
FliPpr: A Prettier Invertible Printing System

Kazutaka Matsuda1 and Meng Wang2

1 The University of Tokyo
2 Chalmers University of Technology

Abstract. When implementing a programming language, we often write
a parser and a pretty-printer. However, manually writing both programs
is not only tedious but also error-prone; it may happen that a pretty-
printed result is not correctly parsed. In this paper, we propose FliPpr,
which is a program transformation system that uses program inversion
to produce a CFG parser from a pretty-printer. This novel approach
has the advantages of fine-grained control over pretty-printing, and easy
reuse of existing efficient pretty-printer and parser implementations.

1 Introduction

In this paper, we will discuss the implementation of a programming language,
say the following one

prog ::= rule1; . . . ; rulen

rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= x | C e1 . . . en | e1 ⊕ e2 | f e1 . . . en

which is a standard first-order functional language with data constructors C,
functions f and binary operators ⊕. Ignoring the semantics of the language for
the time being, we start with writing a parser and a pretty-printer to deal with
the syntax: the parser converts textual representations of programs into the AST,
and the pretty-printer converts the AST to nicely laid-out programs. Though
not often measured objectively, the prettiness of printing results is important:
a pretty-printer is central to the communication between a compiler and the
programmers, and the quality of it directly contributes to the productivity and
satisfaction of the users of the language.

Despite being developed separately, the parser and the pretty-printer are
always expected to be consistent to each other: very informally, parsing a pretty-
printed program should succeed, and produces the same AST that is pretty-
printed. It is common knowledge that consistency properties like this between a
pair of tightly-coupled programs are hard to produce and maintain; and perhaps
less widely known that they are difficult to be tested effectively too, due to the
complexity of AST data [5].

In this paper, we are going to discuss the implementation of a language,
which has a more elaborated version of the above-presented syntax. The lan-
guage can be used to program pretty-printers, and at the same time through

2 Kazutaka Matsuda and Meng Wang

program inversion techniques, obtain a consistent parser. We, as usual, manu-
ally implemented a parser and a pretty-printer for the language, but with the
hope that we, and many others who read this paper, will not need to do it again
for their own language implementations.

Prior to this work, there has been a rich body of literature on exploring
correctness-by-construction techniques to automatically generate one or both
programs of the printer/parser pair, notably [2, 4, 17] . We have intentionally
omitted the prefix “pretty-” from the mentioning of printers here because few of
the existing work is actually producing pretty-printers in the sense of Hughes [10]
and Wadler [22].1

To be more precise about what we mean by “prettiness”, let us consider a
subtraction language e ::= 1 | e1−e2 that has a constant (1) and a left-associative
binary operator (−). We represent the syntax with the following AST datatype.

data E = One | Sub E E

Using the language we propose in this paper, which is based on Wadler’s li-
brary [10], one can define a pretty-printer as below.

ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line <> text "-" <> text " " <> pprP e2))

-- The suffix P in pprP stands for parentheses.
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> group (ppr e1 <> nest 2 (line
<> text "-" <> text " " <> pprP e2)) <> text ")"

The pretty-printing library functions are shown in slant sans serif. Roughly speak-
ing, text s converts a string s to a layout, d1 <>d2 is an infix binary operator that
concatenates two layouts d1 and d2, which binds looser than prefix applications,
and line starts a new line, but its behavior can be affected by surrounding nest
and group applications: nest n d inserts n-spaces after each lines in d, and group d
smartly chooses between the layout d and other layouts derivable from d by se-
lectively interpreting lines as single spaces. (In this paper, we write “space” for
the space character and write “whitespace” for the space character and the new-
line character. Other kinds of spaces such as horizontal tabs are not discussed
as they do not yield new insight.)

