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Trapped electron mode turbulence is studied by gyrokinetic simulations with the GYRO code and an

analytical model including the effect of a poloidally varying electrostatic potential. Its impact on

radial transport of high-Z trace impurities close to the core is thoroughly investigated, and the

dependence of the zero-flux impurity density gradient (peaking factor) on local plasma parameters

is presented. Parameters such as ion-to-electron temperature ratio, electron temperature gradient,

and main species density gradient mainly affect the impurity peaking through their impact on mode

characteristics. The poloidal asymmetry, the safety factor, and magnetic shear have the strongest

effect on impurity peaking, and it is shown that under certain scenarios where trapped electron

modes are dominant, core accumulation of high-Z impurities can be avoided. We demonstrate that

accounting for the momentum conservation property of the impurity-impurity collision operator

can be important for an accurate evaluation of the impurity peaking factor. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4796196]

I. INTRODUCTION

Turbulence driven by unstable drift waves is considered

to be responsible for most of the observed cross-field particle

and heat transport in the core of tokamaks. In particular, ion

gyro-radius scale drift waves destabilized by the non-adiabatic

response of trapped electrons, the so-called trapped electron

(TE) modes, can play an important role, specifically in condi-

tions where the electron heating power is large compared to

the ion heating power and the electron temperature is larger

than the ion temperature. They can also be important in trans-

port barrier regions, where the density gradient is large.1

Since its original discovery,2 TE modes have been the

topic of theoretical investigations. They are usually catego-

rized into the dissipative and collisionless classes.3 The dissi-

pative TE mode requires a strong temperature gradient and

large collisionality, while the collisionless TE mode, which

is more likely to be destabilized in reactor relevant condi-

tions, is driven by the electron curvature drift resonance and

can be destabilized even in the absence of collisionality. The

collisionless TE mode can be driven purely by the main spe-

cies density gradient or by the electron temperature gradient.

Consequently it is customary to further divide the collision-

less TE mode into density gradient driven and electron tem-

perature gradient driven categories. The stability and the

turbulent fluxes driven by TE modes have been analyzed in

Refs. 4 and 5. It has been shown in Refs. 5 and 6 that a quasi-

linear electrostatic approximation might retain much of the

relevant physics of TE mode driven transport as it appears in

nonlinear gyrokinetic simulations. The purpose of this paper

is to study the impurity transport driven by TE modes.

It is well known that accumulation of impurities—

particularly those with high charge number—in the core of

fusion plasmas has debilitating effect on fusion reactivity

due to radiative losses and plasma dilution. Results of fluid

and gyrokinetic simulations7–23 indicated that the anomalous

impurity transport driven by electrostatic microinstabilities,

in general, and TE modes, in particular, is determined by the

competition of three main mechanisms: curvature, thermo-

diffusion, and parallel compressibility. The first of these con-

tributes to an inward impurity transport (when the magnetic

shear is positive) while thermodiffusion depends on the

direction of the mode propagation, being inward for modes

propagating in the electron diamagnetic direction such as the

TE modes; however, this contribution is negligible for high-

Z impurities. The sign of the parallel compressibility contri-

bution also depends on the direction of the mode propagation

but is instead outward for TE modes and has a charge to

mass ratio dependence.

In recent years attention has been directed towards the

role of TE modes in impurity transport in plasmas with radio

frequency (RF) heating. Various experiments reported reduced

impurity accumulation in such circumstances.24–26 In particu-

lar, it was shown in Ref. 27 that impurity transport was more

affected by the change in the plasma parameters due to RF

heating than by the generated sawtooth activity. In Refs. 7 and

8 it was argued that in a TE-dominated ASDEX-U discharge

with Electron Cyclotron Resonance Heating (ECRH) the

outward flows due to parallel compressibility explained the

reduction in the impurity density peaking. In Ion Cyclotron

Resonance Heating (ICRH) discharges on the JET tokamak the

differences in the steady state impurity density profiles under

minority heating (peaked impurity profiles) and mode conver-

sion heating (hollow or flat impurity profiles) were partially

explained by ITG and density gradient driven TE dominated

transport, respectively.9,28 However, to be fully consistent with

the observations an assumption of a sub-dominant electron

temperature gradient driven TE mode was necessary. Further

experimental studies in JET plasmas26 showed a favorable

impact of ICRH in preventing the accumulation of metallic
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impurities in the core. However, in this case a theoretical ex-

planation based on the presence of a TE mode driving outward

impurity flux would be unsatisfactory since these plasmas were

ITG dominated.

Recently, a new possibility has emerged from the work

reported in Refs. 29–31 where the observed outward directed

impurity flux is explained as an effect of poloidal asymmetries

generated by the ICRH. The temperature anisotropy due to

ICRH will trap the minority heated ions on the low field side,

leading to the establishment of a poloidally varying

“equilibrium” (i.e., non-fluctuating) electrostatic potential

(such asymmetries have experimentally been demonstrated in

Ref. 32). The associated E� B drift acting as another degree

of freedom for impurities to respond to electrostatic perturba-

tions modifies the fluctuating impurity distribution. It has been

shown that under experimentally relevant conditions the con-

tribution of these E� B drifts to the impurity particle trans-

port can be outward and might dominate the resulting steady

state impurity density gradient even in ITG dominant regimes.

The density peaking of high-Z impurities in density or

temperature gradient driven TE dominated plasmas under

RF induced poloidal asymmetries is yet to be analyzed; this

is the aim of the present paper. Apart from numerical simula-

tions with GYRO
33 (mainly linear simulations, but a few non-

linear simulations are also performed for comparison) an

analytical model including the effect of poloidal asymme-

tries31,34 is utilized. The model is based on a solution to the

linearized gyrokinetic equation, and it suggests that the im-

purity velocity pinch is governed by three separate contribu-

tions: one related to the magnetic drifts (combined effects

of curvature and thermodiffusion pinch), another to the par-

allel impurity velocity pinch, and a third part arising due the

E� B drift in a poloidally varying equilibrium electrostatic

potential. Using this model, we present a systematic compar-

ison of impurity transport driven by density and temperature

driven trapped electron modes, highlighting the effect of the

parallel impurity motion, collisions, magnetic geometry

(shear and safety factor), and poloidal asymmetries.

