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PARAMETER ESTIMATION OF A 

DOC FROM ENGINE RIG 

EXPERIMENTS 

Björn Lundberg 
Department of Chemical and Biological Engineering 
Chalmers University of Technology 
SE-412 96 Göteborg, Sweden 

ABSTRACT 

In this thesis methods of parameter estimation of a Diesel Oxidation Catalyst 

(DOC) from engine rig experiments were investigated. The investigation did 

not only include methods of parameter fitting to experimental data but a large 

effort was also put into catalyst modeling and experimental design. 

 

Several different catalyst configurations were used with varying Pt loading, 

washcoat thickness and volume. To further expand the experimental space, 

engine operating points were chosen with a wide variation in variables (inlet 

conditions) and both transient and stationary operation was used.  A catalyst 

model was developed where the catalyst washcoat was discretized as tanks in 

series both radially and axially and for parameter estimation a traditional 

gradient search method was used. Four different modeling approaches were 

used for parameter tuning where the most successful one tuned kinetic 

parameters as well as internal mass transfer parameters. It was also shown that 

it is of high importance that the kinetic model used has an intrinsic structure 

when the catalyst model separates mass transport and kinetics and when 

several catalyst configurations are used.  

A new method was evaluated where sensitivity analysis and data selection 

was used as a part of the parameter estimation. The data selection was made 

by D-optimal design of an approximation of the sensitivity matrix using 

Principal Component Analysis. This methodology renders better statistical 

properties and should improve the parameter tuning when using gradient 

search methods. Furthermore, a reduced computational cost could be achieved 
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by using only the most relevant data points during parameter tuning. To make 

a relevant comparison possible the same catalyst model and experimental data 

was used as in the previous evaluation of modeling approaches. However, the 

evaluated method did neither result in an improved fit to measurement data 

nor reduce the time for parameter tuning compared to the reference case. 

Adjustment of an unbalanced weighting of the residuals for the different 

components NO, hydrocarbons, CO, and NO2 was identified as the most 

important factor for a future improvement of the method. More transients in 

the measurement data and updated parameter weighting were other suggested 

measures to improve the method. 

 

When performing catalyst modeling and parameter tuning it is desirable that 

the experimental data contain both transient and stationary points and can be 

generated over a short period of time. A method of creating such transients in 

concentration for a full scale engine rig system was presented and evaluated. 

The method included an engine rig where an SCR with urea injection and a 

DOC with bypass possibility was used as part of the experimental setup. The 

DOC and SCR with urea injection were positioned between the test object, 

which also was a DOC, and the engine. By controlling urea injection and DOC 

bypass a wide range of exhaust compositions, not possible by only controlling 

the engine, could be achieved which will improve the possibilities for 

parameter estimation for the modeling of the DOC in future studies. 
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1 INTRODUCTION 

1.1 HEAVY DUTY DIESEL ENGINES 
ENVIRONMENTAL ISSUES 

The complete combustion of fossil fuel and air results in emission of CO2 and 

H2O. However the combustion in heavy duty diesel (HDD) engines, and other 

internal combustion engines, will never be complete which leads to the 

formation of CO, un-burnt hydrocarbons (HC), and also particulate matter 

such as soot in addition to CO2 and H2O [1]. The high temperatures in the 

engine during combustion will also lead to the formation of nitrogen oxide 

(NOx) from oxygen and nitrogen in the intake air [2].   

CO, CO2, HC, NOx, and particulate matter are all major contributors to air 

pollution and in today's cars and trucks all of them except CO2 are reduced in 

the after treatment system. The environmental issues associated with diesel 

engine exhaust are both numerous and diverse. CO poisoning is the most 

common type of fatal air poisoning worldwide [3] as it, even in small 

concentration, can severely hinder the delivery of oxygen to organs and tissues 

[4]. NOx contributes to the acidification of land and lakes [5], has toxic effects 

on the respiratory system and can also in combination with HC produce 

ground level ozone [3]. Some of the different hydrocarbons produced by 

combustion are also considered carcinogenic to humans [6]. Exposure to urban 

particulate matter can lead to increased risk of a variety of respiratory diseases 

and adverse health effects such as lung cancer, bronchitis and asthma [7].  

 The current European emission standard for HDD, which regulates 

emissions of CO, HC, NOx, and particulate matter, is called Euro V and was 

introduced in 2008. In December 2013 the Euro VI will be introduced which 



2 
 

will even further reduce the limits for HC, NOx, and particulate matter 

emissions.  To meet these and forthcoming legislations an increased 

understanding of the after treatment system will be of utmost importance.  

1.2 HETEROGENEOUS CATALYSIS 
The common structure of a catalyst in the automotive industry is a monolith of 

flow through type with a shape that is generally cylindrical with quadratic 

channels. The catalyst can be divided into two parts; the porous washcoat that 

carries the active material where the reaction tales place (B in figure 1) and the 

solid substrate that gives the catalyst its’ structure (A in figure 1). The 

substrate in the current study is made of cordierite that is a ceramic material 

with low density (ca 400 kg/m3), high heat conduction and stable thermal 

properties. To get an efficient mass and heat transfer between the gas phase 

(exhaust gas) and solid phase (the washcoat) a large interfacial area is 

favorable. This is achieved by making the number of channels per catalyst 

cross sectional area very large and as an example all catalyst configurations 

used in the current study have 62 channels per cm2. 

 

FIGURE 1 Monolith and washcoat  

The washcoat is coated on the inside of the walls of the substrate and forms 

a thin porous layer through which the exhaust needs to diffuse to react with 

the active material. Again to get a high interfacial area between the exhaust 
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pollutants left are NOx and particulate matter (PM). The PM is trapped by the 

DPF and depending on if an active or passive regeneration (PM oxidation) 

strategy is employed the performance of the DOC will be of different 

importance. If passive DPF regeneration is used the DOC will be needed to 

provide NO2 that enables PM oxidation at lower temperatures [9]. If active 

DPF regeneration is used, on the other hand, the temperature will be 

periodically increased so that PM can be reduced by O2, [9] in this case the 

DOC performance is of less importance. However, even for an active DPF 

regeneration strategy a simultaneous passive regeneration is also usually 

desirable which means that the DOC performance still will be of some 

importance.  In fuel efficiency perspective the passive DPF is preferable since 

extra fuel injection is needed to perform the active DPF regeneration. 

In the SCR, NOx will be reduced to N2 with NH3 from the decomposition of 

injected urea. The desirable reaction here is the so called fast SCR reaction 

where equal amounts of NO and NO2 are consumed [10]. The reactions in the 

SCR will therefore be dependent on the NO2/NOx fraction out from the DOC. 

To conclude the DOC will be crucial for the performance of the SCR and, 

depending on what DPF regeneration method is used, may also be of great 

importance for regeneration of the DPF.  

1.4 OBJECTIVES 
To estimate kinetic parameters, laboratory scale experimental data is generally 

used [11]. In laboratory scale it is possible to use essentially any combination 

of exhaust gas composition and temperature which makes it possible to 

estimate parameters over a wide range of conditions. However the validity of 

these parameters in full scale models is often limited and therefore the 

parameters commonly need to be retuned. It is this retuning of parameter 

values from lab scale to full scale that is the objective of the current work and 

the reason why experiments are performed in an engine rig. The tuning of 

kinetic parameters are also complemented by tuning of heat and mass 

transport parameters to better describe the dynamic behavior of the full scale 

catalyst. It should be noted that the concept of parameter estimation is better 

known and will be used throughout the current work even though parameter 

retuning may be a more accurate description.  
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Efficient parameter estimation has several aspects. The design of 

experiments should be carried out in a manner in which the total experimental 

time is low (since engine rig experiments are very costly to perform) but at the 

same time the generated experimental data should be information rich and 

make it possible to estimate parameters sufficiently accurate. This does not 

only include how the engine is run but also what catalyst configurations are 

used and the general set-up of the engine rig.  

To perform parameter estimation a catalyst model is of course of high 

importance. Since both kinetic and mass transfer parameters will be estimated 

it is important to have a model where these phenomena can be separated. The  

model used needs to be detailed enough to describe the reactions and 

transport phenomena in a full scale catalyst but it should in the same time be 

robust and simple to avoid too long simulation times. To find a good trade-off 

between model accuracy and computational time is therefore an important 

part of the objective. The parameter estimation itself should also be performed 

in an efficient way meaning that the time spent at parameter estimation should 

be reduced. In section 1.5 Multivariate Data Analysis (MVDA) is introduced 

as a way of both reducing the number of data points used for simulation and to 

more efficiently reach the goal of approaching the global minima. An 

important part of making the parameter estimation more efficient is also to 

optimize the use of computational resources. This could for example mean 

running simulations in parallel on multiple processor cores either locally or on 

a cluster to reduce simulation time. It should however not be forgotten that the 

most important objective is a good fit to measurement data which should not 

be compromised in the aim of making the parameter estimation time efficient.  

 

To conclude and summarize: he objective is to efficiently estimate kinetic, 

mass and heat transfer parameters for full scale catalysts from engine rig data. 

This includes experimental design, catalyst modeling and the method of 

parameter estimation. The procedure should be fast and robust and also 

adaptable to different catalyst properties. 
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1.5 METHOD OVERVIEW 
The method applied in the current work can be summed up in four points 

1. Design of Experiments (DoE) 

2. Engine rig experiments 

3. Multivariate data analysis (MVDA) 

4. Parameter estimation 

Point 1, 2 and 4 were applied in the first parameter estimation performed in 

Paper I and was extended with MVDA (point 3) in Paper II. Paper I can, in a 

sense, be viewed as a reference to how parameter estimation is normally 

performed and Paper II is an attempt to improve it. The full method therefore 

includes all four points even though they have not been applied in all of the 

parameter estimation performed in the current work. In Paper III only point 1 

and 2 is performed and point 3 and 4 will be applied on the resulting data in an 

upcoming study. All of the points will be discussed in detail in upcoming 

sections and this section will only give a brief introduction. 

 

FIGURE 3 Method overview 

The available variables (exhaust composition, flow, and temperature) of a 

full scale engine rig are severely limited by the operating points of the engine 

which is only decided by the engine torque and load. The values of the 

different variables at different operating points can be described by an engine 
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map which also indicates what torque and load combinations that are possible.  

To make sure that the variables are varied as much and as independently as 

possible an analysis of the map can be performed. From this analysis a set of 

suitable operating points can be selected with Design of Experiments. It is also 

possible to vary the catalyst inlet condition with some additional equipment 

situated between the engine and the catalyst, as demonstrated in Paper III. To 

further increase the experimental space a number of different catalyst 

configurations can also be used. 

