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RSS-Based Sensor Localization in the Presence

of Unknown Channel Parameters
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Erik G. Ström, Senior Member, IEEE

Abstract—This paper studies the received signal strength
based localization problem when the transmit power or
path-loss exponent is unknown. The corresponding maxi-
mum likelihood estimator (MLE) poses a difficult noncon-
vex optimization problem. To avoid the difficulty in solving
the MLE, we use suitable approximations and formulate
the localization problem as a general trust region subprob-
lem, which can be solved exactly under mild conditions.
Simulation results show a promising performance for the
proposed methods, which also have reasonable complexities
compared to existing approaches.

Index Terms– Wireless sensor network, localization, re-
ceived signal strength, path-loss exponent, transmit power,
general trust region subproblem.

I. INTRODUCTION

Localizing an unknown sensor node, henceforth called

the target node, using received signal strength (RSS) is

a popular technique in the literature in the context of

location aware services [1], [2]. In this approach a num-

ber of fixed sensors at known positions, called reference

nodes, measure the power of the signal transmitted by

a target node and estimate the location of the target

node. In the literature the received power is commonly

modeled by the log-normal shadowing [3]. During the

past few years a huge number of algorithms have been

proposed to solve the localization problem based on the

RSS measurements. The maximum likelihood estimator

(MLE) derived for this problem is highly nonlinear and

nonconvex [4]. To avoid difficulty in solving the MLE,

a number of suboptimal estimators have been suggested

in the literature, e.g., algorithms based on the semidef-

inite relaxation (SDR) [5]–[7], the linear least squares

(LLS) [8], [9], the constrained linear least squares [10],

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

M. R. Gholami and E. G. Ström are with the Division of Commu-
nication Systems and Information Theory, Department of Signals and
Systems, Chalmers University of Technology, SE-412 96 Gothenburg,
Sweden (e-mail: moreza@chalmers.se; erik.strom@chalmers.se).

R. M. Vaghefi is with the Mobile and Portable Radio Research
Group, Wireless@Virginia Tech, Bradley Department of Electrical
and Computer Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061 USA (e-mail: vaghefi@vt.edu).

This work was supported by the Swedish Research Council (contract
no. 2007-6363).

and projection onto convex sets [11], [12], just to cite a

few.

The power of the received signal mainly depends on

the transmit power of the target node and the path-loss

exponent. The transmit power of a target node depends

on, e.g., its battery and radiation pattern and the path-

loss exponent depends on the environment. A number

of researchers tackled the localization problem when

channel parameters are unknown, e.g., [13], [14], and

derived suboptimal estimators. When only the transmit

power is unknown, there are a number of approaches

to deal with the localization problem, e.g., techniques

based on eliminating the common term [15], [16]. A joint

estimation technique based on the SDR and the LLS was

proposed in [17], [18], which shows good performance

compared to recently suggested approaches. Although

the proposed approaches show good performance in

some scenarios, it is still required to improve the per-

formance of the estimators when channel parameters are

unknown.

In this study, we consider the RSS-based localization

problem when the channel parameters, i.e., the transmit

power or path-loss exponent, are unknown. Different

from [19], we model the unknown transmit power and

path-loss exponent as fixed nuisance unknown parame-

ters. Similar to our previous work [17] using suitable

approximations, we obtain a nonlinear least squares

objective function, which is smoother than the original

MLE objective function but still is nonconvex. We,

then, formulate the localization problem as a general

trust region subproblem. In fact in this step, instead of

relaxing the problem to a convex problem, which has

been done, e.g., in [17], [18] when the transmit power is

unknown, we transform the problem to a quadratic pro-

gram and employ a technique developed in the numerical

optimization literature for solving such a problem [20],

[21]. Under mild conditions, the proposed approach will

attain the optimal solution of the considered problem.

In this paper, we first propose techniques to solve the

localization problem when either the transmit power or

the path-loss exponent is unknown. We, then, extend the

proposed techniques to a general case when both channel

parameters are unknown. Simulation results show that

the proposed approach outperforms previous techniques
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and demonstrate that the suggested techniques are very

close to Cramér-Rao lower bound (CRLB) in some

scenarios. Complexity analyses show a reasonable cost

for implementing the proposed techniques compared to

the exisiting approaches.

The reminder of this paper is organized as follows.

