
Chalmers Publication Library            

 

 

 

 

 

Copyright Notice 

 

  

©2013 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/), where it 
is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec. 8.1.9 
(http://www.ieee.org/documents/opsmanual.pdf) 

 
(Article begins on next page) 



On the Multiplexing Gain of MIMO Microwave
Backhaul Links Affected by Phase Noise
Giuseppe Durisi

Chalmers University of Technology
41296 Gothenburg, Sweden
E-mail: durisi@chalmers.se

Alberto Tarable
IEIIT-CNR

10129 Turin, Italy
E-mail: alberto.tarable@ieiit.cnr.it

Tobias Koch
Universidad Carlos III de Madrid

28911 Leganés, Spain
E-mail: koch@tsc.uc3m.es

Abstract—We consider a multiple-input multiple-output
(MIMO) AWGN channel affected by phase noise. Focusing on
the 2 ⇥ 2 case, we show that no MIMO multiplexing gain is to
be expected when the phase-noise processes at each antenna are
independent, memoryless in time, and with uniform marginal
distribution over [0, 2⇡] (strong phase noise), and when the
transmit signal is isotropically distributed on the real plane. The
scenario of independent phase-noise processes across antennas
is relevant for microwave backhaul links operating in the 20–40
GHz range.

I. INTRODUCTION

One common solution to the problem of guaranteeing back-
haul connectivity in mobile cellular networks is to use point-to-
point microwave links. The current terrific rate of increase in
mobile data traffic makes these microwave radio links a potential
bottleneck in the deployment of high-throughput cellular net-
works. This consideration has stimulated a large body of research
aimed at designing high-capacity backhaul links [1]. One design
challenge is that the use of high-order constellations (512 QAM
has been recently demonstrated in commercial products) to
increase throughput makes the overall system extremely sensitive
to phase noise, i.e., to phase and frequency instabilities in the
radio-frequency (RF) oscillators used at the transmitter and the
receiver.

The use of multiple antennas is currently investigated as a
solution to increase the throughput of microwave backhaul links.
These links are typically in line of sight (LOS). Hence, neglecting
phase noise, to release multiple-input multiple-output (MIMO)
multiplexing gains—i.e., a throughput increase proportional to
the minimum between the number of transmit and of receive
antennas—the antennas at the transmitter and at the receiver
must be spaced sufficiently far apart. For example, for backhaul
microwave links operating in the commonly used 20–40 GHz
range, the spacing between antennas must be on the order of few
meters.

In such a setup, cost considerations imply that the RF cir-
cuitries connected to each antenna are driven by independent os-
cillators. This, in turn, yields independent phase-noise processes
at each antenna. As the number of independent phase-noise
processes that need to be tracked at the receiver increases with the
number of antennas, it is unclear whether MIMO multiplexing
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gains can be actually expected in this setup. In this paper, we
will indeed show that if the phase-noise process is uniformly
distributed over [0, 2⇡] and memoryless in time, and if it is
independent across antennas, then no MIMO multiplexing gains
can be expected when the direction of the transmit signal is
isotropically distributed. In the rest of the paper, we shall refer to
phase-noise processes that are uniformly distributed over [0, 2⇡]
and are memoryless in time as strong phase noise.

Before detailing the contributions of this paper, we present a
brief review of the results available in the literature concerning
the capacity of phase-noise channels.

A Brief Literature Review: The capacity of the phase-noise
channel is not known in closed form, even for the single-antenna
case. Capacity bounds for strong phase noise have been reported
in [2]. These bounds, which turn out to be tight over a large
range of signal-to-noise ratio (SNR) values, have been recently
extended to the case of block-memoryless uniformly distributed
phase noise in [3]. The rates achievable with Gaussian inputs on a
Wiener-distributed phase-noise channel have been characterized
in [4].