The function ppr pretty-prints Sub (Sub One One) (Sub One One) as

1 - 1 - (1 - 1) or
1 - 1

- (1 - 1)
or

1 - 1

- (1

- 1)

depending on the screen width that is used to render the result. This fine-grained
control from users over bracketing, spacing and indentation is clearly beyond
any technique based on mechanical traversals of ASTs, which is likely to rigidly

1 The Syn system [2] is capable of handling non-contextual layouts, which can be seen
as a limited form of prettiness.

FliPpr: A Prettier Invertible Printing System 3

produce 1 - 1 - (1 - 1) (with arbitrary line-wrapping) or even (1 - 1) -

(1 - 1) as the only printing result.
Knowing that prettiness cannot be generated automatically, in this paper we

propose a novel approach: the programmer provides a carefully turned pretty-
printer (which is slightly annotated with some additional information for pars-
ing), and our system invert it to obtain a consistent parser. We claim the fol-
lowing benefits of our approach:

– Fine-Grained Control over Pretty-Printing. Our language based on
Wadler’s library [22] offers the possibility of refined control over different
aspects of pretty-printing: spacing can be tuned; redundant bracketing can
be eliminated through the passing of fixity and precedence information; in-
dentation can be designed by nesting lines; and wrapping of lines can be
performed smartly.

– Efficiency. FliPpr is efficient in the sense that we can reuse existing efficient
implementation of pretty-printers and parsers. For pretty-printing, we can
use Wadler’s library [22]. For parsing, we can use any parser generator that
supports full CFG.

The technique of program inversion used in FliPpr is not new; it is a direct
consequence of our previous work [15]. The novelty of this paper lies in the de-
sign of the pretty-printing system, which makes the program inversion possible.
Specifically, in this work:

– We propose an invertible pretty-printing technique based on grammar-based
inversion [15], by which we can obtain a consistent parser from a pretty-
printer.

– We give a surface language such that a pretty-printer written in it can be
converted to a linear and treeless form by deforestation [21] which is suitable
for inversion [15].

– We implemented our idea as a program transformation tool that generates
parsers in Haskell2.

2 Overview

Surface Language

?(Sect. 4)
Core Language

?(Sect. 3)

CFG with Actions

Core
System

Fig. 1. Architecture of FliPpr

In this section, we present an overview of our
technique using the subtraction language from
the introduction as the running example. Figure 1
shows the overall picture of FliPpr. A user of our
system programs a pretty-printer in a surface lan-
guage, which is translated to a core language that
can be inverted. The example pretty-printer for
the subtraction language is simple enough not to
require any advanced features that the surface

2 Available at http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

4 Kazutaka Matsuda and Meng Wang

language provides, and the translation from the surface language to the core
language is the identity operation in this case. Therefore, we focus on the core
system in this section and postpone the discussion of the surface language to
Sect. 4.

As a start, let’s revisit the pretty-printer ppr defined in the previous sec-
tion. If the function is inverted as it is, we can hope for no more than a parser
that only recognizes pretty strings. This is neither the fault of function ppr nor
of the inverter: a pretty-printer ppr (correctly) produces only pretty layouts,
and an inverter cannot invent information that is not already carried by the
function to be inverted. To remedy this information mismatch, we instrument
the pretty-printer with additional information about non-pretty but nevertheless
valid layouts.

2.1 Introducing Ugliness

Reinterpretation of line. A common source of prettiness is the clever interpre-
tation of lines either as a single space or a nicely indented new line depending
on the environment. This effect can be simply eliminated by reinterpreting line
as one or more whitespaces. Using this new interpretation in the derivation of
a parser enables us to parse certain non-pretty layouts. For example, now the
inverse of the pretty-printer can parse the following strings.

1 - 1 or
1

- 1

These strings do not satisfy our notion of prettiness defined by ppr, and will not
be produced by the pretty-printer, but will be accepted by the generated parser
through the reinterpretation of lines. Also note that this reinterpretation also
means that we can safely ignore group and nest during inversion, because their
sole purpose is to affect the behavior of lines.

