of the same figure suggests that, in a simulated single lane change
scenario, all tested models of steering would have been equally successful at
avoiding collision with an obstacle at 40 m longitudinal position.

However, on a more detailed level, the steering behaviors illustrated in
the right panel of Fig. 4.1 clearly differ considerably from each other. All
of the models in the figure apply concepts from control theory [40] in or-
der to have the vehicle follow a predefined desired path, but they do so
in different ways. The Guo et al. [32] model uses a simple internal vehi-
cle model to calculate the steering that will remove the deviation between
predicted and desired paths at a single preview point ahead of the vehicle.
The MacAdam [57] model instead takes an optimal control approach, and
minimizes the predicted average path deviation in an entire preview inter-
val. The Sharp et al. [79] and Chatzikomis and Spentzas [10] models do not
use internal vehicle models, but instead measure the deviation between the
current forward direction of the vehicle and the desired path, and calculate
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Figure 4.1: Left: Timing of deceleration initiation as a function of speed, as
predicted by three models of braking in scenarios with a stationary or slower moving
lead vehicle (LVS and LVM, respectively). Right: Vehicle trajectories and steering
wheel angles predicted by four models of steering, in a single lane change scenario.

their steering wheel angles as weighted sums of errors in lateral position or
heading, at multiple preview points along this forward direction.

In terms of model validation, only very few of the braking models, and
none of the steering models, were found to have been compared to actual hu-
man behavior in unexpected critical situations. Some of the steering models
have been tuned to reproduce human steering in test track maneuvers such
as double lane changes but, as discussed in Chapter 1, it is not clear to what
extent such behavior is a valid approximation of real near-accident behavior.

4.2 The Salvucci and Gray model of steering

A model of steering that has not previously been tested in simulation of near-
collision situations, and was therefore not reviewed in Paper III, is that of
Salvucci and Gray [77]. This model is mathematically similar to the above-
mentioned models by Sharp et al. [79] and Chatzikomis and Spentzas [10], in
that it calculates its steering command as a linear combination of a number
of error terms. As illustrated in Fig. 4.2, the model uses the visual angles θn
and θf from the vehicle’s forward direction to one near point and one far
point, and applies a rate of change δ̇ of the steering wheel angle, aiming to
reduce the near point angle to zero and to keep the angles to both the near
and the far point constant over time:

δ̇ = knIθn + knPθ̇n + kf θ̇f (4.1)
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Figure 4.2: An illustration of the input quantitites used by the two-point visual
control model of steering, proposed by Salvucci and Gray [77]. Instead of defining
the sight point angles based on the lateral center of the truck, one could equally
well use the driver’s lateral head position, but then the target lane position would
also have to be a target position for the driver’s head, and not for the truck. The
model behavior is the same in both cases.

Compared to the other models mentioned above, this model is to a greater
extent based on prior knowledge regarding the types of visual information
that drivers use when steering, and how: There is empirical support both for
the choice of having visual input separated into near and far information [48],
and the choice of predicting the rate of change of the steering wheel angle [96],
rather than predicting the steering wheel angle directly.

4.3 Fitting the model to repeated scenario

behavior

Is the Salvucci and Gray model capable of exhibiting the type of steering
behavior observed in the ESC experiment described in Chapter 2? In order
to answer this question, optimization of the model’s parameters was carried
out, using a genetic algorithm (GA) [34,93], combined with least-squares
curve fitting. The aim of this parameter optimization was to have the model’s
steering match the human repeated-scenario steering as closely as possible
in the stabilization phase, defined here to begin at the moment when
the truck driver initiated the rightward steering movement to align with the
left lane (roughly corresponding to t3 in Fig. 3.6), and to end at whichever
occurred first of (a) the truck traveling 250 m after reaching the lead vehicle
(b) full control loss, or (c) truck speed falling below 5 km/h.