The remainder of the paper is organized as follows. In

Sec. II, we describe the baseline density and temperature gra-

dient driven TE mode cases and the linear stability character-

istics of them. In Sec. III, the density peaking of high-Z trace

impurities is analyzed, and the dependence on relevant

plasma parameters, such as electron density and temperature

gradients, ion-to-electron temperature ratio, safety factor,

and magnetic shear, is presented. Impurity peaking factors

are calculated in cases where the impurities are poloidally

symmetrically distributed but also in cases where a poloi-

dally varying potential is present. The results are discussed

and summarized in Sec. IV.

II. STABILITY

The TE mode instability is driven by the electron loga-

rithmic temperature gradient, a=LTe, and/or the logarithmic

density gradients, a=Ln, whereas ITG modes are driven by

the ion logarithmic temperature gradient a=LTi. Here Lna

¼ �½@ðln naÞ=@r��1
and LTa ¼ �½@ðln TaÞ=@r��1

represent

the density and temperature scale lengths of particle species

a, respectively, and a the outermost minor radius of the

plasma.

In this paper we will study two baseline collisionless TE

mode cases: one driven by the density gradients and one

driven by the electron temperature gradient. For the second

case the ion temperature gradient is set to zero, in order to

obtain pure TE turbulence. This represents a situation with

dominant central electron heating. Our baseline cases have the

following local profile and magnetic geometry parameters:

Case I: Density gradient driven TE mode

R0=a ¼ 3; r0=a ¼ 0:5; q ¼ 2; s ¼ 1;

b ¼ 0; a=Ln ¼ 3; a=LTe ¼ a=LTi ¼ a=LTz ¼ 1;

Te ¼ Ti ¼ Tz; �̂ei ¼ 0; qs0=a ¼ 0:0035:

Case II: Electron temperature gradient driven TE mode

R0=a ¼ 3; r0=a ¼ 0:375; q ¼ 1:4; s ¼ 0:8; b ¼ 0;

a=Ln ¼ 1; a=LTe ¼ 7=3; a=LTz ¼ 7=3;

a=LTi ¼ 0; Te ¼ Ti ¼ Tz; �̂ei ¼ 0; qs0=a ¼ 0:0035:

Here the indices represent electrons (e), main ions (i), and

impurities (z). The density gradient driven case (Case I) is

one of the GYRO standard cases in the GYRO nonlinear gyroki-

netic simulation database.35 The electron temperature gradi-

ent driven case (Case II) have been used in the fluid

simulations presented in Ref. 11. In both cases fully ionized

nickel, Z¼ 28, is introduced in trace (i.e., Znz=ne � 1) quan-

tities nz=ne ¼ 2� 10�3; however, note that Z2nz=ne � Oð1Þ
which is important for the approximate model of the impu-

rity peaking factor we will use. The use of nickel will ease

comparison with previous work, e.g., Refs. 9 and 31, but the

main conclusions will be valid for any high-Z impurity. R0 is

the major radius of the magnetic axis and r0 the local refer-

ence minor radius, q is the safety factor, and s¼ (r/q)(dq/dr)

the magnetic shear, while b represents the ratio of plasma

pressure to magnetic pressure. We note that electromagnetic

fluctuations appearing for finite b have negligible effect on

TE modes as trapped electrons cannot carry parallel current.

In the main part of the paper, the plasma is assumed to be

hot enough for collisions to be ignored and consequently the

electron-ion collision frequency is �̂ ei ¼ 0, except when it is

stated otherwise.

This paper considers turbulent fluxes. Neoclassical simula-

tions of the baseline cases with NEO
36 using �̂ei ¼ 0:0058 cs=a

(corresponding to Te ¼ 7 keV; ni ¼ 3� 1019 m�3; ln K ¼ 17,

and a ¼ 1 m) result in fluxes that are an order of magnitude

smaller than the turbulent fluxes from nonlinear GYRO

simulations.

Nonlinear GYRO simulations of the baseline cases show

that the largest fluxes occur in the vicinity of khqs ¼ 0:15 for

both of them; see Fig. 1 showing the poloidal wave number

spectra of the gyro-Bohm normalized electron energy fluxes.

Here kh is the poloidal wave-number and qs

¼ qs0ð1þ � cos hÞ the ion sound Larmor radius, where qs0

denotes qs at R0, � ¼ r0=R0 is the inverse aspect ratio, and h
the extended poloidal angle. Consequently khqs ¼ 0:15 is
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used in the quasilinear simulations for both cases. Note,

however, that the maximum of the linear growth rates c are

located at higher khqs as shown in Fig. 2. As expected for a

temperature gradient driven TE mode, the frequency

increases, i.e., it propagates faster in the electron diamag-

netic direction, with increasing kh in Case II.9 Frequencies

are given in cs=a units, where cs ¼ ðTe=miÞ1=2
is the ion

sound speed and r0 ¼ a for the last closed flux surface.

The perturbed electrostatic potential / and eigenvalues

x ¼ xr þ ic are obtained by linear electrostatic gyrokinetic

initial-value calculations with GYRO.33 Linear initial-value

studies only consider the most unstable mode, and any sub-

dominant modes are neglected. In the simulations a model

Grad-Shafranov magnetic equilibrium was used, where the

Oð�Þ corrections to the drift frequencies are retained. Flux-

tube (periodic) boundary conditions were used, with a 128

point velocity space grid (8 energies, 8 pitch angles, and two

signs of velocity), the number of radial grid points is 6, and

the number of poloidal grid points along particle orbits is 20

for trapped particles. The location of the highest energy grid

point is at miv2=ð2TiÞ ¼ 6. The ions were taken to be gyroki-

netic and the electrons to be drift kinetic with the mass ratio

ðmi=meÞ1=2 ¼ 60.

The nonlinear electrostatic GYRO simulations performed

for the baseline cases also use gyrokinetic ions and drift ki-

netic electrons and the same velocity resolution as the linear

simulations. At least 18 toroidal modes are used to model

1=4th of the torus, with the highest resolved poloidal wave

number being khqs � 0:9. The number of radial grid points

is 200. The simulations are run with the integration time step

Dt ¼ 0:01 a=cs for t > 200 a=cs.

Introducing a small collision rate is expected to have

stabilizing effect on the collisionless TE mode because the

trapped electrons, driving the instability, can be detrapped.