Still, this solution alone is not enough. Strings like 1 - 1 and (1)- ((1))

remain unparsable: the pretty-printer has dictated that there is only a single
space between the operator and the second operand by using text " " instead of
line, and that there shouldn’t be redundant parentheses. We need to find a way
to alter these behaviors in parsing without losing pretty-printing.

Biased Choice. To annotate pretty-printers with information about non-pretty
layouts, we introduce the choice operator <+. In pretty-printing the operator
behaves as e1 <+ e2 = e1, ignoring the non-pretty alternative e2; in parser deriva-
tion the operator is interpreted as a nondeterministic choice, which accepts both
branches. The operator <+ binds looser than <> and has the following algebraic
properties.

Associativity e1 <+ (e2 <+ e3) = (e1 <+ e2) <+ e3
Distributivity-L (e1 <+ e2) <> e3 = e1 <> e3 <+ e2 <> e3
Distributivity-R e1 <> (e2 <+ e2) = e1 <> e2 <+ e1 <> e3

For example, one can define variants of (white)spaces with the choice operator
as follows.

nil = text "" <+ space -- (zero-or-more whitespaces in parsing)
space = (text " " <+ text "\n") <> nil -- (one-or-more whitespaces in parsing)

FliPpr: A Prettier Invertible Printing System 5

Here, nil and space pretty-print "" and " " respectively, but represent zero-or-
more and one-or-more whitespaces in parsing. We can now refactor our pretty-
printer ppr with the aim of obtaining more robust parsers.

ppr x = ppr x <+ text "(" <> nil <> ppr x <> nil <> text ")"
ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line ′ <> text "-" <> space ′ <> pprP e2))

pprP x = pprP x <+ text "(" <> nil <> pprP x <> nil <> text ")"
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> nil <> group (ppr e1 <> nest 2 (line ′

<> text "-" <> space ′ <> pprP e2)) <> nil <> text ")"

space ′ = space <+ text "" -- (zero-or-more whitespaces in parsing)
line ′ = line <+ text "" -- (zero-or-more whitespaces in parsing)

Note that we have separated the original definitions of ppr and pprP into two
parts: the top level definitions introduce annotations for optional parentheses,
and the actual pretty-printing is handled by worker functions that are sub-
scripted. Optional whitespaces are also introduced by replacing text " " and
line with space ′ and line ′ respectively in the definitions.

This refactoring is semantic preserving with respect to pretty-printing, and at
the same time brings in necessary information for robust parsing. For example,
we can now expect the inverse program to parse strings like 1 - 1, (1)-

((1)), and (1 - (1)) correctly.3

2.2 Construction of CFG with Actions

So far, we have discussed how a user can provide a refactored pretty-printer that
behaves like the original, but with additional information for non-pretty strings
embedded. Our system FliPpr further transforms the program by removing the
layouting and replacing <+ with a nondeterministic choice ? to create an ugly-
printer solely for inversion.

ppr x = ppr x ? "(" ++ nil ++ ppr x++ nil ++ ")"

ppr One = "1"

ppr (Sub e1 e2) = ppr e1 ++ line ′ ++ "-" ++ space ′ ++ pprP e2
. . .

We postpone a detailed discussion of the transformation to Sect. 3. For now, it
is sufficient to know that the above program nondeterministically produces a
string that is valid for parsing, but not necessarily pretty.

Then, using our previous work on grammar-based inversion [15], the program
can be inverted to construct the following grammar with actions (simplified for

3 To also make strings like " 1-1" parsable, we can add a declaration f x = nil <>
ppr x <>nil . However this addition does not post any new insight, and is omitted for
simplicity.

6 Kazutaka Matsuda and Meng Wang

prog ::= rule1; . . . ; rulen

rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= text "string" | e1 <> e2 | line | nest n e | group e (Wadler’s Combinators)

| e1 <+ e2 (Biased Choice)
| f x1 . . . xn (Treeless Call)

Fig. 2. Syntax of the core language: f ranges over function, C ranges over constructors,
x and xis range over variables and n range over natural numbers.

presentation).