The optimized parameters were those mentioned in the previous section
(the distances Dn and Df to the near and far points, and the linear control
gains knI, knP, and kf), as well as a neuromuscular delay time parameter
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TR, from visual input to control output2. Additionally, two parameters were
included allowing for differences in the target lateral position Y in the left
lane (some drivers seemed to consistently steer further to the left than others)
and the distance X, after passing the lead vehicle, at which the target lateral
position was shifted to the middle of the right lane to initiate a lane change.

Optimization was carried out per driver, using the approach of hold-
out validation, whereby the repeated-scenario data for each driver were
randomly divided into one training set and one validation set, with six
repetitions of the scenario in each. In each driver-specific optimization, an
initial set of 50 parameter settings (in GA terminology, a population of 50
individuals) were selected at random, including values for all parameters
except the three linear control gains. For each of the 50 GA individuals, the
inputs to the model (θn, θ̇n, and θ̇f) were calculated, and linear least-squares
fitting was applied to find optimal values of knI, knP, and kf for the training
set. Next, the success of this model fitting was calculated for each individual,
in terms of the quantity R2, signifying the amount of variance in the data
explained by the model [23]. Values of R2 were computed separately for the
training and validation set. The values computed for the training set were
used as the fitness measure (the quantity to be maximized) for the GA.
Using tournament selection, individuals with high training fitness (high
values of R2 on the training set) were selected for inclusion in the next 50-
individual generation, and crossover between pairs of individuals (yielding
an offspring individual with some of the parameter values from one of the
parents, and the rest from the other), as well as small random mutations
were used to introduce variations. Optimization by this approach can, de-
pending on the flexibility of the model being fitted, lead to arbitrarily close
fits of the training set. To prevent overfitting, the final parameter setting
was therefore selected by finding the individual with the highest observed
fitness on the validation set. For full details on the methods mentioned in
this paragraph, see [93].

Preliminary optimization tests indicated that the exact values of Dn and
Df did not make a major difference for the model’s ability to fit the data.
Therefore, to reduce the number of free parameters, Dn and Df were fixed at
the median values of those obtained in tests where these parameters were not
fixed: 1.5 m and 82.5 m, respectively. Final optimization of the resulting six-
parameter model (knI, knP, kf , TR, X, Y ) resulted in an average R2 = 0.69 for
the validation set (R2 = 0.77 for the training set). Fig. 4.3 provides examples

2Salvucci and Gray [77] only indirectly discuss such a delay, and it is not clear whether
one was included in their model. However, the optimization here allowed TR = 0, i.e. no
delay, to occur.
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Figure 4.3: Comparison of stabilization steering behavior between human drivers
and the Salvucci and Gray model, in six example instances of the repeated scenario.
The specific scenario instances shown (with and without ESC) are selected to give
an impression of the average performance of the model. The dashed vertical lines
indicate the beginning and end of the stabilization phase, and β denotes maximum
body slip angle.

of the match between human and model steering, suggesting that the model
was able to reproduce the overall steering strategies, and that the two main
sources of variability that the model was not able to capture were (a) high-
frequency variations in the rate of steering wheel angle movement, and (b)
situations where drivers reduced steering wheel speed in the second or two
before full control loss (top left panel of Fig. 4.3), something which could be
interpreted as resignation in the face of obvious stabilization failure [44].

4.4 Testing the model on unexpected scenario

behavior

One question left open by the statistical analyses of Chapter 3 was to what
extent driver stabilization behavior was similar between the repeated and un-
expected scenarios. Here, the driver model was used to investigate this mat-
ter: For each of the 16 drivers who applied evasive steering in the unexpected
scenario of the ESC experiment, the model’s prediction of this steering was
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Figure 4.4: Comparison of stabilization steering behavior between human drivers
and the Salvucci and Gray model, in the unexpected scenarios experienced by the
same drivers as visualized in Fig. 4.3. Note the moderate maneuvering in the
middle panel, due to the early initiation of steering avoidance (cf. Fig. 3.2). The
dashed vertical lines indicate the beginning and end of the stabilization phase, and
β denotes maximum body slip angle.

calculated, using the model parameter values optimized for the same driver’s
repeated scenario behavior. Fig. 4.4 provides examples of the obtained model
outputs.

