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Abstract

The topic of this thesis is a selected problem in game theory, namely the N -
player War of Attrition. The War of Attrition is a well established game the-
oretic model that was first introduced in the 2-player case by John Maynard
Smith. Although the original idea was to describe certain animal behaviour in,
for instance, territorial competition the interest in the model increased and has
found interesting applications also in economic theory. Following the results
of Maynard Smith, John Haigh and Chris Cannings generalised the War of At-
trition to allow for more than 2 players. Their work resulted in two separate
models, in this thesis called the dynamic- and the static model, both reducing
to the 2-player case when N = 2.

In the paper we study the asymptotic behavior of the N -player models
as the number of players tend to infinity. By a thorough analysis of the dy-
namic model we find a connection to the more difficult static one in the in-
finite regime. This connection is then confirmed by approaching the limit of
infinitely many players also in the static model. Finally, by using the limit re-
sults as a source of inspiration for the finite case, we manage to prove new
results concerning existence and non-existence of an equilibrium strategy in
the N -player static case.
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Introduction

Game theory, when defined in its broadest sense, could be thought of as a col-
lection of models formulated to study situations of conflict and cooperation.
By analysing these models game theorists try to find answers to questions con-
cerning best actions for individual decision making, but also to what mecha-
nisms that could underlie social behaviour. This introduction aims in giving a
concise survey of some fundamental parts of the subject, and present the most
central results. We start off by a quick journey in history.

1.1 Brief History

When writing a text on the history of a specific scientific subject it is always
an inevitable fact that the story will not be complete, no matter how hard
you try. Game theory is not an exception. It is even difficult to say for sure
when and where it began since, in a wide perspective, strategic thinking has
of course always been around and hence the foundation of what game the-
ory is today rests in hundreds, and even thousands, of years of history. The
very first contribution to mathematical game theory is, however, often credited
to the French mathematician Antoine Augustin Cournot (1801-1877) for his
book Recherches sur les principes mathématiques de la théorie des richesses from
1838. Cournot introduces mathematical tools (functions, probabilities, etc.)
in the context of economic analysis and, most importantly, constructs a theory
of oligopolistic firms and analyses oligopolistic competition. Thirty years after
its publication these ideas were to have a strong influential impact on, what
was to become, modern national economy.

One of the first contributions to what we recognise as pure classical game
theory today was made in a series of papers and notes by Émile Borel (1871-
1956) during the period 1921-1927. Borel studied finite symmetric 2-player
games at an abstract and more general level without having any particular
application in mind. In his work he introduced the concept of "méthode de
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INTRODUCTION

jeu" (method of game, strategy) which he used to pose the fundamental ques-
tion of whether it was possible to determine a "méthode de jeu meilleure" (best
method of game) or not, even if it was not properly defined what a "méthode

de jeu meilleure" actually would be. Strange as it is though, the work done
by Borel was never really recognised until years after the breakthrough by
von Neumann that was to come. In 1953, while translating Borel’s work to
English, the French mathematician Maurice Fréchet is quoted saying "... in
reading these notes of Borel’s I discovered that in this domain [game theory],
as in so many others, Borel had been an initiator." (see [4]).

The first huge impact in the mathematical theory of games came in year
1928 through the works of John von Neumann in [12]; Zur Theorie der Gesells-

chaftsspiele. In this paper he gives a complete proof of the classical "mini-
max theorem" for 2-player zero-sum games, basically saying that Borel’s "best
method of game" indeed always exists in the zero-sum case. This result is
probably the most influential in the history of game theory and it would not
be an overstatement to claim that the subject was born in 1928 through the
paper of von Neumann. Apart from the minimax theorem von Neumann was
the first to clearly explain the passing from extensive-form games to the more
useful notion of normal-form games. The normal-form was to become of great
importance not only for game theory, but also for the shaping of modern eco-
nomic theory.

In their famous book Theory of games and economic behavior from 1944
von Neumann and Morgenstern present the state of the art theory available
at the time, including cooperative games with definitions of TU-games and the
solution concept of stable sets. A short survey of John von Neumann’s contri-
bution to game theory is given in e.g. [3].

During the 30’s and 40’s much of the research done in game theory was
focused on cooperative games in which players are engaged into coalitions.
Even though this analysis was (and still is) both interesting and important it
was somewhat leading away from other interesting questions of games where
negotiation and individual decision making based on personal information is
present. This direction gained momentum in the 1950’s thanks to the contri-
butions of John F. Nash to non-cooperative game theory and his famous equi-
librium theorem. In 1951 Nash published the paper Non-Cooperative Games in
which he defined and proved the general existence of a "best play" equilibrium

strategy, or Nash-equilibrium1, valid in all finite normal-form games. This re-

1The concept was actually formulated already by Cournot, but in a much less general set-
ting. Some scholars have suggested the name Cournot-Nash-equilibrium, or even Cournot-
equilibrium, but most people do agree on that the depth of the definition is due to Nash.
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INTRODUCTION

sult was the ultimate generalization of von Neumann’s minimax theorem, but
it was also the igniting spark for future research in non-cooperative games
(even though the impact of the result initially spread slowly).

Among many significant contributions by Nash (that range even outside
game theory) he gave strong arguments for why any theory of games should
be reducible to equilibrium analysis of a normal-form game and he gave a
beautiful (axiomatic) argument to solve the so called two-person bargaining

problem. For a good further reading of the importance that Nash’s work have
had on game theory and economy I recommend [10].