The signal model is briefly studied in Section II. Sec-

tion III introduces estimators to estimate an unknown

transmit power or path-loss exponent along with the

location of the target. The complexity analyses of differ-

ent approaches are presented in Section IV. Simulation

results are presented in Section V and finally some

concluding remarks and future work are discussed in

Section VI.

II. SYSTEM MODEL

Let us consider a 2D network1 consisting of a target

node at unknown position, x ∈ R
2, and N reference

nodes at known locations, ai ∈ R
2, i = 1, . . . , N .

We assume that the target node transmits a signal and

the reference nodes are able to measure the power of

the received signal from the target node. The received

power (in dBm) of the signal transmitted by the target

node at the ith reference node, Pi, under the log-normal

shadowing model, is given by [4], [6], [22], [23]

Pi = P0 − 10β log10
di
d0

+ ni, i = 1, . . . , N (1)

where P0 (in dBm) is the reference power at distance

d0 from the target node, β is the path-loss exponent,

di , ‖x − ai‖ is the Euclidean distance between the

target node and the ith reference node, and ni are the log-

normal shadowing terms modeled as independent and

identically distributed zero-mean Gaussian random vari-

ables with standard deviation σdB, i.e., ni ∼ N (0, σ2
dB).

Without loss of generality, we assume that d0 = 1 m.

In this study, we assume that the transmit power

or path-loss exponent is unknown and investigate ap-

proaches to estimate the location of the target node.

We also assume that P0 and β are fixed during the

localization process. Since the distribution of the RSS

measurement is Gaussian, assuming the transmit power,

P0, or path-loss exponent, β, as an unknown parameter,

the MLE to estimate the location of the target based on

the model in (1) is obtained by the following nonconvex

optimization problem [24]:

θ̂MLE = argmin
θ∈D

N
∑

i=1

(Pi − P0 + 10β log10 di)
2
, (2)

where θ = [xT P0]
T , θ = [xT β]T , or θ = [xT P0 β]T

and the set D defines a set in which the un-

known parameters belong, e.g., θ = [xT P0]
T , then

1The generalization to 3D networks is straightforward, but is not
explored in this paper.

D = {[z1 z2 z3]
T ∈ R

3 : z3 > 0}. As it is observed, the

MLE is highly nonconvex and difficult to solve, es-

pecially when β is unknown. In the next section, we

formulate the localization problem as the least squares

problem, which is nonconvex but smoother than the MLE

in (2).

III. SUBOPTIMAL ALGORITHMS

We first study the localization problem when either P0

or β is unknown. Then, we extend the results to a general

case when both P0 and β are unknown. We formulate

different cases as general trust region subproblems. For

details of solving the trust region subproblem, we refer

the reader to, e.g., [20], [25], [26].

Note that in the localization literature a fixed transmis-

sion power and path-loss exponent are usually assumed

for different links, e.g., see [6], [22], [23], [27], [28] and

references therein.

A. Unknown transmit power

This section describes the procedure of approximating

the MLE of (2) for the case when β is known (i.e.,

when θ = [xT P0]
T ) into a nonlinear least squares

(NLS) problem2, which can be solved exactly under

mild conditions. We divide both sides of (1) by 5β and

reformulate Eq. (1) as

log10 hiλi =
P0

5β
+

ni

5β
, (3)

where hi , d2i , λi , 10Pi/5β , and α , 10P0/5β . Taking

the power of 10 on both sides yields

hiλi = α10ni/5β . (4)

For sufficiently small noise, the right hand side of (4)

can be approximated using the first-order Taylor series

expansion as3

hiλi ≃ α
(

1 +
ln 10

5β
ni

)

. (5)

Eq. (5) can be, alternatively, written as

hiλi = α+ n′
i, (6)

where n′
i is a zero-mean Gaussian random variable with

variance (ln10)2α2σ2
dB/25β

2. In this step, we apply the

nonlinear least squares criterion to the model in (6) to

estimate the unknown parameters. The corresponding

2The least-absolute mean approach can also be employed for ob-
taining a robust estimator. For that approach, we can use techniques
introduced in [17] for solving the problem.