When taking all 16 drivers into account, the average R2 for the unex-
pected scenario was 0.34. This reduced average model performance seemed
to be due mainly to scenario instances such as that shown in the middle
panel of Fig. 4.4, where steering was moderate and almost no skidding oc-
curred. However, when including in the analysis only drivers reaching some
minimum body slip angle β in the unexpected scenario, the average model
fit increased, to R2 = 0.44 for β > 1◦ (13 drivers), to R2 = 0.59 for β > 2◦

(6 drivers), and to R2 = 0.63 for β > 3◦ (4 drivers).
These R2 values, together with the qualitative impression of the fit in

the leftmost and rightmost panels of Fig. 4.4 (note the possible signs of
steering resignation in the leftmost panel) can be taken to suggest that when
skidding occurred, drivers handled this in the same way in the unexpected
and repeated scenarios.

4.5 Relating the model to vehicle dynamics

While the Salvucci and Gray model has a relatively solid foundation in psy-
chology, compared to the models reviewed in Section 4.2, it may seem less
impressive from an applied engineering perspective. Most notably, in con-
trast with the Guo et al. [32] and MacAdam [57] models, it does not include
an internal vehicle model. It is known that drivers adapt to the dynamics of
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Figure 4.5: Illustration of the mathematical quantities used in Section 4.5.

their vehicle, such that externally measured vehicle behavior remains roughly
constant across vehicles for a given driver [58], and an important benefit of
internal vehicle models is that they allow modelers a cost-efficient means of
accounting for this phenomenon: Instead of collecting new human behavior
data for every vehicle, something which seems especially undesirable in a
truck context, where the variety of vehicle combinations is so large, one can
simply measure the dynamic properties of a given new vehicle and feed these
to an existing driver model. Here, a first sketch will be provided of how the
Salvucci and Gray model can possibly be extended in this direction.

Consider a situation where a vehicle is initially (time t = 0) at the driver’s
target lane position y = 0, with a heading ψ = 0 along a straight road,
but with a non-zero steering wheel angle δerr. The resulting yaw rate of the
vehicle can be approximated by the steady-state response of a linear bicycle
model [39]:

ψ̇ =
Gvxδerr

L(1 +Kv2x)
(4.2)

Conversely, the steering wheel adjustment that the driver should apply in
order to correct the vehicle’s rotary motion can be written:

∆δ = −δerr = −L(1 +Kv2x)

Gvx
ψ̇ (4.3)

In these expressions, vx is the longitudinal speed, G is the steering gear
ratio (how much the front wheels rotate for a given rotation of the steering
wheel), L the wheel base (for a two-axle vehicle, the distance between front
and rear axle; see [97] for the equivalent wheel base for a three-axle truck
such as in the data collection experiment in Paper I), and K the understeer
gradient (quantifying how much the driver needs to increase the steering
wheel angle, after a speed increase, to maintain the same turning radius). The
non-zero yaw rate in Eq. (4.2) causes the vehicle’s lateral speed, relative to
the target lane position, to increase over time, and for small t the movement
can be written as ẏ = ψ̇vxt.
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What does this do to the movement of a sight point, such as the near or
far points of the Salvucci and Gray model? The angle to a sight point at
distance D ahead of the vehicle can be written θ = −ψ − arctan(y/D), and
differentiation yields:

θ̇ = −ψ̇ − Dẏ

D2 + y2
= −ψ̇ − Dψ̇vxt

D2 + y2
= −ψ̇

(
1 +

Dvxt

D2 + y2

)
(4.4)

Now, for the far point of the Salvucci and Gray model, where D ≫ y, this
reduces to θ̇ ≈ −ψ̇ (1 + vxt/D), and initially, while t is small enough for
vxt≪ D, the movement of the far point can thus be written simply as:

