
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems 
Master’s Thesis in the Master Degree Programme, Civil Engineering 

KEVIN HINE

Department of Civil and Environmental Engineering 
Division of GeoEngineering 
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis  2005:22

Gear Whine Noise Excitation Model
Master’s Thesis in Mechanical Engineering

A. IVAR NILSSON
Department of Applied Mechanics
Division of Dynamics
Chalmers University of Technology
Gothenburg, Sweden 2013
Master’s Thesis 2013:05





MASTER’S THESIS IN MECHANICAL ENGINEERING

Gear Whine Noise Excitation Model

A. IVAR NILSSON

Department of Applied Mechanics
Division of Dynamics

Chalmers University of Technology
Gothenburg, Sweden 2013



Gear Whine Noise Excitation Model
A. IVAR NILSSON

c©A. IVAR NILSSON, 2013

Master’s Thesis 2013:05
ISSN 1652-8557
Department of Applied Mechanics
Division of Dynamics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Electrical vehicle transmission used as test object throughout this work. The
transmission is developed by Vicura AB.

Chalmers Reproservice/Department of Applied Mechanics
Gothenburg, Sweden 2013



Abstract

When developing a mechanical transmission one important characteristic of the trans-
mission is how much tonal noise and vibrations it generates. The vibrations causing the
so called gear whine noise are generated in the gear contacts of the transmission and
propagate through the shafts and bearings to the housing, where they become airborne.
This is of extra concern in electrical vehicle applications, where the absence of a loud
combustion engine makes the gear whine noise more distinct and easily perceived by the
human ear.

In collaboration with Vicura AB, a dynamic finite element model of an electric vehicle
transmission has been developed using the Abaqus R© software in order to simulate the
vibrations causing the gear whine noise. The main cause of the vibrations has been
assumed to be excitations due to variations in the transmission error and the mesh
stiffness of the gear contacts, based on previous studies of the subject. The transmission
errors and mesh stiffnesses for the examined transmission have been calculated and
implemented into the finite element model to excite the system. Dynamic simulations
using reduced finite element models of the transmission were performed so that the
resulting dynamic response in the transmission housing could be examined for a range
of different operating conditions.

Results from the simulations indicated that the mesh frequencies of the gear drives
along with their harmonics were the dominating frequencies in the response of the hous-
ing. Resonance phenomena were observed when the mentioned frequencies coincided
with the eigenfrequencies of the transmission.

It could be concluded, based on the results from the simulations, that the developed
dynamic model managed to simulate the vibrations established as the main cause of the
gear whine noise. Experiments must however be performed in order to establish the
validity of the model.

Keywords: gear whine noise, transmission error, mesh stiffness, gear dynamics
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Nomenclature

c Damping coefficient
cd Center distance
cm Mesh damping
CR Contact ratio
e (t) Excitation
Fa Axial force
fm Mesh frequency
fmax Maximum frequency
Fn Normal force
Ft Transverse force
i Gear ratio
k Stiffness
km Mesh stiffness
kt Torsional stiffness
M Torque
m Mass
n Number of samples
pb Base pitch
r Pitch radius
rb Base radius
t Time
T Total time
Tm Time period of mesh cycle
TEang Angular transmission error
TElin Linear transmission error
x Displacement
z Number of gear teeth
βb Helix angle
θ Angular position
φ Pressure angle
ω Angular velocity
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1
Introduction

When developing a mechanical transmission one important noise, vibration and harsh-
ness (NVH) characteristic of the transmission is how much tonal noise and vibrations
it generates. This noise is generated in the gear contacts due to variations in the so
called transmission error, which can be described as an error in the gear ratio of a gear
drive. Gear whine noise is a factor which becomes even more important when design-
ing transmissions for electrical vehicles. In such applications, the noise generated from
the transmission becomes more distinct since the noise level of the electric motor is
much lower compared to an internal combustion engine. The gear whine noise is often
recognized as the whining noise from F1 cars or reversing cars.

Several models for determining the resulting dynamic response due to the excitation
of the transmission error, with varying level of complexity and accuracy have been pro-
posed since the 1950’s. The simplest models are single degree of freedom systems, while
more complex models have an increasing number of degrees of freedom. Also, more de-
tailed finite element models have been proposed to describe the interaction in the gear
contacts.

This master thesis is performed in collaboration with the engineering company Vi-
cura AB located in Trollhättan, Sweden. The main focus of Vicura AB is in mechanical
transmissions, electric drive systems and related control systems. As noise levels are of
increasing concern, an applicable model to describe the dynamic behavior of transmis-
sions is of great interest.

1.1 Objective

The aim of this thesis is to investigate different ways to implement the excitation due to
the transmission error and create a method or subroutine using the finite element analysis
software Abaqus R©, which applies the gear excitation to a dynamic finite element model
of a transmission. Focus lies in finding a simple yet representative model of the gear
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CHAPTER 1. INTRODUCTION

contact. The dynamic response in the transmission should then be simulated, with focus
in the response of the housing of the transmission. This is done in order to enable Vicura
AB to examine the dynamic behavior of transmissions, so that tendencies in the expected
level of gear whine noise can be estimated and compared between different transmission
designs. Throughout this thesis, analyzes will be performed on a mechanical transmission
developed by Vicura AB for the use in an electric vehicle. A more detailed description
of the examined transmission is given in Section 1.3 below.

1.2 Limitations

To confine the scope of this thesis the following limitations have been introduced:

• Damping effects in the dynamic behavior of the models will not be considered.
This limitation is introduced in order to simplify the modeling and will decrease
the accuracy of the model.

• The representations of the transmission components will be so called substructures,
which are reduced finite element models. These will be based on currently available
models of the examined transmission.

• The dynamic response will be investigated only in the housing of the transmission,
since it is from there the vibrations become airborne.

• Verification of the accuracy of the model by experimental measurements on the
transmission will not be considered. This will be left for future work, since it is
too extensive to be included in this thesis.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Illustrations of the transmission used throughout the thesis. The left image
shows the outside of the transmission housing, while the right image shows the shafts and
bearings inside the housing.

1.3 Description of the Examined Transmission

As mentioned in Section 1.1, the transmission used as test object for this thesis is de-
signed for an electrical vehicle. The transmission has a constant overall gear ratio and
has the function of transferring power delivered from the motor to the rest of the drive-
line while reducing the rotational speed and increasing the torque. An illustration of the
transmission can be seen in Figure 1.1. Three shafts with attached gears are supported
by ball bearings and covered by a housing. The topmost shaft is the input shaft which
is connected to a motor, which is not shown in the figure. An intermediate shaft, called
the main shaft, transfers the power from the input shaft to the differential, which can
be seen in the bottom of the figure. The inner components of the differential are not
included in the examined transmission along with the shafts connecting the differential
to the remaining driveline. All of the bearings are single row, deep groove ball bearings.
The housing of the transmission has a height of circa 450 mm, a width of circa 240 mm
and a depth of circa 200 mm.

Figure 1.2 illustrates the shafts and the gear train of the transmission in greater detail.
Four helical involute gears form two gear drives, which reduce the rotational speed from

3



CHAPTER 1. INTRODUCTION

Input shaft

Main shaft

Differential

Figure 1.2: Illustrations of the transmission gear train. It can be seen that it consists of
three shafts with two gear drives.

the motor in two steps. All gears have a helix angle of βb = 30◦, see Section 2.2 for
definition of helix angle. The gear of the input shaft has z1 = 19 gear teeth and is
connected to the main shaft via a gear with z2 = 51 teeth. This gear contact will be
called the first gear contact throughout this thesis. The resulting gear ratio between
the input shaft and the main shaft is thus i1 = z2/z1 ' 2.68, see Section 2.2, indicating
that the input shaft rotates 2.68 times faster than the main shaft. The main shaft
then transfers the rotation to the differential via a gear with z3 = 23 teeth which is
connected to the differential gear having z4 = 83 teeth. This results in a gear ratio of
i2 = z4/z3 ' 3.61 between the main shaft and the differential. The overall gear ratio
of the transmission is thus i = i1 · i2 = 9.69. The gear contact between the main shaft
and the differential will be referred as the second gear contact throughout this thesis.
The gear-like component between the two gears of the main shaft is used for a park lock
which locks the transmission when the vehicle is parked and has no interaction in the
gear train. Other components associated to the park lock are not included in the figure
and has not been considered in the thesis work.
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2
Review of Literature

This chapter will in greater detail explain the relevant theories and reviewed literature.
Initially, the phenomena of gear whine noise will be discussed followed by basic theory
regarding the geometry of involute gears. This is followed by a description of the forces
acting between gears and the concept of transmission error and mesh stiffness. Thereafter
follows a revision of different concepts for modeling the dynamics in gear contacts. The
last section explains the method of fast fourier transform.

2.1 Gear Whine Noise

There are many types of different noises associated with gears, but one of the more
distinct noises is the so called gear whine noise. This noise is emitted from gears that
are in mesh and the sound is characterized as vibrations with frequencies same as the
gear mesh frequency and its multiples [1]. The noise exhibits a periodic behavior and it
is therefore perceived as a tonal noise. It is therefore an important factor when reducing
the noise level of transmissions since the human ear is more sensitive to tonal noises,
compared to noises with more random characteristics [2].

The primary cause of noise generation in gear transmissions are force variations which
cause some of the mechanical components to vibrate [3]. These forces generally varies
in amplitude, direction or position. The vibrations are then transmitted via the shafts
through the bearings to the housing. This excites the housing from which airborne noise
can be produced [3]. Vibrations are also transferred through the housing mountings
where they can excite other external components, such as parts of the compartment in
a vehicle. Previous studies [4] [5] [6] generally conclude that one of the main sources
of excitation in geared systems is the so called transmission error, see Section 2.5 for
a detailed description. The transmission error has also been identified as the primary
cause of gear whine noise generation [7] [8].

5



CHAPTER 2. REVIEW OF LITERATURE

Figure 2.1: Two examples of parallel-axis gear drives. To the left is a spur gear drive and
to the right is a helical gear drive.

2.2 Involute Gear Geometry

The primary function of gears is to transfer power between two shafts while maintaining
a constant ratio in the velocities of the shaft rotations. Torque is transmitted via forces
in the contact between the teeth of the driving and the driven gear and since the gears are
rotating, power is transferred. There are different types of gear configurations but the
simplest and most popular is the parallel-axis gear drive [9], which is shown in Figure 2.1.
This configuration connects two parallel shafts and allows a relatively high amount of
power transfer.