In point 2 the designed experiments are performed in an engine rig where 

the exhaust composition, flow, and temperature are measured before and after 

the catalyst. Point 3 and point 4 are strongly connected and the process after 

the experiments have been performed will here be described as a whole. In the 

traditional way of performing parameter estimation a gradient search method 

is used to minimize the residual sum square of all variables in all experimental 

data points. The method generally gives good results since all experimental 

data is used but there are some drawbacks such as, long simulation time, risk 

of finding a local minima far from the global minima, risk of being dominated 

by certain parameters, and high parameter correlations. In the method using 

MVDA only the data points with the highest parameter sensitivities are 

selected for parameter estimation with the gradient search method. This aims 

to decrease the simulation time and may also reduce some of the other 

drawbacks with the traditional way of performing parameter estimation.  
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2 DESIGN OF EXPERIMENTS 

Experimental design is a tool used to systematically examine the behavior and 

properties of a certain system that in the current case is a full scale catalyst of 

DOC type. If the experiments are performed without structure the results will 

as well be unstructured and the analysis and eventual parameter estimation 

will be further complicated. Therefore a good experimental plan is the 

foundation of successful parameter estimation and should be thoroughly 

evaluated before any experiments are performed [12, 13].  

A first important step in the experimental plan is to identify what variables 

that can be investigated, what can be measured, and what the interesting 

responses are. For a full scale catalyst in an engine rig system the composition, 

temperature and the flow rate both at the inlet and outlet is measured. The 

inlet conditions are changed by controlling equipment upstream of the catalyst 

such as the engine itself or even other catalysts. Since the catalyst itself, which 

is to be modeled, has no influence on the inlet conditions all properties of the 

flow entering the catalyst must be variables. The outlet conditions on the other 

hand are a result of the catalyst performance and the response of the system is 

therefore the measured composition and temperature  at the catalyst outlet. If 

the experiments would have been performed in lab scale on a catalyst in 

powder form these variables and responses may have been enough, however, 

in the case where significant mass transport resistance in the washcoat can be 

expected some variables should also be found that influence mass transport. 

The variables selected for this purpose in the current study are different 

catalyst configurations that will have different mass transfer properties.  
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In the simplest case all the variables can be varied independently and the 

model is linear and time independent. For a system as complex as a full scale 

catalyst none of these properties are applicable. The variables that are 

controlled by the engine operating point are highly correlated and a change in 

operating point will more or less affect all concentrations, flow rate, and 

temperature. A method of reducing these correlations is, however, presented 

in Paper III. The catalyst is also a highly non-linear system which is easy to 

conclude by only investigating some of the simplest kinetic models describing 

the DOC and becomes even more obvious when considering that mass and 

heat transport resistances may also influence its operation.  

The large thermal mass of the catalyst also means that energy will be 

accumulated and thus the properties of the system will not only depend on the 

current inlet conditions but also on the inlet at earlier time points that may be 

several minutes earlier if the temperature change is large. The temperature is 

however not the only variable with a dynamic behavior (just the most 

dominant one) since also components can be accumulated in the washcoat as 

surface adsorbed species. 

 

The dynamic behavior of the system means that transient experiments are of 

outmost importance [14] and should be the central point of any experimental 

plan for a full scale catalyst system. This is especially true since the system has 

unobservable variables such as quantities of surface adsorbed species. 

Different types of transient experiments have been used in the current work 

where the most frequently used one (Paper I and II) is a simple step change in 

the engine operating point. A simple transient like that does however 

significantly increase the parameter space and improves the conditions for 

parameter estimation [15].  

When input variables can be varied independently (applied to a linear 

model) it is possible to make an orthogonal design. In a system where the 

variables are inherently correlated the Design of Experiments should strive to 

make the design of experiments as orthogonal as possible.  Also the 

parameters that are to be estimated may be correlated, this is however an issue 

that will be further discussed in sections 2.1 and 2.2.  
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2.1 PRINCIPAL COMPONENT ANALYSIS 
Principal Component Analysis (PCA) is a mathematical method where large 

sets of observations of possibly correlated variables are transformed into new, 

linearly uncorrelated variables. The number of uncorrelated variables, usually 

referred to as principal components, is usually chosen to be fewer than the 

number of variables in the untreated data [16]. 

The PCA can be performed with several different purposes such as 

identification of classes of data and outliers, simplification, data reduction, 

modeling, variable selection, and prediction. A simple way of describing the 

method would be as an approximation of a data matrix where the more 

similarity within the objects result in fewer terms needed for a good fit. 

In the first step of transforming a set of data (X) according to PCA the 

direction that captures the largest variation in the data is identified via least 

squares. The normalized vector describing the identified direction will be the 

first principal component in the transformed set of data (see figure 4). Another 

principal component can be added by again identifying the direction that 

captures the largest variation in the data but now with the added criterion that 

the direction must be orthogonal to the first principal component (see 

figure 4). Components are usually added to the PCA-model until the increase 

in information with the added component is below a certain limit. The matrix 

containing the principal component vectors is called the loadings vector and 

can be used to analyze the relation between variables. 
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FIGURE 4 First (left) and second (right) principal components of an arbitrary 

data set with three variables. 

The observations (rows) are projected onto the sub-space defined by the 

principle components which will result in a number of vectors (as many as the 

number of principle components) that are orthogonal but not normalized. The 

vectors are summarized in the scores matrix that can be used to analyze the 

relations between observations.  

In the current study PCA was used in Paper II to select the data points 

(observations) most suitable for parameter estimation which means that the 

scores matrix and not the loading matrix was the focus of the analysis. 

The scores matrix and the loading matrix together form a linear 

combination to model the data matrix X (size N×K) according to  

X = TP + E (1) 

 where (for a PCA model with A components) T (size N×A) is the scores 

matrix, P (size A×K) is the loading matrix, and E is the residual. 

2.2 D-OPTIMAL DESIGN 
For linear models traditional experimental designs such as full factorial 

designs, fractional factorial designs, and response surface designs are suitable 

when the factors are relatively unconstrained. For non-linear models such as a 

full scale catalyst, on the other hand, less traditional models such as D-optimal 

design may be more favorable.  

If there would be restrictions on the number of experimental runs a full 

factorial design could be used as a candidate set (C) for D-optimal design to 
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create a new design matrix (X) with fewer rows (note that the candidate set 

can have several different origins, for example it could also be a large set of 

data where a high variable correlation has limited the available variable 

combinations). The D-optimal design algorithm would then in an iterative 

process select different combinations of rows from the candidate set that 

minimizes covariance of the new design matrix by maximizing the determinant 

of XTX (hence the notation D-optimal as in determinant). This would 

maximize the orthogonality of the design matrix and as such create the design 

with the best conditions for parameter estimation with the defined number of 

runs. Note that the iterative process in which D-optimal design is performed 

contains certain random factors which means that the D-optimal design 

performed on a large candidate set likely will generate different design 

matrixes on different runs. 
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3 EXPERIMENTAL  

All experiments in the present work were performed with a full scale engine 

rig which also means that the catalysts used were all of commercial dimensions 

for heavy-duty vehicle aftertreatment systems. To use an engine as the exhaust 

source together with full scale catalysts results in real challenges for how the 

experiments should be performed. This is not only due to the fact that a full 

scale catalyst is a complex system but also because the engine itself severely 

limits the possibilities to vary the catalyst inlet conditions. In this section the 

different engine rig set-ups used in Paper I and II (section 3.1), and Paper III 

(section 3.3) are introduced together with the possibilities for experimental 

design made available with these set-ups. The different catalyst configurations 

used in the experiments are also presented. 

3.1 CATALYST CONFIGURATIONS 
As mentioned in the previous section the experimental design does not only 

include how the inlet conditions to the catalyst is controlled, the design of the 

actual catalyst is also a very important part. Catalyst properties such as, noble 

metal loading, washcoat thickness, catalyst volume, and active surface area will 

influence the reactions taking place in the catalyst. To achieve a variation in 

these properties a number of different model catalysts were custom made for 

the project.  
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TABLE 1 Properties of catalysts used in the project. Pt-loading is shown in two 
different units where the unit in the first column is commonly used in lab scale 
and the unit in the second column is commonly used at industrial scale. 

Pt-loading 

[mass % 

washcoat] 

Pt-loading 

[g/ft3monolith] 

Average washcoat 

thickness* 

[mm] 

0.10 5 0.110 

0.30 15 0.110 

0.59 15 0.055 

0.59 30 0.110 

1.78 90 0.110 
*Washcoat thickness is generally higher in the corners of the channel and may 
also vary axially 

 

The catalysts in table 1 were all made with replicates making it possible to 

put them in series to create catalysts configurations with increased catalyst 

volume and thereby also increase residence time for the exhaust in the catalyst. 

All catalysts were of monolith flow-through type with 62 square channels per 

cm2 (400 cpsi), a total diameter of 30.5 cm (12 inch), and a total length of 10.2 

cm (4 inch). The catalysts were platinum on alumina model catalysts and were 

provided by Johnson Matthey. 

3.2 ENGINE RIG EXPERIMENTS 
Two different experimental set-ups have so far been used in this project. The 

first set-up, of more traditional type, was used for both Paper I and II and the 

experiments were performed at Johnson Matthey in Gothenburg.  

3.2.1 SET-UP 

The traditional engine rig simply consists of an engine connected to the 

catalyst that is to be investigated. The exhaust properties are varied by 

controlling the engine operating point and the temperature, flow rate, and 

composition before and after the catalyst are measured.  
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FIGURE 5 Traditional engine rig set-up. The red frames around the catalyst and 
the engine operating point indicate that these are controlled by experimental 
design.  

A Euro IV calibrated heavy duty diesel engine with disabled exhaust gas 

recirculation (EGR) was used as the exhaust source and Swedish MK1 diesel, 

a commercial low-sulfur (less than 10 weight ppm sulfur [17]) diesel, was used 

as fuel. The engine was equipped with a dynamometer control system enabling 

independent control of load and speed. 

The temperature and composition measurements were made according to 

figure 6 where the downstream catalyst position (Cat. 2) was left empty if only 

one catalyst was used.  

  

FIGURE 6 Catalyst measurement points where T indicates temperature and y 

composition. 

The temperatures were measured with 3 mm thermocouples positioned at 

the center of the pipe and close to the catalysts. The inlet gas composition was 
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measured just before the pipe expansion and the outlet gas composition was 

measured directly downstream the pipe contraction. 