θ̇f ≈ −ψ̇ (4.5)

Insertion of this equation into Eq. (4.3) gives a new expression for the required
steering wheel correction:

∆δ =
L(1 +Kv2x)

Gvx
θ̇f (4.6)

If a driver wishes to achieve this correction in a steering wheel movement of
duration ∆t, his or her average rate of steering wheel rotation should be:

δ̇ =
∆δ

∆t
=
L(1 +Kv2x)

Gvx∆t
θ̇f (4.7)

This is now recognizable as the far point control law of the Salvucci and Gray
model, with kf = L(1 +Kv2x)/Gvx∆t.

The above analysis is basic3, but it nevertheless shows that the far point
control of the Salvucci and Gray model can be reasonable also from a vehicle
dynamics perspective. Not the least, Eq. (4.7) provides a prediction of how
driver adaptation to a new vehicle may be reflected in the kf parameter,
something which could be tested empirically.

Another possible prediction that could be made based on Eq. (4.7) con-
cerns the (1+Kv2x)/vx factor, suggesting that it would also make sense, from
a vehicle dynamics perspective, for kf to vary with vehicle speed. However,
there is of course no guarantee that drivers are this sensible in reality, and
it could be argued that it seems easier to learn a control behavior which is
speed-independent4. Again, this a matter for empirical testing.

3Perhaps especially in that it does not let the driver correct for his or her own neuro-
muscular delays.

4At least at high speeds, where (1+Kv2x)/vx will, for typical values of K [39,97], vary
considerably less than at low speeds.



32 Chapter 4. Analysis of driver behavior using models

A final point worth noting is that, as a model parameter, ∆t has a much
clearer interpretation than kf , another benefit of a formulation such as in
Eq. (4.7). Furthermore, it does not seem unreasonable that the same ∆t
could be reused in a similar reformulation of near point control, thus possibly
allowing the replacement of also knI and knP with expressions based on ∆t
and vehicle properties.

However, there may be room for improvement of the Salvucci and Gray
model’s near point control also in other respects, and this will be one of the
topics of discussion in the next chapter.



Chapter 5
Discussion

This chapter begins with a discussion on the topic of how to model driver
steering behavior, with emphasis on the previously unpublished work pre-
sented in Chapter 4. Next, the most important empirical results of the thesis
are summarized, with one section on driver behavior in unexpected criti-
cal situations, and one on the impact of ESC in such situations. Two final
sections address issues related to driver behavior models in general: the dif-
ferent ways in which they can be put to use, and how to know when their
performance is acceptable for the intended purposes.

5.1 Modeling steering behavior

The results reported in Chapter 4 show that the Salvucci and Gray [77]
model was able to account for a considerable fraction of the variance in the
steering behavior of human drivers, in both repeated and unexpected stabi-
lization maneuvering. Specifically, the model seemed capable of capturing the
overall strategy of steering control during yaw instability, and the variance
left unexplained appears mainly to have consisted of high-frequency varia-
tions in steering wheel rate, possibly attributable to neuromuscular motor
noise [26]. In any case, these high-frequency variations are to a large extent
averaged out in the resulting steering wheel angle signal, and may thus be
less important in the context of vehicle stability and ESC evaluation.

In the literature, steering models have frequently been parameter-fitted
to reproduce driver behavior as measured on cone tracks and the like, but
to the author’s knowledge, this is the first time that a steering model has
been shown to reproduce human behavior in an unexpected critical situation.
Furthermore, considering also the previous work based on test track data,

33
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this may be the first time that a model has been fitted to behavior during
severe yaw instability.