Ppr → Ppr {$1}
| "(" Nil Ppr Nil ")" {$3}

Ppr → 1 {One}
| Ppr Line ′ "-" Space ′ PprP {Sub $1 $5}

. . .

The correctness of the parser construction comes from our previous work [15].
Since FliPpr produces a CFG with actions, users have the choice of using any
parser generator that supports full CFG. In our implementation, we use Frost
et al. [8]’s top-down parser.

3 Core Language and Parser Construction

In this section, we give the formal definition of the core language of FliPpr, and
discuss parser construction by program inversion.

3.1 Syntax and Semantics

Figure 2 shows the syntax of our core language, a first-order functional language
similar to one found in the introduction. We include Wadler’s pretty-printing
combinators [22] and the biased choice as primitive operators, and place two
restrictions for later inversion:

– Function calls must be treeless [21]: they take only variables as arguments.
– Variable use must be linear : every bound variable in a rule is used exactly

once on the right-hand side. A notable exception is with <+. For e1 <+ e2, the
two branches are supposed to be both linear. Thus, they contain the same
set of free variables. For example, assuming f is linear, then g x = f x <+f x
is linear, but h x = line <+ f x and k x = line <+ text "s" are not.

For simplicity, we often omit the rule separator “;” if no confusion would arise.
We use vector notation x̃ for a sequence x1, . . . , xn. We abuse the notation to
write f x̃ for f x1 . . . xn.

The formal pretty-printing semantics of the language is shown in Fig. 3. We
write Γ ` e ⇓ v if under environment Γ , expression e evaluates to value v. Values

FliPpr: A Prettier Invertible Printing System 7

∃(f p̃ = e). p̃Γ ′ = x̃Γ Γ ′ ` e ⇓ v
Γ ` f x̃ ⇓ v

Γ ` e1 ⇓ v1
Γ ` e1 <+ e2 ⇓ v1

Γ ` text "s" ⇓ text "s"

{Γ ` ei ⇓ vi}i=1,2

Γ ` e1 <> e2 ⇓ v1 <> v2 Γ ` line ⇓ line

Γ ` e ⇓ v
Γ ` nest n e ⇓ nest n v

Γ ` e ⇓ v
Γ ` group e ⇓ group v

Fig. 3. The call-by-value pretty-printing semantics of the language.

∃(f p̃ = e). p̃Γ ′ = x̃Γ Γ ′ ` e ⇓ND s

Γ ` f x̃ ⇓ND s

Γ ` ei ⇓ND si

Γ ` e1 <+ e2 ⇓ND si
i = 1, 2

Γ ` text "s" ⇓ND "s"

{Γ ` ei ⇓ND si}i=1,2

Γ ` e1 <> e2 ⇓ND s1 ++ s2

s ∈
⋃

1≤i Si

Γ ` line ⇓ND s

Γ ` e ⇓ND s

Γ ` nest n e ⇓ND s

Γ ` e ⇓ND s

Γ ` group e ⇓ND s

Fig. 4. Nondeterministic printing semantics of the language.

are closed expressions that only consist of Wadler’s combinators (i.e., we don’t
evaluate Wadler’s combinators). The environment Γ is a mapping from variables
to terms (i.e., expressions or patterns). We write tΓ for the term obtained from t
by replacing free variables x in t with Γ (x). Pattern matching is nondeterministic
in this semantics.