3Note that ax = 1+x ln a+. . .+
(x ln a)n

n!
+. . . , −∞ < x < ∞.
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NLS estimator of the unknown parameters [xT α] in

(6) is [24, Ch. 8]

[x̂T α̂] = argmin
[xT α]∈R3

N
∑

i=1

(hiλi − α)
2
. (7)

The cost function (7) is still nonlinear and noncovex, but

it is much smoother than the MLE objective function in

(2). For a discussion on the behavior of the both objective

functions, see [17]. Let us write the problem (7) as

minimize
z,x,α

N
∑

i=1

(λi(z − 2aTi x + ‖ai‖
2)− α)2

subject to z = ‖x‖2. (8)

Now, we express the problem in (8) as a quadratic

program as follows:

minimize
y1

‖A1y1 − b1‖
2

subject to yT
1 D1y1 + 2fT1 y1 = 0 (9)

where y1 , [‖x‖2 xT α]T and matrices A1 and D1,

and vectors b1 and f1 are defined as

A1 ,







λ1 −2λ1a1 −1
...

...
...

λN −2λNaN −1






,

D1 , diag(0, 1, 1, 0),

b1 ,
[

−λ1‖a1‖
2 . . . − λN‖aN‖2

]T
,

f1 ,

[

−
1

2
0 0 0

]T

.

The problem in (9) minimizes a quadratic function over

a quadratic constraint. This type of problem is called

a generalized trust region subproblem [20]. It is known

that the general trust region subproblem has no duality

gap and the optimal solution can be extracted from the

dual solution [20], [26], [29]. A necessary and sufficient

condition for y∗
1 to be optimal in (9) is that [26]

(AT
1 A1 + γD1)y

∗
1 = (AT

1 b1 − γf1),

(y∗
1)

TD1y
∗
1 + 2fT1 y∗ = 0,

(AT
1 A1 + γD1) � 0. (10)

The last expression in (10) means that (AT
1 A1+γD1) is

a positive semidefinite matrix. Under conditions consid-

ered in (10), the solution to the problem of (9) is given

by

y1(γ) = (AT
1 A1 + γD1)

−1(AT
1 b1 − γf1). (11)

In such a situation to find γ, we simply replace (11) into

constraint yT
1 D1y1 + 2fT1 y1 = 0, i.e.,

φ(γ) = yT
1 (γ)D1y1(γ) + 2fT1 y1(γ) = 0, γ ∈ I

(12)

where the interval I consists of all γ such that

AT
1 A1 + γD1 � 0. The interval of I is given by [21]

I = (−1/γ1,∞), (13)

with γ1 representing the largest eigenvalue of

(AT
1 A1)

−1/2D1(A
T
1 A1)

−1/2 [20]. In summary, the

solution to (8) is obtained as follows:

• Use a bisection search to find a root of φ(γ) = 0,

say γ∗. Note that φ(γ) is a strictly decreasing

function with respect to γ [20].

• Replace γ∗ in (11) to obtain y∗
1 = y1(γ

∗).
• Estimate the unknown parameters as

x̂ = [y∗
1 ]2:3, P̂0 = 5β log10[y

∗
1 ]3, with [v]i:j

denoting the ith to the jth elements of vector v.

Note that when γ = 1/γ1, which is called hard

case [25], can be suitably handled using techniques

introduced in the literature [21], [25]. However, this

case occurs rarely in practical situations; we have never

observed it any of our numerous simulations. That the

hard case is rare has also been noted in other studies,

e.g., in [21].

B. Unknown path-loss exponent

In this section, we assume that the transmit power

P0 is known, but the path-loss exponent β is unknown.

We propose a two-step estimator to find estimates of the

location and path-loss exponent. We first jointly estimate

the path-loss exponent and the location of the target

node. Then, we update the estimate of both parameters.

We assume that β belongs to an interval β ∈ [β1, β2]. In

practice the path-loss exponent varies normally from 2

(free space) to 6 (e.g., in an indoor scenario). We express

(1) (assuming d0 = 1 m) as d2i = 10(P0−Pi+ni)/(5β).

Similar to (5), we can write

d2i = 10(P0−Pi)/(5β)
(

1 +
ln 10

5β
ni

)

. (14)

Now, we write the path-loss exponent as

β = β0(1 + (β − β0)/β0), where β0 is chosen such

that |(β − β0)/β0| is as small as possible. Note that

β is unknown and β0 is a tuning parameter chosen by

designer. We will see in the simulation section that how

different values of β0 can affect the performance of the

algorithm. Let δ , (β − β0)/β0 for any β0 6= 0. Hence,

β = β0(1 + δ), and

d2i = 10(P0−Pi)/(5β0(1+δ))

(

1 +
ln 10

5β
ni

)

.