One of the most interesting distinctions between the two dif-

ferent branches of the TE modes we study concerns the de-

pendence of the linear growth rate on collisionality. If the

TE mode is mainly driven by the electron temperature gradi-

ent, the mode is completely stabilized by collisions at a very

low collision frequency, as was pointed out in Ref. 37. As

shown in Fig. 3, this was verified also in our simulations,

where Case II was suppressed already for �̂ei > 0:015 cs=a
while Case I persisted even for very high collisionalities,

also consistent with earlier studies of density gradient driven

TE modes1,37 (note that the �̂ei-ranges plotted are different,

and that xr is positive for modes propagating to the electron

FIG. 1. Normalized electron energy fluxes Qe=QGB as functions of poloidal wave-number khqs from nonlinear GYRO simulations for Case I (a) and Case II (b).

FIG. 2. Linear growth rate c (circle markers, blue dashed lines) and real mode frequency xr (circle markers, red solid lines) as functions of poloidal wave-

number khqs for Case I (a) and Case II (b). Linear growth rate c (diamond markers, green dotted lines) and real mode frequency xr (diamond markers, orange

dash-dotted lines) for the same cases but with parallel ion motion neglected in GYRO.
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diamagnetic direction according to GYRO conventions). For

�̂ei > 1:0 cs=a Case I even exhibits an increase in growth

rate with increasing collisionality. This could indicate that

the mode is turning into a dissipative TE mode, but it can

also suggest that TE modes driven by density gradients

remain unstable even at large collisionalities. Further it can

be noted that neglecting parallel ion motion in the simula-

tions leads to a small to moderate reduction of the real mode

frequency while the growth rate is almost unaffected.

Figure 4 shows how the perturbed potential varies with the

extended poloidal angle. We see that both cases exhibit highly

ballooned structures, concentrated to h 2 ½�p; p�, and that

there is no significant difference between including and not

including parallel ion motion (note that the effect of parallel

ion motion is expected to be stronger in cases of lower khqs).

III. IMPURITY DENSITY PEAKING

In this section, the zero flux density gradient (peaking

factor) for trace impurities is analyzed. We utilize a semi-

analytical model introduced in Ref. 34, where the effect of a

poloidally varying equilibrium electrostatic potential /E is

included. The focus is on the poloidally varying part of the

electrostatic potential, and effects caused by a radial electric

field, such as toroidal rotation, are neglected. However, we

note that the Coriolis drift or the poloidal redistribution of

impurities due to centrifugal forces can have a non-

negligible influence on impurity transport, as found in recent

works.38–41 The poloidally varying potential introduces an

E� B drift frequency labeled xE in the GK equation (3),

which disappears, xE ¼ 0, in the symmetric case (note that

GYRO only considers the poloidally symmetric case). Poloidal

variation can be caused by the presence of a species with

strong temperature anisotropy,32 which is the case in dis-

charges with radio frequency (RF) heating of minority ions

on the outboard side.42,43

The poloidally varying potential is assumed to be weak

in the sense that eD/E=Ta � 1, where Ta is the temperature

of species a. This implies that the effect of poloidal asymme-

tries on the main species can be neglected. This justifies the

use of GYRO simulations neglecting poloidal asymmetries to

obtain linear mode characteristics. By requiring Z � 1, we

allow ZeD/E=Tz � Oð1Þ, and consequently the impurities

can be poloidally asymmetrically distributed. Hence their

E� B drift in the poloidally varying electrostatic potential

/E is not negligible. This model was presented in Ref. 31,

FIG. 3. Linear growth rate c (circle markers, blue dashed lines) and real mode frequency xr (circle markers, red solid lines) as functions of electron-ion colli-

sion frequency �̂ ei for Case I (a) (note the logarithmic �̂ ei-axis) and Case II (b). Linear growth rate c (diamond markers, green dotted lines) and real mode fre-

quency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected in GYRO.

FIG. 4. Linear parallel mode structure of the perturbed potential /ðhÞ for Case I (a) and Case II (b). Real part (red solid lines) and imaginary part (blue dashed

lines) of /. Real part (orange dash-dotted lines) and imaginary part (green dotted lines) of / for the same cases but with parallel ion motion neglected in GYRO.

Note that the actual resolution of the simulation covers h=p ¼ ð�7; 5Þ, by GYRO convention.
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and we refer to this work for more details. The model we use

for the equilibrium electrostatic potential is given by Eq.

(11) in Ref. 31

Ze/E=Tz ¼ �j cosðh� dÞ; (1)

where d represents the angular position where the impurity

density has its maximum and j sets the strength of the poloi-

dal asymmetry. Thus the impurity density will be assumed to

vary according to nzðh; rÞ ¼ nz0ðrÞN ðhÞ with NðhÞ
¼ exp½j cosðh� dÞ�. In the model for ion cyclotron reso-

nance heating (ICRH) driven asymmetries presented in Ref.

43 d ¼ p is obtained; however, since impurity accumulation

has also been observed at other poloidal locations we shall

consider d ¼ 0 and d ¼ p=2 cases as well.

Note that in contrast to Ref. 31, the work presented here

as well as in Ref. 34 retains the effects of the parallel ion

streaming in the GK equation (3). In the case of transport

driven by TE mode turbulence, as we will show here, this

term can significantly affect the impurity peaking.

A. Zero flux impurity density gradient

We consider particle transport driven by a single, repre-

sentative, toroidal mode. The impurity peaking factor is cal-

culated by requiring the linear impurity flux Cz to vanish

0¼ hCzi 	 = �kh

B
n̂z/



� �� �

¼ = �kh

B

ð
d3vJ0ðzzÞgz/



� �� �

;

(2)

where h�i denotes the flux surface average, =½�� denotes

imaginary part, n̂z is the perturbed impurity density, gz the

non-adiabatic part of the perturbed impurity distribution

function, J0 is the Bessel function of the first kind, zz ¼
k?v?=xcz;xcz ¼ ZeB=mz is the cyclotron frequency, and

k? ¼ ð1þ s2h2Þ1=2kh. Furthermore mz is the impurity mass,

/
 is the complex conjugate of the perturbed electrostatic

potential, and B is the strength of the equilibrium magnetic

field. The subscripts jj and ? denote the parallel and perpen-

dicular directions with respect to the magnetic field.