We do not define formally the semantics of Wadler’s combinators, as our
discussion in this paper is not dependent on it. However, we define the reinter-
pretation of the combinators and the biased choice <+ for parser generation, firstly
mentioned in Sect. 2, where lines are seen as one-or-more whitespaces and <+ as a
true nondeterministic choice. As shown in Fig. 4, the reinterpretation is defined
similarly to the pretty-printing semantics; the main difference is that it returns
a string nondeterministically, pretty or not. We write Γ ` e ⇓ND s if, under the
environment Γ , e nondeterministically evaluates to a string s. Here, Si is the set
of i-long consecutive whitespaces, inductively defined by: S1 = {" ", "\n"} and
Sn+1 = {s1 ++ s2 | s1 ∈ S1, s2 ∈ Sn}, and ++ is the concatenation of two strings.
The possible evaluation results of the nondeterministic semantics, which covers
both pretty and non-pretty strings, is a super set of what Wadler’s combinators
may produce if evaluated in the original semantics. Thanks to treelessness and
linearity, the sets of strings defined by Le = {s | Γ ` e ⇓ND s} for expressions e
are exactly those that are expressible by CFGs. This fact enables us to use CFG-
parsers for inverses, which will be shown in the rest of this section. Also note
that due to linearity, call-by-value and call-by-name coincide for the language,
even with nondeterminism (assuming that Wadler’s combinators and string op-
erations are strict). This is handy later when we require a call-by-value semantics
for program inversion [15], and a call-by-name semantics for fusion [21] in the
surface language (Sect. 4).

8 Kazutaka Matsuda and Meng Wang

3.2 Parser Construction by Inversion

To invert programs written in the core language, we firstly perform a semantic-
preserving transformation to remove the pretty-printing combinators, and obtain
a syntax that is recognizable by our grammar-based inversion system [15].

Converting to Nondeterministic Programs This step is done by “forgetting
smart layouting mechanism”, through the following rewriting rules.

text "s" −→ "s"

nest n e −→ e
group e −→ e
line −→ space

e1 <> e2 −→ e1 ++ e2
e1 <+ e2 −→ e1 ? e2

Here, space is a rewritten version (according to the rules above) of its definition
in Sect. 2, i.e. the function defined by

space = (" " ? "\n") ++ nil nil = "" ? space

and the operator ? is a nondeterministic choice.
The formal semantics of the obtained nondeterministic programs is defined

straightforwardly by adding the following rules.

Γ ` "s" ⇓ "s"
Γ ` ei ⇓ v

Γ ` e1 ? e2 ⇓ v
i = 1, 2

{Γ ` ei ⇓ vi}i=1,2

Γ ` e1 ++ e2 ⇓ v1 ++ v2

Their behaviors of "s", ? and ++ are the same as the reinterpretations of text "s",
<+ and <>, respectively; we use different symbols to clarify that the conversion
discards the pretty-printing semantics. Note that, since the language is linear
and treeless, the call-time choice and the run-time choice [19] do not differ.

We write f and e as the rewritten version of f and e. The following lemma
states that the rewriting is semantic preserving.

Lemma 1 (Semantic Preservation). Γ ` e ⇓ND s iff Γ ` e ⇓ s. ut

Grammar-Based Inversion The rewritten programs can be processed to ob-
tain a grammar with actions4 that computes the inverse of the rewritten program
by using grammar-based inversion [15]. The basic idea of the inversion is to read
a rule of a program as a production rule of a grammar, and to use semantic
actions to track how variables (i.e., inputs) are passed.

In the inversion, we construct two sorts of non-terminals: Ff for functions
f and Ee for expressions e. For a function f that takes t1, . . . , tn and returns
s, Ff is used to parse string s, and the semantic action returns original inputs
(t1, . . . , tn). For an expression e such that Γ ` e ⇓ s, Ee is used to parse string s,
and the semantic action returns the original environment Γ . The generation of
the production rules and semantics actions are presented in Fig. 5. The grammar
in Sect. 2 is a simplified version of the grammar obtained by this generation.

4 In the original paper [15], transformations on parse trees (or more precisely, deriva-
tion trees of productions) are used, instead of semantic actions.

FliPpr: A Prettier Invertible Printing System 9

Rules of Ff

For function f , we generate:

Ff → Ee1 {let Γ = $1 in (p̃1)Γ}
. . .
| Een {let Γ = $1 in (p̃n)Γ}

if f has rules f p̃ = e1; . . . ; f p̃n = en.