The primary gears used in a parallel-axis gear drive are spur gears and helical gears.
Figure 2.1 shows the basic geometries of a spur and helical gear drive. The two gear
types are similar but with one major difference; the spur gear has teeth which are parallel
to the shaft axis, while the helical gear has teeth which follows a spiral around the shaft
axis. The geometry of the helical gear is more complicated than that of the spur gear, but
it has some advantages. The teeth gradually engage contact through the meshing cycle
which results in a smoother and quieter action. Helical gears also allow for larger loads
to be transmitted compared to spur gears, which implies that the life of the helical gear
will be longer for the same load [9]. One disadvantage of the helical gear is that due to
the twisting angle of the teeth, additional force components along the shaft are present.
This requires extra considerations regarding the bearings of the shaft and the design of
the gear housing [9]. Also, helical gears have a somewhat lower efficiency compared to
spur gears [9].

The fundamental law of gearing states that in order to maintain a constant velocity
ratio of the two meshing gear teeth, the common normal to the tooth profile at the
point of contact must always pass through a fixed point, called the pitch point, which is
located at the pitch circles of the two gears [9]. This criterion affects the possible shapes
of the gear teeth. There are different gear profiles that fulfills this criterion but the most

6



CHAPTER 2. REVIEW OF LITERATURE

Involute

Base circle

Figure 2.2: Generation of an involute curve used for the shape of the gear tooth. The
involute curve can be imagined as the path of the end of a string unwinding from the base
circle.

commonly occurring is the involute gear profile. The shapes of the two flanks of an
involute gear tooth are based on the involute curve of a circle. This curve is generated
by the movement of a point on the end of a taut string unwinding from a so called base
circle [10]. The generation of an involute curve and the final shape of a corresponding
involute gear tooth can be seen in Figure 2.2. Beyond the fulfillment of the fundamental
law of gearing, the involute gear shape also allows for small deviations in the center
distance of the gears without changing the transmission ratio [10].

A principle sketch of two spur gears in mesh can be seen in Figure 2.3. The sketch
illustrates the pitch point, pp, the pressure angle, φ, and the pitch and base circles of the
two gears. The pitch point is as described above the point through which the contact
forces between the teeth of the two gears pass. Between point a and b is the so called line
of action. This line is tangent to both of the base circles of the gears and all contacts
between the teeth of the spur gears occur along this line. The normal forces in the
tooth contacts are all directed along the line of action due to the involute shape of the
teeth [10]. The pressure angle is defined as the angle between the line of centers and a
line perpendicular to the line of action and hence describes the direction of the normal
forces in the tooth contacts. The radii of the pitch circles, r1 and r2, are defined from
the distance between the centers of the gears, cd, and the gear ratio of the gear drive
according to [10]

r1 =
cd

z2
z1

+ 1
(2.1)

r2 =
cd

z1
z2

+ 1
(2.2)
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Figure 2.3: Sketch of a spur gear drive showing pitch and base circles, pitch point and
pressure angle φ.

where z1 and z2 are the number of teeth for Gear 1 and Gear 2 respectively and the
fraction z2/z1 is identified as the gear ratio, i. The gear ratio can also be expressed in
terms of the base or pitch radii according to [10]

i =
rb2
rb1

=
r2
r1

(2.3)

or in angular velocities as

i =
ω1

ω2
(2.4)

where ω1 and ω2 are angular velocities of Gear 1 and Gear 2 respectively. The radii of
the base circles are obtained from the pressure angle and the pitch circle radius according
to [10]

rb1 = r1 cosφ (2.5)

rb2 = r2 cosφ (2.6)

Another important geometrical definition is the base pitch of a gear, pb. It is defined
as the distance measured along the base circle from one point on one tooth to the
corresponding point on an adjacent tooth. For two mating gears the base pitch of the
gears are identical and it can be expressed as [10]

pb =
2πrb1
z1

=
2πrb2
z2

(2.7)

The geometry of a helical gear follow similar standards as those for the spur gear.
Instead of having teeth which are parallel to the axis, the teeth wind around the axis
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b
 

Base cylinder

Lines of contact

Plane of action

Base cylinder

Gear 2

Gear 1

Figure 2.4: The plane of action and contact lines between two mating helical gears.

helically similar to the threading of a screw. If the geometry of the helical gear is
examined in a sectional cut perpendicular to the axis of the gear, the profile is found
to be identical to that of a corresponding spur gear [10]. The helix which the teeth
is wind along is usually described by an angle measured at a tangential plane to the
rotational axis of the gear. The angle varies with the radius to the tangential plane and
it is therefore common to use the helix angle at the tangential plane to the base circle,
βb. Typical values for this helix angle is between 0◦ and 45◦.

For a helical gear the contact between the gear teeth occur at a plane which is tangent
to the base cylinders of the two mating gears. This plane is illustrated in Figure 2.4. It
can be seen that the teeth of the gears are in contact along lines with an angle of βb and
at distances equal to the base pitch, pb [10]. The contact lines migrates along the plane
of action from the base cylinder of one gear to the one of the other, but always with the
constant angle of βb.

2.3 Contact Ratio of Involute Gears

When two gears are working together the number of gear teeth which are in contact
varies during the meshing cycle. In order for the gear drive to work properly there must
be at least one pair of teeth in contact at all times. The average number of gear teeth
in contact when the gears are operating is called the contact ratio, CR. In practice the
contact ratio varies between two discrete values and a contact ratio of e.g. CR = 1.3
describes that some of the time there is one gear tooth pair in contact and for the rest of

9
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the time there are two pairs in contact. Acceptable values for the contact ratio is usually
CR > 1.2 with a absolute minimum of CR = 1.1 [9] [11]. If a contact ratio below this
value occurs, correct motion transfer cannot be assured [10].

2.4 Forces in Helical Gears

The pressure which is acting on the tooth surface of a helical gear when transferring
torque can be approximated by a resultant force denoted Fn acting in the normal di-
rection to the tooth surface [10]. This is based on the neglecting of the relatively small
friction forces which arise due to the slipping between the gear teeth flanks. Due to the
helix angle, this resultant force can be divided into two force components; one transverse
force component Ft and one axial force component Fa. This is illustrated in Figure 2.5.
The components are obtained using the following expressions [10]

Ft = Fn cosβb (2.8)

Fa = Fn sinβb (2.9)

It is the transverse force component which transfers the desired torque from the driver
gear to the driven gear, while the axial component is a result from the twist of the gear
tooth profile. According to Equation 2.11 it can be seen that the axial force component
increases as the helix angle increases. If an input torque, M1, is applied to Gear 1 in
Figure 2.5, the transverse force can be expressed as [10]

Ft =
M1

rb1
(2.10)

From geometry the axial force component can then be expressed in terms of the input
torque as

Fa =
M1

rb1
tanβb (2.11)

The resulting output torque of Gear 2 can easily be derived using the gear ratio
between the two gears according to [10]

M2 = M1 · i (2.12)

2.5 Transmission Error and Mesh Stiffness

In theory, the shape of involute gears should result in a constant ratio in the rotational
speeds of two mating gears, i.e. a constant rotational speed in the input shaft of a gear
drive would result in a constant rotational speed in the output shaft [12]. This is based
on the assumption that the gears are perfectly rigid and that there are no geometrical
errors present. However, in reality gears are elastic [3] and geometrical errors are to some
extent inevitable which will result in variations in the ratio of the rotational speeds of
the gears. To describe these deviations in the rotational speeds the transmission error
have been introduced. A formal definition of transmission error is [12]

10
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Figure 2.5: Force components acting on a gear tooth when a torque, M1, is applied to
Gear 1.

”The difference between the actual position of the output gear and the position
it would occupy if the gear drive were perfectly conjugate”

This difference can be expressed as an angular displacement in the position of the two
gears according to

TEang = θ1 −
rb2
rb1

θ2 (2.13)

or as a linear displacement [13] along the line of action according to

TElin = rb1θ1 − rb2θ2 (2.14)

where rb1 and rb2 are the base radii and θ1 and θ2 are the angular positions of Gear 1
and Gear 2 respectively, see Figure 2.6.

The transmission error depends greatly on the torque being transferred by the gear
drive. Higher torque will cause a greater deformation of the gear teeth and thus a larger
difference between the actual and conjugate position of the driven gear.

As discussed above in Section 2.3, the number of gear tooth pairs which are in contact
varies during the mesh cycle of a gear pair. Since the gear teeth are elastic, this results
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Figure 2.6: Illustration of the definition of transmission error.

in a variation in the stiffness of the gear mesh depending on where in the meshing cycle
the gears are. The mesh stiffness is denoted km and can be defined as the load applied
to a gear mesh divided by the resulting total deflection of the gear mesh. In the meshing
cycle, when the higher number of gear teeth are in contact the torque transmitting force
is distributed among a higher number of teeth. The resulting total deflection of the gear
is therefore lower since the mesh stiffness of the gear is higher. When instead the lower
number of teeth are in contact the force is distributed on a lower number of teeth which
results in a higher deflection and hence the mesh stiffness is lower.

It can easily be realized that it is desirable to have a low transmission error in a gear
drive. More specific, it is desirable to have a low variation in the transmission error,
since it is the variations which can give rise to vibrations. The most common way to
reduce the transmission error is by slightly modify the geometry of the gear teeth to
compensate for the deformations. Such methods include so called lead crowning, profile
crowning, helix angle modification and tip and end relief [12], and will not be treated in
further detail in this work.

2.6 Mathematical Models Describing Gear Dynamics

This section discusses some of the proposed models to describe the dynamic behavior of
gears. The first part explains the models developed and refined in order to describe the
interaction in the contact of a gear pair. For the second part different ways to model
the system surrounding the gears, including bearings and housing, are reviewed.

2.6.1 Gear Contact Models

A simple model describing the contact between two gears was proposed by Tuplin [14] in
1950. He described a pair of spur gears as two rigid bodies connected through a spring

12
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m
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Figure 2.7: Dynamic model proposed by Tuplin [14] in 1950, describing the contact between
two gears. The relative displacements of the equivalent masses, m1 and m2, of the two gears
are denoted x1 and x2 respectively, while the error is defined as x2 − x3.

with constant stiffness, see Figure 2.7. The spring represented the torsional flexibility in
the connection of the two mating gears. The bodies were given the equivalent masses of
the corresponding gears and their associated rotating masses at the pitch point. These
equivalent masses were calculated as the total moment of inertia for each of the gears,
divided by the square of their respective pitch radius. Gear errors were then introduced
as a source of excitation by the insertion and removal of a wedge between the spring and
one of the equivalent masses according to Figure 2.7. The main application of the model
was to evaluate the magnitude of the dynamic loading occurring from geometrical errors
in order to estimate the maximum stresses in the gear teeth.