A Taylor series expansion around δ = 0 and as-

suming that |δ| is small leads to the approximations
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1/(1 + δ) ≈ 1− δ and

d2i ≈ 10(P0−Pi)(1−δ)/(5β0)

(

1 +
ln 10

5β
ni

)

= q
(1−δ)
i

(

1 +
ln 10

5β
ni

)

, (15)

where qi , 10(P0−Pi)/(5β0). The model in (15) is still

nonlinear and difficult to solve. To obtain a linear model

based on the unknown parameters, we make yet another

simplifying assumption. Considering a Taylor series ex-

pansion of q−δ
i around δ = 0, and assuming that |δ ln qi|

is small, yields the approximation q−δ
i ≈ 1 − δ ln qi,

which in turn allows us to further approximate d2i as

d2i ≈ qi(1− δ ln qi)

(

1 +
ln 10

5β
ni

)

. (16)

The approximation in (16) is valid as long as |δ ln qi|
is small. For example, if δ is extremely small, which

means β0 is very close to β, the expression in (16) is a

valid approximation. Otherwise, we can investigate for

which networks the approximation in (16) is valid. In

the shadow-free case, we have

δ ln qi = δ
P0 − Pi

5β
ln 10

= δ
10β

5β0
log10(di) ln(10)

= 2δ(1 + δ) log10(di) ln(10).

Hence, the condition |δ ln qi| ≪ 1 is equivalent to

10−1/|2δ(1+δ) ln(10)| ≪ di ≪ 101/|2δ(1+δ) ln(10)|.

Thus, given a certain δ, i.e., quality of our guess of β,

we will have both a lower and an upper bound on di.
To find an optimal value of β0, we assume that

the path-loss exponent β has some distribution over an

interval and we choose a value for β0 (numerically)

such that the location estimation error is minimized.

For example, in the simulations, we will assume that

the path-loss exponent is uniformly distributed over the

interval [2, 6] and we will see that there is an optimal β0

minimizing the root-mean-square error of the estimation.

The two-step estimator is implemented as follows.
1) first step: In this step, we apply the least squares

criterion to the model in (16) to estimate both location

and δ. Then,

minimize
z,x,δ

N
∑

i=1

(z − 2aTi x + ‖ai‖
2 − qi + qiδ ln qi)

2

subject to z = ‖x‖2. (17)

Similar to the previous section, we can express (17) as

a general trust region subproblem

minimize
y2

‖A2y2 − b2‖
2

subject to yT
2 D2y2 + 2fT2 y2 = 0, (18)

where y2 , [‖x‖2 xT δ]T , matrices D2 and A2, and

vectors b2 and f2 are defined as

A2 ,







1 −2a1 q1 ln q1
...

...
...

1 −2aN qN ln qN






,

b2 ,







q1 − ‖a1‖2

...

qN − ‖aN‖2






,

D2 , diag(0, 1, 1, 0),

f2 ,

[

−
1

2
0 0 0

]T

.

In the sequel, we employ a similar technique as used in

the previous section (Eqn. (11)–(13)) to solve (18). After

solving the problem in (18), we obtain an estimate of the

target location and the path-loss exponent as

x̃ = [y∗
2 ]2:3, (19)

where y∗
2 is the optimal solution of (18).

2) second step: In this step, we refine the estimates

derived in the first step. Note that it is possible to

estimate the path-loss exponent from the first step as

β̂ = β0 (1 + [y∗
2 ]4), but as we have observed, through

simulations, that in the first step, the location is more

accurately estimated compared to the path-loss exponent.

Therefore in this step, we first update the path-loss

exponent using a simple estimator based on the estimate

of the location of the target obtained in (19). From (1)

using the method of moment [24], we can estimate the

path-loss exponent as

β̃ ≃

∑N
i=1(P0 − Pi)

10 log
∏N

i=1 d̃i
. (20)

Note that since the true distance di = ‖x − ai‖ is

not available, we instead used the approximate distance

d̃i = ‖x̃− ai‖ in (20), where x̃ is the estimate of the

target location obtained in the first step, i.e., Eq. (19).