By the mid 50’s and onward game theory had become a well established
area within the mathematical community and persons like John Harsanyi,
Reinhard Selten, Robert Aumann and Lloyd Shapley, just to mention a few,
made important and astonishing contributions to the subject.

Considering applications the spectrum was initially rather narrow, mainly
concentrated in economic theory. It would take until the 1970’s for this to
change by the works of two mathematical biologists, John Maynard Smith
and George R. Price, and their definition of evolutionary stable strategy, or
ESS, in "The logic of animal conflict" (see [9]). What Maynard Smith and Price
realised was that ideas from game theory could be used to formulate a related
dynamical theory, potentially useful for describing population dynamics. The
big difference was that the players in this model were not assumed to act in
a rational manner. This was the starting point of what today is known as evo-

lutionary game theory which, apart from its original intention of being a tool
in theoretical biology, has found applications in economy, social science and
philosophy.

Ever since its first major breakthrough in 1928 game theory has continued
to expand both in terms of applications and theoretical development. Today
there is a wide range of ongoing research of all kinds in subjects from classical
and evolutionary game theory to stochastic and differential games. As late
as in 2006 a new theory (related to differential games) was being developed
independently in works by P. L. Lions, J. M. Lasry and P. E. Caines, M. Huang,
R. Malhamé, called mean field games, or just MFG. MFG has attracted lots of
attention by opening doors to many potential applications, but the theory is
still somewhat under construction (there is not yet even a text book in the
subject).
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INTRODUCTION

1.2 Extensive-Form and Normal-Form games

Games of various kinds have been present in our society for ages in connection
to economy and gambling, in strategic decision making and conflict scenarios,
but quite often also just for the sake of fun. One of the most prominent of
those games is undoubtably chess which has diverted mankind for centuries.
The rules are so simple that one can learn about how to play in only a few
minutes yet, not even a lifetime of practise is enough to fully master the com-
plexity of the game. The difficulty of playing chess originates from the enor-
mous number of moves a player can make during a play. Indeed, if we were
to reduce the number of pieces for each player from 16 to 8 the game would
become rather poor. Apart from the matter of "size", theoretically speaking,
chess is actually very simple. Its general structure is common for a wide range
of other 2-player games such as for instance Othello, Nim, Go etc., which are
all typical examples of games that can be represented in a so called extensive-

form. Loosely speaking an extensive-form 2-player game is a finite directed
tree where each node represents a player in some position in a play of the
game. There are three different types of nodes; one having outgoing edges
but no incoming called the root, nodes having both outgoing and incoming
edges are intermediate, and nodes having an incoming edge but no outgoing
are called terminal. An edge connecting two nodes represent a move that the
player at the first node can use to get to the second node. The root of the tree
is the starting point of the game. In chess for instance the white player is in
the root from which there are 20 different moves leading to an intermediate
node for the black player. The game is played via intermediate nodes until it
finally reaches a terminal node where the game ends (checkmate or draw).

The outcome of a play is measured by means of a payoff function which
assigns a 2-vector to each of the terminal nodes. The elements in this vec-
tor represent the payoffs given to each of the players respectively. If we
again use chess as a game of reference we could assign values to each pos-
sible outcome as "win = 1", "draw = 0" and "loose = -1", and hence get
{(1,−1), (−1,1), (0,0)} as the set of possible values of the payoff function.

At this point we have all that is needed to describe the simplest kinds of
2-player games in extensive-form namely; a game tree, on which the game is
being played, and a pay-off function, measuring the outcome of a play. This
is indeed a good start, but in order to find a complete theory of games it is
obvious that we should be looking for a more general description. Take for
instance a game of poker in 4 players. We then face two new features that
our simple description can not yet meet. Firstly that the number of players is
greater than two and, secondly, that the players are unaware of how the oppo-
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nents are playing. One could also think of games having "chance moves", i.e.
random moves that does not connect to any particular player. The following
definition of a game in extensive-form covers all of the above features and can
be found in [14]:

Definition 1.2.1. By an n-player game in extensive form is meant

1. a topological tree Γ with a distinguished node A called the starting point

of Γ

2. a function, called the pay-off function, which assigns an n-vector to each
terminal node of Γ

3. a partition of the intermediate nodes of Γ into n+ 1 sets S0,S1, ...,Sn,
called the player sets

4. a probability distribution, defined at each node of S0, among the imme-
diate followers of this node

5. for each i = 1, ..., n a subpartition of Si into subsets S
j

i
, called informa-

tion sets, such that two nodes in the same information set have the same
number of immediate followers and no node can follow another node in
the same information set

6. for each S
j

i
there is an index set I

j

i
together with a 1-1 mapping of I

j

i

onto the set of immediate followers of each node in S
j

i
.