A refinement of the model described above was discussed by Gregory et al. [4] in 1962.
The configuration of this model can be seen in Figure 2.8. Two spur gears considered
as rigid disks were connected by a spring which were attached to the base circles of the
each respective gear. The spring was thus acting along the line of action of the two
gears, see Section 2.2. A proposed transmission error for the gear drive was introduced
and expressed as a linear displacement along the line of action. This resulted in one
effective degree of freedom within the system corresponding to the transmission error.
The stiffness of the spring was modeled as time variant, depending on the number of
gear teeth in contact.

A model described by Singh et al. [5] in 1990 combined the mesh stiffness along
with a viscous damping. It also included the transmission error as a time dependent
displacement excitation in the gears. The model is illustrated in Figure 2.9. The mesh
stiffness used was assumed to be time invariant but effects of backlash in the gears was
taken into account. This was implemented by setting the mesh stiffness equal to zero
when the gears ceased to be in contact and otherwise constant.

Further advanced models involves finite element modeling of the gear contact, such
as one proposed by [15]. Two gears in mesh were analyzed by using a fine computational
mesh, resolving the teeth of the gears. Different models of the gear contact with different
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Figure 2.8: Dynamic model proposed by Gregory et al. [4]. The model consists of two
rigid discs representing gears connected by a time variant mesh stiffness, km (t).
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Figure 2.9: Dynamic model proposed by Singh et al. [5]. The model contains an excitation
due to the transmission error, e (t), a time variant mesh stiffness, km (t) and a viscous mesh
damping, cm.

levels of complexity was used to describe the interaction between the two gears, some
which also included sliding friction between the gear teeth.

2.6.2 Gear Drive System Models

In order to simulate the dynamic response of the shafts and the housing of a transmission
due to excitations in the gear contacts, models describing the dynamic behavior of the
shafts and the bearings can be used. Simple analytical models describe the gears and
shafts as rigid bodies with lumped masses and inertias, and implement the lateral stiffness
and damping of shafts and bearings as springs and dampers connecting the shafts to a
rigid housing. Consideration to torsional vibrations can be included by representing the
torsional stiffness of the shaft by torsional springs connecting the gears to the bearing
points [16]. An illustration of such a model can be seen in Figure 2.10. This type of model
with slight modifications has been proposed for several analytical dynamic analyzes of
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Figure 2.10: Example of mathematical model describing a shaft with an attached rigid gear
supported by bearings. The shaft has a torsional stiffness of kt and the bending stiffness
of the shaft and the stiffness of the bearings are represented by springs with stiffness k,
connecting the shaft to the housing. Also, damping effects in the bending of the shaft in the
bearings are represented by dampers with a damping coefficient of c.

geared systems e.g. [17] [18] [19] [20]. The most common way to change the complexity
of the model is by increasing and decreasing the number of degrees of freedom.

Further refinement of the system model can be obtained by describing the shafts
as continuous, flexible beams. Thereby the different eigenmodes of the shafts can be
considered in dynamical analyzes of the model [16].

By using the finite element method, complex continuous systems including the shafts,
bearings and housing can be discretised so that the system’s dynamic behavior can
be simulated [16]. The eigenmodes and corresponding eigenfrequencies can thereby be
obtained for the entire system.

2.7 Substructuring in Abaqus

When using a number of parts with relatively fine meshes connected together in a finite
element model, the total number of degrees of freedom can easily reach high values,
resulting in expensive analyzes regarding computational time and resources. A simplified
version of the model can be obtained by using so called substructures in Abaqus R©. A
substructure is a representation of a part, but with all degrees of freedom excluding those
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necessary to connect the part to the other parts eliminated. The finite elements of the
part are collected into the substructure whose response is defined by the stiffness, mass
and damping matrices of the retained degrees of freedom [21]. These matrices connect
the retained degrees of freedom and describe the response within a substructure as a
linear perturbation about the original state of the substructure [21].

In order to better approximate the dynamic behavior of the substructure, generalized
degrees of freedom associated with the natural modes of the part being reduced can
also be included using dynamic mode addition. In Abaqus R©, three different types of
eigenmodes can be included;

• Fixed-interface eigenmodes using the Craig-Bampton method.

• Free-interface eigenmodes using the Craig-Chang method.

• Mixed-interface eigenmodes.

All of these methods are explained thoroughly in e.g. [22]. If the fixed-interface eigen-
modes are used, all of the retained degrees of freedom of the part are fixed when the
eigenmodes are evaluated. For the case of free-interface eigenmodes, all of the retained
degrees of freedom are instead unconstrained. If some of the retained degrees of freedom
are constrained and others are free, the mixed-interface eigenmodes are used. However,
using the latter approach the time consumption for the generation of the substructure
can increase greatly.

Practically, in Abaqus R© a substructure is obtained by processing each part individ-
ually before any simulation of the system containing the substructures is performed.
A frequency analysis to obtain the eigenmodes and eigenfrequencies of the part is also
necessary if mode addition is to be used. Once a substructure has been generated, it can
be used for many analyzes without repeating the generation process.

2.8 Fast Fourier Transform

According to Fourier series theory, a periodic signal can be expressed as an infinite series
of sine and cosine terms, or alternatively an infinite series of complex exponential terms
[22]. Each of these terms has a frequency which is a integer multiple of the fundamental
frequency of the original signal which are called the harmonics of the signal. A periodic
signal or function of time with period T can be expressed as a fourier series according
to [16]

f (t) = a0 +

∞∑
n=1

(an cosω0nt+ bn sinω0nt) (2.15)

where ω0 = 2π/T is the fundamental frequency of the signal or function and the constants
an and bn are defined as [16]

an =
2

T

∫ T

0
f (t) cosω0ntdt, bn =

2

T

∫ T

0
f (t) sinω0nt dt (2.16)
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for n ≥ 1 and a0 as

a0 =
1

T

∫ T

0
f (t) dt (2.17)

It can also be expressed in complex exponential terms as

f (t) = <

( ∞∑
n=0

cne
ω0nt

)
(2.18)

where the complex constants cn are defined as [16]

cn = an − bn (2.19)

If a signal instead is non-periodic, the Fourier series cannot be used. Instead the
so called Fourier integral is used [22]. The non-periodic signal is then considered as a
periodic signal with infinitely long period and Equations 2.18 and 2.19 become [16]

x (t) =
1

2π

∫ ∞
−∞

X (ω) eωt dω (2.20)

X (ω) =

∫ ∞
−∞

x (t) e−ωt dt (2.21)

These two equations are called a Fourier transform pair [22]. Both x (t) and X (ω) are
continuous functions and X (ω) contains all of the frequency components of the signal
x (t). X (ω) is therefore called the frequency spectrum of x (t). Knowing the continuous
signal x (t), its composing frequencies can thereby be obtained using Equation 2.21 and
vice versa using Equation 2.20.

If the signal x (t) is obtained e.g. as output from a time simulation, it is not a con-
tinuous function. Instead it is a series of discrete real values. The frequency components
of the signal can then not be obtained using the Fourier transform and instead the so
called discrete Fourier transform (DFT) is used. This is defined as [16]

Xk =
n−1∑
r=0

xre
−2πkr/n, k = 0,1,2, ... ,n− 1 (2.22)

and the inverse discrete Fourier transform according to

xr =
1

n

n−1∑
k=0

Xke
2πkr/n, r = 0,1,2, ... ,n− 1 (2.23)

where n is the number of equally spaced samples. If the time interval between the
samples is ∆t, then the total sample time is [22] T = n∆t. The frequency components
in the DFT are then at intervals [22]

∆f =
1

T
=

1

n∆t
(2.24)
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The components of the DFT are not independent since Xn−k is the complex conjugate
of Xk for k = 1,...,n/2− 1 [16]. Therefore, the frequency spectrum only covers the range
0 to (n/2) ∆f and consists of n/2 + 1 frequency components.

The DFT requires n2 complex multiplications for a sample of size n [16]. For increas-
ing sample sizes, this rapidly turns into a slow operation. An algorithm known as the
fast Fourier transform (FFT) reduces the number of mathematical operations required in
order to perform the DFT of a sample. By using a sample size which is an integer power
of 2, the FFT reduces the number of required complex multiplications to (n/2) log2 n
[16].

One problem with the DFT and FFT is that frequencies above 1/ (2∆t), also known
as the Nyquist frequency, appear at frequencies below the Nyquist frequency [16]. This
problem is called aliasing and is avoided by using a sufficiently high sample frequency.
Another problem is that if the sampled data contains a frequency component which
does not precisely match a component in the DFT frequency spectrum, it will be spread
between adjacent frequency components in the DFT [16]. This phenomenon is called
leakage and is difficult to avoid entirely.

By using the FFT, sampled data e.g. the dynamic response of a transmission, can be
described by the frequencies and their amplitudes constituting the response.
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3
Method

The following chapter will explain the methodology of the development of the models
used to simulate the dynamics of the transmission. Firstly, the finite element models used
to represent the components of the transmission in the simulations will be described in
detail. Thereafter follows a description of the process of calculating relevant transmission
errors and mesh stiffnesses for the gear contacts. Finally, the methodology used for the
post processing of the simulation results will be explained. It should be noted that for
all simulations, effects of damping and friction have been neglected in order to simplify
the models.

3.1 Development of Dynamic Model

In order to investigate the dynamic behavior giving rise to gear whine noise, a dynamic
model of the transmission was developed using the Abaqus R© software. This model
was based on existing finite element models used by Vicura AB when performing static
analyzes of the transmission. However, these models had to be modified to enable the
dynamics of the transmission to be investigated.

The general procedure used for the construction of the dynamic model is illustrated
in Figure 3.1.The first step in the development of the dynamic model was to modify
the existing finite element models to introduce dynamic behavior. The models were
then reduced into so called substructures, representing the components with only a few
nodes connected by stiffness and mass matrices along with a number of eigenmodes,
see Section 2.7 regarding substructures. The substructures were then assembled and
connected by specially developed elements describing the interaction in the gear contacts
and in the bearings. A model containing reduced models of the transmission components
was then obtained and could be used for dynamic analyzes of the transmission. The
main reason for using reduced finite element models is that the computational time of
the simulations is greatly reduced, due to the great reduction in the number of degrees of
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Dynamic Model of Transmission

Introducing density

Eigenfrequency extraction + Reduction of DOF:s

Assembly + Interaction Elements

Figure 3.1: Flow chart describing the steps in the development of the dynamic model.

freedom. The following sections will describe the different models used for the dynamic
simulations in greater detail.

3.1.1 Finite Element Models

The existing finite element models describing the transmission constituted of four com-
ponents; input shaft, main shaft, differential and housing. The inner rings of the bearings
were included in the shaft models, while the outer rings of the bearings were included
in the housing model. Elasticity and thermal expansion coefficient for the component
materials were defined previously but density definitions had to be added. All of the
models had a relatively fine computational mesh since they were mainly used in static
analyzes to estimate stresses and displacements in the components. Below follows a more
detailed description of the finite element models used for the dynamic simulations.