3.2.2 EXPERIMENTAL DESIGN 

To obtain a widespread experimental range, six different catalyst 

configurations with different noble metal loading, lengths, and washcoat 

thicknesses were used. This included all catalysts in table 1 and also one 

configuration where two catalysts with 0.30 wt% Pt (second row in table 1) 

were used in series. Of the selected catalyst configurations the ones with the 

highest and the lowest platinum loading (0.10 and 1.78 wt% Pt) were used for 

validation while the remaining four were used for parameter estimation.  

As mentioned in the introduction the available exhaust composition, flow 

and temperature is limited by the operating points of the engine. It also takes 

several minutes for the catalyst inlet conditions to reach stability when 

switching between operating points, which means that experimental time will 

be a factor when deciding the number of different operating points when the 

full transient behavior is of interest. An important part of the current work is 

to investigate what experiments are suitable for parameter estimation and 

therefore both transient and steady-state data was desirable. Since the number 

of catalyst configurations was large and some replicates also were necessary 

only 8 different operating points were selected according to table 2.  

TABLE 2 Engine operating points and levels of variables, Med=medium. 

Number Description 

NOx HC + CO O2 Temp. Flow 

1 Low High High Low Low 
2 Low High High Low Med 
3 High Med Med Med Low 
4 Med Low Med Med High 
5 High Low Low High Med 
6 Med Low Med Med High 
7 High Low Low High Med 
8 Med Low Low High High 

 

The operating points were selected manually but were later confirmed to be 

close to a D-optimal selection (see section 2.2) with a model based design 

analysis of the engine map in temperature, concentrations and flow. Figure 7 
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shows an example of how the operating points span over the engine map for 

the case of exhaust temperature. 

  

FIGURE 7 Temperature engine map and selected operating points 

The operating points were selected to make as large steps as possible in the 

different variables including concentrations of NO, NO2, HC, CO and O2 as 

well as temperature and flow rate with the purpose of making the 

experimental space as large (and orthogonal) as possible. Some of the 

variables, such as concentrations of NO and NO2 and concentrations of HC 

and CO, are closely correlated and it is difficult to create transients where they 

are changed independently. This is also the case for O2 and temperature, i.e. an 

operation point with low temperature will have high oxygen concentration and 

an operation point with high temperature will have low oxygen concentration. 

This means that some of the input variables cannot be varied independently. A 

good experimental plan will however ensure that the variables are varied as 

independently as possible. 

The operation points were run in the order 1, 7, 2, 8, 3, 4, 5, 6 for all catalyst 

configurations to make as large transient changes as possible in as many 

variables as possible. For some of the configurations several additional 

sequences were also run. To achieve steady state conditions all points were run 

for 15 minutes each. 
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3.3 SCANIA ENGINE RIG 
When switching between two engine operating points it generally takes several 

minutes before the properties of the emissions have stabilized. The main 

reason is the large thermal mass between the engine and the investigated 

catalyst which will not only affect the transient behavior of the temperature 

but also of the concentrations. This not only makes the experiments time 

consuming, but it also complicates the transient modeling of the DOC since 

the changes in inlet properties are far from ideal step functions. 

Kolaczkowski et al. [18] presented a method where a pollutant was injected 

between the studied DOC and the engine to achieve transient data without 

changing the engine load point. This method also presents the great benefit 

that the heat accumulation problem is avoided, since the engine load and 

thereby the temperature is constant, and thus very fast transients in 

concentrations can be achieved. Sjöblom [19] further extended this concept by 

also having the possibility to reduce the flow (increase residence time) and 

control the temperature. 

In the Scania engine rig a set-up is presented where additional catalysts are 

inserted upstream of the investigated catalyst. By using different bypass 

settings and injection of urea the catalyst inlet composition could be changed 

without changing the engine operating point resulting in faster transients.  

3.3.1 SET-UP 

In the set-up of the Scania engine rig an extra DOC with the possibility for 

bypass flow and an SCR with urea injection were mounted before the 

investigated catalyst (DOC 2), as illustrated in figure 8. 

  
FIGURE 8 Experimental set-up. "DOC 2" is the test object to be studied 

The fraction of exhaust gas flow through DOC 1 allows variation in the 

conversion of HC and CO to CO2 and H2O, and the conversion of NO to NO2. 

By injecting different amounts of urea the conversion of NO2 and NO to N2 is 
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controlled and the ratio of NO2 to NOx can be adjusted, the engine was also 

tuned to run with late fuel injection to achieve high HC and CO 

concentrations. A Vanadium based commercial SCR and a commercial 

platinum only DOC were used for exhaust gas property variation. 

3.3.2 EXPERIMENTAL DESIGN 

The fast transients and the wide range of possible settings for the DOC bypass 

and urea injection made it possible to achieve a wide variation of exhaust 

compositions for every engine operating point in a short time span. Instead of 

searching for the best points in the engine map, the focus of the experimental 

design was instead put on finding the operation of the DOC bypass and urea 

injection that will generate the data best suited for parameter estimation.  

Three different experimental types with different operation of DOC bypass 

and urea injection were evaluated: 

1. Urea injection and SCR have been removed from the configuration 

shown in figure 8. Valve 1 is switching between 20% and 90% open at 

the same time as valve 2 is switching between 80% and 10% open every 

20 seconds. 

2. Set-up as in figure 8. Urea injected for 20 seconds followed by 20 

seconds of no injection. Valve 1 and 2 in locked positions. 

3. Set-up as in figure 8. Valve positions switching every 20 seconds.  Urea 

injection is switched on/off every 20 seconds with a 10 s delay relative to 

the valve positions switching. 

All experiments were run at more than 20 different engine operating points 

and to further expand experimental space several catalyst configurations have 

also been used for the same experiments. 
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4 MODELING 

4.1 REACTOR MODEL 
A full scale catalyst monolith with varying inlet properties displays a highly 

dynamic behavior. This means that the catalyst outlet conditions will not only 

be influenced by the current inlet conditions but also those at previous time 

points. To describe this behavior a catalytic reactor model with accumulation 

terms is needed.  The level of detail needed in the model is of course 

depending on its purpose. If all details of mass, heat and momentum transport 

are required and computational time is not an issue then a complete 3D CFD 

model may be the best option. In this work the model was used for parameter 

estimation which means that it was used in an iterative process to fit model 

parameters to measurement data and as such the simulation time is also a very 

important factor.  

Both the heat and the mass transfer in a monolith catalyst occur at a wide 

range of connected length scales. The channels of the monolith in this project 

are about 10.5 cm long and have an opening with a width of less than 1 mm. 

For reaction to occur the reactants first need to be convectively transported 

from the gas phase to the solid washcoat surface. From the surface they need 

to further diffuse into the washcoat (thickness around 100 micro meters) with 

pores that have pore diameters less than a micro meter to react on the noble 

metal active sites. 
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FIGURE 9 Scales of heat and mass transport in full scale catalyst.  

A full scale catalyst of the size used in this project has over 40 000 channels. If 

all channels are to be modeled individually an extremely high resolution is 

needed if phenomena like concentration gradients in the washcoat (as a 

function of reaction rates and heat and mass transport), and radial 

temperature gradients are to be modeled. A model of such complexity is not 

feasible for parameter estimation and to reduce simulation time some 

significant simplifications are needed.  

Since the catalyst is cylindrical and thereby symmetrical around the axial 

axis it would be possible to simplify the model by only modeling one row of 

channels in the radial direction. A full scale catalyst with the specifications 

given in section 3.1 has a radial distance spanning 120 catalyst channels and the 

computational demand would be reduced with more than 2 orders of 

magnitudes if an axisymmetrical modeling approach is taken. The flow 

upstream of the catalyst is however turbulent which means that a one 

dimensional description of the heat and mass profile will not be able to fully 

replicate the true conditions. A model consisting of 120 catalyst channels is still 

a very complex system if modeled in three dimensions. A model with good 

accuracy would therefore be too computationally demanding to be used for 

parameter estimation, likely the simulation time would be in the range of 

hours to days and not minutes to hours  [20].  

The two significant transport phenomena for a full scale catalyst model are 

heat and mass. The mass transport is limited by the solid substrate walls 

meaning that the mass entering one channel is also leaving the very same 
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channel. The distance from the engine to the catalyst is long and turbulent 

enough to be considered well mixed and thus the composition in the inlet to all 

channels can be assumed to be roughly the same. Heat can be transported 

between the channels through the solid material in the catalyst which makes 

the heat transport within the catalyst clearly different from the mass transport. 

There will also be heat losses to the environment both in the piping leading to 

the catalyst and from the catalyst itself meaning that there will be radial 

temperature gradients both in the catalyst inlet and inside the catalyst. In [21] 

a method was presented where a full scale CFD-based model was used to solve 

the 3D temperature profile in the catalyst which in turn was coupled to a 

simple 1D model for reactions in the catalyst washcoat. A similar approach is 

taken by Stamatelos et al. [22] but the solid energy balance is solved for an 

axisymmetric 2D model.  

The general trend for simulation of monolith converters is however still 

significantly simpler 1D models for both heat and mass [23] where all channels 

are assumed to have the same inlet conditions, heat loss (if any), and flow rate. 

The advantage with these kinds of models is of course high simulation speed 

and the drawback is reduced accuracy [24]. 

 

In this work a 1D/2D single channel model, closely based on the model 

presented by Ericson et al.  [25],  was chosen since it was considered a good 

compromise between accuracy and computational speed [26]. Due to surface 

tension effects during the washcoating process the washcoat usually is thicker 

in the corners of the channel and thinnest furthest from corners. In the current 

work the washcoat formulation has however been simplified to a slab 

representation with constant washcoat thickness to avoid the need of a third 

dimension to model the washcoat.  

The gas phase in the channel was assumed to have fully developed laminar 

properties which and thereby a discretization in the axial direction only (1D) 

was assumed to be sufficient if combined with a film transport model for the 

gas bulk interface. The wide temperature range of vehicle exhaust together 

with the need to package as much activity into a given volume of the converter 

as possible to achieve vehicle on-board space-efficiency, leads to transport 

limitations usually becoming unavoidable. This means that large gradients in 
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the washcoat are likely to occur which makes the washcoat discretization 

specifically important for a proper description of the behavior of the system. 

The washcoat was therefore chosen to be discretized both radially and axially 

(2D), see figure 10. The method used for discretization was tanks in series 

mainly selected for its robust properties in transient simulations. A film theory 

model was used to model the heat and mass transport between gas and 

washcoat surface. 

 
FIGURE 10 Illustration of the catalyst discretization principle of a single channel 

As have already been mentioned there are some clear differences between 

heat and mass transfer and the modeling of the different phenomena will be 

described separately below, for full details see Paper I. 