Rules of Ee

For expression e, we generate:

Ee → Ff

{
let (t1, . . . , tn) = $1
in {x1 7→ t1, . . . , xn 7→ tn}

}
if e = f x1 . . . xn

Ee → Ee1Ee2 {$1] $2} if e = e1 ++ e2

Ee → "s" {∅} if e = "s"

Ee → Ee1 {$1}
| Ee2 {$1} if e = e = e1 ? e2

Here,] merges two environments assuming that their domains are disjoint. Note
that this disjoint property is guaranteed by linearity.

Fig. 5. Construction of CFG with actions.

We write JNKP(s) for the set of results returned by the semantics actions,
when s is parsed with start symbol N (the subscript P means “parse”). The
following lemma holds.

Lemma 2 (Correctness of Inversion).

– Γ ` e ⇓ s and dom(Γ) = fv(e) iff Γ ∈ JEeKP(s),
– {x1 7→ t1, . . . , xn 7→ tn} ` f x1 . . . xn ⇓ s iff (t1, . . . , tn) ∈ JFf KP(s).

Proof. Follows from [15]. ut

Let ppr be a single-argument function defined in the core language, and parse
be a function defined by parse s = JFppr KP(s). Then, the following theorem is a
special case of the above lemma.

Theorem 1. {x 7→ t} ` ppr x ⇓ND s iff t ∈ parse s. ut

The set parse s contains at most one element if ppr is injective. Note that
the inversion can produce arbitrary CFGs, and therefore FliPpr requires parser
generators that support full CFGs.

4 Surface Language: Making it More Flexible

The core language is restricted to be linear and treeless, which is expressive
enough for CFG parsing, but may be cumbersome to program in at times. In this
section, we present a surface language that has a relaxed form of the restrictions,
and through fusion techniques (specifically deforestation [21] or supercompila-
tion [20]), programs written in the surface language are transformed to treeless
and linear programs in the core language.

10 Kazutaka Matsuda and Meng Wang

4.1 Problems with Programming in the Core Language

Let us consider extending the subtraction language with division and variables.

data E = · · · | Div E E | Var String

Recall that we used two mutually recursive functions ppr and pprP to control
bracketing issues around “-”. In general, when there are many operators with
different precedence levels, it suffices to use a function for each precedence level.
For example, assuming “-” has precedence-level 6 and “/” has precedence-level
7 as they do in Haskell, a pretty-printer can be written as follows.

ppr x = ppr5 x -- 5 is the lowest precedence level
. . .
ppr 5 (Sub x y) = . . . ppr6 x . . . text "-" . . . ppr7 y . . . -- (1)
ppr 5 (Div x y) = . . . ppr5 x . . . text "/" . . . ppr6 y . . . -- (2)
. . .
ppr 6 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 6 (Div x y) = . . . {- the RHS of (2) -} . . .
. . .
ppr 7 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 7 (Div x y) = text "(" <> nil <> . . . {- the RHS of (2) -} . . . <> nil <> text ")"

There are a lot of undesirable repetitions in the above definition largely due to
the treeless restriction.

Another problem that it is non-trivial to separate variable names with pre-
defined names. For example, let us consider pretty-printing for Var x. One may
be tempted to write ppr (Var x) = text x but a parser derived from the above
will parse “-” as Var "-", because there is no information in the above definition
that specifies valid variable names. We can improve the pretty-printer as follows.

ppr (Var x) = f x
f (’a’ : x) = text "a" <> g x

. . .
f (’z’ : x) = text "z" <> g x

g [] = text ""
g (’a’ : x) = text "a" <> g x

. . .
g (’z’ : x) = text "z" <> g x

Note that strings are represented as lists of characters as in Haskell. This function
ppr is partial and intentionally undefined for Var "-". In this definition, we have
successfully restricted variable names to range over lower-case English alphabets,
but in a very cumbersome way.