Input Shaft

Images of the finite element model used to approximate the input shaft can be seen in
Figure 3.2. The model consisted of a hollow shaft with an attached gear. The inner
rings of the two ball bearings supporting the input shaft from the housing were included
and connected to the shaft. The entire model consisted of tetrahedron elements. These
were of type C3D10 in Abaqus R©, and are categorized as quadratic, three-dimensional,
solid, continuum elements with 10 nodes [21]. The total number of elements used for the
input shaft model was 41,703 elements and the number of nodes was 74,430 nodes.

The model also contained four so called distributing couplings. These were used
to equally distribute loads applied in one reference node, to a large set of nodes. For
the bearings, the nodes on the surface of the inner bearing rings were connected to
two reference nodes positioned in the middle of the bearing rings (50011 and 50012),
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Figure 3.2: Finite element model used for the input shaft. The left image illustrates the
distributing coupling used for the gear contact. The right image shows a sectional cut of
the shaft and illustrates the distributing couplings used for the inner bearing rings and the
spline coupling.

coincident to the center axis of the shaft. This is illustrated in Figure 3.2, which shows
the distributing couplings used for the input shaft. The couplings are illustrated by lines
connecting the surface nodes of the bearing rings to the reference nodes and a close-up of
the couplings can be seen in Figure 3.3. The reason for the use of distributing couplings
was that they allowed interactions between the inner and outer ring of the bearings to
be described by a special bearing element connecting the reference nodes of the inner
and outer bearing rings, see Section 3.1.5.

Another distributing coupling was used for the spline coupling where the input shaft
is connected to the motor. Here, the distributing coupling was used to allow a prescribed
load at a reference node (101) coincident to the center axis of the shaft, to be distributed
to the splines. This enabled the torque from the motor to be applied to the input shaft
by specifying it only at the reference node. The last distributing coupling was used to
distribute the gear contact forces applied to a reference node (1001) to the surface nodes
of two gear teeth. The reference node was located at the pitch point of the first gear
drive in the transmission.

All elements in the model were given material properties of steel with a Young’s
modulus of 210 · 103 N/mm2 and a density of 7.85 · 10−9 tonnes/mm3. The total mass
of the input shaft was 9.5988 · 10−4 tonnes.

Main Shaft

The finite element model used for the main shaft was similar to the one of the input
shaft. Figure 3.4 shows the computational mesh used to approximate the main shaft. It
can be seen that it consisted of a hollow shaft with two attached gears, a parking brake
gear and the inner rings of the two ball bearings supporting the main shaft from the
housing. As for the input shaft, the main shaft was represented by C3D10 tetrahedral
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Outer bearing ring Inner bearing ring

Reference nodes

Kinematic coupling Distributing coupling

Figure 3.3: Illustration of the distributing and kinematic couplings used for the outer
and inner bearing rings. The image to the left shows the kinematic coupling used for the
outer bearing rings, while the right image shows the distributing coupling used for the inner
bearing rings.

elements and the total number of elements used was 121,732 elements. The total number
of nodes used was 215,347 nodes.

Distributing couplings were also used for the bearing rings of the main shaft. Two
distributing couplings connecting the inner bearing rings to two reference nodes (50021
and 50022) coincident to the center axis of the main shaft was used. Similar to the input
shaft, distributing couplings were also used to gather the nodes in the gear contacts to
two reference nodes (2001 and 2002). These were located at the pitch points of the first
and second gear drive.

The material of the main shaft elements was steel with the same properties as for
the input shaft elements. The total mass of the main shaft was 2.6664 · 10−3 tonnes.

Differential

The finite element model of the differential only included the carrier and the ring gear
of the differential. It did not contain the bevel gears which should have been positioned
inside the carrier but the shaft for the bevel gears was included. Figure 3.5 shows the
model used for the differential. It can be seen that the model consisted of a carrier with
an attached ring gear. Also the inner rings of the ball bearings used to support the
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Figure 3.4: Finite element model used for the main shaft. To the left is an illustration of
the overall configuration of the model. To the right is a sectional cut of the shaft, showing
the distributing couplings used for the two inner bearing rings and the two gear contacts of
the main shaft.

differential from the housing were attached to the carrier. The elements used for the
differential were also of the C3D10 type and the number of elements used were 171,809
elements and the number of nodes was 298,775 nodes.

As for the other models described above, distributing couplings were used for the in-
ner rings of the ball bearings. The two reference nodes (50031 and 50032) were located
at the centers of respective bearing ring, coincident to the center axis of the differential.
For the ring gear a distributing coupling was used as in the other models, in order to
obtain one reference node (3002) for the gear teeth nodes exposed to contact with the
gear of the main shaft. This reference node was located at the pitch point between the
ring gear and the mating gear of the main shaft. Also a distributed coupling was used to
connect the shaft for the bevel gears to one reference node (301). This enabled easy spec-
ification of boundary conditions for the differential. By specifying a zero displacement
of reference node 301, a resulting torque would arise from the differential, to counter the
applied input torque.

For the differential, two materials were used. The carrier was defined as a cast iron
with a Young’s modulus of 170 · 103 N/mm2 and a density of 7.1 · 10−9 tonnes/mm3.
The other parts of the differential was defined as steel with material properties same as
for the input shaft. The total mass of the differential was 4.3867 · 10−3 tonnes.

Housing

The finite element model used for the housing can be seen in Figure 3.6. The housing
mainly consisted of two large models connected together, enclosing the gear drives and
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Figure 3.5: Finite element model used for the differential. The left image shows the whole
of the model while the right image shows a sectional cut of the model. The distributing
couplings used for the inner bearing rings and the gear contact and their respective reference
nodes can be seen in the right image. Also, the distributing coupling for the bevel gear shaft
and its reference node can be seen in the sectional cut.

the shafts. The outer bearing rings for all of the ball bearings supporting the shafts were
included and attached to the housing. No screws or fasteners were included in the model.
Instead, parts which should be fastened together were tied tightly together in the model.
For the housing, elements of type C3D4 were used. These are tetrahedral elements similar
to the C3D10 elements, but with 4 nodes instead of 10, thus making it a linear element
instead of quadratic [21]. The use of linear elements is likely to increase the stiffness of
the housing structure and may therefore result in e.g. higher eigenfrequencies, compared
to instead using quadratic elements. However, by using linear elements the number of
degrees of freedom is greatly reduced, resulting in less computational time needed during
the substructure generation process, see Section 3.1.3. For the outer bearing rings the
C3D10 elements were used. The total number of elements used for the housing model
was 348,969 elements and the number of nodes was 161,809 nodes.

For the outer bearing rings so called kinematic couplings were used, see Figure 3.3.
These create a rigid motion connection between a reference node and a set of nodes.
Reference nodes (60011, 60012, 60021, 60022, 60031 and 60032) were introduced in the
middle of each bearing ring and connected to the nodes of the inner surface of the bearing
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Figure 3.6: Finite element model used for the housing. The left image illustrates entire
housing model, while the middle image shows the outer bearing rings attached to the inside
of the housing. Kinematic couplings used for the bearing rings and their reference nodes
are also shown. The right illustration shows the mounting surface for the attachment of the
transmission to the motor, with the kinematic coupling used for the mounting surface and
its reference node.

rings. The displacement of the inner surface of each outer bearing ring could thereby be
described by the displacement of a reference node.

The nodes of the attachment surface of the housing to the motor was connected
by a kinematic coupling to a reference node (401) in the center of the surface. This
coupling was used to fix the housing by prescribing the displacement of the reference
node and thereby prescribing the displacements for all of the surface nodes connected to
the reference node. The attachment surface was thereby assumed to be connected to a
rigid motor.

The material for the housing was aluminum with a Young’s modulus of 72 · 103

N/mm2 and a density of 2.75 · 10−9 tonnes/mm3. The outer bearing rings was modeled
using the same steel material used for the inner bearing rings. The total mass of the
housing was 5.4096 · 10−3 tonnes.
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3.1.2 Eigenfrequency Analysis of Transmission Components

When reducing a finite element model into a substructure, a number of eigenmodes
can be added in order to improve the dynamic representation of the substructure, see
Section 2.7. To enable this, eigenfrequency analyzes of the individual components in
Abaqus R© were performed. Thereby the eigenfrequencies and their respective eigenmodes
could be extracted and a number of eigenmodes could be included in the substructure.
The method used for the mode addition to the substructure was the Craig-Bamptom
method, see Section 2.7. Boundary conditions for the models had therefore to be intro-
duced to fully constrain the models at the nodes which were to be retained during the
substructuring process. The reason for the choice of using Craig-Bampton was that the
interfaces between the different components had a relatively high stiffness. Alternatively
the mixed-interface method could have been used, leaving for example the degrees of free-
dom associated with the rotation of the shafts unconstrained. However, as mentioned
in Section 2.7, this could greatly increase the time consumption during the substructure
generation process and the Craig-Bampton method was therefore preferred.

For the input shaft both of the bearing reference nodes, the spline reference node and
the gear contact node were fixed in all degrees of freedom, i.e. nodes 50011, 50012, 101
and 1001 were completely fixed. Similar boundary conditions were applied for the main
shaft, fixing the reference nodes of the bearings and the gear contacts in all degrees of
freedom, i.e. nodes 50021, 50022, 2001 and 2002 were fixed.

The differential was also completely fixed at its bearing and gear contact reference
nodes, i.e. nodes 50031, 50032 and 3002. The bevel gear shaft reference node in the
middle of the differential was also fixed, i.e. node 301.

For each of the models, the first 20 eigenfrequencies and respective eigenmodes were
evaluated. These are presented in Chapter 4.

3.1.3 Substructure Generation

After the frequency analysis step, the finite element models were reduced into substruc-
tures using the Craig-Bampton method, see Section 2.7. The retained degrees of freedom
for the models were exclusively those involving contact and interaction with other com-
ponents. All of the degrees of freedom associated to the nodes marked in Figure 3.2 to
3.6 were retained during the substructure generation, i.e. all of the reference nodes of
the distributing and kinematic couplings. For each of the components, the extracted 20
first eigenmodes were also included in the substructures in order to improve the dynamic
representation of the components.

After the substructure generation step, each component was reduced to a substruc-
ture, described by a mass matrix, a stiffness matrix and the generalized coordinates of
the first 20 eigenmodes.
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Figure 3.7: Illustration of the dynamical model used to describe the interaction in the gear
contacts in the finite element model.