A high-SNR capacity characterization that holds for the
general class of stationary phase-noise processes with finite
differential-entropy rate has been obtained in [5]. Roughly speak-
ing, the result in [5] implies that whenever the phase-noise pro-
cess satisfies the property that its current realizations cannot be
perfectly predicted from the observation of the process’ infinite
past, then—at high SNR—the capacity of the corresponding
phase-noise channel is half the capacity of an AWGN channel
with the same receive SNR. In mathematical terms, the pre-log,
i.e., the asymptotic ratio between the capacity and the logarithm
of SNR as SNR goes to infinity, of every single-antenna phase-
noise channel belonging to this class is 1/2. Although the impact
of phase noise in the measurement of MIMO channels has been
addressed in the literature [6], no capacity characterizations of
the same nature as the one reported in [5] are available for MIMO
phase-noise channels, to the best of the authors’ knowledge.

Receiver architectures for the single-antenna case based on
joint phase-noise recovery and decoding have been proposed,
e.g., in [7]–[9]. An extension of some of these architectures to
the MIMO case can be found in [10].

Contributions: We analyze the capacity of a MIMO system
equipped with 2 transmit and 2 receive antennas and operating
over an AWGN channel impaired by strong phase noise, namely,



uniformly distributed phase noise that is memoryless over time.
Our contributions are as follows:

• When the phase-noise processes are perfectly correlated
at the transmitter side and independent at the receiver side
(or vice-versa), we show that the capacity pre-log is 1. In
this scenario, MIMO yields the expected 2-fold capacity
increase at high SNR. This result can be extended to the
general N ⇥N MIMO case: the capacity pre-log is, in this
case, equal to N/2.

• When the phase-noise processes are perfectly correlated
both at the transmitter side and at the receiver side, i.e.,
when the RF circuitries are driven by the same oscillator,
we show that the capacity pre-log for theN⇥N MIMO case
is even larger and equals N�1/2. This setup is relevant for
microwave backhaul links operating in the high frequency
range (70GHz and above), for which the antenna spacing
is small enough to allow for a single oscillator.

• When the phase-noise processes are independent across
antennas (microwave backhaul links operating in the 20–
40 GHz range), we provide a characterization of the rates
achievable under the constraint that the direction of the
input signal is isotropically distributed on the real plane and
independent of its magnitude. A distribution that satisfies
this property achieves the high-SNR capacity when the
phase-noise processes are perfectly correlated at either the
transmitter or the receiver side. We show that, in this case,
the pre-log is 1/2 (same pre-log as for a single-antenna
phase-noise channel). This means that in this case MIMO
yields no multiplexing gain.

Notation

Boldface letters (e.g., a) denote random quantities, while the
ordinary font (e.g., a) is reserved for their realizations and for
deterministic quantities. Underlined uppercase letters are used
to indicate matrices (for example, A is a random matrix and A
denotes its realizations), while underlined lowercase letters are
reserved for vectors. Uppercase sans-serif letters (e.g., P) de-
note probability distributions, while lowercase sans-serif letters
(e.g., q) are reserved for probability density functions (pdf). If
two random vectors a and b have the same distribution, we write
a ⇠ b. The relative entropy between the two distributions P

x

and P
y

is denoted by D(P
x

||P
y

).
The superscripts T and H stand for transposition and Hermi-

tian transposition, respectively. We denote the identity matrix of
dimension N ⇥N by IN ; diag{a} is the diagonal square matrix
whose main diagonal contains the entries of the vector a. For
a given vector a, we denote by |a| the vector whose entries are
the absolute value of the entries of a, i.e., [|a|]i = |[a]i|, 8 i. For
two functions f(x) and g(x), the notation f(x) = O(g(x)),
x ! 1, means that lim supx!1

��
f(x)/g(x)

��
< 1, and

f(x) = o(g(x)), x ! 1, means that limx!1
��
f(x)/g(x)

�� = 0.
We say that a random variable r has Gamma distribution with
parameters ↵ > 0 and � > 0 and write r ⇠ Gamma(↵,�) if

its pdf q
r

(r) is given by

q
r

(r) =
r

↵�1
e

�r/�

�

↵�(↵)
, r � 0. (1)

Here, �(·) denotes the Gamma function. We shall use the prop-
erty that if r ⇠ Gamma(↵,�), then E[r] = ↵�. Finally, log(·)
indicates the natural logarithm.