In the literature review presented in Paper III, it was noted that there
seem to be two main perspectives on driver behavior modeling: Some re-
searchers take an applied, engineering approach, and are mainly interested
in models as cost-efficient, multi-purpose tools, which should provide ade-
quate approximations of behavior in as many different traffic scenarios as
possible. Other researchers are more interested in elucidating the psycholog-
ical mechanisms underlying observed behavior, and the Salvucci and Gray
model comes from this type of research context. Neither perspective is in-
herently superior to the other, but this author would argue that there are
at least two good reasons, also from an applied perspective, to aim for mod-
els which are psychologically plausible: (a) A model based on appropriate
underlying mechanisms may generalize better beyond the specific data set
to which it is fitted. (b) As exemplified by the Salvucci and Gray model,
insights on what perceptual information humans are using in their control
behavior may allow formulation of rather simple yet effective control laws1,
considerably less complex than many of the models reviewed in Paper III.

Thus, the two perspectives are by no means incompatible by definition,
and the mathematical derivations in Section 4.5 show how they could even be
completely aligned for the far point control of the Salvucci and Gray model.
However, conflicts do exist. For example, an internal vehicle model provides
a simulation engineer with an immediate prediction of how a driver could
be expected to behave in a new vehicle. However, a driver with such an
internal model of vehicle dynamics should arguably be able to successfully
perform brief maneuvers, such as lane changes, even without feedback from
the surroundings, but experiments have shown that humans are not capable
of such feats [11]. Furthermore, a desired path provides a simulation engineer
with a very flexible means of defining an arbitrary traffic scenario, but recent
neurobiological models of sensorimotor control (so far of much simpler tasks
than driving) seem to move away from this type of construct, instead placing
emphasis on more discretely defined goal states, and how humans are able
to reach these states with sufficient precision and minimal effort [26,86].

This latter idea, of good enough task performance with minimal effort,
was referred to as satisficing in Chapter 1, and it may be noted that the
Salvucci and Gray model does not include such a concept. This seems like a
limitation, especially when it concerns the knIθ control term, which suggests

1In the words of Neisser: “If we do not have a good account of the information that
perceivers are actually using, our hypothetical models of their ’information processing’ are
almost sure to be wrong. If we do have an account, however, such models may turn out
to be almost unnecessary.” [68] (quoted in [25])
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that drivers will react with steering as soon as the vehicle is not exactly at
the target lane position. Here, other models reviewed in Paper III may be
capable of more credible behavior [9,28,102]. This limitation of the Salvucci
and Gray model could be an important factor in explaining the inability
of the model, when fitted to scenarios with skidding, to reproduce well the
behavior in less critical steering (such as in the middle panel of Fig. 4.4); as
discussed in Chapter 1, satisficing should be expected to be more pronounced
farther away from the safety zone boundary.

5.2 Driver behavior in critical situations

If the inability of the Salvucci and Gray model to fit both severe and moder-
ate steering with the same parameterization could be remedied, for example
by inclusion of satisificing concepts, this would be an important finding, since
it would provide an indication that drivers’ control strategies may stay the
same in the transition from normal driving to critical maneuvering. The
analyses presented here do not allow such a conclusion, but they do accom-
modate the idea of behavioral constancy in another, partly related transition,
namely from unexpected critical maneuvering to expected critical maneuver-
ing. Considering the statistical tests in Paper II and the model-based anal-
yses in Chapter 4, the only clear indication of a change in control behavior
between the unexpected and the repeated scenario is the reduction in steering
wheel reversal rate during the initial leftward evasive maneuver (Fig. 3.7).
This suggests that if a change in control mode occurred, it did not affect the
overall control strategies, only the drivers’ performance in effectuating these
strategies, for example in the form of steering becoming more open-loop in
nature.

This is an important result in general, since it implies that premeditated
severe steering behavior may be a valid approximation of unexpected severe
steering. In this sense, the results presented here actually provide some sup-
port for the use of test tracks as an evaluation tool. Typical cone tracks
may still constrain driver decision-making more than many naturalistic sit-
uations, and avoiding collision with a cone may still be emotionally different
from avoiding collision with another road user. However, barring these limita-
tions, test track steering behavior (at least that of normal drivers, as opposed
to professional test drivers) may be similar to steering in unexpected critical
situations in real traffic. A method of addressing the mentioned limitations of
cone tracks could be to adopt repeated avoidance paradigms for the driving
simulator, such as the paradigm introduced in Paper I, developed according
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to the process outlined in Chapter 2 of this thesis2.