3.1.4 Gear Contact Modeling

For this thesis a dynamic model similar to the one proposed by Singh et al. [5] in 1990,
see Section 2.6.1, was chosen to describe the interaction in the gear contacts. However,
the effects of possible backlash and viscous damping were neglected in order to simplify
the model. A representative illustration of the model used can be seen in Figure 3.7. The
model basically consists of a time variant excitation and a time variant stiffness connected
in series, connecting the two gears along the line of action. The transmission error for
respective gear contact was used as excitation and the mesh stiffness for respective gear
contact was used for the stiffness, as proposed by Singh et al. [5]. The transmission error
therefore had to be expressed as a linear displacement along the line of action, according
to Equation 2.14, in order to be adequate for the model.

The next step was to implement the theoretical model into Abaqus c©, so that it
could be used to connect the reference nodes in the gear contacts in the finite element
model. The approach chosen was to use two so called connector elements available in
Abaqus c© to describe the behavior in the contact. These elements can be used in a
number of applications, where complex connectivity behavior is involved. The element
type used for the gear contact was the CONN3D2 element, which is a three-dimensional
connector, connecting two nodes [21]. The relative motion of the connector elements
must be specified, defining how the connector is acting. Behaviors can be assigned to
the connector elements, e.g. elasticity and damping. Orientations of these behaviors can
also be assigned to specify the direction of e.g. an elastic behavior. Also, prescribed
motion of the connectors can be assigned as boundary conditions, allowing the elements
to be used as displacement actuators.

The configuration of the two connectors used to represent the chosen model can be
seen in Figure 3.8. One connector was elastic and the other was used as a displacement
actuator. As described above, the reference nodes of the gear contacts were positioned
at the pitch points of the gear pairs. The reference nodes of two gear contacts making
a gear pair therefore coincide when the component models are assembled, which can be
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Figure 3.8: Illustration of the gear contact model as it was implemented in Abaqus R©. The
figure shows the gear contact between the input shaft and the main shaft, which can be seen
in the numbering of the reference nodes, 1001 and 2001.

seen in the figure. The direction of the normal force in the gear contacts for each gear
drive was known which enabled the introduction of two fixed auxiliary nodes to specify
the direction of the line of action of the gear drive. One more node, called connector node
in Figure 3.8, was introduced to connect the two connectors in series. The connector
node was then constrained to slide along a line defined by the two auxiliary nodes, i.e.
the line of action, thereby making the connectors aligned with the line of action. The
two connectors were then given axial relative motion allowing them to act only along a
line defined by the two nodes of each of the connectors.

In order to control the time dependent values for the displacement of the actuating
connector and the elasticity of the elastic connector, an Abaqus c© subroutine was created
using Fortran c©. The subroutine imported previously calculated values for the transmis-
sion error and the mesh stiffness for the examined loading conditions, see Section 3.3,
and returned proper values to the connectors in the model for each time increment, see
Section 3.4.2. The frequency of the excitation and the mesh stiffness variation depended
on the rotational speed of the shafts. The transmission error was calculated over one
mesh cycle, i.e. the cycle during which one gear teeth engages and disengages contact
with the teeth of the meshing gear. The frequency with which each mesh cycle was
repeated, fm, was therefore obtained by multiplying the rotational speeds of the shafts
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with the number of gear teeth of the gear connected to respective shaft, z, according to

fm =
[RPM of shaft]

60
· z

The time period for one mesh cycle could then be obtained as

Tm =
1

fm

The subroutine used the mesh period of each gear contact to find the current position
in the mesh cycle for any given point in time. This was achieved by dividing the current
step time with the mesh period and thereby obtaining a remainder equivalent to the
fraction of the current position in the mesh cycle. The data describing the transmission
error and mesh stiffness were calculated at discrete positions in the mesh cycle, see
Section 3.3, and interpolation was thus needed in order to obtain values for all possible
mesh positions. Thereby, appropriate values for the displacements and stiffnesses of the
connectors could be continuously imported to the simulation.

3.1.5 Bearing Modeling

The modeling of the bearings are of great importance when simulating the dynamic
response in the housing of the transmission, since the vibrations caused by the variations
in transmission error and mesh stiffness in the gear contacts are transferred through the
bearings to the housing. To represent the behavior of each ball bearing, Vicura AB
uses a specially designed bearing element. This element is based on an analytical model
developed by L. Houpert in 1997 [23]. This model estimates the three bearing forces and
the two tilting bearing moments as a function of the relative displacement and rotation
(tilting) of the inner and outer bearing rings. This relationship is non-linear and the
analytical model is implemented as an Abaqus R© subroutine, previously developed by
Vicura AB. The bearing element was used to connect the retained reference nodes of the
outer bearing rings of the housing substructure to the retained reference nodes of the
inner bearing rings of the shaft and differential substructures. For each incremental time
step in the simulation, see Section 3.4.2, the bearing subroutine calculated and returned
the stiffness matrix of the bearing element along with the reaction forces and moments
acting in the element. Thereby, the behavior of each bearing could be described by a
single element connecting two substructures.

3.2 Estimation of Transmission Loading

In order to obtain adequate values for the transmission error and the mesh stiffness of
the gears in the transmission, reasonable loading conditions for the transmission was
estimated. The examined transmission was designed for an electrical vehicle and thus
designed to be driven by an electric motor. The exact motor model had not been
specified, but according to the personnel at Vicura AB, a suitable motor would have a
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Figure 3.9: The relationship between maximum continuous torque and rotational speed of
an electric motor suitable for the examined transmission.

maximum continuous torque-rotational speed relationship similar to the one illustrated
in Figure 3.9. The motor can deliver a higher peak torque above these levels, but not
for longer time periods. The reason for using the maximum torque is based on the
hypothesis that a higher torque will result in a higher variation in the transmission error
and thus result in more severe vibrations. It is therefore assumed to be a worst case
loading condition for the transmission, with respect to gear whine noise. It can be seen
that the motor delivers a relatively constant torque around 160 Nm for rotational speeds
below 6,000 RPM. For higher rotational speeds the torque is decreasing with increasing
rotational speed. The maximum rotational speed which can be delivered by the motor
is approximately 12,000 RPM, with a torque of 60 Nm.

3.3 Calculation of Transmission Error and Mesh Stiffness

As input for gear contact subroutine used in the dynamic model, the time dependent
transmission errors and mesh stiffnesses in the gear contacts had to be estimated. The
calculations of the expected transmission errors and the mesh stiffness in the gear con-
tacts of the transmission was performed using the Load Distribution Program c© (LDP),
developed by the Gear and Power Transmission Research Laboratory at The Ohio State
University [24].
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The LDP is a computer software tool for predicting the load distribution across the
zone of contact for a single pair of spur or helical gears [24]. The model assumes that
the load distribution is a function of the elasticity of the gears, including defined errors
or modifications on the shape of the gear teeth. The total elastic deformation of the
gear teeth is approximated as the sum of individual elastic deformations due to bending,
shear and rigid deflection and rotation of the teeth. Also the deformation in the contact
between the gear teeth is included. The deformations are based on analytical models,
describing each of the different types of deformations. All of the elastic deformations are
assumed to be small and thus tooth contact is assumed to remain on the line of contact
[24]. The load distribution can then be estimated and a number of other factors can be
obtained, such as the resulting transmission error, the mesh stiffness, stresses in root and
gear contact, etc. For this work, the interesting output data was the transmission error
and the mesh stiffness. The definition of transmission error in LDP follows Equation 2.14,
i.e. as a linear displacement along the line of action. The main advantage of the LDP is
that it allows for much faster calculations compared to e.g. finite element programs. As
input for the LDP, a complete definition of a gear pair geometry and the torque loading
must be provided in order for the analysis to be executable. The program then performs
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Figure 3.10: Examples of calculated mesh stiffness and transmission error using the LDP.
It should be noted that the data in the figure is plotted over two mesh cycles.
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static analyzes at a specified number of equally distributed positions through the mesh
cycle of the gears at which data is obtained. Thereby data for e.g. the transmission
error and the mesh stiffness through a full mesh cycle can be obtained. An example of
a transmission error and a mesh stiffness curve can be seen in Figure 3.10.

Since the examined transmission includes two gear pairs, calculations for each in-
dividual gear pair were performed. Geometrical data, including micro-geometric mod-
ifications of the gear teeth, were specified as input in the LDP. The LDP can at this
stage compute a theoretical contact ratio of the gear drive. This is the contact ratio
if the gears are considered rigid. For the first gear contact the theoretical contact ra-
tio was CR1 = 3.427 and for the second gear contact the theoretical contact ratio was
CR2 = 5.302. This means that for the first gear contact the number of teeth in contact
theoretically varies between three and four during a mesh cycle and for the second gear
contact between five and six. From the example in Figure 3.10 for the first gear contact
it can easily be seen when the number of teeth in contact changes from three to four at
approximately 58% of the mesh cycle.

Mechanical calculations were then performed at intervals of 100 RPM, following the
torque diagram described in Figure 3.9, at 50 discrete positions through the mesh cycle.
Hence, a total number of 120 analyzes for each gear pair were conducted, in order to
obtain values representing the full operating span of the motor, from 100 RPM to 12,000
RPM.

For the case of the input shaft to main shaft transfer, the torques from the motor
were applied directly to the input shaft gear, using the values from the torque-RPM
diagram. This was possible since there is no modification in the torque transferred
from the shaft of the motor to the input shaft of the transmission since the shafts are
directly connected. 120 different results were obtained, representing the different discrete
operating conditions.

When evaluating the main shaft to the differential transfer, the torques applied on
the main shaft had to be calculated. This is due to the gear ratio between the input
shaft and the main shaft which changes the relation between the torques according to
Equation 2.12. The torques for the main shaft were therefore obtained by multiplying
the input shaft torques by the gear ratio of the two gears, i.e. i1 = 2.68. As for the first
gear pair, 120 different results were then obtained for the second gear pair.

The resulting transmission errors and mesh stiffnesses obtained from the LDP cal-
culations were then manually exported to text files, one for each operating condition of
the motor. For a range of rotational speeds of the motor the associated transmission
error and mesh stiffness were thereby obtained. The results from the LDP calculations
are presented and commented in Chapter 4.

3.4 Simulation Methodology

In order to evaluate the dynamic response of the transmission for the different load
conditions, simulations were performed using the substructure models obtained in Sec-
tion 3.1.3. All of the simulations were performed using the Abaqus R© software and the
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solution process of each simulation consisted of three succeeding steps. The first and
second were static steps used to initiate the bearing subroutine and to determine the
displacements due to the applied torque. Thereafter a third, dynamic step was used
to simulate the dynamic response of the system when excited by the transmission error
and with a time varying mesh stiffness, in order to estimate the level of vibration of
the reference nodes of the housing. Simulations were performed for rotational speeds
from 100 RPM to 12,000 RPM at intervals of 100 RPM with respective input torques
following the torque-rotational speed relationship described in Figure 3.9. The following
sections will describe the boundary conditions and the solution procedure used for the
simulations in greater detail.