As mentioned earlier condition (1) and (2) suffice to describe the simplest
games in extensive form like e.g. chess. Condition (3) sets the stage for the n-
player generalization where Si, i 6= 0, should be thought of as the collection of
nodes in Γ from which player i makes a move. The set S0 differs from S1, ...,Sn

in that it contains nodes from which the game proceeds at random (without
any player making a move) to an immediately following node, i.e. S0 is the
collection of chance nodes. Conditions (5) and (6) open up the possibility
of having a "lack of knowledge" in the game. For i 6= 0 one should think of
the nodes in S

j

i
as different positions in the play of player i that, however,

are indistinguishable to him. In poker for instance every player move, that
is not terminal, is followed by a chance move (drawing a card) and the only
information available to a given player i is what cards he has at the moment
and what cards he has decided to discard. No information of the opponents
hands is available so, for a fixed hand, all the possible nodes of player i in
a round j for which the same cards have been discarded by i (in any order)
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INTRODUCTION

is indistinguishable to him. Thus there is a natural partition of Si, for each
i = 1, ..., n, where each S

j

i
in the partition contains several nodes of Γ. A game

in which |S j

i
| = 1 for all i and j, i.e. all nodes are always distinguishable, is

said to have perfect information. Chess is a typical game of perfect information.
Using the terminology of Definition 1.2.1 we are now ready to introduce

the fundamental concept of strategy.

Definition 1.2.2. Let Γ be an n-player game in extensive form and let S
j

i
, for

1 ≤ i ≤ n, be the information sets of a player i. A (pure) strategy of player
i is defined as a function σi from each S

j

i
to any of the edges which follow

a representative node of S
j

i
. The set of all strategies available to player i is

denoted by Σi. An element in the product space Σ1 ×Σ2 × ...×Σn is called a
profile of strategies.

The above definition captures the intuitive idea of what a strategy "should
be", namely; a strategy is a complete plan of how to play in any given sit-
uation. There is, however, also a drawback with Definition 1.2.2 in that it
somewhat assumes the player to have decided about how to play even before
the game has started. One may of course argue that this is unreasonable in
many situations. Again chess is a good example since you (in practice) would
not be able to make up a plan on what to do in more than a few moves ahead.
Indeed this is a practical limitation that we will have to overlook. It will not
make the theory less interesting.

The introduction of strategies is of course of fundamental importance since
they are representing the basic elements of what game theory means to study.
We want find out if there is a best way of choosing strategy in a given situation.
From a player point of view this would be to pick a strategy that maximises
the personal payoff. Given that the opponents play according to some profile
of strategies you would pick your own strategy so that your final position gets
as good as possible. It is time to introduce some further notation. We can
make the notion of payoff-function in an n -player game precise by declaring
it as a function J : Σ1 ×Σ2× ...×Σn→ Rn where

J (σ1, ...,σn) = (J1(σ1, ...,σn), ...,Jn(σ1, ...,σn))

and Ji is the payoff-function of player i. Note that since Γ may consist of
chance moves one should, in general, interpret J as an expectation.

In many situations, both in theory and practise, given that every player
have chosen a strategy we are only interested in the values of each individual
payoff-function. In principle, given the product space Σ1×Σ2×...×Σn and the
payoff-function J we have a characterisation of the game that is in many ways
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sufficient for our needs. Describing a game in this way via the payoff-function
is commonly known as a normal-form representation. Every game in extensive
form can canonically be represented in normal form, but not in the converse
order. The reason is that a game in extensive form contains information of the
game tree Γ which is lost in the normal form representation. If the number
of strategies in each Σi is finite (which we have assumed) the normal-form
representation is simply given by an n-dimensional array of n-vectors. In the
special case of a 2-player game this array reduces to a bimatrix.

Example 1.2.3. One of the most famous examples of games in game theory
is undoubtedly The Prisoner’s Dilemma, first introduced in 1950 by Merrill
Flood and Melvin Dresher working at the RAND Corporation. Two members
of a criminal gang are arrested by the police and imprisoned in two different
rooms without being able to communicate with each other. Both of them can
act in either of the two following ways: either choose to cooperate, i.e. keep
quite to the police during the interrogation, or else they defect and choose to
testify against the other prisoner. We denote cooperation by C and defection
by D. If the prisoners cooperate they will both go to jail for two years and if
they defect they will get three years in prison. The catch with the game is that
if one of the prisoners choose to cooperate while the other defects the latter
will be released while the cooperative prisoner will get four years behind the
bars. Denoting the prisoners by Player 1 and Player 2 this game can easily be
represented in both extensive- and normal form as in Fig. 1.1.

CD

Player 1

C

(0,4)

D

(3,3)

Player 2

C

(2,2)

D

(4,0)

C D

C 2,2 4,0
D 0,4 3,3

Figure 1.1: The Prisoner’s Dilemma represented in extensive- and normal
form.

The dashed line in the extensive form representation of the prisoner’s
dilemma indicates that the nodes belong to the same information set. This
information is not included in the normal-form representation.

We are now ready to introduce the notion of Nash-equilibrium.

Definition 1.2.4. Given an n-player game Γ we say that an n-tuple of strategies
(σ∗1, ...,σ∗n) ∈ Σ1 ×Σ2 × ...×Σn is a (pure) Nash-equilibrium if and only if for
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any i = 1, ..., n and σi ∈ Σi,

Ji(σ
∗
1, ...,σ∗n)≥ Ji(σ

∗
1, ...,σ∗i−1,σi,σ

∗
i+1, ...,σ∗n).

Nash-equilibrium is one of the most celebrated definitions in non coop-
erative game theory and serves as the major solution concept. The intuitive
meaning is clear. Given that all players in the game play according to their
Nash-equilibrium strategy, none of them can get a higher (expected) payoff by
changing to another strategy. Despite its great importance Nash-equilibrium
is far from being the only solution concept present in the litterateur. Other
important solution concepts are for instance subgame perfect equilibrium and
evolutionary stable strategy.