The statistical analyses in Paper I also confirmed some previous results
regarding decreases in reaction time with increases in expectancy or driving
experience [12, 30, 78]. However, the interpretation of non-steering reactions
as slow steering reactions (Fig. 3.4) may be a novel contribution.

An interesting question is how the concept of reaction times, which seems
valid close to the safety zone boundary, can be reconciled with the concept
of satisficing, as assumed to occur in the comfort zone. It may be that
some existing neurobiological models, describing response selection as noisy
integration of sensory evidence over time [71, 80], could account for the lack
of immediate reactions, typical for satisficing behavior, as very slow (or,
equivalently, improbable) reactions to low-intensity stimuli.

5.3 Benefits of ESC in unexpected critical

situations

Within the context of this thesis, the indications that drivers’ stabilization
control strategies were preserved between unexpected and repeated scenarios
also have a more specific implication, in allowing a more complete answer to
research question (A) from Chapter 1: Does heavy truck ESC provide a safety
benefit to normal drivers in realistic near-crash scenarios?

In Paper I (see also Chapter 3 above), the possibility could not be ex-
cluded of a qualitative change in behavior between repeated and unexpected
critical maneuvering. For this reason, the existence of stability improve-
ments with ESC could only be proven for the repeated scenario. However,
given the analyses in Paper II and Chapter 4, it now seems very likely that
these benefits should be present also during unexpected critical maneuver-
ing. Since there have been no naturalistic evaluations of heavy truck ESC3

(to the author’s knowledge), and previous demonstrations of ESC benefits
for heavy trucks have been based on test track tests or equivalent computer
simulations [47, 84, 98], this thesis may provide the first evidence of benefits
of heavy truck ESC for normal drivers in unexpected yaw instability.

2Interestingly, with regards to the emotional aspects of collision avoidance, the video
logs from the data collection experiment show some rather strong emotional responses to
the unexpected scenario, despite the lead vehicle being entirely fictitious.

3Current market penetration rates may still be too low for accident statistics stud-
ies [98].
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5.4 Applications for driver behavior models

The discussion above highlights one way in which simulation-ready driver
models can be useful, namely in the comparison of behavior between slightly
different contexts. Consider, for example, the two measurements for Subject
21 visualized in Fig. 4.3. It would have been difficult to compare these two
measurements in any meaningful way using metrics of the type adopted in
Paper II (see also Section 3.3 above). However, the fit of the driver behavior
model also seen in the figure rather convincingly demonstrates that the same
overall control strategy was at play in both cases.

Another important feature of models, in general, is their ability to provide
predictions about novel situations, either as interpolation between previ-
ously observed situations, or as extrapolation beyond them. Exactly how
well a given model will generalize to a new situation is of course difficult to
know beforehand, but this thesis provides one specific illustration of success-
ful prediction of previously unobserved behavior: The simple driver-vehicle
model described in Paper I and Section 2.3 above was able to predict average
steering initiation timing in the two simulated scenarios, something that was
crucial for successful scenario tuning. A less successful generalization was
seen in Chapter 4, where it was found that the Salvucci and Gray model pa-
rameterized for severe yaw instabilities did not extrapolate well to less severe
steering.

However, it seems to be the case that the Salvucci and Gray model,
parameterized as in Chapter 4, could provide useful interpolations, as in
predictions of behavior in severe yaw instabilities, similar to those observed
in the experiment. Thus, given another main strength of model-based testing,
the virtually unlimited repeatability, it would now appear possible to revisit
also research question (B) from Chapter 1: Is ESC more useful for some
drivers than for others? As noted in Chapter 3, the collected data set of
human behavior was too small, despite the repeated scenario paradigm, for
a conventional statistical analysis at the individual level. An even more
concrete illustration of this limitation is provided by again considering the
two measurements from Subject 21 in Fig. 4.3, and noting that the period
of oscillatory instability lasted longer with the ESC system than without
it. Was this finding due to some undesired effect of the system, or to other
factors, such as a higher initial speed or a later collision avoidance?