4.1.1 MASS TRANSPORT 

For every tank and species the balance {in} – {out} ± {produced or consumed} = 

{accumulation} is made. In the gas bulk no reaction takes place which means 

that the balance only includes convective transport with the flow and transport 

to and from the washcoat. The diffusive transport in the gas bulk in the axial 

direction is not taken into account in the mass balance since it is considered 

negligible compared to the convective flow.  

The transport resistance between the gas bulk and the first washcoat layer is 

modeled as two parts; firstly it is the film transport resistance and secondly it is 

the diffusive transport resistance of half the washcoat layer thickness. This 

configuration is chosen since it will represent the concentration in the centre of 

the washcoat layer and thus a good estimate of the average concentration in 

the volume represented by the tank. Only the asymptotic value for the 

Sherwood number was used to calculate film transport resistance and thus 

entrance effects were neglected. Asymptotic values were taken from [27]. 
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FIGURE 11 Mass transport discretization 

For further transport in the washcoat the resistance is also consisting of two 

parts which are the diffusive resistances of half the washcoat thickness of both 

layers. The axial transport in the washcoat is neglected since the axial transport 

distance is about 3 orders of magnitude larger than the radial transport 

distance. If a very large segments to layers ratio (see figure 10) would be used 

this simplification may need to be reconsidered. A description of the mass 

transport in the washcoat and its discretization is shown in figure 11.  

 

The model will have a very dynamic behavior which means that accumulation 

terms are needed for an accurate description. Accumulation terms do however 

generate a significant increase in the computational cost and if the transient 

time scales are small the model stiffness and instability may increase. 

Accumulation terms should therefore be carefully analyzed before included in 

the model. In the case of gas phase concentration, the characteristic time 

constants are low which means that a new steady state point will be reached 

within tenths of a second if the inlet concentrations are changed at constant 

temperature (see section 6.3 for example). The characteristic time constant for 

temperature is, on the other hand, large and will dominate the dynamic 

behavior of the model and as a result accumulation of gas phase species both 

in the gas bulk and in the washcoat are neglected. In micro kinetic models the 

adsorbed species influence all reaction rates and are also important 
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accumulation terms.  In the kinetic model used in the current study the 

adsorbed species dependence is modeled by an inhibition term only as a 

function of temperature and the washcoat concentrations. The transient 

behavior of the adsorbed species is thereby not described by an accumulation 

term (the inhibition term is independent of previous temperature and 

concentrations) which will make the kinetic model less suitable to describe 

transient behavior.  

It should be noted that these simplifications were made for the modeling 

from data generated by the experimental methods in the traditional engine rig 

(section 3.2) where temperature, flow and species concentration cannot be 

changed independently. For modeling of data generated by the Scania engine 

rig set-up where the temperature is relatively constant the same simplifications 

may not be applicable. 

4.1.2 HEAT TRANSPORT 

The modeling of the heat transport in the gas bulk is analogous to the mass 

transport in the gas bulk; the discretization is only made axially, the thermal 

conduction is neglected, and the film resistance is calculated from an 

asymptotic value for the Nusselt number [27]. The modeling of the heat 

transport in the washcoat on the other hand displays several differences from 

how the mass transport was modeled. The main difference originate from the 

fact that the heat transport resistance is much lower (high heat conduction) 

than the mass transport resistance (low effective diffusivity).  

For the mass transfer modeling the long axial transport distance coupled 

with the high transport resistance meant that axial mass transport in the 

washcoat was neglected. In the case for heat transport the long axial distance is 

counterbalanced by the low transport resistance which means that axial heat 

transport cannot be neglected. The efficient heat transport in the washcoat 

also means that transport in the significantly shorter radial direction will be 

very efficient and as a result the radial heat transport resistance was neglected. 

Neglecting the radial heat transfer resistance means that the radial 

discretization of the washcoat that was necessary for mass transfer can be 

simplified to a single layer for heat transport. An illustration of the 

discretization can be seen in figure 12. 
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FIGURE 12 Heat transport discretization 

The efficient heat conduction in the washcoat and substrate means that 

phenomena like heat loss to the environment and heat accumulated in 

surrounding materials such as insulation and canning will have a large 

influence on the behavior of the monolith if adiabatic conditions do not 

prevail. Since only one channel is modeled a heat loss term and extra heat 

accumulation term is added to every washcoat channel segment to model the 

two aforementioned phenomena. Modeling the heat loss to the environment as 

equal for all channels is a rough simplification but the alternative of modeling 

more channels with different temperatures and heat losses was considered to 

require a too large increase in computational demand. 

4.1.3 DISCRETIZATION 

The number of segments and layers are of utmost importance for the 

performance of the model. A too low number of segments and layers will 

make the simulation dependent on the discretization and a too high number of 

segments and layers will lead to unnecessarily long simulation times. For the 

parameter estimation performed in this project a model discretized as 10 

(axial) segments and 8 (radial) layers was considered a good tradeoff between 

model accuracy and simulation time. It should be noted that the number of 

axial segments is lower than what is theoretically necessary to model a tube 



30 
 

reactor [28] with the current dimension and experimental data, which will 

result in an over representation of axial dispersion.  

A major influence on the model performance is not only the number of 

segments and layers but also how they are distributed. In general the faster a 

property changes in one direction a finer discretization is needed to fully 

resolve a concentration or temperature gradient. For a catalyst at high 

temperature, the reaction rate will be high which means that some components 

may be consumed before they have diffused radially through the washcoat. 

Also, the fact that diffusive flux of all components is set to zero at the 

washcoat-carrier material interface means that concentration gradients will 

approach zero close to the carrier material and be steeper at radial positions 

close to the surface. In other words a fine discretization close to the washcoat 

surface would be needed but not close to the carrier material. At low 

temperatures the reaction rate will be slow and concentration will not change 

much with radial position and thus there is little need for a fine radial 

discretization. With this in mind, a washcoat discretization that decreased 

linearly with radial position was chosen which is demonstrated for eight layers 

in figure 13. 

  
FIGURE 13 Radial washcoat discretization for eight layers 

For axial discretization the same reasoning can be applied as for radial 

discretization; it is more likely that the axial gradients are larger close to the 

inlet than close to the outlet. This indicates that a discretization decreasing 

with axial position would be preferable also in this direction. However, a 
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conversion close to 100% - which would be the case for a steep concentration 

gradient close to the inlet is not generally desired since these kinds of 

experiments are less informative in a kinetic parameter estimation point of 

view.  The dynamic behavior of the model also means that different parts may 

experience large gradients at different conditions. For example when the inlet 

temp is changing from high to low the outlet end of the monolith can have a 

higher temperature than the inlet end and as a result gradients can be steeper 

near the outlet. With this in mind an equidistant axial discretization was 

selected. 

4.2 KINETIC MODEL 
Large efforts have been made to construct kinetic models for the DOC both of 

global type [11, 29-31] and microkinetic type [32-34]. The microkinetic models 

describe all reactions divided into elementary steps, which makes it possible to 

derive estimated kinetic parameters from reaction rate theory. In the global 

models the elementary steps are assumed to be either rate-determining or in 

equilibrium, which makes it possible to derive rate expressions for the overall 

reactions with a significantly reduced number of parameters compared to the 

microkinetic models [35]. These global rate expressions generally use only gas 

phase concentrations which are also used to account for inhibition, adsorption 

and desorption. However, since catalytic reaction mechanisms are often not 

understood down to the elementary step level the global rate expressions are 

rarely strictly derived from elementary reaction steps. Instead, they are often 

adjusted and sometimes expanded with additional semi-empirical expressions 

to better describe observed experimental data. In addition, reaction steps may 

be neglected and parameter values lumped all with the aim of reducing the 

kinetic model complexity and number of adjustable kinetic parameters.  These 

kinds of simplifications and modifications of rate expressions may also lead to 

the kinetic parameters having less of a physical nature and more importantly 

becoming more case-specific and less generally applicable [35]. Nevertheless, 

the far lower computational demands of global kinetic type models means that 

they are often the model-type of choice for aftertreatment design evaluations 

and control algorithms. It should be noted that exclusion of adsorbed species 

in the global models will make them less suitable to describe transient 
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behavior, see section 4.1.1, even though it may not be an issue for species with 

low surface coverage.  

The simplest versions of the DOC kinetic models only describe the 

oxidation reactions of CO, HC, and NO.  In addition HC is often represented 

as one molecular species, usually propene [11, 36, 37]. The exhaust 

composition is far more complex than just one type of hydrocarbon species 

and there are examples of kinetic models [22, 29] that have been expanded 

with several types of HC. Other additional reactions that may be added are H2 

oxidation [22, 34] and HC reduction of NOx  [30, 38] or by NO2 [29]. In this 

work rather than focusing on the required model formulation or level of detail 

of the kinetic model, it was the method used to estimate kinetic parameters for 

a given kinetic model that was in focus.  

 

The kinetic model used in this study is of Langmuir-Hinshelwood type and was 

originally suggested in the classical work by Voltz et al [11] and later modified 

by Oh and Cavendish [36]. The model, which has been widely and frequently 

used in DOC modeling over the years, only includes three reactions of which 

one is an equilibrium reaction: 

CO + 
1

2
 O2 → CO2 

C3H6 + 
9

2
 O2 → 3 CO2 + 3 H2O 

NO + 
1

2
 O2 ⇌ 2 NO2 

The reaction rates were calculated according to equations 2 to 6. 
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where Kj is the reaction rate coefficient for the inhibition terms in the 

denominator G and Kp is the equilibrium constant for NO oxidation. At 

thermodynamic equilibrium, Kp will be equal to K' and reaction rate r3 will be 

equal to zero. Both reaction rate coefficients kj and Kj were described by 

Arrhenius expressions: 

�� = �����,�

��	  (7) 

The start values for estimation of kinetic parameters were taken from Wang 

et al. [37] where results from several studies [39-45] were compiled. The initial 

values for kinetic parameter estimation used in this study are shown in table 3.  

TABLE 3 Start values for kinetic parameters estimation. 