4.2 An Overview

To reduce the programming effort, we propose a surface language, which has
relaxed linearity and treelessness restrictions, and is equipped with a shorthand
notation for expressing name ranges. In this language, a pretty-printer for the

FliPpr: A Prettier Invertible Printing System 11

prog ::= rule1 . . . rulen

rule ::= f p1 . . . pn = e
e ::= text "s" | e1 <> e2 | line | nest n e | group e | e1 <+ e2 (Combinators)

| text (x as r) (Annotated Text)
| x (Variable)
| f e1 . . . en (Call)
| if pred e1 . . . en then et else ef (Static Branching)
| c (Constant)

c ::= . . . any constants . . .
r ::= . . . regular expression . . .

Fig. 6. Syntax of the surface language: pred are Boolean predicates.

extended subtraction language can be written as follows.

ppr x = go 5 x
go i x = manyPars (go i x)
go i One = text "1"
go i (Var x) = text (x as [a-z]+)
go i (Sub x y) =

parIf (i ≥ 6) (group (go 5 e1 <> nest 2 (line ′ <> text "-" <> space ′ <> go 6 e2)))
go i (Div x y) =

parIf (i ≥ 7) (group (go 6 e1 <> nest 2 (line ′ <> text "/" <> space ′ <> go 7 e2)))

Here, manyPars and parIf are defined as:

parIf b d = if b then par d else d
manyPars d = d <+ par (manyPars d)
par d = text "(" <> nil <> d <> nil <> text ")"

This program differs from the one in the core language in the following ways:

1. The auxiliary functions manyPars, parIf and par are used and applied to
non-variable arguments, which enable users to avoid duplicating frequently-
occurring patterns such as text "(" <> nil <> . . . <> nil <> text ")".

2. Instead of embedding precedence-levels into function names, we pass them
as arguments and inspect them by if and ≤ for bracketing. (These were
previously impossible due to the linearity and treelessness restrictions.)

3. A new construct text (x as r) is used to avoid explicit recursion on strings.

Item 3 of the above is rather easy to deal with. For Item 1, we borrow the
idea of program fusion [14,20,21] to make sure that these auxiliary functions are
fused away. For Item 2, we use partial evaluation to erase statically-computable
arguments such as precedence-levels. The statically-computable arguments are
separated from the rest through types.

4.3 Surface Language

Figure 6 shows the syntax of the surface language. The treeless restriction is
replaced by a relaxed one that will be discussed towards the end of this subsec-
tion. The language has constants as expressions, such as the precedence levels of

12 Kazutaka Matsuda and Meng Wang

Θ,Γ,∆ ` e : τ

Θ, Γ, {x : τ} ` x : τ Θ, Γ, ∅ ` x : Γ (x) Θ,Γ, ∅ ` c : St

Θ,Γ,∆ ` e : Doc

Θ,Γ,∆ ` nest n e : Doc

{Θ,Γ,∆i ` ei : Doc}1≤i≤n op= text "s", group, (<>), line

Θ,Γ,
⊎

1≤i≤n∆i ` op e1 . . . en : Doc

{Θ,Γ,∆ ` ei : Doc}i=1,2

Θ,Γ,∆ ` e1 <+ e2 : Doc Θ,Γ, {x : AST} ` text (x as r) : Doc

{Θ,Γ, ∅ ` ei : St}1≤i≤n {Θ,Γ,∆ ` eb : τ}b=t,f

Θ,Γ,∆ ` if pred e1 . . . en then et else ef : τ

{Θ,Γ,∆i ` ei : τi}1≤i≤n Θ(f) = τ1 → · · · → τn → Doc

Θ,Γ,
⊎

1≤i≤n∆i ` f e1 . . . en : Doc

Θ ` f p1 . . . pn = e

Θ(f) = τ1 → · · · → τn → Doc
∃Γ,∆1, . . . ,∆n {Γ,∆i ` pi : τi}1≤i≤n dom(Γ) ⊆

⊎
1≤i≤n fv(pi)