II. SYSTEM MODEL

We consider the following N⇥N MIMO phase-noise channel

y = �R H�Tx+w. (2)

Here, x and y are N -dimensional (complex-valued) vectors that
contain the transmitted symbols and received samples, respec-
tively; H is the N ⇥ N channel matrix, which is assumed to
be deterministic (MIMO LOS scenario) and known both at the
transmitter and at the receiver; �T = diag

⇣
[ej�

t

1 · · · ej�t

N ]
⌘

and �R = diag
�
[ej�

r

1 · · · ej�r

N ]
�

are independent diagonal ma-
trices containing the phase-noise samples at the transmitter and at
the receiver, respectively; and w is an N -dimensional (complex-
valued) vector containing uncorrelated, circularly-symmetric
Gaussian noise samples, with zero mean and variance 1/2 per
real dimension.

We assume that neither the transmitter nor the receiver are
aware of the realizations of �T and �R. We shall further assume
that the channel matrix H is unitary, i.e.,

HHH = IN .

This condition holds in the MIMO LOS scenario, where the
channel coefficients are controllable by properly adjusting the
distance between antennas [11]. We shall finally assume that
the phase-noise samples {�t

n}Nn=1 and {�r
n}Nn=1 are uniformly

distributed over [0, 2⇡] and that they take on independent values
at every channel use. This assumption corresponds to the worst-
case situation of strong phase noise. In Section IV, we discuss
how to account for situations where the channel matrix H is not
unitary and the phase-noise process has memory.

We shall consider the following two scenarios:
• Both �T and �R have independent entries. This corre-

sponds to the case of independent oscillators per antenna.
• �t

1 = · · · = �t
N and (or) �r

1 = · · · = �r
N . This corre-

sponds to the case of a single oscillator at the transmitter
side, and (or) at the receiver side.

III. CAPACITY AND PRE-LOG

A. Definitions
The capacity of the channel in (2) is given by [12]

C(⇢) = sup
P
x

I(x;y) (3)

where the supremum is over the set of probability distributions
P
x

that satisfy the average-power constraint

E
⇥kxk2⇤  ⇢. (4)



As the channel matrix H is unitary, and as the variance of the
additive noise is normalized to 1, we can interpret ⇢ in (4) as the
receive SNR.

The goal of this paper is to characterize the capacity pre-log �,
which is defined as

� = lim sup
⇢!1

C(⇢)

log(⇢)
.

For the single-antenna case (i.e., N = 1), Lapidoth showed
that [5]

C(⇢) =
1

2
log(⇢)� 1

2
log(2) + o(1), ⇢ ! 1 (5)

which implies that the pre-log for the single-antenna case is 1/2,
i.e., half of that of an AWGN channel with the same receive
power. It is worth recalling that the probability distribution on
the scalar input x that achieves the high-SNR capacity (5) is
such that |x|2 ⇠ Gamma(1/2, 2⇢). The phase of x cannot be
used to transmit information.

B. The Parallel Phase-Noise Channel
We next state a simple consequence of (5), which will be

useful in our analysis.
Proposition 1: The capacity of the N ⇥N memoryless par-

allel phase-noise channel

y = �x+w (6)

with � = diag
�
[ej�1 · · · ej�N ]

�
and {�n}Nn=1 independent and

uniformly distributed over [0, 2⇡] is given by

C(⇢) =
N

2
log(⇢)� N

2
log(2N) + o(1), ⇢ ! 1. (7)

Proof: Since {�n}Nn=1 are independent and uniformly dis-
tributed over [0, 2⇡], capacity is achieved by an input distribu-
tion for which the entries of x are independent and identically
distributed. Furthermore, (5) implies that the choice |xn|2 ⇠
Gamma(1/2, 2⇢/N) for n = 1, . . . , N achieves capacity up
to a o(1)-term. As in the single-antenna case, the phase of the
entries of x cannot be used to transmit information.