3.4.1 Boundary Conditions

For the first step the transmission was fixed in space by assigning reference node 401 of
the housing a zero displacement and rotation boundary condition. Due to the kinematic
coupling between node 401 and the mounting surface of the transmission, this surface was
thereby fixed. In order for a torque to be applied at the input shaft, the differential was
prevented from rotating by assigning reference node 301 with a zero rotation condition
in the rotational direction of the shafts. The degrees of freedom associated with the
auxiliary nodes used for the gear contacts, see Section 3.1.4, were also fixed in order for
the gear contact model to work as intended.

One problem with the bearing model was that it returned a zero stiffness matrix
for the bearing elements if they were unloaded. Therefore, the reference nodes of the
inner bearing rings (50011, 50012, 50021, 50022, 50031 and 50032 in Figures 3.2 to 3.5)
were given initial translational displacements, while the reference nodes of the outer
bearing rings (60011, 60012, 60021, 60022, 60031 and 60032 in Figure 3.6) were fully
constrained. Thereby, the subroutine could iterate to obtain a proper bearing stiffness.
The magnitude of the initial displacements were in the order of 10−2 mm, and the same
values were used for all of the simulations.

The torque was then applied at the input shaft, by assigning a concentrated load
to the reference node (101) at the spline coupling of the input shaft. The distributing
coupling did then equally distribute the load to the splines. The load was assigned to the
rotational degree of freedom in the rotational direction of the input shaft. This torque
was then incrementally increased from zero to full loading during the simulation step
in order to facilitate solution convergence. The magnitude of the torque depended on
the drive condition simulated, following the torque-rotational speed relationship of the
motor described in Figure 3.9.

Axial loads were also introduced, acting on the reference nodes of the gear contacts.
The axial loads were calculated using Equation 2.11. For the gear contact between the
input and main shaft, the input torque, base radius and helix angle of the gear attached
to the input shaft were used to obtain the axial load using Equation 2.11. For the gear
contact between the main shaft and the differential, the transferring torque first had to
be calculated using Equation 2.12, given the gear ratio. The obtained axial loads were
then applied to the gear contact reference nodes (1001, 2001, 2002 and 3002) in the axial
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directions, defined by the helix angles of the gears. As for the torque, the axial forces
were applied gradually with each increment of the first simulation step, to finally reach
their full magnitude in the last increment.

The connectors controlling the excitation in the gear contact model were fixed, while
the mesh stiffnesses were given constant values for the first step equal to the average
mesh stiffness for that input torque. It was thereby possible to obtain a static solution
for the first step.

The second step had similar boundary conditions as the first step, with the difference
that the reference nodes of the outer bearing rings were no longer fixed and the inner
bearing rings did no longer have any prescribed displacement. The input torque and the
axial loads were still applied at their full magnitudes and thereby the static deformation
due to the applied input torque could be solved for.

For the third and final step in the simulations the connectors representing the exci-
tation due to the transmission error and the time variant mesh stiffness were no longer
fixed. Instead the gear contact model were assigned time dependent values for the exci-
tation and the mesh stiffness using the amplitude subroutine. The subroutine imported
the adequate transmission errors and mesh stiffnesses for the simulated loading condi-
tion, obtained in Section 3.3, and assigned them to the connectors in the contact model.
The third step thereby made the simulation dynamic and time dependent. It should
be noted that the shafts were not given any prescribed rotational velocity. Instead, the
effects of the rotational speed was included by determining the mesh frequencies for the
two gear drives, see Section 3.1.4.

3.4.2 Solver Procedure

All of the steps were solved using the Abaqus R© implicit solver. For the first and second
step in the simulation, static analysis was chosen and non-linear geometry was assumed.
Linear geometry was evaluated but found inappropriate due to convergence problems.
When performing non-linear analyzes in Abaqus R©, each simulation step is divided into
a number of so called time increments. For each time increment a number of iterations
are required in order to find an equilibrium state [21]. In the context of static analyzes,
time increments does not refer to actual physical time, but rather to a way to gradually
increase loads and control convergence of the solution. For both the first and second
step a total time of 1 s was used for each step. The solver was then controlled by
setting a maximum and minimum value of the allowed time used for each increment.
The solver then adjusted the length of the time increments depending on the number of
iterations needed for each increment, within the defined limitations. If a time increment
was too large and the solver needed too many iterations to solve the equations, the
solver automatically reduced the length of the time increment and retried solving the
equations. For both the first and second step a minimum time increment of 1 ·10−5 s and
a maximum time increment of 0.2 s was used in order to control the solution process.

The third and final step was a dynamic step used to evaluate the dynamic response of
the system. Due to relatively small expected deformations, linear geometry was chosen
for the third step. When performing a dynamic step in Abaqus R© a step is divided into
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time increments as for the static case, but for the dynamic case the time increments
represent physical time. As described above in Section 3.4.1 the third step involved time
dependent boundary conditions which thereby were dependent on the size of the time
increments.

The number of time increments and their size for the third step was decided from
the following criterions. Firstly, enough time increments had to used for the simulations
in order for the system to reach a steady-state response. After the system had reached
a steady-state behavior, an appropriate number of samples at an appropriate sampling
frequency had to be extracted in order to enable a FFT analysis of the response. For the
FFT to work properly, the number of samples has to be of a power of two, see Section 2.8.
A desired frequency spectrum up to fmax = 3,000 Hz was chosen to be examined. The
size of each time increment must therefore, according to the Nyquist criterion, be

∆t =
1

2fmax
=

1

6,000
s = 1.6667 · 10−4 s

The number of samples now dictates the resolution of the frequency spectrum obtained
from a FFT analysis of the response, according to Equation 2.24. A high number of
samples improves the resolution of the frequency spectrum but increases the computa-
tional time needed for each simulation. Test simulations were conducted in order to
approximate a reasonable sample size and corresponding frequency resolution. It was
established that a sample size of n = 2,048 samples would be reasonable. This was
therefore used throughout the simulations and the resulting frequency resolution was
according to Equation 2.24,

∆f =
1

n∆t
=

1

2,048 · 1.6667 · 10−4
Hz = 2.9297 Hz

Also, the time for the simulations to reach a nearly steady-state behavior was estimated
to a corresponding 1,000 samples equivalent to 0.16667 s. For the third step a total of
3,048 time increments were then used, which resulted in a total time of the step to

T = n∆t = 3,048 · 1.6667 · 10−4 s = 0.5080 s

As an attempt to shorten the time to reach a steady-state response, the excitations in
the gear contacts were increased linearly from zero to full magnitude during the first 300
time increments in the third simulation step. The effect of this was however estimated
to be minor, since the entire variation in the stiffness was still present.

3.5 Eigenfrequency Analysis of Simplified
Transmission Model

There is no simple way of extracting the eigenfrequencies of the transmission model
described above. This is due to the non-linear and time variant interactions existing
between the different components, i.e. the gear contacts and the bearings. In order to
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obtain an estimation of the eigenfrequencies of the full model a simplified linear version
of this model was developed. The elastic connectors in the gear contacts were given the
average values of the mesh stiffnesses which amounted to 4.19446 · 108 N/m for the first
gear contact and 7.60227·108 N/m for the second gear contact. This simplified the model
so that no time variant mesh stiffnesses were considered. The actuating connectors were
locked so that they became rigid elements without any variation in length and thus
not exciting the system. The bearing elements were removed in the simplified model
and the bearing reference nodes of the shafts and housing were instead pinned together,
connecting the translations of the nodes but allowing free rotations. These simplifications
are likely to increase the stiffness of the model.

The same static step used for the dynamic simulations described in Section 3.4 was
used as an initial step in the extraction of the eigenfrequencies of the simplified transmis-
sion model. Thereafter followed a frequency extraction step same as for the individual
transmission components in Section 3.1.2, extracting the 20 first eigenmodes. These
are presented along with the results from the eigenfrequency analysis of the individual
transmission components in Chapter 4.

3.6 Dynamic Response Analysis

In order to analyze the dynamic response of the transmission due to the transmission
error excitation and the time dependent mesh stiffness, the displacements of the bearing
reference nodes (60011, 60012, 60021, 60022, 60031 and 60032) of the housing were
examined. The magnitude of the displacements and their respective point in time were
extracted and exported to text files as time series. An example of such a time series
can be seen in Figure 3.11, which shows the displacement of housing node 60032 during
the third step of the simulation. The vertical line indicates the time point after the first
1,000 time increments of the third step had been completed. It can be seen that the
solution for this case had not fully reached steady-state conditions during the proposed
transient time period.

A common way to illustrate the dynamic response in a transmission is to use a so
called waterfall plot. In a waterfall plot the magnitude of the displacements is plotted
in a three dimensional diagram as a function of frequency and rotational speed [12].
In order to express the displacements for a specific rotational speed as a function of
frequency instead of time, fast fourier transformation was used, see Section 2.8. This was
implemented in a MATLAB R© program, which first imported the displacement and time
data for a node. The first 1,000 samples were then removed in order to obtain the last
2,048 samples. Note that 2,048 is an integer power of 2 (211 = 2,048), which is necessary
for the fast fourier transform to work. As can be seen from the example in Figure 3.11, the
response varies around a static displacement of circa 0.1274 mm. It can also be seen that
the static displacement is relatively large compared to the variations in the displacements.
In the frequency domain, this constant component will therefore result in a high value
at zero frequency, and will thus not provide any interesting information from a dynamic
point of view. The static displacement was therefore removed by subtracting the average
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Figure 3.11: Example of dynamic response in reference node 60032 of the housing at 1,000
RPM. The vertical line indicates were the sampling period begins. A closeup of the last 346
samples is also included to illustrate the sample frequency.

displacement over the sampled period from each of the displacement samples. The
program then performed a fast fourier transform using the function fft in MATLAB R©,
which implements Equation 2.22. The transformed data was then truncated in order to
remove the complex conjugates, see Section 2.8, and a total number of n/2 + 1 = 1,024
values were obtained, each consisting of one real and one imaginary part. A frequency
axis was then defined ranging from 0 to (n/2)∆f ' 3,000 Hz, at 1,024 equally spaced
intervals of size ∆f = 2.9297 Hz. By plotting the absolute values of the transformed
data against the frequency axis, a frequency spectrum expressing the displacements as
a function of frequency was obtained. The frequency spectrum corresponding to the
displacement shown in Figure 3.11 calculated using the MATLAB R© program can be
seen in Figure 3.12.