Index Pre-exponential factor 

[mole K/(m2s)] 

Activation energy 

[kJ/mole] 

j A Ea 

1 1.00 ×1017 80.0 

2 4.00×1020 100.0 

3 4.50 ×1014 70.0 
   

Index Adsorption pre-

exponential factor 
 [-] 

Adsorption 

activation energy  
[kJ/mole] 

j A Ea 

4 65.5 -8.0 

5 2080 -3.0 

6 3.98 -96.5 

7 479000 31.0 
 

The kinetic parameters in equations 2 to 6 are highly correlated and since 

the parameter values in table 3 were taken from different studies, the fit of the 

model to experimental data was expected to be poor before any parameter 

tuning was performed. However, the parameters were successfully used as a 

starting point for parameter tuning of a DOC against engine rig data by Wang 

et al. [37] which was also the intended application in the present work.  
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5 PARAMETER ESTIMATION 

With the experimental plan carried out, the catalyst and kinetic models 

selected, the parameter estimation can finally be performed. The standard 

procedure of parameter estimation for automotive catalysts is to use all 

experimental data points to estimate kinetic parameters only. In the current 

project the estimation of kinetic parameters are complemented by estimation 

of heat and mass transport parameters to better describe the dynamic behavior 

of the full scale catalyst. A method of decreasing parameter estimation time by 

reducing the number of data points by Multivariate Data Analysis (MVDA) 

was also evaluated (Paper II). 

5.1 ADJUSTABLE PARAMETERS 
At lab scale the heat losses to the environment can usually be kept at 

negligible levels (insulation or heating of the monolith are two common 

measures) and also the mass transport resistance can be reduced by using thin 

washcoat layers or even using powder of crushed monolith [46]. In the case of 

full scale catalysts heat- and mass transfer limitations are more likely to have 

an important influence on the results, as has been discussed above. The 

parameters affecting the heat- and mass transfer resistance are difficult to 

measure and the best option may be to instead use simplified models where a 

few parameters are tuned to experimental data.  

The parameter estimation is performed with parameters in scaled and 

centered forms [47]. Which means that the estimated parameter is equal to an 

original value from literature or previous estimation plus/minus the adjustable 
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parameter, p, times a weight factor, w. For example the activation energy is 

estimated by  

��,� = ��,�� +���,����,� (8) 

where the superscript “o” indicates that this is the original value. The value of 

the weight factor is selected to make the sensitivity of the residual sum of 

square on the same order of magnitude for all estimated parameters.  

5.1.1 KINETIC PARAMETERS 

All the pre-exponential factors, Aj, and activation energies, EA,j, determining 

the reaction rate coefficients in equations 2-6 have been tuned to experimental 

data. It should here be stressed that the parameter estimation is a retuning of 

kinetic parameters determined at lab scale and not estimation of parameter 

values based on theoretical considerations. The starting point of kinetic 

parameter estimation will therefore be the values in table 3.   

The parameter estimation of activation energies has already been shown in 

equation 8 and is straight forward. The parameter estimation of 

pre-exponential factors is performed in three steps [48]. As a first step the 

reaction rate coefficients are centered on a reference temperature with the 

purpose of reducing the correlation between activation energies and pre-

exponential factors. 

��,���� = ������,�



����  
(9) 

With the performed centering the activation energies will capture the 

temperature dependence and the pre-exponential factors will capture the 

amplification. The reaction rate coefficient kj,ref is scaled according to  

�����,���� = �����,�����+��,���,� (10) 

The tuned rate constant at a reference temperature is then used to calculate 

the pre-exponential factor  

�� = ��,����

��,��� !" 
(11) 
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When equation 11 is inserted into the expression for the reaction rate 

coefficient in equation 7, the following expression for the tuned reaction rate 

coefficient is obtained 

�� = ��,����

�#��,�� $ �

�	
� �

���
%&

 
(12) 

It has been shown that the catalyst active surface area could be used as a single 

parameter in a global model [49]. In addition to the pre-exponential factors 

and the activation energies, an activity scaling factor has therefore also been 

selected as an adjustable parameter. The activity scaling factor is simply a scale 

factor for all reaction rates on a certain site on a certain catalyst (parameters 

were tuned to several different catalyst samples simultaneously). This means 

that the catalyst active surface area was tuned for each catalyst sample since 

only one single site is used in the kinetic model. 

5.1.2 HEAT TRANSPORT PARAMETERS 

The heat loss term and extra heat accumulation term that was added to every 

washcoat channel segment in the model (see section 4.1.2) represent two 

parameters that are difficult to measure. Instead these parameters were fitted 

to measurement data together with an environmental temperature.  

The temperature in the catalyst has a very large influence on the reaction 

rates and conversion of the different components. For a full scale DOC in an 

engine rig the influence on the temperature from the reaction rate will be of 

less significance mainly since the concentrations of reacting species is low. To 

be able to perform a good parameter estimation of kinetic and mass transport 

parameters it is therefore important to have good accuracy in the heat transfer 

model but not necessarily the other way around. With this in mind the heat 

transport parameters were estimated before the other parameters which meant 

that original parameter values were used for kinetic- and mass transport 

parameters. By estimating the heat transport parameters separately the high 

correlation between reaction rates and heat transport parameters is reduced. 

When the heat loss parameters are estimated it will be against the residual of 

outlet temperature alone and when kinetic- and mass transport parameters are 

estimated it will only be against concentration residuals.  The risk that heat 
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transport parameters are estimated to improve the fit of outlet concentrations 

is thereby avoided. 

5.1.3 MASS TRANSPORT PARAMETERS 

In a system where both mass transport rate limited and reaction rate limited 

conditions will prevail the transport in the washcoat will be of great 

importance for the behavior of the catalyst system as a whole. The transport 

resistance in the washcoat is influenced by the diffusivity at different length 

scales and the structure of the washcoat. Several different correlations are 

available to determine the diffusivities but the influence of the washcoat 

structure is more complicated to identify. In this study the transport resistance 

in the washcoat has therefore been tuned with the aim of reducing the 

correlation between mass transport and kinetic parameters. The method used 

is presented below. 

The species used in the kinetic model are O2, NO, NO2, CO, and HC which 

means that these also are the species whose mass transport is significant for the 

behavior of the model. In the catalyst model presented in [50], on which the 

current catalyst model is based, an expression for the effective diffusivity was 

derived according to  

����,�,' =
�(�(�,�
+

�()�,�

 (13) 

Where fD is a factor that takes into consideration the porosity and the 

tortuosity of the porous material, DKi,k is the Knudsen diffusivity, and Di,k is 

the gas diffusivity. 

This expression describes the transport resistance in the catalyst washcoat 

but provides only a rough estimate. Firstly the fD factor itself should account 

for both the tortuosity and the porosity of the washcoat by just one constant 

which makes it difficult to estimate. Secondly the structure of the pores may 

contain cracks and other discrepancies which would make the resistances in 

parallel suggested by the model (denominator of 1/Di,k+1/DKi,k in equation 13) 

far from reality.  

The mass transport was tuned by adjusting a scaling factor for the effective 

diffusivities for the species taking part in the reactions. 
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�(	����,� = �(	����,�� +�(	����,��(	����,�  (14) 

This will change the expression for the effective diffusivity according to 

����,�,' =
�(�(�,�
+

�(�,�,�

�(	����,�  (15) 

The value for fDscale,i
o is typically around 1.  

 

The species were divided into two groups, where the first group contained O2, 

NO, NO2, and CO and the second group contained HC. In the first group all 

species are well defined with similar diffusivities and could be expected to have 

similar mass transport properties in the washcoat with presumably the same 

bias from their true values. To reduce the number of parameters to tune, the 

same scale factor was used for all species in this group. The second group 

contained HC which was represented as C3H6 but in reality is a wide range of 

hydrocarbons with different mass transport properties. The scale factor for the 

second group was in other words expected to be influenced both by the 

hydrocarbon composition and the washcoat structure while the scale factor for 

the first group mainly accounted for only washcoat structure. 

5.2 STANDARD METHOD OF PARAMETER 
ESTIMATION 

The most common way to perform parameter estimation is probably to use all 

time points in the data to which the model is to be fitted by applying a gradient 

search method algorithm. This method was used in Paper I as a reference to 

compare to the results from Paper II where parameter estimation with PCA 

and D-optimal Design was used together with the same gradient search 

method. 

5.2.1 GRADIENT SEARCH METHOD 

Several different optimization methods can be used to minimize the simulated 

residuals and the most common method is probably the gradient search 

method which was also the method used in this study. The method is very 

efficient for linear systems but can also be applied for non-linear systems such 

as catalyst models. For a non-linear system the residual function is first 



40 
 

linearized for all parameters (the resulting matrix is known as the Jacobian, see 

section 5.3.1) and then a step in the parameter space is made in the direction of 

the steepest descent. This process is repeated until the change in residual is 

below a certain tolerance. The method is thoroughly described in, for example 

[13], but a short description of how the step in parameter space is calculated 

will also be given here.  

The functioned to be minimized is the residual sum of squares according to 

min
β
�(x, β)� = �y�*+,-.,/ − y0�/,1(x, β)�� (16) 

where x is the variables, β is the parameter values and y is the measured and 

simulated responses. If a specific set of data is considered the variable 

dependence can be dropped and equation 16 can be rewritten according to  

min
β
��β� = ‖y�*+,-.,/ − η�β�‖� = ‖z�β�‖� (17) 

To calculate the size of a step taken in parameter space the objective function, 

S(β), is first approximated by a Taylor expansion: 

  

��β� ≈ ��β��+ ����β�
�β

�2�

�β − β��
+ �β − β��3 1

2
��2��β�
�β�β3 �2�

�β − β�� = 

(18) 

=

��
�
��ω = ��4526

�2 �2�

Ω = ��24526
�2�2�

�2�

δ = β − β�  �
!
�"	= S(β0) + ωδ + δT 

1
2Ωδ 

 

The approximation of S(β) described in equation 18 will have a minima when 

the gradient is zero: 

ω	+ 	Ωδ = 0 (19) 

which gives the parameter step size according to δ = Ω-1
ω. For the function 

S(β)=(y-η)T(y-η) the gradient ω and Hessian Ω is given by 
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ω	 = −2J3z 

(20) 

Ω	 = 2J3J − 2
∂J

∂β
z 

When setting the second term of the Hessian to zero the Gauss-Newton 

method is obtained where the parameter step size is only depending on the 

Jacobian J and residual z. 

It is worth noting that the linearization of the system is the most time 

consuming part of the gradient search method. The effect of small steps in all 

directions (parameter values) must be calculated by the catalyst model for all 

time points before a step in the steepest decent can be made. For every step 

made, the catalyst model will in other words be called p+1 times where p is the 

number of parameters that are to be estimated. 

The gradient search method in this work was the trust-region-reflective 

method [51]. This is the standard method for over determined non-linear least 

square problems in Matlab, the software used in this project. This method is 

implemented in the Matlab function lsqnonlin.  