At this point an important question naturally rises; given a finite game Γ,
does it always exist a Nash-equilibrium? A moment’s thought will revile this
to be false. Consider for instance the 2-player normal-form game:

�

(1,−1) (0,0)
(0,0) (1,−1)

�

(1.2.1)

where, at each entry, either Player 1 or Player 2 can do better by changing to
another strategy. There is, however, more to be said about this matter as we
will see shortly.

We conclude this section with the important notion of symmetric games.

Definition 1.2.5. Let Γ be an n-player game given in normal form. We say that
Γ is symmetric if and only if for every i = 1, ..., n and permutation π it holds
that

Ji(σ1,σ2, ...,σn) = Jπ(i)(σπ(1),σπ(2), ...,σπ(n)),

for all (σ1,σ2, ...,σn) ∈ Σ1 ×Σ2× ...×Σn.

1.3 Zero-Sum Games

The simplest possible games to study are the so called zero-sum games. They
are characterised by the fact that the sum of the elements of the payoff-vector
at any terminal node always equals to zero. Thus, in a zero-sum game the
winnings of one player has to be paid, in some way or another, by the other
players. If only 2-player zero-sum games are considered, things simplify even
further since the elements of the payoff-vector then have to be additive in-
verses of each other. Hence it suffices to represent it with the payoff of only
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one player, say Player 1. The normal-form bimatrix representation can there-
fore be reduced to a matrix representation. For this reason zero-sum games
are sometimes also referred to as matrix games. The game in (1.2.1) is a zero-
sum game and in the reduced notation of the first player’s payoff we get the
game matrix

�

1 0
0 1

�

. (1.3.1)

The easy payoff-matrix representation makes the 2-player zero-sum games
tractable for closer analysis like, for instance, existence of solution strategies.
We know that (1.3.1) does not have a pure Nash-equilibrium but maybe we
can quantify those matrix game that have? Consider a general zero-sum game
with a pay-off function J corresponding to a payoff-matrix A= (ai j) ∈ Rn×m.
The strategy sets of Player 1 and Player 2 are Σ1 and Σ2 respectively and
both are assumed to be finite. The pair (σ∗1,σ∗2) ∈ Σ1 × Σ2 is a pure Nash-
equilibrium if and only if both ai∗ j∗ = maxi ai j∗ and ai∗ j∗ = min j ai∗ j, where
J (σ∗1,σ∗2) = ai∗ j∗ . Such an element, if it exists, is called a saddle point of A. If
A lack saddle points the game lacks pure Nash-equilibria. What would happen
if we were playing such a game? The goal of Player 1 is to win as much as
possible while minimising the risk of loosing too much. Thus, in each row two
elements are of interest; the greatest (maximal gain) and the least (maximal
loss). A rational choice of strategy for Player 1 would be to pick a strategy
corresponding to the row in A in which the least possible win is maximised.
An analogue argument also holds for Player 2 who preferably would choose
to play a strategy corresponding to the column in which the greatest loss is
minimised. We define

v := max
σ1∈Σ1

min
σ2∈Σ2

J (σ1,σ2)

v := min
σ2∈Σ2

max
σ1∈Σ1

J (σ1,σ2)

and call v the gain-floor and v the loss-ceiling. By construction we have the
inequality

v ≤ v, (1.3.2)

and if "=" in (1.3.2) we say that the game has value v = v = v. Hence, if
a zero-sum game has value the payoff-matrix has a saddle point and there
exists a pure Nash-equilibrium. If not, then the gain-floor and the loss-ceiling
only represent the best possible win and loss each of the players can hope for.

9
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However, there is a way of playing in games without saddle points so that
both players can gain from it. That is the concept of mixed strategies, first
introduced by Émile Borel:

Definition 1.3.1. Let Γ be an n-player game in normal form with strategy
spaces Σ1,Σ2, ...,Σn and payoff-function J . We say that µi is a mixed strategy

of player i if µ ∈ M1
�

Σi

�

, whereM1
�

Σi

�

is the set of probability measures
over the space Σi.

Note that in mixed strategies the payoff-function J turns into an expected
payoff-function given by

∫

Σ1×Σ2

J (σ1,σ2)µ1(dσ1)µ2(dσ2),

for (µ1,µ2) ∈ M1(Σ1)×M1(Σ2). For simplicity though we will stick to the
same notation as for the ordinary payoff-function.

To play a mixed strategy is indeed a bit odd. Practically it means that in-
stead of using rational reasoning to find a good strategy one would draw a
strategy at random according to some probability distribution. By the inclu-
sion Σi ⊂ M1(Σi), there is however good reason to believe that the mixed
strategies enable us to find values in a wider class of games. The following
result is due to von Neumann in [12] (1928) and can be considered as the
fundamental theorem of game theory.

Theorem 1.3.2 (The minimax theorem). Let Γ be a 2-player zero-sum game

with finite strategy spaces Σ1 and Σ2 and payoff-function J . Then there exists

at least one Nash-equilibrium in mixed strategies (µ1,µ2) ∈M1(Σ1)×M1(Σ2)

and the game has value, i.e.

max
µ1∈M1(Σ1)

min
µ2∈M1(Σ2)

J (µ1,µ2) = min
µ2∈M1(Σ2)

max
µ1∈M1(Σ1)

J (µ1,µ2).