The non-adiabatic perturbed impurity distribution gz is

obtained from the linearized GK equation

vk
qR

@gz

@h

����
E;l
� iðx� xDz � xEÞgz � C½gz�

¼ �i
Zefz0

Tz
ðx� xT


zÞ/J0ðzzÞ; (3)

where x ¼ xr þ ic is the mode frequency, fz0 ¼ nz0ðmz

=2pTzÞ3=2
expð�E=TzÞ is the equilibrium Maxwellian distri-

bution function, E ¼ mzv2=2þ Ze/E is the total unperturbed

energy, l ¼ mzv2
?=ð2BÞ is the magnetic moment, nzðrÞ ¼

nz0 exp½�Ze/EðrÞ=Tz� is the poloidally varying impurity den-

sity, and nz0 is a flux function. The diamagnetic frequency is

defined as x
z ¼ �khTz=ZeBLnz and xT

z ¼ x
z½1þ ðx2

�3=2ÞLnz=LTz�, and x ¼ v=vTz represents velocity normalized

to the thermal speed vTz ¼ ð2Tz=mzÞ1=2
. The magnetic drift

frequency is xDz ¼ �2khTzðx2
?=2þ x2

kÞDðhÞ=ðmzxczRÞ,

where DðhÞ ¼ cos hþ sh sin h. The E� B drift frequency of

the particles in the equilibrium electrostatic field xE is

xE ¼ �
kh

B

sh
r

@/E

@h
(4)

and was derived in Appendix A of Ref. 31 (here, the @/E=@r
part is dropped). C½�� is the collision operator.

A solution to Eq. (3), the subsequent expression for the

peaking factor, is presented in Ref. 34. It is a perturbative so-

lution in the small parameter Z�1=2 � 1, keeping terms up to

OðZ�1Þ in the expansion of gz. This is based on the fact that

xDz=x;xT

z=x and J0ðzzÞ � 1 � �z2

z=4 are all �1=Z small

and that our ordering Ze/E=Tz � Oð1Þ requires that xE=x
also is formally �1=Z small. The solution assumes that im-

purity self-collisions dominate over collisions with unlike

species, which follows from the ordering nzZ
2=ne � Oð1Þ,

and the self-collisions are modeled by the full linearized

impurity-impurity collision operator CðlÞzz , maintaining the

conservation properties and self-adjointness. As earlier men-

tioned it is also assumed that / and x are known from the

solution of the linear gyrokinetic-Maxwell system (obtained

from GYRO) and that they are unaffected by the presence of

trace impurities and, in particular, their poloidal asymmetry.

The impurity transit frequency vk=ðqRÞ is typically much

smaller than the mode frequency x, and therefore magnetic

(and electrostatic) trapping of the impurities can be

neglected.

The expression for the impurity peaking factor, a=L0
nz, is

given in Eq. (8) of Ref. 34 and can be modified into

a

L0
nz

¼ 2
a

R0

hDi/ þ
a

r
sjhh sinðh� dÞi/

� 2a2

ðqR0Þ2khqs0

Zmi

mz

cs

a

xr

x2
r þ c2

@/
@h

����
����
2

=j/j2
* +

/

; (5)

where h…i/ ¼ h…N j/j
2i=hN j/j2i. To find this expression

Oð�Þ corrections together with finite values of the mode

eigenfunction outside the range ½�p; p� of the extended

poloidal angle have been neglected. As a consequence the

expression is not valid in cases of highly elongated balloon-

ing eigenfunctions, but as shown in Fig. 4 the TE modes we

study have a / localized to this interval. It is interesting to

note that up to the considered order, OðZ�1Þ, both finite

Larmor radius (FLR) effects and the effects of collisions do

not appear. Furthermore we see that a=L0
nz consists of three

terms: the first term of Eq. (5) represents the contribution of

the magnetic drift, the second term stems from the E� B

drift and is only non-zero when there is a poloidally varying

potential, and the last term arises because of the impurity

parallel dynamics. The first two terms were present already

in Eq. (14) of Ref. 31, but in that expression parallel ion/im-

purity dynamics was neglected. The term due to parallel dy-

namics contains only non-negative quantities, except xr, and

consequently impurity parallel dynamics acts to increase

(decrease) the impurity peaking if xr is negative (positive).

This leads to the conclusion that when the TE mode is the

dominant instability (xr > 0) the parallel dynamics should
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act to decrease the impurity peaking, while the opposite is

true for ITG modes. We note that in the poloidally symmet-

ric (N ¼ 1) case the parallel compressibility term in Eq. (5)

is consistent with Eqs. (9) and (10) of Ref. 7 in the high Z
limit when k2

jj is defined as ðqR0Þ�2hj@h/j2i=hj/j2i. The

effect of parallel dynamics was pointed out already in Ref. 7,

where it was observed that in conditions of strong electron

temperature gradient the mechanism can be large enough to

reverse the total pinch of trace impurities from inwards to

outwards.

B. Parametric dependences in poloidally symmetric
cases

In the present section we show how the impurity peak-

ing factor and mode eigenvalues depend on electron temper-

ature gradient, ion-to-electron temperature ratio, electron

density gradient, and safety factor, when /E is poloidally

symmetric. Results are presented for both Case I and Case II,

when parallel ion/impurity dynamics are included as well as

when they are neglected. Results from Eq. (5) are compared

to simulations by GYRO. Although the analytical model for

the peaking factor given in Eq. (5) is based on a single linear

mode, for completeness we will present a few cases where

peaking factors have been determined from nonlinear simu-

lations with GYRO. The reason for this is to provide further

insight into the validity of the analytical model. Note that the

analytical results from Eq. (5) are not expected to agree

exactly even with the linear results of GYRO since the approx-

imation only retains effects up to order 1/Z as well as

neglects Oð�Þ corrections. Note that for cases with parallel

ion/impurity dynamics neglected, the mode characteristics

come from GYRO simulations where parallel compressibility

effects have been turned off. Therefore they differ slightly

from the magnetic drift contribution in cases where parallel

dynamics is included. This can be observed in, e.g., Figs.

5(a) and 5(b), comparing the blue dotted line with the orange

dashed line.

1. Temperature and temperature gradient
dependences

Figures 5(a) and 5(b) show how the nickel peaking fac-

tor varies with electron temperature gradient and Figs. 5(c)

and 5(d) the corresponding eigenvalues. For both cases there

is a slight increase in peaking for increasing a=LTe, but the

dependence is generally very weak. This is what is expected

from Eq. (5), where there is no explicit dependence on

a=LTe. Instead the variations are caused by changes in mode

frequency, shown in Figs. 5(c) and 5(d), and perturbed

potential through the parallel compressibility term, which is

reflected in the fact that almost no variation at all is observed

FIG. 5. (a), (b) Impurity peaking factor for trace nickel as function of electron temperature gradient a=LTe for Case I (a) and Case II (b). Red solid line is the

peaking factor from Eq. (5), orange dashed line the magnetic drifts contribution, and green dashed-dotted line the parallel compressibility contribution. Blue

dotted line is the peaking factor from Eq. (5) without parallel compressibility effects. Red diamonds and blue dots correspond to GYRO results with and without

parallel compressibility effects, respectively. (c),(d) Linear growth rate c (circle markers, blue dashed lines) and real mode frequency xr (circle markers, red

solid lines) as functions of electron temperature gradient a=LTe for Case I (c) and Case II (d). Linear growth rate c (diamond markers, green dotted lines) and

real mode frequency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected in GYRO.
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for the results with parallel compressibility neglected. Both

the linear growth rate and real mode frequency increase with

electron temperature gradient, where the increase in growth

rate is expected since electron temperature gradient is one of

the drives for TE modes.