With an estimate of the path-loss exponent in (20), we

back to (14) and write

d2i = 10(P0−Pi)/(5β̃)(1 +
ln 10

5β̃
ni), i = 1, . . . , N.

(21)

Now, we apply a weighted least squares criterion to

(21) and express the problem as a general trust region

subproblem as follows:

minimize
y3

‖W(A3y3 − b3)‖
2

subject to yT
3 D3y3 + 2fT3 y3 = 0, (22)
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where y3 , [‖x‖2 xT ]T and matrices D3, A3, and W

and vectors b3 and f3 are defined as

A3 ,







1 −2a1
...

...

1 −2aN






,

W , diag
(

10P1/(5β̃), 10P2/(5β̃), . . . , 10PN/(5β̃)
)

,

D3 , diag(0, 1, 1),

b3 ,
[

−‖a1‖
2 . . . − ‖aN‖2

]T
,

f3 ,

[

−
1

2
0 0

]T

,

where the operator diag denotes a diagonal matrix.

Again, we employ a similar technique as used before

(Eqn.(11)–(13)) to solve (22). The target location now is

estimated as

¯̃x = [y∗
3]2:3, (23)

where y∗
3 is the optimal solution of (22).

C. Unknown path-loss exponent and transmit power

In this section, we consider a general case when both

channel parameters, P0 and β, are unknown and we

investigate a two-step estimator to solve the localization

problem.

1) first step: We first assume that P0 belongs to an

interval [P01 , P02 ]. Let us pick one point in this interval,

say P̄0, and using a similar technique as used before, we

can express (1) as

d2i = 10(P̄0−Pi)/(5β0)(1−δ)γ(1 +
ln 10

5β
ni), (24)

where γ , 10(P0−P̄0)/(5β). Suppose that

(P̄0 − Pi)/(5β0)δ ln 10 is small. Similar to (16),

we can express (24) as

d2i = giγ(1− δ ln gi)(1 +
ln 10

5β
ni), (25)

where gi , 10(P̄0−Pi)/(5β0). Therefore, we can obtain a

linear model as

[1− 2aTi − gi gi ln gi]y4 = −‖ai‖
2 + ǫi, (26)

with y4 , [‖x‖2 xT γ γδ]T and

ǫi , giγ(1− δ ln gi)ln 10ni/(5β). Similar to the

previous section, we apply a nonlinear least squares

criterion and then transform the corresponding NLS to

a general trust region subproblem as

minimize
y4

‖A4y4 − b4‖
2

subject to yT
4 D4y4 + 2fT4 y4 = 0 (27)

where matrices D4 and A4, and vectors b4 and f4 are

defined as

A4 ,







1 −2a1 −g1 g1 ln g1
...

...
...

...

1 −2aN −gN gN ln gN






,

D4 , diag(0, 1, 1, 0, 0),

b4 ,
[

−‖a1‖
2 . . . − ‖aN‖2

]T
,

f4 ,

[

−
1

2
0 0 0 0

]T

.

Here, we apply a similar procedure as employed for

Eqn. (11)–(13) to solve the problem in (27). We obtain

an estimate of the target location as

x̆ = [y∗
4 ]2:3, (28)

where y∗
4 is the optimal solution of (27).

2) second step: In this step, we first obtain new

estimates of the transmit power and path-loss exponent

as follows. From the model in (1), we write

Pi ≃ P0 − 10β log10 d̆i + ni, i = 1, . . . , N, (29)

where d̆i = ‖x̆−ai‖ with x̆ given in (28). Now, we apply

a linear least squares technique4 to find an estimate of

the transmit power and path-loss exponent for the linear

model of (29). Therefore,

[P̆0 β̆]T = (GTG)−1GTh, (30)

where

G ,







1 −10 log d̆1
...

...

1 −10 log d̆N






,

h , [P1 . . . PN ]T . (31)

Based on the estimate in (30) and from the model in (1),

we can write

d2i ≃ 10(P̆0−Pi)/(5β̆)(1 +
ln 10

5β̆
ni). (32)

Therefore, we obtain a similar model as (21) except

P0 and β̃ are respectively replaced with P̆0 and β̆
(given in Eq. (30)). Again, we employ a weighted least

squares technique and then transform the problem to a

general trust region subproblem similar to (22). The only

difference is that the weighting matrix W is replaced

with the following matrix:

W = diag
(

10P1/(5β̆), 10P2/(5β̆), . . . , 10PN/(5β̆)
)

. (33)

4If there are a large number of RSS measurements, we can apply a
total least squares technique [30] to find a more accurate estimates of
P0 and β.
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Thus, an estimate of the target location now is obtained

by solving the trust region subproblem (22) in which the

weighting matrix W is replaced with W. Therefore,

¯̆x = [ȳ∗
3]2:3, (34)

where ȳ∗
3 is the optimal solution of (22) by replacing W

with W.