The minimax theorem was the first major breakthrough in what was to become
the theory of games and it has later been generalized by several authors. John
von Neumann him self was quoted as saying "As far as I can see, there could
be no theory of games ... without that theorem ... I thought there was nothing
worth publishing until the minimax theorem was proved" (see [1]).

Since we have assumed the number of strategies available to each player
to be finite (n say) any mixed strategy may be represented by a vector x ∈ Rn

such that all x i > 0 and
∑n

i=0 x i = 1. Each element x i is the probability of
getting the pure strategy indexed by i when playing x. The payoff-function
can be written as

J (x,y) = xT Ay, x ∈ Rn,y ∈ Rm.

10
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The minimax theorem is a pure existence result, but there is also another in-
teresting result saying that equilibrium strategies in symmetric 2-player zero-
sum games can be derived as solutions to a certain ode-system. The following
theorem can be found in [2] and is due to von Neumann:

Theorem 1.3.3. Let A ∈ Rn×m be the payoff-matrix in a 2-player zero-sum game

and define the functions ui(y) = eT
i Ay, for i = 1,2, ..., n, φ(a) = max(0, a)

and Φ(y) =
∑n

i=1φ(ui(y)). For any mixed strategy y0 of Player 2 consider the

following problem:

¨

y ′
j
(t) = φ

�

u j(y(t))
�

−Φ
�

y(t)
�

y j(t)

y j(0) = y0
j

Then, for any positive monotone sequence {tk} growing to infinity any limit point

of {y(tk)} is an equilibrium strategy of Player 2 and, furthermore, there is a

constant C such that eT
i
Ay≤pn/(C + tk).

It should be mentioned that, even though interesting, finding the equilibrium
solution by means of ordinary differential equations is not very efficient. Much
faster solution algorithms have been developed using methods from linear pro-
gramming.

The literature on 2-player zero-sum games is huge, both from a theoretical-
and applied point of view, and the topic serves as the foundation for what
is called classical game theory. Apart from the 2-player setup there are also
results available on n-player zero-sum games, but not as extensive. A sub-
stantial part of the classical text Theory of games and economic behavior by
von Neumann and Morgenstern (see [13]) is though devoted to these types of
problems.

1.4 Nash’s Theorem

Following the footsteps of von Neumann the young Princeton mathematician
John F. Nash was to give game theory its next major breakthrough by a beau-
tiful generalisation of the minimax theorem. Based on Nash’s work in his
doctoral thesis the following result can be found in [11]:

Theorem 1.4.1. Every normal-form n-player game with finitely many strategies

has at least one Nash-equilibrium in mixed strategies.

The proof of Nash’s theorem builds upon a fixed point argument, preferably
using Brouwer’s or Kakutani’s fixed point theorem, and is surprisingly elegant.

11
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The statement is true even for more general normal-form games having infi-
nite strategy sets. Ever since its publication in 1951 the result has generated
much attention in research and has by now created a whole avenue of inter-
esting research in n-player non-cooperative games.

1.5 Evolutionary Game Theory

Classical non-cooperative game theory typically deals with questions concern-
ing equilibrium analysis. Problems like; Is there a Nash-equilibrium? Is it
unique? What is the expected payoff and what is the risk when playing a
Nash-equilibrium? etc. are fundamental. From a game theorists point of view
these questions are of course very natural to ask, but are they equally natu-
ral for the economist or the evolutionary biologist when trying to understand
actual social behaviour? Do agents really play Nash-equilibrium in a given
situation and, if they do, which one do they chose if several exist? These
are some of the basic problems of interest in what is called evolutionary game

theory. In contrast to the classical theory, evolutionary game theory does not
assume players to act rationally, and there is very good reason for this. In
every day life we are all being exposed to new situations which, in principle,
could be analysed game theoretically. The problem is that we most often do
not tend to think of those situations in strategic terms. It would therefore be
absurd to simply assume our behavior to be reflected by what is game theo-
retically rational since, what we probably really use are just simple strategies,
imitation of others, experience and rules of thumb. The best one can hope for
is that rational behaviour, as described by Nash-equilibrium, is reached over
time as agents eventually learn how to play. In evolutionary game theory the
basic setup is a large population of players who repeatedly engage in strate-
gic interaction. Changes in the behaviour in these populations are driven on
an individual level by features such as for instance imitating more successful
behaviours. For a thorough discussion of the passing from classical to evolu-
tionary game theory we recommend [8].

We are now going to present the basic model. Consider a finite popula-
tion of N players and a normal form game admitting a finite set of (pure)
strategies Σ = {σ1,σ2, ...,σn}. For simplicity we are going to assume all the
individual strategy sets to be the same and equal to Σ. A population state x

is a point in the n-dimensional unit simplex X and describes the proportion
of each strategy being used within the population, i.e. x i is the proportion
of players using strategy σi . Note that for N < ∞ the values of x are in the
grid XN := X ∩ 1

N
Z

n, embedded in X . A population game is a continuous
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vector-valued payoff-function F : X → Rn for which each Fi(x) is the (ex-
pected) payoff to a σi-player given a population state x . In this context a
Nash-equilibrium is a population state x∗ satisfying the implication

x∗i > 0 ⇒ i ∈ argmax
1≤ j≤n

F j(x),

see e.g. [17]. It is easy to show that the above definition coincides with the
classical Nash-equilibrium if the population game is a finite symmetric normal-
form game.