The peaking factor dependence on ion-to-electron tem-

perature ratio (note that Ti=Te ¼ Tz=Te) is illustrated in Figs.

6(a) and 6(b). We see that it exhibits a similar dependence as

to a=LTe, which is weak and only enters through changes in

xr, c, and /. How xr and c are affected by changes in Ti=Te

is shown in Figs. 6(c) and 6(d). Case I shows a significant

increase in growth rate with Ti=Te and decrease in real mode

frequency, while Case II is almost unaffected. This implies

that as Ti=Te increases, Case I is approaching an ITG mode.

Similar trends were reported in terms of mode frequencies

and growth rates in Ref. 13 where temperature and density

gradient driven TE mode dominated plasmas were compared

(having Ohmic and electron cyclotron heating, respectively);

in the density gradient driven case, xr (c) was found to

decrease (increase) with increasing Ti=Te, while weaker tem-

perature ratio dependences of xr and c were observed in the

temperature gradient driven case.

Earlier studies of TE modes have shown that the linear

growth rate is expected to decrease with increasing Ti=Te, as

seen in Fig. 5 of Ref. 44, which is seemingly in disagreement

with what is observed here. However, it has to be noted that

the simulation in Ref. 44 was performed keeping khqi fixed,

while here khqs is fixed. Since khqs � ðTe=TiÞ1=2khqi, a para-

metric scan over Ti=Te keeping khqi fixed results in varying

khqs accordingly, and thus these scalings are not comparable.

Furthermore in Ref. 44 results are presented with c normal-

ized to vTi=Ln /
ffiffiffiffi
Ti

p
, while here we normalize to

cs=a /
ffiffiffiffiffi
Te

p
. A test was performed, varying khqs to keep khqi

fixed, and a similar decrease with increasing Ti=Te was

found. Also Ref. 45 finds an increase in linear growth rate

with increasing Ti=Te in agreement with our observations.

A similar rather weak dependence of the impurity peak-

ing on a=LTe and Ti=Te was found in gyrokinetic simulations

by Ref. 9 as long as the most unstable mode remained the

same. As observed in Case I here, for density gradient driven

TE modes the peaking factor is typically positive. For tem-

perature gradient driven TE modes, however, it can be nega-

tive which is also found in Case II where it is close to zero or

even below, as seen in Figs. 5(b) and 6(b).

There is a small discrepancy between the values found

by GYRO and the values calculated from Eq. (5). For Case I,

Eq. (5) systematically overestimates the magnetic drift con-

tribution, while for Case II discrepancies arise mainly due to

FIG. 6. (a), (b) Impurity peaking factor for trace nickel as function of ion-to-electron temperature ratio Ti=Te (note that Ti=Te ¼ Tz=Te) for Case I (a) and Case

II (b). Red solid line is the peaking factor from Eq. (5), orange dashed line the magnetic drifts contribution, and green dashed-dotted line the parallel compres-

sibility contribution. Blue dotted line is the peaking factor from Eq. (5) without parallel compressibility effects. Red diamonds and blue dots correspond to

GYRO results with and without parallel compressibility effects, respectively. (c),(d) Linear growth rate c (circle markers, blue dashed lines) and real mode fre-

quency xr (circle markers, red solid lines) as functions of ion-to-electron temperature ratio Ti=Te for Case I (c) and Case II (d). Linear growth rate c (diamond

markers, green dotted lines) and real mode frequency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected

in GYRO.
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the parallel compressibility term. Still we see that the effect

of the parallel impurity dynamics is rather well explained by

the approximate solution.

From Figs. 5(c), 5(d), 6(c), and 6(d) we see that neglect-

ing the parallel ion motion in the GK equation

(vk=ðqRÞ@gz=@h ¼ 0 in Eq. (3)) only has a minor impact on

the TE mode frequencies.

2. Density gradient dependence

The scaling of the impurity density peaking with the

main species density peaking is shown in Figs. 7(a) and 7(b),

and the corresponding eigenvalues in Figs. 7(c) and 7(d). It

is interesting to note how the impurity peaking shows a sig-

nificant decrease in Case I for a=Lne ¼ 1:0, compared to the

other values, which is almost solely due to the change in the

factor xr=ðx2
r þ c2Þ in the parallel compressibility term of

Eq. (5) (the variation in /ðhÞ with a=Lne is rather weak). The

change in magnitude of this factor is clearly observed in Fig.

7(c), where for a=Lne ¼ 1:0;xr and c are comparable in size

while for the other points c is significantly larger. For density

gradient driven TE modes a strong reduction in the peaking

factor towards weaker density gradients has previously been

reported in Ref. 46, using both quasilinear and nonlinear

GENE
47 simulations. In Case II xr=ðx2

r þ c2Þ experience a

small reduction with increasing a=Lne, and this is reflected in

the impurity peaking factor which is increased because of

the smaller size of the parallel compressibility term. For

a=Lne ¼ 0:5 this case has a negative peaking factor.

For a=Lne ¼ 1:0 we could expect that Case I changes to

become a temperature gradient driven TE mode; since then

the density and temperature gradients are comparable

(a=LTe ¼ 1:0 for Case I). It seems that for temperature gradi-

ent driven TE modes the magnitude of the ratio of xr com-

pared to c is usually larger than for density gradient driven

TE modes. This has the consequence that the parallel dynam-

ics becomes more important in reducing the impurity density

peaking for temperature gradient driven TE modes. Further,

we note that as could be expected from Eq. (5) the peaking

factors are unaffected by changes in a=Lne if parallel com-

pressibility is neglected. For both cases the linear growth

rate and real mode frequency increase with increasing a=Lne.

The eigenvalues do not change much by neglecting parallel

compressibility, except in Case I with a=Lne ¼ 1:0 where an

ITG mode is found instead of a TE mode.