C. Remarks on the 2⇥ 2 Case
Focusing on the 2⇥ 2 case, we next recall a property of the

input distribution that achieves the high-SNR capacity (7). This
property will motivate our analysis in Section III-F.

Lemma 2: Let N = 2 and let |x| = kxk · |x̂| where

|x̂| = |x|/kxk
= [cos(↵x) sin(↵x)]

T

for some random angle ↵x supported on [0,⇡/2]. The high-SNR
asymptotic capacity (7) is achieved by an input distribution for
which ↵x and kxk2 are independent, ↵x is uniformly distributed
over [0,⇡/2], and kxk2 is exponentially distributed, i.e.,

qkxk2(z) =
1

⇢

e

�z/⇢
.

Proof: Recall that (7) (for the case N = 2) is achieved
by an input distribution for which |xn|2 ⇠ Gamma(1/2, ⇢),

n = 1, 2, with |x1|2 independent of |x2|2. Further note that
|x1| = kxk cos(↵x) and |x2| = kxk sin(↵x). By the change-
of-variable theorem, the joint pdf of kxk2 and ↵x is

qkxk2,↵
x

(kxk2,↵x) = q|x1|2(kxk2 cos2(↵x))

· q|x2|2(kxk2 sin2(↵x))

· 2kxk2 cos(↵x) sin(↵x)

=
2

⇡⇢

e

�kxk2/⇢

where the last step follows by (1) (with ↵ = 1/2 and � = ⇢)
and by using that �(1/2) =

p
⇡.

Lemma 2 provides an intuitive explanation of why the pre-
log of the 2 ⇥ 2 memoryless parallel phase-noise channel is
twice as large as the pre-log of the single-antenna case. At high
SNR, both the modulus kxk of the transmit vector |x| and its
direction↵x can be estimated reliably from y. Hence, capacity at
high SNR is twice as large compared to the single-antenna case,
where information can be conveyed only through the modulus
of the (scalar) input signal. Furthermore, since no direction in
space should be preferred, the uniform distribution for ↵x is
capacity-achieving at high SNR.

As a side remark, we note that when phase noise in (6) is
absent (i.e., � = I2), the capacity pre-log is 2 and is achieved by
choosing x1 and x2 complex Gaussian and independent. This,
in turn, implies that kxk2 follows a chi-square distribution with
4 degrees of freedom (apart from a scaling factor) and that x̂ =
x/kxk is isotropically distributed in C2, i.e.,

x̂ =


e

j✓1 0
0 e

j✓2

� 
cos(↵x)
sin(↵x)

�

with ✓1 and ✓2 independent and uniformly distributed over
[0, 2⇡], and ↵x such that cos2(↵x) is uniformly distributed over
[0, 1] [13, Thm. 15.2]. (Note the difference with respect to the
phase-noise case where ↵x is uniformly distributed.) Intuitively,
the pre-log is doubled because, in the absence of phase noise,
✓1 and ✓2 can be used to carry information.

D. Correlated Phase Noise at One Side or Diagonal Channel
Matrix

Note that in the case of parallel phase-noise channels, we have
an N -fold pre-log increase compared to the single-antenna case.
In Section III-F, we shall show that this pre-log increase does
not necessarily manifests itself for the general N ⇥N MIMO
phase-noise channel (2).

Before doing so, we first identify the conditions under which
the pre-log of the channel in (2) coincides with the pre-log of
the memoryless parallel phase-noise channel in (6), and, hence,
MIMO multiplexing gain is present.