As we mentioned earlier the goal of evolutionary game theory is to under-
stand the possible mechanisms driving the strategic behaviour within a popu-
lation. How and why do players switch from one strategy to another and how
do we model it? To deal with this we introduce revision protocols. Formally,
a revision protocol is a map ρ : Rn × X → Rn×n

+ taking payoff vectors π (πi

is the expected payoff to a σi-player given x) and population states x as ar-
guments and returns a square matrix having positive elements. The idea is to
consider a population of N individuals, each of them being equipped identical
"alarm clocks". The time durations between two consecutive rings of a clock
are independent and exponentially distributed with exponential parameter R.
As soon a a clock rings the player carrying it gets a chance to switch to another
strategy. The switching process is random and related to ρ in a way so that
the probability of changing from strategy σi to σ j, i 6= j, is given by ρi j/R.
When a switch occurs at a time t the population state vector also reacts by
jumping to a neighbouring point in XN . This jump-process can be described
as a continuous time Markov-chain which we denote by XN (t). The aim is
to study the time evolution of XN(t) and especially its asymptotic behaviour
when t → ∞. At this point there are two possible routs to take; either we
study XN (t) directly, the so called stochastic dynamics, or we study the expec-
tation x t := E[XN (t)], the mean dynamics. In this text we are going to focus
on the latter in the case of population games.

Given a revision protocol ρ and a population game F there should be an
equation for x t . To find it we consider the expected differential of XN (t) over
a small time interval [t, t + dt]. In dt units of time the expected number of
revision opportunities for each player is Rdt. Thus, given a population state x

at time t, there will be on average N x iRdt revision opportunities within the
group of σi-players. Therefore, since the probability of changing strategy is
ρi j/R, we expect N x iρi jdt of the players in this group to switch to σ j in the
time interval [t, t + dt]. Adding up the expected number of immigrants and
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emigrants to and from strategy σi one finds

N d x i = N







j=n
∑

j=1, j 6=i

x jρ ji(F(x), x)− x i

j=n
∑

j=1, j 6=i

ρi j(F(x), x)






d t

which yields following differential equation:

ẋ i =

j=n
∑

j=1, j 6=i

x jρ ji(F(x), x)− x i

j=n
∑

j=1, j 6=i

ρi j(F(x), x) =: V F (x), (1.5.1)

forming a system of n ordinary differential equations called the mean dynamic.
A population state x such that V F (x) = 0 is called a stationary point.

So far nothing particular has been said about the revision protocol and
its properties. The explicit form of ρ depends on what problem one would
like to study and on what application one has in mind. It must therefore be
constructed on a case to case basis. There is, however, a handful of models
in the literature of certain interest. In the context of evolutionary biology the
most common model by far is the so called replicator dynamics (first introduced
in [19] by Taylor and Jonker) which is generated from (1.5.1) by choosing
ρi j(π, x) = x j[π j − πi]+. The basic idea behind this choice is simple; the
probability of switching from strategy i to strategy j should be proportional to
the proportion of players using σ j (imitation) and to the advantage in payoff
of playing σ j instead of σi (payoff-advantage). If, given x , σ j-players do
worse than σi-player the probability of a switch is zero. Inserting this protocol
in (1.5.1) we get the replicator dynamics:

ẋ i = x i

 

Fi(x)−
n
∑

i=1

x iFi(x)

!

. (1.5.2)

Note that the form of (1.5.2) makes it impossible for strategies that are not
present in the initial population to emerge later on.

In the case of a linear population game, i.e. F(x) = Ax for some matrix
A ∈ Rn×n, the replicator equation can be written

ẋ i = x i

�

(Ax t)i − x T
t Ax t

�

. (1.5.3)

The system created from (1.5.3) satisfy the following properties (see [5]):

1. if x is a Nash-equilibrium, then V F (x) = 0

2. if x is a strict Nash-equilibrium, then it is asymptotically stable
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3. if V F (x) = 0 and x is the limit of an orbit in the interior of the simplex
X as t →∞, then x is a Nash-equilibrium

4. if V F (x) = 0 and x is stable2, then it is a Nash-equilibrium.

Note, however, that the converse implications of (1) - (4) are all false. Thus,
the replicator dynamics does not guarantee convergence of solutions to a
Nash-equilibrium. The following is a simple example of such a situation.

Example 1.5.1 (Rock-Paper-Scissor). In the classic game of rock-paper-scissor
there are obviously three pure strategies to chose from. We identify each of
them by the unit vectors in R3: e1, e2 and e3. The game is characterised by the
fact that e1 wins against e2, e2 wins against e3 and e3 wins against e1. In the
general setup the individual payoff of playing ei against e j can be written like
J (ei, e j) = eT

i Ae j where

A=







0 −a2 b3

b1 0 −a3

−a1 b2 0







for any a1, a2, a3, b1, b2, b3 > 0. This game has a unique Nash-equilibrium
x∗ in the interior of the unit simplex X (if for instance a1 = a2 = a3 and
b1 = b2 = b3 it is (1/3,1/3,1/3)) which is asymptotically stable if and only if
det A> 0. In the case det A< 0 the solutions of the replicator dynamics, when
starting at any interior state (not equal to x∗), will spiral to the boundary of
X and never settle at the equilibrium state. This is illustrated in Fig. 1.2.