3. Safety factor dependence

From the last term of Eq. (5), it is expected that the

influence of impurity parallel dynamics on the impurity

peaking factor is strongly reduced with increasing safety fac-

tor. This is also what is observed in simulations, where the

FIG. 7. (a), (b) Impurity peaking factor for trace nickel as function of electron density gradient a=Lne for Case I (a) and Case II (b). Red solid line is the peak-

ing factor from Eq. (5), orange dashed line the magnetic drifts contribution, and green dashed-dotted line the parallel compressibility contribution. Blue dotted

line is the peaking factor from Eq. (5) without parallel compressibility effects. Red diamonds and blue dots correspond to GYRO results with and without parallel

compressibility effects, respectively. (c),(d) Linear growth rate c (circle markers, blue dashed lines) and real mode frequency xr (circle markers, red solid

lines) as functions of electron density gradient a=Lne for Case I (c) and Case II (d). Linear growth rate c (diamond markers, green dotted lines) and real mode

frequency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected in GYRO.
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parallel compressibility contribution is significantly more

negative with a small safety factor, and as a consequence the

peaking factor is more strongly reduced (see Figs. 8(a) and

8(b)). Since the safety factor typically is higher closer to the

edge, it could be expected that in TE mode dominated plas-

mas the impurity parallel dynamics will reduce the peaking

factor more and more, the closer to the core we look, while

the opposite effect is expected in ITG dominated plasmas, as

is confirmed by simulations presented in Ref. 21. However,

as discussed in Ref. 5, in a study of collisionless TE modes,

it should be noted that the kh leading to the largest fluxes is

approximately inversely proportional to q, which is an effect

we miss by keeping kh constant in our linear GYRO simula-

tions. Since in the parallel compressibility contribution of

Eq. (5) there is a factor 1=ðq2khÞ, it is reduced to 1/q if the

mode leading to the largest fluxes should be considered.

Furthermore it can also be noted that although the mode fre-

quencies are relatively independent of q (as shown in Figs.

8(c) and 8(d)), they are not independent of khqs (see Fig. 2)

but can on a very crude estimate be expected to vary linearly

with khqs around the range of khqs we analyze. Because of

the factor xr=ðx2
r þ c2Þ also found in the parallel compressi-

bility contribution, this would imply that the dependence on

q is completely canceled for the linear analysis of the mode

leading to the largest fluxes.

Figures 8(a) and 8(b) also include impurity peaking fac-

tors determined from nonlinear GYRO simulations. These

were calculated by linear interpolation of the impurity fluxes

from two nonlinear GYRO simulations with different impurity

density gradient. In these simulations, to keep an optimal

khqs resolution around the peak part of the nonlinear energy

and particle flux spectra, the spacing between the simulated

toroidal mode numbers are changed from case to case while

the total number of toroidal modes are held fixed. In the non-

linear simulation for the density gradient driven case we see

a significantly weaker, but still existent, q-dependence than

what the fixed-kh linear simulation predicts. This may be

understood from the above reasoning about the shift in the

peak of the turbulent spectrum. On the other hand, in Case II

the trend is found to be similar to the linear predictions, and

interestingly the q-dependence is even stronger in the nonlin-

ear case.

The difference between including and not-including

parallel ion dynamics for lower values of q is more pro-

nounced in the electron temperature gradient driven Case II

than in the density gradient driven Case I (a trend, consistent

with the results of Ref. 13). This is mostly due to that

the factor xr=ðx2
r þ c2Þ in Eq. (5) is larger for Case II than

for Case I which can be seen from Figs. 8(c) and 8(d).

Accordingly we could expect that for modes where this

FIG. 8. (a), (b) Impurity peaking factor for trace nickel as function of safety factor q for Case I (a) and Case II (b). Red solid line is the peaking factor from

Eq. (5), orange dashed line the magnetic drifts contribution, and green dashed-dotted line the parallel compressibility contribution. Blue dotted line is the

peaking factor from Eq. (5) without parallel compressibility effects. Red diamonds and blue dots correspond to GYRO results with and without parallel compres-

sibility effects, respectively, while black hollow squares are results from nonlinear GYRO runs. (c),(d) Linear growth rate c (circle markers, blue dashed lines)

and real mode frequency xr (circle markers, red solid lines) as functions of safety factor q for Case I (c) and Case II (d). Linear growth rate c (diamond

markers, green dotted lines) and real mode frequency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected

in GYRO.
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factor is relatively large, the effect of parallel impurity

motion on the impurity peaking factor is strengthened. The

differences in the dependence on q can only come through

the q-dependence of x and /ðhÞ since all the other parame-

ters appearing in the third term of Eq. (5) are the same in

the two cases for a fixed q.

C. Poloidally asymmetric case

In earlier studies with a poloidally varying potential

present, magnetic shear has been emphasized as one of the

most important parameters affecting the impurity peak-

ing.31,34 This can be understood from its explicit appearance

in the E� B drift term of Eq. (5). Consequently this section

will focus on how the impurity peaking factor varies with

magnetic shear, and results will be presented for the poloi-

dally asymmetric cases with j ¼ 0:5 and d ¼ 0 (out-in

asymmetry), d ¼ p=2 (up-down asymmetry), and d ¼ p (in-

out asymmetry) in Eq. (1). We will omit the parametric de-

pendence on other parameters in this section because of the

structure of the E� B drift term of Eq. (5) and refer to the

results of Sec. III B. The inclusion of the E� B drift term

typically leads to the addition of a constant to the peaking

factor, for other scalings than with s. This is because the

only way this term can change in these scalings is through

j/j2, and it is not varying by much.

Figures 9(a) and 9(b) show how the peaking factor

depends on magnetic shear for Case I and Case II in both the

symmetric and asymmetric cases. For Case I the symmetric

peaking factor is mainly governed by the contribution from

the magnetic drifts, which increases with s. The contribution

from parallel compressibility is relatively small, and it is not

affected much by a change in s. When introducing the asym-

metry, the peaking factor changes significantly because of

the E� B drift term which then is non-zero. In the in-out

asymmetric case there is a strong decrease of the impurity

peaking, while on the contrary in the out-in asymmetric case

there is a strong increase. The peaking factor remains almost

unaffected by an up-down asymmetry. Since the E� B drift

term becomes larger in magnitude with increasing s, the dif-

ference between the symmetric and asymmetric peaking fac-

tor is also increased with s. The reason why the E� B drift

term leads to a reduction (an increase) of the peaking factor

for inboard (outboard) impurity accumulation is because for

d ¼ p (d ¼ 0) the term hh sinðh� dÞi/ is negative (positive).