Proposition 3: The pre-log of the N⇥N MIMO phase-noise
channel (2) is given by N/2 in the following three cases:

i) both �T and �R have independent entries and the matrix
H is a permutation of IN ;

ii) �t
1 = · · · = �t

N (i.e., full correlation at the transmit side)
and �R has independent entries;

iii) �r
1 = · · · = �r

N (i.e., full correlation at the receive side)
and �T has independent entries.



Proof:
i) The matrix H can be transformed into IN by a simple

rearrangement of the order of the entries of y and x. The
proof is concluded by noting that �R�T ⇠ �(where � is
defined as in Proposition 1) and by using Proposition 1.

ii) Let �t
1 = · · · = �t

N = �. Then

y = �RH�Tx+w

= �RHe

j�
x+w

⇠ �RHx+w.

Since H is unitary, if a probability distribution on x satis-
fies (4), then the induced probability distribution on Hx

satisfies (4) as well. Hence, using that H is known to the
transmitter, we have

sup
P
x

I(x;�RHx+w) = sup
P
x

I(x;�Rx+w).

The proof then follows from Proposition 1.
iii) Let �r

1 = · · · = �r
N = �. Then

y = �RH�Tx+w

= e

j�H�Tx+w

⇠ H�Tx+w.

Since H is unitary and known to the receiver, and since
HH

w ⇠ w, we have

I(x; H�Tx+w) = I(x; HH (H�T x+w))

= I(x;�T x+w).

The proof then follows from Proposition 1.

E. Correlated Phase Noise at Both Sides
We next consider the case where the phase-noise processes

are perfectly correlated both at the transmitter and at the receiver
side. In this case, the pre-log equals N�1/2. Roughly speaking,
2N � 1 out of the 2N real parameters characterizing x can
be used to carry information. This result is formalized in the
following proposition.

Proposition 4: Consider the N⇥N MIMO phase-noise chan-
nel in (2) and assume that �t

1 = · · · = �t
N = �t and that

�r
1 = · · · = �r

N = �r. Then the capacity pre-log is given by
N � 1/2.

Proof: Note that

y = �RH�Tx+w

= e

j�
r

e

j�
tHx+w

⇠ e

j�Hx+w.

where � is uniformly distributed over [0, 2⇡]. Proceeding as in
the proof of Proposition 3, we have that

sup
P
x

I(y;x) = sup
P
x

I(ej�x+w;x). (8)

The mutual information on the right-hand side (RHS) of (8)
coincides with the mutual information of a block-memoryless
phase-noise channel, with block-length equal to N . The desired
result then follows from [14], [3].

F. Independent Phase Noise at Each Antenna

We next focus on the case of independent phase-noise pro-
cesses across both transmit and receive antennas. Proposition 3,
Case i) implies that MIMO multiplexing gains are present in
this setup when H is a permutation of the identity matrix. Since
this situation is typically not encountered in LOS microwave
backhaul links, in this section, we concentrate on channel ma-
trices that do not satisfy this property. Throughout this section,
we will deal exclusively with the 2⇥ 2 case. In fact, the proof
of Theorem 5 below is tailored to the 2⇥2 case—an extension to
the general N⇥N setup is currently under investigation. In view
of Proposition 3, we shall assume that H is not a permutation
of I2.

We start with two observations that follow directly from the
system-model assumptions listed in Section II:

• After left-multiplying x with �T , any information con-
tained in the phases of the entries of x is destroyed. Thus,
the mutual information I(x;y) in (3) is not affected by the
phase distribution of the entries of x. This property has
already been used in the proof of Proposition 1.

• Symmetrically, because of left multiplication with �R, the
phases of y do not carry any information about x. Thus,
the vector |y| is a sufficient statistics for x. Hence, [12,
Eq. (2.124)]

I(y;x) = I(|y|; |x|)

for every distribution P
x

.