The inability of the replicator dynamics to ensure convergence to a Nash-
equilibrium should not be considered as a flaw. It is merely an indication
that it takes more than imitation of success to reach game theoretic rational-
ity, which is an interesting observation in it self.

The replicator equation (1.5.2) is said to be permanent if there is a com-
pact set K ⊂ int X such that for all x0 ∈ int X there is a T > 0 such that for
all t > T one has x t ∈ K . For such a dynamics (having F linear) we have the
following (see [5]):

Theorem 1.5.2. If (1.5.3) is permanent, then there exists a unique stationary

point z ∈ int X . The time averages along each internal orbit converge to z:

1

T

∫ T

0

x i(t)d t
T →∞−−→ zi , for i = 1,2, ..., n.

15



INTRODUCTION

Figure 1.2: Replicator dynamics for the rock-paper-scissor game with ai = 1
and bi = 0,55 for all i = 1,2,3.

The concept of permanence means, roughly, that if all strategies are present
in the population at time zero, then they will not go extinct. Theorem 1.5.2
says that the time average of the solution curves of a permanent replicator
dynamics equals to its unique interior stationary point.

We are now going to introduce the basic solution concept of evolutionary
game theory, namely that of evolutionary stable strategy or, more commonly,
ESS.

Definition 1.5.3. Consider a 2-player symmetric normal form game with strat-
egy set Σ and payoff-function J : Σ×Σ→ R. A mixed strategy µ∗ ∈M1(Σ)

is an ESS if either

J (µ∗,µ∗)> J (µ,µ∗)

for all µ ∈M1(Σ)\{µ∗} or else, if equality in the above for some µ̂,

J (µ∗, µ̂)> J (µ̂, µ̂).

The notion of ESS was first introduced in [9] by Maynard Smith and Price as
an alternative to Nash-equilibrium when trying to apply game theory to prob-
lems in evolutionary biology. As concept the ESS is slightly weaker than strict
Nash-equilibrium, but nevertheless it is always an equilibrium in the usual
sense. Intuitively, for a strategy to qualify as evolutionary stable it should, if

2A point z ∈ X is stable if for every neighbourhood U of z there exists another neighbourhood
V of z such that if x ∈ V then x(t) ∈ U for all t ≥ 0. Moreover, a state is asymptotically stable

if it is a stable attractor.
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played by all agents in a population, be resistent to attempts of invasion by
any other strategy. In connection to the replicator dynamics an ESS is always
an asymptotically stable stationary point and moreover, if it is an interior point
of X it is even globally stable.

As we mentioned earlier another interesting path to follow in evolutionary
games is that of stochastic evolutionary dynamics, being a "high-resolution"
version of the mean dynamics. Indeed, according to Kurtz’s theorem (see
[7]), we have that

lim
N→∞
P

�

sup
t∈[0,T]

�

�XN (t)− x t

�

� < ε

�

= 1

for any positive T < ∞ and ε > 0. Apart from questions related to con-
vergence of population states the stochastic dynamical approach is also well
suited to address problems of equilibrium selection in games with multiple
locally stable equilibria. Even though interesting we will not bring up any of
these results in this text, but readily refer to [16] for a short survey and to
[18] for a more thorough discussion.
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Summary of Paper

The paper of this thesis treats asymptotic properties of two different N -player
models of the classical game The War of Attrition, introduced by Haigh and
Cannings in [3], as the number of players grows to infinity. By analysing the
models in the limit regime we gain insights of the large scale characteristics of
the games that are used to establish new results for one of the finite models.
The War of Attrition was first introduced by John Maynard Smith in 1974 in
the well known paper Theory of games and the evolution of animal contests (see
[4]). The game considers two identical players competing for one prize V of
positive value by observing each other and waiting, which is connected to a
running cost. The first player to quit the competition looses and agrees to leave
the prize to the remaining opponent. In the classical setup the cost of waiting
is modeled to be linear in time, i.e. by waiting t units of time the player gets
the possibility of winning the prize V > 0, but he will also be obligated to pay
−t units in time cost. If Player X and Player Y choose waiting times τx and
τy respectively, the payoff function of Player X can be written:

Jx(τx ,τy) :=







V −τy , if τx > τy

V/2−τx , if τx = τy

−τx , if τx < τy .

Note that the winning player only pays the time cost of the loosing player since
he can observe his opponent leaving the game.

Equilibrium analysis of the 2-player game was done by Bishop and Can-
nings in 1976 who proved that the War of Attrition admits a unique ESS in
mixed strategies given by an exponential distribution having mean V (see [2]).

In 1989 Haigh and Cannings constructed two canonical N -player general-
isations of The War of Attrition; the dynamic model and the static model. The
dynamic model is an N -player repetitive game having a sequence of prizes
{Vk}Nk=1 ⊂ R+ at stake and is played in N − 1 rounds. The first round begins
by letting all players choose individual waiting times (independently of each
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other). The player having the least waiting time wins the prize V1, pays his
time cost (still linear in time) and leaves the game. The players remaining pay
the same time cost as the player leaving and enter the second round which
proceeds just as the first, but having the prize V2 at stake. The (N − 1)’th
round thus becomes a normal 2-player War of Attrition. For increasing prize
sequences, i.e. V1 < V2 < ... < VN , it is proven in [3] that the dynamic model,
just as the 2-player War of Attrition, in each round k admits a unique mixed
ESS given by an exponential distribution, but with mean (N − k)(Vk+1 − Vk).
Also the general case of arbitrary sequences is analysed, still having the ex-
istence of a unique ESS as a result (though not as explicit as in the case of
increasing sequences).