Note however that if s < 0, this term changes sign and leads

to an increase (decrease) for inboard (outboard) impurity

accumulation, as shown in Ref. 31. The peaking factor in

Case II shows a similar behavior to Case I, with the main dif-

ference being that the contribution from the parallel compres-

sibility term is significantly larger. Because of this term, the

peaking factor can be negative even in the symmetric case.

FIG. 9. (a), (b) Impurity peaking factor for trace nickel as function of magnetic shear s for Case I (a) and Case II (b). Red solid line is the peaking factor from

Eq. (5) in the symmetric case, green dashed-dotted line corresponds to out-in asymmetry, orange dashed line corresponds to up-down asymmetry, and black

dotted line corresponds to in-out asymmetry. Red diamonds correspond to GYRO results. (c),(d) Linear growth rate c (circle markers, blue dashed lines) and

real mode frequency xr (circle markers, red solid lines) as functions of magnetic shear s for Case I (c) and Case II (d). Linear growth rate c (diamond

markers, green dotted lines) and real mode frequency xr (diamond markers, orange dash-dotted lines) for the same cases but with parallel ion motion neglected

in GYRO.
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Furthermore in Figs. 9(c) and 9(d) it can be noted that

the linear eigenvalues are not strongly affected by changes in

magnetic shear although for s � 1:0 there is a small stabiliz-

ing effect with increasing shear. Reference 44 reported on a

stabilizing effect which was weaker if the density gradients

were large. This is consistent with what is observed here

since Case I has a larger density gradient than Case II and the

stabilizing effect is weaker in Case I. An increasing positive

magnetic shear can stabilize a TE mode through FLR effects,

but it can also drive the mode more unstable by increasing

bad magnetic curvature. The dependence of linear growth

rate on shear is consequently not trivial. The eigenvalues do

not change much if the parallel ion dynamics is neglected.

D. Collisions

The model represented by Eq. (5) models impurity self-

collisions by the full linearized impurity-impurity collision

operator CðlÞzz , and it is found that up to the considered order,

OðZ�1Þ, the effect of collisions does not appear explicitly. It

thus predicts that the only way for collisions to affect the im-

purity peaking is through their impact on the mode character-

istics. This leads to a conclusion that in reality, collisions

should have a relatively weak influence on the impurity

peaking factor. As many of the easily accessible gyrokinetic

tools employ non-momentum-conserving model operators, it

is interesting to see whether or not the form of the collision

operator affects the above result.

In Appendix we present an alternative model which uses

the Lorentz (or “pitch-angle scattering”) operator to model

impurity self-collisions but is otherwise similar to the pertur-

bative solution represented by Eq. (5). The most striking dif-

ference between the two models is the appearance of the

factor 1=ð1þ i�DðxÞ=xÞ in the contribution related to paral-

lel dynamics, where �DðxÞ½/ �̂ei� is the deflection frequency.

This implies that in the case of the Lorentz operator the

effect of collisions appears explicitly in the expression for

the impurity peaking factor, which is an artifact of Czz½vjjfz0�
being different from zero. Figure 10 shows a comparison

between the two models for Case I, but also for an ITG

dominated case (earlier studied in Ref. 34 also using fully

ionized trace Nickel with local profile and geometry parame-

ters: r/a¼ 0.3, R0=a ¼ 3, khqs ¼ 0:3, q¼ 1.7, s¼ 1.5, a=Lne

¼ 1:5; Ti=Te ¼ 0:85; a=LTe ¼ 2, and a=LTi ¼ 2:5). Case II is

not considered since it is stabilized already at low collision-

ality as shown in Fig. 3. The scalings illustrate that the

impact of the Lorentz collisions starts to become important

for �̂ei � 0:1ð�jxjÞ, and the two models start to diverge. The

use of the Lorentz operator leads to an overestimation of the

impurity peaking factor in the TE mode case, when the colli-

sion frequency is high, both in the poloidally symmetric case

as well as in the asymmetric case. On the contrary, in the

ITG mode case the use of the Lorentz operator leads to an

underestimation of the peaking factor. This is expected

because of the impact of 1=ð1þ i�DðxÞ=xÞ in the parallel

dynamics term, which decreased in magnitude with increas-

ing �DðxÞ. Since parallel dynamics decreases (increases) the

peaking factor for TE (ITG) modes we find an increase (a

decrease) in the peaking factor with increasing �DðxÞ.

IV. CONCLUSIONS

The paper presents a quasilinear study of two collision-

less TE mode cases, driven by the density gradient and the

electron temperature gradient, respectively, including their

mode characteristics and their effect on impurity transport.

Mode characteristics have been obtained by linear gyrokinetic

simulations using GYRO. The poloidal wave number was cho-

sen as khqs ¼ 0:15 for both cases to represent the mode with

the largest fluxes in nonlinear simulations. In agreement with

previous studies, the electron temperature gradient driven

mode is suppressed for small collisionalities, while the density

gradient driven mode not only remains unstable even for very

high collision frequencies. We also observe its transition to a

dissipative TE mode. The dependence of growth rate and real

frequency on safety factor and magnetic shear is non-

monotonic and within small variations.

To investigate the peaking of high-Z trace impurities in

tokamak plasmas we use an approximate gyrokinetic model

and compare it to results obtained with GYRO. It is observed

that parameters such as Ti=Te; a=LTe and a=Lne mainly affect

the peaking through their impact on mode characteristics,

FIG. 10. Impurity peaking factor for trace nickel as function of electron-ion collision frequency �̂ ei for Case I (a) and an ITG dominated case (b) (note the

logarithmic �̂ ei axis). Red solid line is the peaking factor from Eq. (5) in the symmetric case and black dotted line the corresponding in the in-out asymmetric

case. Orange dashed-dotted line is the peaking factor in the symmetric case from a model that utilize the Lorentz collision operator, and blue dashed line the

corresponding in the in-out asymmetric case.
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particularly, the factor xr=ðx2
r þ c2Þ is important to deter-

mine the effect of the impurity parallel dynamics. As noted

before, in fluid modeling this factor enters directly into the

parallel compressibility term of the approximate model and

is consequently responsible for determining the size of this

contribution. Parameters describing the magnetic geometry,

q and s, have a more significant influence on the peaking

because of their explicit appearance in certain contributions.