While a characterization of the capacity pre-log for the 2⇥ 2
case is still out of reach, motivated by Lemma 2, we study here
the rates achievable by input distributions under which kxk2
and ↵x are independent and ↵x is uniformly distributed over
[0,⇡/2]. We show that, in this case, the MIMO pre-log coincides
with the single-antenna pre-log. Thus, in this case MIMO does
not yield a pre-log increase compared to the single-antenna case.

Theorem 5: Consider the 2 ⇥ 2 MIMO phase-noise chan-
nel (2). Furthermore, assume that H is not a permutation of
I2, and that both �T and �R have independent entries. Let
|x| = kxk · [cos(↵x) sin(↵x)]

T with kxk and ↵x independent,
and with ↵x uniformly distributed over [0,⇡/2]. Then

sup
Pkxk

I(|y|; |x|)  1

2
log(⇢) +O(1), ⇢ ! 1.

Proof: Let |x̂| = [cos(↵x) sin(↵x)]
T . Furthermore, define

r̂ , �RH�T |x̂| (9)

so that y ⇠ kxkr̂+w. We start by noting that

I(y; |x|) = I(y; kxk, |x̂|)
= I(y; kxk) + I(y; |x̂| | kxk). (10)



We next upper-bound the two terms on the RHS (10). For the
first term, we have

I(y; kxk)  I(y, r̂; kxk)
(a)
= I(y; kxk | r̂)
(b)
= I(kxk+ n; kxk)
(c)
 1

2
log(1 + ⇢) (11)

where (a) follows because r̂ and kxk are independent; (b) follows
because kxk+ n (with n , <{r̂Hw}) is a sufficient statistics
for the detection of kxk from y; and (c) follows because the
Gaussian distribution maximizes differential entropy under a
variance constraint.

For the second term on the RHS of (10), we have

I(y; |x̂| | kxk)  I(y,w; |x̂| | kxk)
(a)
= I(y; |x̂| | kxk,w)

= I(r̂; |x̂| | kxk,w)

(b)
= I(r̂; |x̂|)
(c)
= I(|r̂|; |x̂|)

where (a) follows because w and x are independent; (b) follows
because the pair (r̂, |x̂|) is independent of (kxk,w); and (c)
follows because the phase of the entries of r̂ do not carry
information about |x̂| [see (9)].

Note that I(|r̂|; |x̂|) does not depend on Pkxk, hence, it does
not depend on ⇢ either. To conclude the proof it thus suffices to
show that I(|r̂|; |x̂|) is bounded. Let

|r̂| =

cos(↵r)
sin(↵r)

�

for some ↵r 2 [0,⇡/2]. Furthermore, let h11 and h12 denote
the first and the second entry, respectively, of the first row of H.
It follows from (9) that

cos2(↵r) = |h11|2 cos2(↵x) + |h12|2 sin2(↵x)

+ 2
h
|h11| |h12|cos(↵x) sin(↵x) cos(�)

i
(12)

where � is uniformly distributed over [0, 2⇡]. We further have
that

I(|r̂|; |x̂|) = I(↵r;↵x)

= I(cos2(↵r);↵x)

where, by the theorem’s assumptions,↵x is uniformly distributed
over [0,⇡/2]. Let q

u

(u) denote the uniform distribution over
[0, 1]. It follows by duality (see Appendix) that

I(cos2(↵r);↵x)  � E↵
r

⇥
log(q

u

(cos2(↵r)))
⇤

| {z }
=0

� h(cos2(↵r) |↵x)

= � E[log(sin(2↵x))]

� log(|h11| |h12|)� h(cos(�)) (13)

where the last step follows from (12).
The proof is concluded by noting that, by the theo-

rem’s assumptions, |h11| and |h12| are strictly positive, so
log(|h11| |h12|) is finite. Furthermore, h(cos(�)) is finite be-
cause cos(�) follows an arcsine distribution. Finally,

E[log(sin(2↵x))] =
2

⇡

Z ⇡/2

0
log(sin(2x))dx

= � log(2) (14)

where the last equality follows from [15, Sec. 4.224, Eq. 3].
Theorem 5 follows by combining (10)–(14).