5.2.2 RESIDUAL WEIGHTING 

When parameter estimation is performed according to the gradient search 

method the target function is to minimize the residual sum square. In the case 

of kinetic- and mass transport parameters the residuals will be calculated from 

the concentrations in the outlet. The species used in the model are O2, NO, 

NO2, CO, and HC which are, of course, all measured at the outlet of the 

catalyst. The relative change in O2 molar fraction over the catalyst is however 

small, the diesel engine runs with oxygen excess, and is close to the noise level 

of the detector. Oxygen is also consumed in all oxidation reactions modeled 

and does thereby not add any extra information on the specific reactions. To 

avoid unnecessary uncertainties, the oxygen residual was not used for 

parameter estimation.  

The molar fractions of NO, NO2, CO, and HC at both catalyst inlet and 

outlet differ by more than one order of magnitude at some engine operating 

points. To equalize the influence from the different species on the residual sum 

square, the residuals of the different species need to be weighted. The 
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weighting method of choice in the current study (Paper I and II) has been the 

inverse of the average outlet molar fraction for the different species calculated 

over the entire data series.  

5.3 PARAMETER ESTIMATION AIDED BY 
PCA AND D-OPTIMAL DESIGN 

The traditional way of performing parameter estimation generally gives 

good results since all experimental data is used but there are some drawbacks 

such as, long simulation time, risk of finding a local minima far from the global 

minima, risk of being dominated by certain parameters, and high parameter 

correlations. The method with MVDA described in the current work is applied 

to reduce these drawbacks but with similar or better end results than for the 

traditional method. The methodology is an extension of the work in [47]. 

5.3.1 METHOD 

The method used for parameter estimation with the MVDA method is an 

iterative process divided into a number of sub-operations that are 

schematically summarized in figure 14. 
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FIGURE 14 Summary of the MVDA method of parameter estimation 

The first step in the method is the calculation of the parameter sensitivity 

matrix, often referred to as the Jacobian (J). The jacobian is defined as 

$��,%� =
&�&% (21) 

where f is the residual between simulated and experimentally measured 

concentration, and θ is the parameter vector in the non-linear model. The 

number of columns in J is different depending on applications. For use in 

parameter estimation with gradient search method (see section 5.2) the size of 

J is [N*k× p], since the parameter sensitivity is (inherently) assumed to be 

based on independent responses. p is here the number of parameters, N is the 

number of observations and k is the number of responses (residual types).  In 

this study the responses are correlated (eg NO and NO2). By arranging the 

Jacobian as [N×k*p] the correlation structure can be better accounted for in 

the D-optimal selection based on PCA, as described below.  



44 
 

When starting simulations with the catalyst model the only known 

conditions are those of the inlet and outlet flow. This means that initial 

conditions such as concentrations and temperature inside the catalyst need to 

be appraised which results in the first seconds of every simulation being 

unreliable. To avoid parameters being tuned against simulation results that are 

not reliable the first 120 s of every experimental data set was removed from 

the Jacobian matrix before being treated with PCA in the next step of the 

method.  

PCA is applied to the reduced Jacobian matrix and a scores and a loadings 

matrix is calculated according to section 2.1 and equation 1. The resulting 

scores matrix will contain information about the relation between the time 

points and the loadings matrix will contain information about the relation 

between the residuals. By analyzing the scores matrix it is possible to identify 

time points having a large influence on the different residuals and thereby 

would be good candidates to retain if the number of time points used for 

parameter tuning were to be reduced. Several different methods for doing this 

kind of analysis exist and in this study the D-optimal design method has been 

applied.   

 

A system of such complexity as a full scale monolith will display non-linear 

behavior which may result in a variable sensitivity for the selected time points 

when the parameters deviate from the values used for the Jacobian calculation. 

Adding the interaction and square terms to the scores matrix will mean that it 

is possible for the D-optimal design algorithm to select time points highlighted 

by their non-linearity. Before applying D-optimal design on the scores matrix 

(T) it is expanded with interaction and square terms, in order to handle the 

sensitivity variability described above. The D-optimal design algorithm selects 

rows (time points) from the expanded scores matrix (Texp) that maximizes the 

parameter sensitivity volume (eg. the determinant of (Texp)
TTexp) where the 

number of selected rows is chosen to be equal to the number of columns in 

Texp. By this algorithm the time points with the most influence on the change in 

determinant (highest sensitivity) are identified. The main advantage of 

applying D-optimal design on the scores matrix instead of the full Jacobian is 

that the calculations of the design matrix will be much faster (roughly 5 
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minutes instead of 15 hours on one processor core on a standard desktop 

computer for the current set of data) if the number of columns is 50-200 

instead of about 3000 which would have been the case if the Jacobian matrix 

was expanded with interaction and square terms.  

 

With the time points identified with D-optimal design, a parameter estimation 

with the gradient search method is performed using the selected time points 

only. 

Since the properties of the Jacobian matrix will be dependent on the actual 

parameter values the best selection of time points for parameter tuning will 

change as the parameters are tuned. To make the parameter tuning efficient it 

is therefore necessary to select new time points for parameter tuning as new 

parameter values develop. In the current study the time point selection with 

PCA and D-optimal design is followed by a period of parameter tuning that 

will result in new parameter values and thereby a new time point selection by 

the PCA and D-optimal analysis. The parameter tuning will be limited to only 

a few iterations (1-5) in the parameter space which will decrease the risk of 

obtaining a too large influence from the selected time points on the overall fit. 

Already after the first step in the parameter space the sensitivity may have 

changed significantly. 

If no improved parameter values were found (resulting in a reduced 

residual) with the gradient search method, which is may occur since just a few 

steps are taken, a new D-optimal design will be performed. Even though the 

scores matrix is unchanged (since the parameter values are unchanged) the D-

optimal design is likely to select different time points since the selection of a 

design matrix with D-optimal design contains certain random factors. This 

process where new time points are selected with D-optimal design will be 

repeated until parameter values can be found that reduce the residuals in the 

points selected. The improved parameter values will then be used to calculate 

the residuals on the whole data set and the parameter estimation cycle may be 

halted if certain criteria are fulfilled. If the criteria are not fulfilled a new 

sensitivity calculation on the whole data set (Jacobian matrix calculation) will 

be performed and the cycle is thereby back at the first square in figure 14.  
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5.4 COMPUTATIONAL EFFICIENCY 
Parameter estimation on highly dynamic systems such as a full scale catalyst is 

a computationally demanding process. The focus of the project is to evaluate 

different methods of parameter estimation and to make them as efficient as 

possible which means that a lot of computational power has been needed. 

Without an efficient use of the computational resources available the project 

would simply not be where it is today. The measures taken to improve the 

computational efficiency are described in the following sections.  

5.4.1 PARALELLIZATION 

The software used for all simulations, parameter estimations, and data analysis 

is the well known numerical computing environment Matlab including Matlab 

Statistical toolbox and Matlab Parallel Computing toolbox.  

The default setting for Matlab is to perform calculations on a single 

processor core which, in the case of a multi-core computer, means that the full 

computational power is not used. Matlab Parallel Computing toolbox, 

however, makes it possible to run computations in parallel on up to twelve 

processor cores, sometimes referred to as workers, on one local computer. 

  
FIGURE 15 A Matlab computation can be distributed over several processor 

cores (workers) by creating a parfor loop 

To make parallel computation possible the computations performed on 

each core need to be independent of the calculations on the other cores. For 

example it would not be possible to calculate the washcoat concentration of 

NO on one core and the washcoat concentration of CO on another core since 

both concentrations will influence each other’s rate of reaction.  
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One set of independent calculations are simulations performed on different 

sets of experimental data, for example experiments on different catalyst 

configurations. This kind of parallelization over experiments has made 

parameter estimation according to figure 16 possible.  

  
FIGURE 16 Parallelized computation during parameter estimation illustrated by 
parallelization over four experiments 

The number of experiments can exceed the number of cores used in a 

parallelized calculation but there is no gain in having more cores available than 

the total number of experiments. If the experiments include about the same 

number of time points and have similar dynamic behavior, their simulation 

time should be approximately equal and thus the relative reduction in total 

simulation time would be of the same order as the number of cores used.  

The relation between number of experiments and cores is of high 

importance for the computational efficiency and should be carefully 

considered when planning simulations if the number of core hours (hours of 

computational time per core) used is an issue. For example if the simulation 

time for one experiment is considerably longer than for the other experiments  

maybe they can all be sequentially simulated on one core in the same time as 

the long experiment is simulated on another core; two cores only would then 

be the most efficient use of computational recourses. The fastest way to 

simulate is however always to have the same number of cores available as the 

number of experiments and when possible this configuration has been used in 

the current work. The theoretical increase in simulation speed on one 

computer is then twelve times the computational speed on one core but due to 
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differences in simulation time for different experiments, the practical increase 

in computational speed is closer to half that value. 

5.4.2 CLUSTER COMPUTATION 

The available desktop computer in this project has four processor cores which 

is what can be considered standard for computers today. On a cluster more 

processor cores per computer is available and there’s also a possibility to 

perform calculations on more than one computer at once.  

With the MVDA parameter estimation method, described in section 5.3, 

parameter estimation is performed in only a few data points selected from a 

large set of data spreading over several different experiments. The number of 

data points selected is usually 100-200 and if divided into data sets containing 

points less than 120 s apart the total number of data sets usually is between 30 

and 50. These data sets can be simulated independently which means that the 

parameter estimation can be performed in a parallelized manner as described 

in the previous section. The computers on any of Chalmes’ clusters does not 

have more than 16 cores which means that more than one computer was 

needed to achieve maximum computational speed. The use of enough cores to 

simulate all data sets on different cores has some major drawbacks when 

considering computational efficiency: 

1. The number of data sets will vary depending on how D-optimal design 

chooses the number of data points at different parameter values which 

means that there is no way to know beforehand how many cores will be 

needed. To ensure that the number of cores is high enough a number of 

cores will likely be unused for the entire simulation. 

2. The residual and Jacobian calculation is performed on the total data set 

and can thereby not be parallelized over a large number of cores. These 

calculations are made frequently which means that the majority of the 

cores will be unused for a significant part of the parameter estimation.  