Fig. 5.1 provides a preliminary idea of how driver models can be used to
answer this type of question. Here, the model parameterization obtained for
Subject 21 has been used in a closed-loop simulation, with the same truck
model as in the data collection experiment, and it is clear that also in this
simulation there are considerable oscillations with the ESC system turned
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Figure 5.1: Example results of closed-loop simulation with the Salvucci and Gray
steering model, with parameters optimized using the behavior data from Subject
21 of the data collection experiment. This figure serves mainly to illustrate the
potential of simulation-based evaluation methods; full details are not provided here.

on. However, since it is possible to simulate exactly the same initial situation
both with and without ESC, it can be shown that these oscillations become
even larger without the system, giving a clear indication of the benefit of the
system in this specific situation. With this type of approach, it is possible to
study in detail how beneficial ESC is for different modeled drivers, something
that will be explored in forthcoming publications.

Finally, an increased knowledge about driver behavior in the form of a
quantitative model can also guide system development in itself. Here, the
good fit of the Salvucci and Gray model can be taken to suggest that even
if today’s ESC systems provide reliable improvements of vehicle stability,
there is still room for further improvement. Current ESC systems typically
assume that drivers make use of an internal vehicle model to translate a
desired vehicle motion into steering wheel angles [84, 91]. The Salvucci and
Gray model, on the other hand, suggests that drivers do not at all care about
exact steering wheel angles, but instead keep rotating the steering wheel as
long as the vehicle is not moving as desired. Such behavior can in some
circumstances clearly lead to overcompensation and oscillatory instability, as
seen in Figs. 4.3 and 5.1. An ESC system incorporating this type of model
could potentially achieve a better understanding of the driver’s intentions,
and could actively damp any overcompensatory driver behavior. Simulation
results for such a modified ESC system show promise (see Fig. 5.1), but
further investigation is needed in order to prove this concept in real driving.
More details are available in the corresponding patent application [60].
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5.5 Validating driver behavior models

An interesting question is whether the results discussed above constitute a
validation of the Salvucci and Gray model. As mentioned in Paper III,
this is another area where there may be a distinction between an applied
perspective and a more psychology-oriented one. From the point of view of
the simulation engineer, the good model fits obtained here, on the training
and validation sets, and on the previously unseen set of unexpected maneu-
vering4, can constitute a sufficient validation in the sense that the obtained
model parameterizations seem to provide a useful approximation of driver
behavior in situations with severe yaw instability. Other models could pro-
vide even better fits, in wider ranges of scenarios, and if it can be shown, as
here, that such a better fit does not seem to be due to overfitting, then these
models should be the tools of choice for the application at hand.

However, the Salvucci and Gray model can also be understood as making
some claims about underlying mechanisms, and it is important to note that
the model fits reported in Chapter 4 do not prove, for example, that human
drivers really use something like near and far points in their steering control.
Had the Salvucci and Gray model been utterly unable to fit the data, one
could have rejected the model, but anything else may simply be a result of the
model being flexible enough to achieve the fit [76]. In this sense, descriptive
science cannot prove models to be fundamentally true, only maintain a list
of models that have not yet been disproven5, and the concept of validation
is thus mainly relevant from an applied perspective.

If one wishes to study underlying assumptions, such as those of the
Salvucci and Gray model, in more detail, two important approaches would
be to: (a) compare the data-fitting abilities of the model to that of other
models, based on other underlying assumptions, while at the same time con-
trolling for the relative flexibilities of the various models [23,67]; (b) use the
model to make specific, and preferably somewhat unexpected, predictions,
and collect data which could refute these predictions [76].