IV. COMPLEXITY ANALYSIS

In this section, we study the complexity of the

proposed technique and compare the cost of different

approaches in terms of floating point operations (flops)

and running time. We compare the complexity of the

MLE, the LLS, the SDR, the proposed method in Section

III-A. The complexity of the algorithms proposed in

Sections III-B and III-C can be computed similarly. Here,

we compute the worst-case complexity. To compute the

complexity of the MLE, we assume that a good initial

point is available, and an iterative algorithm such as

Gauss-Newton (GN) method is used to find the global

minimum after a number of iterations. Of course, finding

a good initial point for the MLE is a challenging task

and this study aims to tackle it. The most complex part

of the GN approach is to compute the Newton step [31].

After KGN iterations (usually less than 50 iterations),

the solution of the MLE (assuming a good initial point)

is obtained. It can be verified that the complexity of the

MLE is the order of N3 for every Newton step. Then

the total cost can be computed as O(KGNN3). The

worst-case complexity of the SDP can be computed as

O(KSDPN
4 log(1/ǫ)), where the number of iterations

KSDP is commonly approximated by O(N1/2) [32],

[33] and ǫ is an accuracy tolerance. The complexity of

the LLS can be computed as O(34N) for this problem.

For the proposed approach, we need to use a bi-

section search to solve (11), which is the most com-

plex part of the algorithm. We first decompose AT
1 A1

using the singular value decomposition technique, i.e.,

AT
1 A1 = UΛUT , where U is an orthogonal matrix and

Λ is a diagonal matrices. Therefore, (AT
1 A1 + γD)−1

can be computed as U(Λ+γD)−1UT . Hence, in every

bisection step, we need to compute the inverse of the

diagonal matrix (Λ + γD). Suppose that the bisection

search takes KGTR steps, then the total cost of the

proposed approach can be approximated as 36K2+34N .

In the simulation, we have observed that the bisection

search algorithm usually takes 20 to 30 iterations to

find the optimal value of γ. Table I summarizes the

complexity of the different approaches.

In a similar way, the complexity of the proposed

algorithm for unknown path-loss or both unknown path-

loss and transmission power can be computed. The total

complexity is the sum of the complexity for each step.

We have also measured the average running time

of different algorithms for a network consisting of 5

reference nodes as considered in Section V. The al-

gorithms have been implemented in Matlab 2012 on a

MacBook Pro (Processor 2.3 GHz Intel Core i7, Memory

8 GB 1600 MHz DDR3). To implement the MLE, we

use the Matlab function lsqnonlin [34] initialized with

the estimate of the proposed estimator. To implement

the SDP, we use the CVX toolbox [35]. We have run

the algorithms for 500 realizations of the network and

computed the average running time in ms as shown in

Table II. It is observed that the proposed approach has a

reasonable complexity compared to other approaches.

V. SIMULATION RESULTS

A 20 m by 20 m area was considered for the sim-

ulation. Five reference nodes were placed at fixed po-

sitions (0, 0), (20, 0), (0, 20), (20, 20), and (10, 10), all

in meters. A target node is randomly placed inside the

area. In the simulations for every realization, the transmit

power, P0, and the path-loss exponent, β, are randomly

drawn from [−20,−15] dBm and from [2, 6], respec-

tively. To compare different approaches, we consider the

root-mean-square-error (RMSE). In the simulations, we

examine different scenarios.

A. Unknown transmit power

In this section, we compare the proposed method with

the corresponding CRLB computed in Appendix A, the

SDR, and the LLS (the least squares followed by a

correction technique [36], [37] ). For details of the SDR

and LLS, please see [17].

Fig. 1(a) shows the RMSE of the location estimate

for different approaches versus the variances of the

shadowing. As the figure shows, the proposed method

outperforms other approaches and is very close to the

CRLB. Fig. 1(b) illustrates the RMSE of the transmit

power estimation for different approaches. As can be ob-

served, both proposed approach and the LLS outperform

the SDR and are close to the CRLB.