IV. CONCLUSIONS

We have demonstrated that MIMO does not yield a multi-
plexing gain when the phase noise is strong and independent
across antennas, and when the direction of the input signal
is isotropically distributed and independent of the magnitude.
Although our result is not conclusive, it suggests that MIMO
does not provide multiplexing gain in microwave backhaul links
operating in the 20–40 GHz range. Does this mean that MIMO
should not be used? Not necessarily. Even if MIMO does not
yield an increase with respect to the pre-log (i.e., the first-order
term in the high-SNR expansion of capacity), it could still give
rise to an increase in the higher-order terms.1 This might yield
a noticeable throughput gain at SNR values of practical interest.

Our analysis was based on the assumptions that
i) the MIMO channel matrix H is unitary and

ii) the phase-noise is i.i.d. and uniformly distributed.
It can be shown that the results reported in Propositions 3 and 4
continue to hold if Assumption i) is replaced by the weaker
assumption that H is full rank but not necessarily unitary (proof
omitted for space constraint). This situation may arise in MIMO
LOS systems when the antenna separation required for H to be
unitary is too large [11].

Propositions 3 and 4 continue to hold when Assumption ii) is
replaced by the weaker assumption that the phase-noise process
is stationary and has finite differential-entropy rate. The widely
used Wiener phase-noise model [18] satisfies this assumption,
provided that the initial phase distribution is uniform over [0, 2⇡].
Indeed, although memory in the phase-noise process increases
capacity, this increase is bounded in SNR and does not affect the
capacity pre-log. Specifically, let CWiener denote the capacity of
a Wiener phase-noise channel and Ci.i.d., unif denote the capacity
of the memoryless uniform phase noise channel considered in
this paper. Then [5], [19]

CWiener(⇢) = Ci.i.d., unif(⇢) + kWiener + o(1), ⇢ ! 1.

(15)

Here, kWiener is a constant that depends on the memory in the
phase-noise process, but does not depend on ⇢. The capacity char-
acterization (15) has been recently used to obtain nonasymptotic
capacity bounds on the capacity of MIMO Wiener phase-noise
channels [19].

1A result of this nature has been observed for the capacity of MIMO fading
channels in the noncoherent setting [16], [17].



V. ACKNOWLEDGMENTS

We wish to thank Mats Rydström, Thomas Ericsson, Sergio
Benedetto, and Guido Montorsi for fruitful discussions.

APPENDIX

The proof of the inequality in (13) is based on duality [20],
a technique that allows one to establish tight upper bounds
on the mutual information between the input x of a channel
and its output y by selecting an appropriate distribution on y.
Specifically, let P

x

be a probability distribution on x, let P
y |x

denote the conditional distribution on y given x (i.e., the channel
law), and let P

y

be the probability distribution induced on y by
P
x

through the channel law. Furthermore, let Q
y

be an arbitrary
probability distribution on y with pdf q

y

. We can upper-bound
I(x;y) using duality as follows [20, Thm. 5.1]:

I(x;y) = EP
x

⇥
D(P

y |x ||Py

)
⇤

= EP
x

⇥
D(P

y |x ||Qy

)
⇤�D(P

y

||Q
y

)

 EP
x

⇥
D(P

y |x ||Qy

)
⇤

= �EP
x

[log(q
y

(y))]� h(y |x). (16)

Here, the first step follows by the definition of mutual informa-
tion, the second step follows by a change of measure argument,
the third step follows from the nonnegativity of the relative
entropy, and the last step follows again by definition.

The main motivation for using the upper-bound (16) is that,
for a given P

x

, the corresponding mutual information I(x;y)
might be difficult to compute. On the other hand, the RHS of (16)
might be computable, provided that Q

y

is chosen appropriately.
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