By applying the program described above for every examined rotational speed, a wa-
terfall plot could then be produced, which displayed the magnitude of dynamic response
of the examined node as a function of both frequency and rotational speed. Since the
housing had six reference nodes, six different waterfall plots were produced. These are
presented and commented in Chapter 4.
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Figure 3.12: Frequency spectrum of the displacement curve in Figure 3.11, showing the
amplitudes of the different frequency components of the curve.
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4
Result

The results obtained from the different analyzes will be presented in this chapter. First
of all, the resulting transmission errors and mesh stiffnesses for the two gear contact from
the LDP analyzes is presented. Thereafter, the eigenfrequencies and the eigenmodes of
the components included in the substructures for the dynamic simulations are presented.
The dynamic response of the housing resulting from the dynamic simulations in Abaqus R©

is finally evaluated. The discussion of the results is found in Chapter 5.

4.1 Transmission Errors and Mesh Stiffnesses in
Gear Contacts

This section presents the results obtained from the LDP analyzes described in Section 3.3.
The interesting results from the analyzes in this context are the transmission errors and
the mesh stiffnesses for each of the loading conditions shown in the diagram in Figure 3.9.
These results have been used as time variant input for the gear contact used in the
dynamic simulations.

4.1.1 Calculated Transmission Error

The transmission error in the first gear contact is plotted for each of the loading con-
ditions in Figure 4.1. It should be noted that the rotational speed is not included in
the LDP analyzes. Instead, the torque associated to the rotational speed following the
diagram in Figure 3.9 is the variational factor. It can be seen that the magnitude of the
transmission error is greatest for rotational speeds below 6,000 RPM, corresponding to
torques between 165.5 Nm and 158 Nm. As the rotational speed increases above this
level, the transmission error decreases in magnitude. The transmission error in the first
gear contact ranges between a minimum of 10.21 µm to a maximum of 22.48 µm.

From a dynamic point of view, it is the variation in the transmission error over the
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Figure 4.1: Transmission error for the first gear contact.

mesh cycle which is of greater importance, rather than the absolute transmission error.
Figure 4.2 shows the variational part of the transmission error in the first gear contact
plotted for each of the examined loading conditions. The variational part was obtained
by subtracting the average transmission error for each loading condition. It can be seen
that the variation in the transmission error is highest for the lower rotational speeds,
corresponding to higher torques. The highest peak-to-peak transmission error amounts
to 0.683 µm and the lowest amounts to 0.122 µm.

The results for the transmission error in the second gear contact can be seen in
Figure 4.3. It can be seen that a the transmission error follows a similar pattern as
for the first gear contact, i.e. relatively constant from 100 to 6,000 RPM after which it
is decreasing for increasing rotational speed. The overall magnitude is however larger,
ranging from a minimum of 16.49 µm to a maximum of 31.07 µm. It should be noted
that the torques used for the calculation of the transmission error in the second gear
contact are higher compared to the first gear contact, due to the gear ratio between the
input shaft and the main shaft, as stated in Section 3.3.

The variational part of the transmission error in the second gear contact can be
seen in Figure 4.4 and it was obtained using the same procedure as for the first gear
contact. It can be seen that the variation is highest for the lower rotational speeds, with
a maximum peak-to-peak transmission error of 0.346 µm and a minimum of 0.106 µm.
Even though the total transmission error in the second gear contact is generally higher
than that for the first gear contact, the variation in transmission error is generally lower.
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Figure 4.2: Variational part of the transmission error for the first gear contact.

0 0.2 0.4 0.6 0.8 1

0

5000

10000
15

20

25

30

35

[RPM]

Position in Mesh Cycle

Transmission Error in Second Gear Contact

T
ra
n
sm

is
si
o
n
E
rr
o
r
[µ
m
]

Figure 4.3: Transmission error for the second gear contact.
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Figure 4.4: Variational part of the transmission error for the second gear contact.

4.1.2 Calculated Mesh Stiffness

The mesh stiffness in the first gear contact can be seen in Figure 4.5. It can be seen
that the mesh stiffness decreases with increasing rotational speed, and thus decreasing
torque. The maximum mesh stiffness in the first gear contact amounts to 4.27 ·108 N/m
and the minimum mesh stiffness amounts to 3.76 · 108 N/m.

As for the transmission error, the variation in mesh stiffness can be examined. Fig-
ure 4.6 shows the resulting variation in mesh stiffness for the loading cases. It can be seen
that the variation is relatively unchanged for the different rotational speeds. However,
a small increase in the variation can be seen as the rotational speed reaches above circa
6,000 RPM. The peak-to-peak mesh stiffness in the first gear contact range between a
minimum of 2.26 · 107 N/m and a maximum of 2.47 · 107 N/m.

The mesh stiffness in the second gear contact can be seen in Figure 4.7. A similar
pattern as for the first gear contact can be seen, except at the higher rotational speeds,
where there is a change in the overall relationship of the stiffness. The magnitudes of
the mesh stiffness in the second gear contact range from a minimum of 5.58 · 108 N/m
to a maximum of 7.73 · 108 N/m. It can be seen that the mesh stiffness is significantly
higher in the second gear contact as compared to the first gear contact.

The variation in the mesh stiffness in the second gear contact can be seen in Fig-
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Figure 4.5: The calculated mesh stiffness in the first gear contact.
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Figure 4.6: Variational part of the mesh stiffness in the first gear contact.
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Figure 4.7: The calculated mesh stiffness in the second gear contact.
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Figure 4.8: Variational part of the mesh stiffness in the second gear contact.
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ure 4.8. The variation remains relatively unchanged until the rotational speed reaches
circa 9,000 RPM, corresponding to a torque of 102.5 Nm. At that level, the mesh stiff-
ness exhibits a great transit in variation. The variation over the mesh cycle changes
completely and generally increases in magnitude. This is due to a change in the contact
ratio of the gear contact. It changes from alternating between five and six gear teeth
in contact to alternating between five and four for the lower loadings. This behavior
is caused by the modifications of the so called micro geometry of the gears. These are
modifications of the gear teeth which are used to compensate for the deformations in
the gear teeth when the gears are loaded. A small comparison using zero modifications
for the second gear contact, i.e. using the theoretical gear profile shape described in
Section 2.2, resulted in a more uniform behavior in both the transmission error and the
mesh stiffness. The peak-to-peak transmission errors were however instead increased by
a large factor (maximum 0.881 µm, minimum 0.318 µm). For the lower torque loadings,
the micro geometry of the gear teeth in the second gear contact is overcompensating for
the deformations and instead resulting in the transit in the overall behavior of the mesh
stiffness. The maximum peak-to-peak value for the mesh stiffness in the second gear
contact amounts to 0.474 · 108 N/m while the minimum peak-to-peak value amounts to
0.238 · 108 N/m.

4.2 Eigenfrequency Analyzes

The calculated eigenfrequencies of the transmission components are presented in Ta-
ble 4.1 along with the eigenfrequencies of the simplified transmission model. It should
be noted that the eigenfrequencies for the components correspond to when the reference
nodes of the bearings are fully constrained in all six degrees of freedom. The first four
eigenmodes for each of the transmission components are also visualized in Figures 4.9
to 4.12. It is these along with the next 16 eigenmodes of the components which have
been included in the substructures used in the simulations. The eigenmodes of the sim-
plified transmission are difficult to illustrate since they only involve the retained nodes
of the components. It can however be noted that the lowest eigenmodes involve large
deformation at the connection point between the differential and the housing.

Table 4.1: Calculated eigenfrequencies for the components of the transmission and
the simplified transmission model.

Eigen -
frequency

Input Shaft
[Hz]

Main Shaft
[Hz]

Differential
[Hz]

Housing
[Hz]

Transmission
[Hz]

1 14278 2913 2502 2114 311

2 14297 3145 2761 2517 360

3 16400 3628 2926 3242 616

4 17584 4281 3608 3392 743

5 19782 4333 3767 3915 955
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6 19868 4364 4749 4243 1164

7 22073 4403 5209 4294 1325

8 22764 4779 5654 4818 1736

9 22965 5088 6098 4920 1864

10 23762 5893 6537 5016 1975

11 25545 6530 7117 5250 2024

12 26192 7007 7212 5569 2145

13 27378 7657 7411 5676 2331

14 28242 8453 8019 5902 2425

15 31549 8554 8408 6032 2461

16 31611 8768 8469 6176 2627

17 32043 8887 9743 6294 2890

18 32079 10929 9899 6460 3015

19 32854 12141 10234 6734 3081

20 33484 12441 10431 6832 3155

Mode 1 - 14,278 Hz Mode 2 - 14,297 Hz

Mode 4 - 17,584 HzMode 3 - 16,400 Hz

Figure 4.9: The first four eigenfrequencies and corresponding eigenmodes of the input
shaft (displacements not to scale).
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Mode 1 - 2,913 Hz Mode 2 - 3,145 Hz Mode 3 - 3,628 Hz Mode 4 - 4,281 Hz

Figure 4.10: The first four eigenfrequencies and corresponding eigenmodes of the main
shaft (displacements not to scale).

Mode 1 - 2,502 Hz Mode 2 - 2,761 Hz Mode 3 - 2,926 Hz Mode 4 - 3,608 Hz

Figure 4.11: The first four eigenfrequencies and corresponding eigenmodes of the differen-
tial (displacements not to scale).

Mode 1 - 2,114 Hz Mode 2 - 2,517 Hz Mode 3 - 3,242 Hz Mode 4 - 3,392 Hz

Figure 4.12: The first four eigenfrequencies and corresponding eigenmodes of the housing
(displacements not to scale).
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From Table 4.1 it can be seen that the first eigenfrequencies for the components are
14,278 Hz, 2,913 Hz, 2,502 Hz and 2,114 Hz for the input shaft, main shaft, differential
and the housing respectively. The eigenfrequencies of the input shaft are considerably
higher compared to the other components. The mass of the input shaft model is only
0.9599 kg compared to e.g. the main shaft with a mass of 2.666 kg. This low mass in
combination with a relatively stiff and highly constrained geometry is the reason for the
high eigenfrequencies of the input shaft.

The eigenfrequencies for the simplified transmission model are overall much lower
compared to the components. This is due to the greater mass contra stiffness of the
entire transmission along with the less constrained boundary conditions, which reduces
the eigenfrequencies.

4.3 Dynamic Response of the Transmission Housing

The dynamic response of the housing reference nodes (seen in Figure 3.6) due to the
excitations in the gear contacts was investigated in order to map the dynamic behavior
of the transmission for the different loading conditions. Thereby the expected levels of
vibrations which the housing could be exposed to can be estimated.