Despite these drawbacks computational speed has usually been prioritized 

when performing parameter estimation and a large amount of cores have been 

allocated before these calculations have been performed.  
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6 RESULTS AND DISCUSSION 

6.1 PAPER I – TRADITIONAL PARAMETER 
ESTIMAION ON A FULL SCALE DOC 

Parameter tuning was performed against data from a full scale engine rig with 

standard set-up described in section 3.2. The experimental plan including 

catalyst configurations and engine operating points is described in section 

3.2.2.  The catalyst model where the catalyst washcoat was discretized as tanks 

in series both radially and axially is described in section 4.1 and the global 

kinetic model used is described in section 4.2. Four different modeling 

approaches were used for parameter tuning to demonstrate the advantages of 

radially discretizing the washcoat, including internal transport resistance in the 

catalyst model, and evaluate possible benefits from tuning mass transport 

parameters 

6.1.1 MODES OF PARAMETER ESTIMATION 

The four different modeling approaches (modes) for parameter estimations 

are summarized in table. 4. 
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TABLE 4 Short description of the modes of Parameter Estimation 

Nr. Modes of Parameter 
Estimation 

Number of  
parameters 

Discretization 

Segments Layers 

1 
Undiscretized washcoat and 
fixed effective diffusivity 

17 10 2 

     
2 

Negligible internal mass 
transfer resistance 

17 10 8* 

     
3 

Discretized washcoat and fixed 
effective diffusivity 

17 10 8 

     
4 

Discretized washcoat and 
tuned effective diffusivity 

19 10 8 

     *Since no concentration gradients in the washcoat were expected two layers would have been enough for 
this case, however eight layers were used for computational consistency 

 

In Mode 1 the model was simplified to only contain two layers. The outer 

layer was selected to be only 2% of the total washcoat which meant that 

external mass transfer was the dominating resistance between the gas bulk and 

outer layer. This mode demonstrates a model that is computational less 

demanding where internal transport resistance is present although poorly 

resolved. Mode 2 also represents a case with discretization of the washcoat, 

however effective diffusivities were set to very high values (1000 times initial 

estimates).  In effect, Mode 2 is a case with negligible internal transport 

resistance. Mode 3 and Mode 4 differ only by the fact that the latter has 

enabled estimation of the effective diffusivity whereas the former has not.  For 

Mode 3 as with Mode 1 the effective diffusivities were fixed at the initially 

estimated values (see section 5.1.3).  

6.1.2 HEAT TRANSFER PARAMETER TUNING 

The heat transfer parameters thermal mass, environmental temperature, and 

lumped heat transfer coefficient were tuned before any additional parameter 

tuning was performed. Judging from the final parameter values there were a 

noticeable heat loss which also lead to radial temperature gradients in the 

monolith. These radial temperature gradients were also confirmed by 

measurement data where temperature was measured at 0%, 50%, 75%, and 

100% of the total radius. The measurement data also showed that the 

temperature gradients between 0%, 50%, and 75% of the total radius 

generally were small but large between 75% and 100% of the total radius. A 
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reduced distance between the measurement points close to the total radius 

would have been needed to further evaluate the validity of the one channel 

model for the data at hand.  

6.1.3 TUNING OF KINETIC- AND MASS TRANSFER PARAMETERS 

A brief overview of the results is here presented highlighting the main 

conclusions from the parameter estimations performed. For a full presentation 

of the final parameter values and a detailed discussion thereof please see 

section 3.2 in the enclosed Paper I. The parameters in the kinetic expressions 

are shown in equations 2 to 7.  The most important observations of the final 

kinetic- and mass transfer parameters can be summed up in the following 

points: 

� A6 and EA,6 in common denominator G (see equation 6) had no 

significance for the simulation results.  

� Under equal conditions the reaction rates of Mode 3 were significantly 

larger than the reaction rates of Mode 2 showing that the kinetic 

parameters in Mode 3 needed to compensate for a stronger transport 

resistance  

� In Mode 4, which was the only mode where the effective diffusivity was 

tuned, the final effective diffusivity was increased by 7.71, and 2.11 

times the original values for large components, and small components. 

These values are both still physically reasonable, see section 5.1.3 for a 

thorough description of the effective diffusivity.  

� The differences between activation energies for the modes were 

relatively small and usually they were close to their initial values which 

could indicate that the activation energies are not as case specific as the 

pre-exponential factors.  
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FIGURE 17 Measured and simulated outlet concentrations and temperature for a 

change in operating point from 2 to 8 for catalyst configuration with 0.59 wt%Pt 
and 0.11 mm washcoat thickness..  

Figure 17 shows that only the model where transport resistance was 

neglected (Mode 2) shows a good fit for NO. Both Mode 1 and 3 had a poor fit 

for the CO transient and appear to approach the wrong stationary values for 

both HC and CO. The transient behaviour of both HC and CO, before the 

change in operating point, was caught well by Mode 4 but was a bit weaker for 

Mode 2. Both these modes approach the same stationary concentrations for 

HC (very good) and CO (good). 

 

The above figure show only one of 16 transients used for parameter estimation 

(4 catalyst configurations and 4 operating point changes for every 

configuration). To give a broader overview of the simulation results the 

residual sum sqares for every mode and component is shown in table 5. Note 

that the residuals in this table have been weighted with the inverse of the 

average outlet concentrations for the entire data set. 

TABLE 5 Residual sum square (×105) of every component together with  the 

summation of residual sum square (rightmost column) for the different modes.  

 
NO HC CO NO2 Sum 

Mode 1 4.77 4.26 12.4 5.80 27.3 

Mode 2 0.67 3.10 4.46 0.83 9.05 

Mode 3 2.09 2.44 6.89 2.64 14.1 

Mode 4 0.77 2.41 3.49 0.97 7.65 
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Looking at the results of the different modes of parameter estimation with 

respect to both the residual sum squares (table 5) and figure 17 it is obvious 

that it was not possible to obtain a good fit with a washcoat that was not 

discretized radially at the default values of effective diffusivities (Mode 1).  

The starting kinetic parameters shown in table 3 were collected from lab 

scale data, where the transport resistance was assumed to be negligible. It may 

be speculated that the difficulties encountered when tuning a model where the 

transport resistance is not neglected could indicate that the original parameters 

were in fact influenced by transport resistance, a phenomena observed 

previously [52]. The structure of the kinetic model itself may also make it less 

suitable for a catalyst model where the internal transport resistance is clearly 

separated from the kinetics. The foundation of this conclusion is that the sign 

of the activation energy (or heat of adsorption) for NO inhibition (EA,7) is 

positive and thus will reduce reaction rates with increased temperature in a 

similar way that internal transport resistance would. This could then explain 

why the results of Mode 2, where the transport resistance was neglected, 

showed a better fit for NOx which can be seen in both table 5 and the figure 17. 

In a model that clearly separates mass transport and kinetics, it is in other 

words not only important to have original parameters uninfluenced by 

transport resistance but also that the kinetic model itself is not constructed to 

mimic internal transport effects.  

The overall fit of Mode 4 is significantly better than the overall fit of Mode 

3 which is also evident when the total residual sum of squares are compared 

(table 5). This would indicate that the tuning of transport resistance 

parameters is very important for the overall behaviour of the model.  

6.2 PAPER II – PARAMETER ESTIMATION 
WITH MVDA ON A FULL SCALE DOC  

In this paper two different approaches to the method presented in section 5.3 

were evaluated. The method was performed on the same data as in Paper I 

which means that experimental design and data collection will not be further 

discussed here.  
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6.2.1 MVDA APPROACHES 

In the first approach the number of steps taken with the gradient search 

method in the points selected with MVDA was limited to only one. The 

motivation for this approach was that the points selected with MVDA were 

selected by evaluating the sensitivity for all data points (Jacobian matrix) for a 

defined set of parameter values. When the parameter values are changed, like 

they are during a gradient search, the sensitivity will also change and the point 

selection should be updated to ensure that the parameter estimation is 

performed in the statistically best data points. By limiting the number of steps 

to one, new points will be selected every time an improved set of parameter 

values is found. The drawback with the method is that the sensitivity for all 

data points needs to be frequently calculated. This is time consuming since all 

time points are used for these calculations and more time will be spent 

selecting new data points than for performing actual parameter estimation in 

the selected data points. This method will be referred to as “MVDA 1 step”. 

In the second approach, referred to as “MVDA 5 step”, the number of steps 

taken with the gradient search method (in the points selected with MVDA) 

was instead limited to 5. Since the steps with the gradient search method will 

still be limited the parameter values will change little from the starting values 

and the selected time points should still be relevant. As a result more 

computational time will be spent on parameter estimation compared to the 

MVDA 1 step method. 

6.2.2 FIT TO MEASUREMENT DATA COMPARISON  

The fit of the temperature simulation was considered good enough in Paper I 

and as a result only tuning of the kinetic and mass transport parameters were 

performed with the MVDA method. Two examples of the final results of the 

parameter estimation with the two MVDA approaches are shown in figure 18. 

The two modes of parameter estimation that gave the best fit in Paper I (Mode 

2 and 4 described in table 4) are also included in the figures as a reference.   
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FIGURE 18 Measured and simulated outlet concentrations and temperature for a 

change in operating point from 2 to 8 for catalyst configuration with 0.59 wt%Pt 
and 0.11 mm washcoat thickness. 

Figure 18 shows that both the parameters estimated with the MVDA 1 step 

approach and the parameters estimated with the MVDA 5 step approach had 

a poor fit for NO at high temperatures which is also noticeably worse than for 

the reference estimations. This is also true for CO, especially for the MVDA 1 

step approach, even though the general fit is better than for NO.  

The above graph show only one of 16 transients used for parameter 

estimation (4 catalyst configurations and 4 operating point changes for every 

configuration). To provide a broader overview of the simulation results the 

residual sum squares for every component is shown in table 6. Note that the 

residuals in this table have been weighted with the inverse of the average 

concentrations for the entire data set. 

TABLE 6 Residual sum square (×105) of every component together with  the 

summation of residual sum square (rightmost column) for the different modes.  

 
NO HC CO NO2 Sum 

MVDA 1 step 2.82 1.80 17.00 3.44 25.06 

MVDA 5 step 1.71 1.83 12.52 2.13 18.19 

Mode 2 (ref) 0.67 3.10 4.46 0.83 9.05 

Mode 4 (ref) 0.77 2.41 3.49 0.97 7.65 

 

If the results in table 6 and figure 18 are studied it is evident that the 

parameter estimation with the MVDA methods generates a noticeably inferior 
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fit for NOx and CO and better fit for HC than the traditional parameter 

estimation methods shown as references. One reason for the poor fit of NOx is 

probably the weighting of the residuals. NO and NO2 outlet concentrations are 

high over the entire data set which means that the average concentration will 

be high and the weighting of the NOx residuals will thereby be low. The low 

weight will be balanced by the high number of points where the outlet 

concentrations are non zero in the full data set. The average outlet 

concentrations of HC and CO are low since the engine out concentrations of 

HC and CO are close to zero at most engine operating points. The weights of 

HC and CO residuals will therefore be high and the few points where the 

outlet concentrations are non zero will have a large influence on the total 

residual sum of squares. If parameter estimation is performed on all points the 

residual weighting will be fair and assure that no component has a dominating 

influence. 