In the next simulation, we study the robustness of the

algorithm against the perturbation in transmission power.

We model the transmit power as a Gaussian random

variable with mean P̄0 and standard deviation ξ, i.e.,

P0 ∼ N (P̄0, ξ
2). Then, the algorithm tries to jointly

estimate the mean power P̄0 and the location.

Fig. 2 illustrates the RMSE of the location and trans-

mission power P̄0 estimates for different values of stan-

dard deviation of perturbation. It is observed that the

perturbation in power transmission can be absorbed in

the showing terms, especially for low standard deviation

of perturbation, and the behavior of estimates remains

the same. It is observed when the variance of the
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TABLE I
COMPLEXITY OF DIFFERENT APPROACHES; KGN AND KGTR ARE RESPECTIVELY THE NUMBER OF ITERATIONS FOR THE GN AND THE

BISECTION APPROACHES TO CONVERGE. ǫ IS AN ACCURACY PARAMETER.

Method Cost

MLE O(KGNN3)
SDP O(KSDPN4 log(1/ǫ)), KSDP = O(N1/2)
LS O(34N)
Proposed technique O(36KGTR + 34N)

TABLE II
AVERAGE RUNNING TIME FOR DIFFERENT ALGORITHMS.

Method Time (ms)

MLE 14
SDP 64
LS 0.12
Proposed technique 1.4
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Fig. 1. The RMSE of different approaches for (a) the location estimate
and (b) the power estimate.

shadowing is small, the performance is mainly affected

by the perturbation noise.

B. Unknown path-loss exponent

In the next simulations, we assume that the transmit

power P0 is known and we estimate both the path-

loss exponent and the location of the target node. We

compare the proposed method with the corresponding

CRLB (derived in Appendix A).

Fig. 3(a) shows the CRLB and the RMSE of the

location estimation for the proposed technique. In this

simulation, we set β0 = 5, that is, δ = (β − 5)/5.

As can be seen, the proposed approach is close to the

CRLB. The gap between the CRLB and the proposed

method is mainly because of the approximations used

in different steps. Fig. 3(b) shows the RMSE of the

path-loss exponent estimation for the proposed method

and the corresponding CRLB. Although there is a gap

between the CRLB and the proposed method, the perfor-

mance of the proposed method seems to be acceptable.

To further improve the estimate, we have implemented

the MLE using lsqnonlin [34] initialized with the es-

timate given by the proposed algorithm. We have also

implemented the MLE initialized with true values of the

target location and path-loss exponent for comparison.

As it is observed from Fig. 3(b), the estimate can be

considerably improved. It is seen that there is a gap

between the MLE and the CRLB. The reason is that

the MLE asymptotically attains the CRLB. That is, for

low variances of noise or large number of measurements,

the MLE is optimal.

To study the effect of parameter β0, we first evaluate

the validity of the approximation used in (16). In Fig. 4,

we plot the cumulative distribution function (CDF) of

(P0−Pi)(1+ δ)δ ln 10/(5β0) for different values of β0.

As can be seen, the value of β0 considerably affects

the validity of the approximation. For instance, β0 = 5
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Fig. 2. The RMSE of the proposed approach for transmission power
modeled as a Gaussian random variable with mean P̄0 and standard
deviation ξ in dBm; (a) the location estimation and (b) the mean of
the power, P̄0, estimation.

seems a good choice in this scenario. In Fig. 5(a) and

Fig. 5(b), we plot the RMSE of the location and path-

loss exponent estimation versus β0 for different variances

σ2
dB. As it is seen, there is a critical value for β0 such

that the estimation errors for the location and the path-

loss exponent are minimized. This phenomena is clearly

seen in Fig. 5(b). Considering the definition of δ = (β−
β0)/β0, we see that both small and large values of β0

make δ be large. Therefore, the approximation in (16)

may not be valid.