As discussed in Paper III, regardless of perspective, testing and compar-
ison of simulation-ready models has so far been very rare within the field of
driver behavior, and surprisingly few modelers have even used such simple
concepts as R2 to quantify model performance. Thus, this appears to be an
area where much valuable progress could be made with relatively little effort.

4In this sense, the unexpected scenario data can be regarded as a type of test set [93].
5This argument is analogous to that made in Section 3.4, regarding the limitations of

statistical hypothesis testing.





Chapter 6
Conclusions and future work

The main results of this thesis concern the benefits of heavy truck ESC.
In a simulator study with professional truck drivers, it was found that an
on-market implementation of such a system reliably reduced skidding and
control loss. Conventional methods for statistical analysis proved these effects
in a novel instruction-based paradigm for repeated critical collision avoidance.
Additional analyses, involving both statistical testing and driver modeling,
provided indications that drivers’ control strategies for vehicle stabilization
in the repeated scenario were the same as in an unexpected critical scenario.
This result has important implications in the area of active safety evaluation;
replicating the study using experiments with larger number of drivers appears
recommendable. Here, the result has been used to argue that the observed
benefits of heavy truck ESC should be present also in unexpected critical
situations, a hypothesis for which this thesis may thus provide the strongest
evidence to date.

Variations in behavior between drivers has been another object of study.
The simulator study confirmed previous findings of decreasing reaction times
to hazardous events with increasing driving experience. A possibly novel con-
tribution was the demonstration that drivers who collided instead of applying
steering avoidance (something which has been observed also in previous re-
search) may have done so because of very long reaction times to steering,
rather than because of a complete inability of exhibiting critical steering col-
lision avoidance. Continuing with the theme of behavioral variability, the
question of whether ESC is equally useful for all drivers has also been ad-
dressed to some extent. The statistical analyses suggested that, at a group
level, novice drivers had a larger benefit of ESC than experienced drivers.
Preliminary illustrations have been provided regarding how closed-loop sim-
ulation with driver models can be used to investigate such effects in more
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detail, even at the level of individual drivers.
Another central part of this thesis has been an extensive literature review

of driver models applicable in such simulation-based research. An important
insight from the review was that even though there exists a very large number
of competing and seemingly different models, actual behavior may not always
vary as much between models as the model equations may appear to suggest
at a first glance. Furthermore, it was found that the ability of existing driver
models to reproduce the behavior of human drivers in the relevant crash
scenarios has only been investigated for very few models. Therefore, increased
efforts regarding model validation and comparison can be recommended.

Here, in what may be the first successful parameter-fitting of a driver
model to unexpected critical steering behavior, some validation has been pro-
vided of the two-point visual control model of steering, originally proposed
by Salvucci and Gray [77]. However, the fitted models failed to generalize to
situations with less severe steering. Extending the Salvucci and Gray model
with satisficing capabilities is suggested as a possible means of improving
its generality. Other possible directions of future work include comparison
of the model’s performance with that of other models, as well as empirical
work with the potential of disproving the model’s underlying assumptions.
Also, mathematical derivations have been provided that link the model’s far
point control behavior to vehicle dynamics, leading to some specific predic-
tions of how this control behavior may be affected by vehicle properties and
vehicle speed. These predictions could be tested experimentally, and similar
mathematical derivations could also be attempted for the near point control
behavior of the model.

Finally, another important future challenge is to verify that the stabiliza-
tion steering behavior observed here is not specific to the driving simulator
context. If drivers can be shown to exhibit this type of behavior also in re-
sponse to yaw instabilities of a real vehicle, this would provide even stronger
evidence for the benefits of heavy truck ESC. It would also provide further
support for the idea presented here, that it may be possible to improve cur-
rent ESC systems by replacing their driver models with something more
similar to the Salvucci and Gray model.

This possible potential for improvement could not easily have been iden-
tified on the test track, at least not with the methods typically used today.
In that sense, this thesis has also provided an illustration of the importance,
for developers and testers of active safety systems, of properly studying the
behavior of real drivers, in the near-accident situations being targeted.
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