With the MVDA data point selection a few points that have high sensitivity 

for the different parameters and residuals will be chosen. Since HC, CO, NO 

and NO2 residuals are weighted to have equal contributions to the residuals of 

the full data set, same influence on the Jacobian matrix, about the same 

number of points that have high influence of the different component residuals 

will be chosen. This means that about a fourth of the points will be chosen 

since the influence on the HC residual is high which will occur where the outlet 

concentration of HC is non zero. The relative number of points where HC and 

CO are high will thereby be much larger in the points selected by MVDA than 

for the full data series. The parameter estimation will prioritize the 

minimization of HC and CO residuals since they will have the largest influence 

on the total residual sum of squares. 

6.2.3 COMPUTATIONAL EFFICIENCY COMPARISON 

In addition to an improved fit of the final result the objective of the parameter 

estimation method with MVDA was to reduce computational demand. A 

summary of the computational times for the reference cases from Paper I and 

from the two approaches in Paper II are shown in table 7. 
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TABLE 7 Computational time for the parameter estimations performed in Paper 

II compared with the reference cases from Paper I 

 
Total simula-
tion time [h] 

Number of 
cores used 

Core hours 
used 

Iterations 

MVDA 1 step 479 48 22992 8* 

MVDA 5 step 686 48 32928 10* 

Mode 1 (ref) 61 16 976 17 

Mode 2 (ref) 230 16 3680 13 

Mode 3 (ref) 635 16 10160 37 

Mode 4 (ref) 422 16 6752 21 
* Number of times a improved parameter value have been found through parameter estimation in the data 
points selected with MVDA (right hand loop performed in figure 14) 

 

The reference estimations were run until the reduction in the residual sum 

of squares was below 1% for three consecutive steps with the gradient search 

method. The MVDA approaches had the same criteria applied for the residual 

sum of squares for the total data set. As an additional criterion the estimation 

would be halted if no improved parameter values were found after more than 

ten selections of data points for the same parameter values (corresponding to 

more than ten left hand loops in figure 14). 

The total computational time varies considerably between the different 

cases. The simple model with the low discretization (Mode 1) has the shortest 

computational time since the iteration time is significantly shorter than for the 

other cases. For the other reference cases the number of iterations is the 

determining factor but it is hard to draw any conclusion about why one model 

converges faster than the others. The use of the computational resources with 

the MVDA method is less efficient than the traditional reference methods 

which can be seen if the numbers of core hours are compared for the different 

cases (for further discussion see section 5.4.2).  

When the system of differential equations that describes the catalyst model 

is solved the computational time will be very dependent on the behavior of the 

time dependence of the inlet conditions. The faster the inlet conditions change 

the more the dependent variables in the catalyst will change which result in 

increased calculation times. Even though the number of points selected with 

MVDA is low the majority of them will be selected where the inlet data is very 

transient. This means that the parts of the total data series that are most time 

consuming to simulate will also be included in the simulation with the reduced 
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number of points. Even though the number of data points selected with 

MVDA is less than 1% of the total data series the simulation time will still be 

about 25% of the simulation time of the total data series.  

The high parameter sensitivity in transient data points indicated by the 

preference from MVDA could mean that a better fit could be achieved if more 

transient data was available. This issue will be addressed in Paper III. 

6.2.4 CONCLUSIONS 

 The method of parameter tuning presented in the current study did not obtain 

a better overall fit to measurement data than a parameter tuning performed 

with a standard method used as reference. Neither was the simulation time 

reduced. Some areas of possible improvement of the method were identified: 

� The residuals should not be scaled against the inverse of the average 

concentration over the total data set. The influence of components with 

low average concentration but high peak values will dominate the 

parameter estimation with the investigated method.o 

� The high parameter sensitivity in transient data points indicated by the 

preference from D-optimal design could mean that a better fit could be 

achieved if more transient data was available. 

� The parameter sensitivity will develop as the parameters are tuned. The 

parameter scaling could therefore be updated continuously to avoid that 

the parameter tuning method is dominated by a few parameters with a 

large influence on the residuals. 

Of the two parameter estimation methods evaluated the method where five 

steps in parameter space were taken before new data points were selected with 

MVDA gave the best fit to measurement data.  

6.3 PAPER III – NEW METHODOLOGY FOR 
TRANSIENT ENGINE RIG EXPERIMENTS 

In this section two examples of results from experimental types 2 and 3 

described in section 3.3.2 will be shown as a demonstration of the exhaust gas 

compositions made possible by the Scania engine rig set-up.  
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FIGURE 19 NO and NO2 concentrations, and temperature in the test object inlet, 

and urea dosage for one experiment of type 2. 
 

In figure 19 one experiment of type 2 is shown. In this type of experiment 

the SCR and urea injection makes it possible to achieve a wide range of 

NO2/NOx ratios and concentrations. Two cycles with increasing urea dosage 

(0%, 30%, 60% and 90% of stoichiometric NOx reduction) were performed in 

the experiment. For the results shown in figure 19 valve 2 was closed and valve 

1 was fully open (see figure 8 for engine rig layout). A NOx composition 

containing close to 100% NO2 can be observed at high urea dosages for some 

cases (see yellow marking in graphs). CO and HC concentrations are not 

shown since the conversions of these components were close to 100%.  
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FIGURE 20 HC and CO concentrations, valve 1 position, and set-point for urea 

dosage for one experiment of type 3 
 

Figure 20 and figure 21 show the results of one experiment of type 3. Figure 20 

shows sequences where the CO concentration is high at the same time as the 

HC concentration is close to zero; this behavior is even more pronounced for 

experiments performed at engine operating points with higher exhaust 

temperatures. Figure 20 also shows that both HC and CO are unaffected by 

the urea injection. 
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FIGURE 21 NO and NO2 concentrations, temperature, and urea dosage for one 

experiment of type 3.  
 

Figure 21 shows that NO and NO2 are affected by both the urea injection 

and the DOC bypass ratio. At high urea injection all NO2 and most NO are 

consumed. Purple markings show time points where CO concentration exceeds 

NOx concentration 

 

The most apparent advantage with the experimental set-up is the possibility to 

achieve fast transients in concentration with only small variations in 

temperature. The experimental data has, however, also shown that the 

following engine rig exhaust gas features are enabled by the experimental set-

up that would not be possible with a standard engine rig: 

� High CO concentrations with HC concentrations close to zero 

� HC concentrations exceeding NOx concentration 

� NO concentrations close to zero with significant NO2 concentration 

The reduced correlation between temperature and concentrations, but also 

between individual concentrations, significantly widen the possible 

experimental conditions available and may be of great aid in full scale 

parameter tuning and catalyst modeling.  
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7 CONCLUSIONS 

Several conclusions could be drawn from the parameter estimation performed 

in Paper I both regarding the kinetic model and the catalyst model. The 

conclusions that will be of most importance for the future work in the project 

are presented here. 

The most important conclusion from Paper I was that the best fit with a 

catalyst model with internal transport resistance could be achieved if some 

parameters affecting the internal mass transport (in this study effective 

diffusivity) were tuned in addition to the kinetic parameters. This indicated 

that internal transport limitations can be of importance for a DOC in a heavy-

duty vehicle aftertreatment system, particularly for HC oxidation but also to a 

certain extent for NO and CO oxidation. This was also confirmed when the 

simulated reaction rates and diffusion rates were compared by calculation of 

the Weisz modulus.   

The simultaneous tuning of kinetic parameters and mass transport 

parameters depend on an experimental design for this purpose. In the study it 

was shown that the experimental plan should span both transient and 

stationary experimental data as well as a wide range of different catalyst 

configurations. By tuning parameters to data from engine measurements on 

different catalysts with different kinetic and mass transport properties the 

correlation between the kinetic and transport parameters was reduced. 

The study also showed that it is still possible to obtain a good fit for a model 

with negligible internal transport resistance since kinetic parameters could 

compensate for transport limitations. This highlighted the inherent difficulties 
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using kinetic models with high parameter correlation and also showed the 

importance of using a kinetic model that has an intrinsic kinetic structure. 

 

The parameter estimation performed with the MVDA methods presented in 

Paper II did not result in a better fit than the traditional method presented in 

Paper I, neither was the computational demand less. Some important 

conclusions were however made that will lead to future studies of how the 

method can be improved.  

During the analysis of the results it became apparent that the scaling of the 

residuals is of great importance for the parameter tuning in points selected 

with MVDA. To get a good fit it is not appropriate to scale against average 

outlet concentration in the whole data series since this will greatly benefit 

components of low average concentrations. 

Another conclusion is that the simulation time is not reduced compared to 

the standard method of parameter estimation. One reason is that the points 

selected with MVDA mainly are in transient regions that are computationally 

costly to simulate. Another reason could be that the aforementioned scaling 

which, if improved, would lead to faster convergence and a shorter simulation 

time.  
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8 OUTLOOK 

Overall the fit of the results from the evaluated methods in Paper I and Paper 

II could be improved. The results from methods aided by MVDA in Paper II is 

not that far off from the results from the more standard method of parameter 

tuning presented in Paper I. This indicates that it is not only the method with 

MVDA that needs to be improved but maybe also the experimental design 

and formulation of the catalyst model. 

As described in the previous chapter the kinetic model used [11] may be of 

a structure that has parameters able to account for transport resistance. This is 

highly undesirable in a model that strives to separate kinetics and mass 

transport. Other possible weaknesses with the kinetic model used so far 

include the fact that it does not account for accumulation of adsorbed surface 

species and it excludes other possibly important reactions, like NO2 oxidation 

of HC and CO. A suitable compromise may be a kinetic model including only 

the most abundant adsorbed species, i.e. more like a microkinetic model but 

still relatively computationally expedient. A different kinetic model will 

therefore be used for the modeling of the data generated in the experiments 

described in Paper III. These experiments will hopefully also benefit the 

MVDA method of parameter tuning since a much wider span of transient data 

will be available (more than 200 different transients will be available which is 

to be compared with 16 transients in the data used in Paper I and Paper II). 

An issue that has been mentioned but not thoroughly discussed is the radial 

temperature gradients in the monolith. These gradients exist and have been 

measured in the data used in Paper I and II and will make the one channel 

model less applicable. In the experimental set up in Paper III the piping 
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upstream of the DOC has therefore been insulated to reduce the temperature 

gradients in the flow entering the DOC and thereby reducing the temperature 

gradients in the catalyst.  

Both the standard method of parameter estimation presented in Paper I 

and the MVDA method presented in Paper II will be applied to the data from 

the experiments performed on the Scania engine rig (Paper III). The methods 

will however be updated from the experience gained in the project thus far 

which means that only Mode 4 from Paper I will be applied and that the 

residual scaling for the MVDA method will be improved.  
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