The static model differs from the dynamic model only in being a one-shot
game rather than a repetitive, that is, the game finishes in one turn. Just as
in the dynamic model the static model starts by letting all participating play-
ers pick a waiting time (independently). The results are then presented and
prizes are handed out in the natural order, i.e. the player with the least wait-
ing time receives V1, the player with the second least receives V2 and so forth.
All players pay their individual time cost except for the "last" player who pays
the time cost of the second last player so that, for N = 2, we get back to the
original 2-player War of Attrition.

The equilibrium analysis of the static model is a bit more intricate than
in the dynamic model since all players are competing for all prizes in {Vk}Nk=1
(and not only one) at once. In [3] it is proven that the static model admits a
unique ESS for prize sequences such that Vk+1− Vk = c > 0. For more general
sequences though, the question of existence and uniqueness is unclear. For
instance, the 3-player game generated by the prize sequence {1,4,6} admits a
unique mixed Nash-equilibrium that, however, is not an ESS. There are even
games in the static model that lack Nash-equilibria, like for example the game
generated by {1,2,1}. The goal of this paper is to study asymptotic behav-
iors in the dynamic- and the static model of the N -player War of Attrition as
N →∞.

In Section 2 of the paper presents a heuristic approach to analyse the lim-
iting behaviour of the dynamic model as the number of players tend to infinity.
To maintain regularity in the limit we introduce the concept of prize function

V (x), defined on the compact unit interval, to replace prize sequences by mak-
ing the assumption that Vk = V (k/N), 1 ≤ k ≤ N . We also assume V (x) to be
increasing and in C 1[0,1]. We find that, in the limit, the fraction of players
q that has left the game at time t (after game start at t = 0) is given by the
equation V (q(t)) = t−V (0) and, in particular, if V (0) = 0 then q(t) = V−1(t).
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In Section 3 we investigate the results from Section 2 rigourously and pro-
ceed with the asymptotic analysis of the dynamic model. Considering N play-
ers we introduce the continuous time Markov chain X (t) (suppressing the in-
dex N) counting the fraction of players that have left the game at time t. Given
a prize function V (x) such that V (0) = 0 it is, by the results from Section 2,
natural to believe that "X → V−1" in some sense or another. Indeed, by Theo-
rem 3.2 we manage to prove in Corollary 3.3 that limN→∞E[X (t)] = V−1(t)

and limN→∞Var(X (t)) = 0 on the time interval t ∈ [0, V (1)). In addition
to the result on convergence in mean of X (t) we also manage to prove in
Theorem 3.6 that, in a certain sense, in the limit when N = ∞ the dynamic
model behaves like a static model in which the players use the mixed strategy
q̇(t) = d/d t(V−1)(t). We therefore have good reason to proceed by analysing
the asymptotic properties of the static model.

Section 4 is devoted to convergence properties in the static model of the
War of Attrition. In [3] one can find necessary condition for a given smooth
probability density to be an ESS in the static model, stated as a nonlinear au-
tonomous ode-problem of its cdf. For a general prize sequence {Vk}Nk=1 this
ode might be singular, but under the assumption of monotonicity (increas-
ing) the right hand side is always well defined. By well known properties of
asymptotic stability in autonomous equations we give an argument (valid for
any increasing prize sequence) for existence and uniqueness of a solution and
for why the solution is the cdf of a probability density. Furthermore, by intro-
ducing a prize function V (x) just as we did in Section 2 and Section 3, we are
able to prove Proposition 4.2 saying that the solution converges uniformly to
q(t) = V−1(t) on t ∈ [0, V (1)) as N →∞. Hence the dynamic- and the static
model "coincide" in the limit of infinitely many players.

Section 4 explained to us that the only candidate ESS in the N -player limit
of the static model is given by the density function q̇(t) = d/d t(V−1(t)). In
Section 5 we analyse wether q̇(t) is an ESS or not and establish new results
for the static model having finitely many players. By introducing theory of
normal form games with a continuum of players (according to [1]) we start
by defining the notion of ESS. Assuming the prize function to be in C 2[0,1]
rather than in C 1[0,1] (still increasing and normalised so that V (0) = 0) it
is an easy task to prove by direct calculation that q̇(t) is an ESS in the contin-
uum model if and only if V (x) is strictly convex. Moreover, if instead V (x) is
concave the q̇-strategy is not an ESS. The importance of convexity/concavity
of {Vk}Nk=1 is not obvious in the N -player static model, but it is reasonable to
believe that the conclusions made in the continuum limit also hold in the finite
case if N is large enough. Surprisingly enough we can prove as a corollary to
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what is called Theorem 5.3 that the static model admits a unique ESS, not only
for N large enough, but for for all N ≥ 2 if the prize sequence (not necessarily
connected to a prize function) is convex. The concave case turn out a bit more
difficult to handel, but in Theorem 5.5 we manage to prove that if V (x) := xα,
for any 0 < α < 1, (hence V is concave) and Vk = V (k/N), then for any N

large enough the static model lacks an ESS.
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