For each of the 120 examined loading conditions, the displacements of the bearing
reference nodes of the housing for each time increment were obtained from the simulations
described in Section 3.4. For the case of 3,000 RPM, 6,000 RPM and 9,000 RPM, the
displacements of the mentioned nodes are plotted against time in Figures 4.13 to 4.15.
It should be noted that the time span in the plots is the time period used as sampling
period of the data from the simulations and corresponds to a total of 2,048 samples
for each node. It can be seen that the overall static deformation of the housing is
largest at nodes 60031 and 60032, where the differential is connected to the housing.
The variations in the displacements caused by the excitations in the gear contacts are
small compared to the overall static deformations, typically in the magnitude order of
10−1 µm. The nodes 60011, 60012 and 60022 have all reached relatively converged
steady-state conditions before the beginning of the sampled period. The other examined
nodes exhibit a transient behavior during the sampled period, especially nodes 60031
and 60032. These nodes do however reach a steady-state behavior after approximately
half of the sampled time period. The average total time consumption for each of the 120
simulations was circa 4,900 s (∼ 1h 22 min) when computed using a 3.47 GHz CPU.

Waterfall plots showing the frequency components of the resulting displacements
of the housing bearing reference nodes for all of the examined loading conditions were
obtained using the fast fourier transform methodology described in Section 3.6. These
are plotted for each housing node in Figures 4.16 to 4.21.

Generally it can be seen that for all of the reference nodes, amplitude peaks which
gradually shift from lower to higher frequencies as the rotational speed is increasing
appear in the waterfall plots. These peaks correspond to the harmonics of the two mesh
frequencies, which determined the frequencies with which the mesh cycles were repeated
in the gear contact subroutine, see Section 3.1.4. The most distinct harmonic for all
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Housing Node Displacements at 3000 RPM

Figure 4.13: Time-displacement graphs of the housing nodes at 3,000 RPM.
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Figure 4.14: Time-displacement graphs of the housing nodes at 6,000 RPM.
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Figure 4.15: Time-displacement graphs of the housing nodes at 9,000 RPM.

examined nodes is the one corresponding to the first harmonic of the mesh frequency
in the second gear contact. This can be seen clearly in Figure 4.17, where some of
the harmonics are marked. Thereafter follows the second harmonic of the second gear
contact closely followed by the first harmonic of the first gear contact. The third and
and forth harmonics of the second gear contact can also be identified in the plots as the
following two ridges in the waterfall plots.

Another interesting observation is the amplitude peaks which appear at the same
frequency components, regardless of the rotational speed of the input shaft. This occurs
at three rather distinct frequencies, at circa 273 Hz, 340 Hz and 550 Hz. If these fre-
quencies are compared to the obtained eigenfrequencies from the simplified transmission
model presented in Table 4.1, it can be seen that they correspond to the first three
eigenfrequencies of the transmission. They appear at slightly lower frequencies than
those evaluated for the simplified model due to its simplifications which increased the
stiffness of the model and thus resulting in slightly higher eigenfrequencies.

It can be seen for all nodes that when the mesh frequencies coincide with the eigen-
frequencies, significant amplitude peaks appear caused by resonance in the system. The
highest amplitude is observed for node 60032 in Figure 4.21 where the first harmonic
of the second gear contact mesh frequency coincide with the first eigenfrequency of the
system. Generally, for all of the examined nodes, elevated amplitude peaks appear for
the frequency components in the range between 1,000 to 2,000 Hz.
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Figure 4.16: Waterfall plot displaying the dynamic response of reference node 60011.

Amplitude peaks which gradually shift from higher to lower frequencies can be ob-
served at rotational speeds above circa 5,000 RPM. This is likely to be caused by aliasing,
see Section 2.8. When the harmonics of the mesh frequencies reach frequencies above
the Nyquist frequency, in this case 3,000 Hz, they appear at lower frequencies when the
fast fourier transform is performed. According to [3], frequencies above the Nyquist are
reflected about the Nyquist frequency, which would explain the amplitudes shifting from
higher to lower frequencies for increasing rotational speeds in the waterfall plots. The
reflected amplitudes should therefore not be considered to any greater extent, since they
appear at wrong frequency intervals in the waterfall plots.
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Figure 4.17: Waterfall plot displaying the dynamic response of reference node 60012.
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Figure 4.18: Waterfall plot displaying the dynamic response of reference node 60021.
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Figure 4.19: Waterfall plot displaying the dynamic response of reference node 60022.
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Figure 4.20: Waterfall plot displaying the dynamic response of reference node 60031.
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Figure 4.21: Waterfall plot displaying the dynamic response of reference node 60032.
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5
Conclusion

5.1 Transmission Errors and Mesh Stiffnesses in
Gear Contacts

The results indicate that the magnitude of the transmission error is highly related to
the torque applied to the transmission gear drives. This can be seen from the results in
Figure 4.1 and Figure 4.3, where the magnitude of the transmission error is reduced as
the applied torque is decreased for the higher rotational speeds. The variations in the
transmission error for both gear contacts indicate that the variations are also increasing
for higher torque loadings. Consequently the magnitudes of the excitations in the gear
contacts are increased for the lower rotational speeds in the simulations.

The mesh stiffnesses in both of the gear contacts were found to be decreasing with
decreasing torque for the higher rotational speeds. The variations in the mesh stiffness
for the first gear contact remained relatively unchanged for the different loadings. For
the second gear contact the mesh stiffness exhibited a significant change in behavior for
input torques less than circa 102.5 Nm, due to modifications of the micro geometry of
the gears resulting in a change of the contact ratio.

5.2 Eigenfrequency Analyzes

From the results of the eigenfrequency analyzes of the individual transmission compo-
nents, as part of the substructure generation process, it can be concluded that only six
of the components eigenfrequencies lied within the examined frequency interval in the
dynamic simulations; one for the main shaft, three for the differential, two for the hous-
ing and none for the input shaft. It might therefore have been unnecessary to include
as many as 20 of the eigenmodes for the substructures. Instead, a frequency interval for
the eigenmodes to include could have be specified, rather than a fixed number. For the
input shaft the inclusion of the eigenmodes might have been unnecessary and it could
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instead have been represented only by the mass and stiffness matrix of the substructure.
The eigenfrequencies from the simplified transmission model gave an approximation

for which frequencies resonance could be expected for the complete transmission model.
The results showed a relatively close resemblance to the eigenfrequencies seen in the
waterfall plots for the dynamic response of the housing, however at slightly lower eigen-
frequencies compared to the simplified model. This difference can be explained by the
increase in stiffness for the simplified model which should result in higher eigenfrequen-
cies for that model. This thereby adds confidence in the model, as it manages to reflect
the effects of the eigenfrequencies during the non-linear dynamic simulations.

5.3 Dynamic Response of the Transmission Housing

The results from the dynamic simulations show a clear relationship between the mesh
frequencies and their harmonics and the resulting frequency components of the dis-
placement in the transmission housing. This implies that the developed dynamic model
manages to simulate the vibrations which from previous studies have been established
as the main cause of the gear whine noise. The used solver settings resulted in problems
with aliasing when the harmonics of the mesh frequencies reach above 3,000 Hz which is
due to a too low sampling frequency. This could be improved by increasing the number
of samples and decreasing the size of each time increment. This will however greatly
increase the time consumption for the simulations, since the next sample size which can
be used for the fast fourier transform is n = 212 = 4,096. Another approach would be to
use the same number of samples but only decreasing the time increments between each
sample. This would increase the sampling frequency but instead reduce the resolution
of the frequency spectrum according to Equation 2.24.

It should be noted that no damping effects of any sort have been included in the
model. The connector elements used for the gear contacts can easily be given damping
properties and different methods for adding damping to the transmission components
are available in Abaqus R©, but determining the appropriate damping coefficients is a
difficult process. Adding damping is likely to reduce the time needed for the simulations
to reach a steady-state, as damping may reduce the magnitude of the oscillations in the
dynamic response.

The proposed dynamic model is relatively simple in its design and could easily be
implemented in more complex transmissions involving a higher number of gear contacts.
Exporting the calculated transmission errors and mesh stiffnesses from the LDP was
done manually for each of the loading cases. This was highly time consuming and it
would be advantageous to develop a more efficient extraction method, e.g. write a script
performing the extraction. This is of even greater importance if a transmission containing
a higher number of gear contacts is examined.

Excitation of the eigenfrequencies of the transmission have been observed, as the
amplitudes in the responses are suddenly increased for distinct frequency components,
especially 273 Hz, 340 Hz and 550 Hz. The waterfall plots obtained for the dynamic
response of the bearing reference nodes of the housing indicates several cases of resonance
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for rotational speeds below 5,000 RPM, when the mesh frequency harmonics coincide
with the eigenfrequencies. Following these results, it would be advisable to design the
driveline in such a way that the transmission is operating mainly at rotational speeds
above 5,000 RPM. It is especially important to avoid continuous driving conditions to
coincide with these rotational speeds which might result in a distinct tonal noise due
to the relatively strong vibrations in the transmission housing. The simulations also
indicate that the second gear contact is affecting the response to a larger extent than the
first gear contact, most likely due to the higher torques being transferred in the second
gear contact. Focus regarding optimizing the geometry of the gears should therefore,
from a dynamic perspective, lie on reducing the variations in the transmission error in
the second gear contact.

The computational time required to obtain a steady-state response is rather great,
especially when examining a range of different loading conditions. The average time
for one simulation was circa 1h and 22 min which results in a total time for all 120
simulations of approximately 163 h and 20 min. The use of a non-linear bearing model
for calculating the stiffness of the bearings is a contributing cause of the relatively time
consuming simulations, as it has to iterate in every time increment in order to obtain
a new bearing stiffness matrix. One alternative could be to use the resulting bearing
stiffness matrices after the static step and then use these throughout the dynamic steps.
This would reduce the time consumption but change the results, but to what extent is
unclear.

The developed dynamic model and simulation methodology should mainly be used
in order to evaluate and compare different proposals regarding the design of the trans-
mission housing. Thorough testing by experiments performed on a physical model of
the transmission has to be performed in order to evaluate whether or to what extent
the proposed dynamic model manages to represent the actual dynamic behavior of the
transmission.

5.4 Future Work

As mentioned above, experiments and methodology for validating the developed dynamic
model are necessary in order to establish the accuracy of the model. It would also be
interesting to compare the results of the dynamic response for different mode addition
methods, e.g. using the Craig-Chang method or the mixed-interface method when in-
cluding eigenmodes in the substructures. By adding additional retained nodes positioned
on the surface of the housing, instead of just using the bearing reference nodes, a better
analysis of the noise generating vibrations could be performed. This would allow for a
higher geometric resolution of the dynamic response of the housing. It would also be
favorable to develop methods for estimating the magnitude of the resulting sound gen-
erated by the simulated vibrations in the transmission housing. In addition to adding
damping, effects of backlash could be introduced in the gear contacts. This has been
proposed in previous works, e.g. [19] and could further refine the model.
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[12] M. Åkerblom, Gear noise and vibration - influence of gear finishing method and
gear deviations, Licentiate thesis, Royal Institute of Technology, Stockholm (2002).
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