In the next simulation, we compare the performance

of the proposed approach in this study with the one

proposed in [38]. Note that in [38], the authors assume

different path-loss exponents for every link and propose

an iterative approach to solve the problem. That is, they

first obtain an estimate of the location and then update

the path-loss exponent. In the simulation, we assume that

 

 

Variance, σ2
dB

R
M

S
E

[m
]

CRLB

MLE initialized with proposed estimator

MLE initialized with true values

Proposed method

1

1

2

2

3

3

4

4 5 6 7 8
0.5

1.5

2.5

3.5

(a)

 

 

Variance, σ2
dB

R
M

S
E

CRLB

MLE initialized with proposed estimator

MLE initialized with true values

Proposed method

1 2 3 4 5 6 7 8

0.05

0.1

0.15

0.2

0.25

0.3

(b)
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Fig. 5. The RMSE of the proposed approach for the (a) location
estimation, (b) path-loss exponent.

the path-loss is fixed for different links, resulting a single

unknown parameter in optimization problem in [38]. We

iterate the procedure suggested in [38] three times. Note

that it is needed to have a reasonable interval for the

path-loss and an initial estimate of the path-loss at the

beginning. We set both the initial value and β0 equal to

5. It is noted here that we have not chosen an optimal

value for β0 in the simulation.

Fig. 6 shows the RMSE of the location and path-

loss exponent estimates for different approaches when

the path-loss exponent is uniformly distributed over an

interval, noted in the title of figures. It is observed that

the proposed approach outperforms the method in [38],

especially for the location estimate. Note that as the

ambiguity about path-loss increases, i.e., a larger inter-

val, the performance of the proposed technique in [38]

considerably degrades, while the proposed technique in

this study is quite robust.

C. Unknown transmit power and path-loss exponent

In this section, we consider the previous network

except we add one more reference node at location

(10m, 20m). In this simulation, we set P̄0 = −17.5 dBm

and β0 = 5.2.

Fig. 7 shows the RMSE of the location estimate of the

first and the second steps and the corresponding CRLB

(derived in Appendix A). It is seen that the second step

improves the accuracy of the estimation compared to

the first step for medium to high variaces of shadowing.

In fact, for a low σ2
dB, the joint estimation works well

and the second step may deteriorate the accuracy of the

estimation. Then, for low σ2
dBs the first step is preferred

and for high σ2
dBs the two-step estimator is more efficient

than the first-step estimator. Similar to the previous

section, we have implemented the MLE using lsqnonlin

with the initial estimate from the second step of the

proposed estimator. As the figure shows the performance

is considerably improved, especially for when the noise

variances are low.

VI. CONCLUSIONS

In this paper, we have studied the localization problem

based on RSS measurements when the transmit power

or path-loss exponent is unknown. The maximum likeli-

hood estimator (MLE) is highly nonconvex and difficult

to solve. Using approximations, we have changed the

MLE objective function to an approximate MLE. We

have, then, formulated the problem as a general trust

region subproblem, which can be solved exactly under

mild conditions. To find the solution, we first need

to run a one-dimensional bisection search to find the

optimal Lagrange dual parameter, which in turn is used

to compute the location estimate using a closed-form

expression. Simulation results show that the proposed

methods outperform recently proposed techniques with

reasonable complexities. One open problem for future

studies is to mathematically obtain the optimal value of

the tuning parameter β0. Generalizing the RSS model in

which the path-loss or transmission power is different for

every link is also worth to investigate in future studies.
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APPENDIX A

CRAMÉR-RAO LOWER BOUND

In this section, we compute the CRLB for the location

estimate and unknown nuisance parameters (P0 or β).
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For the Gaussian distribution, the Fisher information

matrix can be computed as [24, Ch. 3]

Jnm = [J]nm =

[

∂µ

∂θn

]T

C−1

[

∂µ

∂θm

]

, n,m = 1, . . . , L,

(35)

where C = σ2
dBIN with IN as the N by N identity

matrix, µ = [µ1 . . . µN ]T with µi = P0 − 10β log di,

θ =
[

xT P0

]T
, θ =

[

xT β
]T

, or θ =
[

xT P0 β
]T

, and

the derivative ∂µi/∂θn is given as

∂µi

∂x1
= −10β

x1 − ai,1
ln 10 d2i

,

∂µi

∂x2
= −10β

x2 − ai,2
ln 10 d2i

,

∂µi

∂β
= −10 log10 di,

∂µi

∂P0
= 1, (36)
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where x = [x1 x2]
T , ai = [ai,1 ai,2]

T . The CRLB, then,

can be computed as

Var(θ̂i) ≥
[

J−1
]

i,i
. (37)
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