An increase in magnetic shear typically leads to an increase

of the impurity peaking factor in the poloidally symmetric

case because of the increase in the magnetic drift contribu-

tion. However in the poloidally asymmetric case since the

term describing the E� B drift of impurities in the non-

fluctuating electrostatic potential has an explicit linear shear

dependence, an increase in shear can lead to a significant

reduction or enhancement of the impurity peaking, depend-

ing on the location of the potential minimum. Increasing

safety factor leads to a decrease of the relative significance

of the impurity parallel dynamics contribution, but the effect

on the peaking depends on the sign of xr, and for TE modes,

with xr > 0, it results in an increase of the peaking factor.

Nonlinear simulations in the density gradient driven TE case

show only a very weak q scaling. This can be explained by a

nonlinear shift in the poloidal wave number (kh � 1=q, as

shown in Ref. 5). However, in the temperature gradient

driven TE case, the q scaling is even stronger non-linearly

than the fixed kh linear modeling predicts.

The model using the conservation properties of the full

linearized collision operator for impurity self collisions show

that collisions can only indirectly affect impurity transport

through changes in the mode characteristics. We show that

when a non-momentum-conserving model operator is used,

such as a Lorentz operator, the parallel compressibility con-

tribution to the peaking factor is modified leading to errors in

the collisionality dependence. This effect becomes important

when the impurity collision frequency becomes comparable

to the mode frequency.
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APPENDIX: DERIVATION OF PEAKING FACTOR USING
A LORENTZ COLLISION OPERATOR

In this section we derive a model for the impurity peak-

ing factor similar to that represented by Eq. (5), but using the

Lorentz collision operator instead of the linearized impurity-

impurity collision operator. We neglect Oð�Þ corrections.

The Lorentz collision operator for impurity self-

collisions is given by

CðgzÞ ¼
�DðxÞ

2
LðgzÞ 	

�DðxÞ
2

@

@n
ð1� n2Þ @gz

@n

� �
; (A1)

where �D is the deflection frequency for self-collisions

�DðxÞ ¼ �̂ zz½ErfðxÞ � GðxÞ�=x3, �̂ zz ¼ nzZ
4e4ln K=½4p�2

0m1=2
z

ð2TzÞ3=2�, and ln K is the Coulomb logarithm. ErfðxÞ is the

error-function and GðxÞ ¼ ½ErfðxÞ � xErf 0ðxÞ�=ð2x2Þ the

Chandrasekhar function. In the Lorentz operator n ¼ xjj=x
denotes the cosine of the pitch-angle.

We assume the ordering xDz=x � xT

z=x � xE=x �

J0ðzzÞ � 1 � 1=Z and expand gz in 1=
ffiffiffi
Z
p

keeping terms up

to OðZ�1Þ, i.e., gz � g0 þ g1 þ g2. The 0th order solution of

GK equation (3) is

g0 ¼
Ze/fz0

Tz
(A2)

with C½g0� ¼ 0. This, added to the adiabatic response,

�Ze/fz0=Tz, merely tells that the impurities are so heavy and

bound to the field lines through their high charge, that they do

not respond to electrostatic fluctuations to lowest order in 1/Z.

This justifies neglecting the effect of impurities on the mode

characteristics, in spite of our assumption nzZ
2=ne � 1 (that is

required to make self-collisions dominate).

The 1st order GK equation reads

vk
qR

@g0

@h
� ixg1 � C½g1� ¼ 0 (A3)

and is solved by assuming that the solution can be written in

terms of Legendre polynomials PnðnÞ as g1 ¼ g0
1ðxÞP0ðnÞ

þg1
1ðxÞP1ðnÞ. Here P0ðnÞ ¼ 1;P1ðnÞ ¼ n and we remind

about the properties
Ð 1

�1
dnPnðnÞPmðnÞ ¼ 2dmn=ð2nþ 1Þ and

L½PnðnÞ� ¼ �nðnþ 1ÞPnðnÞ: The solution to Eq. (A3) is

found to be

g1 ¼ �i
vk
qR

Zefz0

Tz

@/
@h

1

x
1

1þ i�D=x
: (A4)

Note that for a momentum conserving collision operator

C½g1 / vjjfz0� ¼ 0 in Eq. (A3); thus, �D would not appear in

Eq. (A4).

The 2nd order GK equation is

ixg2 þ C½g2� ¼ ixDzg0 þ
vk
qR

@g1

@h
� i

Zefz0

Tz
/ xT


z þ x
z2

z

4

� 	
:

(A5)

The velocity anisotropies enter in xDz and zz, which we can

rewrite in terms of Legendre polynomials as xDz 	
ð1=3Þ½2P0ðnÞ þ P2ðnÞ�xDx and z2

z 	 ð2=3Þ½P0ðnÞ � P2ðnÞ�z2
x ,

where P2ðnÞ ¼ ð3n2 � 1Þ=2, and xDx ¼ xDxðxÞ; zx ¼ zxðxÞ
only depend on speed. Furthermore, by noting that @E=@h ¼
0 (where E ¼ mzv2=2þ Ze/E) we can find the identity

vjj
@vjj
@h
¼ 1

3
ðP2ðnÞ � P0ðnÞÞv2 @ ln B

@h
� Ze

mz

@/E

@h
P0ðnÞ: (A6)
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We now search for a solution to Eq. (A5) of the form

g2 ¼ g0
2ðxÞP0ðnÞ þ g2

2ðxÞP2ðnÞ; (A7)

where we realize that g2
2 will not contribute to the particle

flux since
Ð1
�1 dnP2ðnÞ ¼ 0. By substituting Eq. (A7) into

Eq. (A5) and collecting the parts proportional to P0 we find

that

g0
2 ¼

Ze/
Tz

fz0

2

3

xDx

x
� z2

x

6
� xT


z
x
þ xE

x

� �

þ 1

q2R2
fz0

Ze

Tz

@/
@h

1

x2

1

1þ i�D=x
Ze

mz

@/E

@h

� Ze

Tz

fz0

q2R

v2

3x2

1

1þ i�D=x
@

@h
1

R

@/
@h

� 	
� 1

R

@/
@h

@ ln B

@h

� �
:

(A8)

From g � g0 þ g1 þ g2, only the g0
2 part of g2 contributes to

the particle flux; thus, the impurity peaking factor is found

from solving

0 ¼ hCzi ¼ �
kh

B
=
ð

d3vJ0ðzzÞgz/



� �� �

� � kh

B
=
ð

d3v g0
2 /



 �� �
; (A9)

where higher order than 1/Z corrections to the impurity flux

are neglected.
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