Θ,Γ,
⊎

1≤i≤n∆i ` e : Doc

Θ ` f p1 . . . pn = e

Γ,∆ ` p : τ

Γ (x) = St

Γ, ∅ ` x : St

τ ∈ {AST,Doc}
Γ, {x : τ} ` x : τ

{Γ,∆i ` pi : τ}1≤i≤n τ ∈ {AST, St}
Γ,
⊎

1≤i≤n∆i ` C p1 . . . pn : τ

Fig. 7. Typing rules: here] represents disjoint union.

operations found in the previous subsection. Used as arguments, such constants
can be eliminated at compilation time through partial evaluation; we call such
constants static information. The if branchings inspect static information, and
are eliminable statically as well.

We use a type system to distinguish static information (of type St) from
other kinds of values such as the input ASTs (of type AST) and the pretty-
printing results (of type Doc). The type system ensures that static information
are eliminable through partial-evaluation, and variable uses are linear. Formally,
primitive types τ and function types σ are defined by:

τ ::= AST | St | Doc σ ::= τ1 → · · · → τn → τ

Typing judgment Θ,Γ,∆ ` e : τ reads that under function-type environment
Θ, non-linear type environment Γ and linear type environment ∆, e has type
τ . Similarly, we define Γ,∆ ` p : τ and Θ ` f p1 . . . pn = e for patterns and
declarations. Figure 7 shows the typing rules, which are mostly self-explanatory.
Notably, the uses of variables of type AST and Doc have to be linear, as dictated
by the rules. The linearity restriction of AST variables is inherited from the core
language, while that of Doc variables is required for the correctness of fusion; it is
known that the deforestation is not correct for non-linear and non-deterministic
programs [1]. A program is assumed to have a distinguished entry point function

FliPpr: A Prettier Invertible Printing System 13

of type AST → Doc. The type Doc is treated as a black box in the language;
nothing except Wadler’s combinators can handle Doc data. Only variables can
have type AST.

Treeless Restriction We replace the universal treeless restriction of the core
language to a typed one: only arguments of type AST or Doc are restricted to
be variables. Moreover, we view programs in the surface language as multi-tier
systems [14]: every function is associated to a natural number called tier, and
every function call occurring in the body of a tier-i function must be to a tier-j
(≤ i) function. Tiers of functions are easily inferred by topologically sorting of
the call-graph. A program is called tiered-treeless if for every call of a tier-k
function f occurring in the body of a tier-k function, the arguments (of type
AST or Doc) passed to the call must be variables. The pretty-printer defined in
Sect. 4.2 is tiered-treeless: functions ppr , go and go belong to tier 3, function
manyPars belongs to tier 2, and other functions belong to tier 1.

We omit a formal semantics of the surface language, as it is a straightforward
extension of the core language. Similar to the case of the core language, the
evaluation results of the call-by-value and the call-by-name semantics coincide
in the surface language due to linearity.

4.4 Conversion to the Core Language

The surface language is elaborated to the core language through a number of
program transformations: (1) desugaring expressions of the form text (x as r),
(2) partial-evaluating static information, (3) fusing higher-tier functions. Steps
(1) and (2) above are straightforward adaptation of existing technologies, while
step (3) is new and uses a property specific to our surface language. In what
follows, we discuss the steps one by one.

Desugaring text (x as r) We firstly convert r to a deterministic automaton.
Then, we replace text (x as r) with fq0 x where q0 is an initial state of the
automaton, and, for each state q, a function fq is defined as follows: function fq
has a rule fq (’a’ : x) = fq′ x if the automaton has a transition rule (q, a, q′), and
has a rule fq [] = text "" if q is a final state of the automaton. For the example
in Sect. 4.2, the regular expression [a-z]+ can be expressed in a deterministic
automaton with two states, and the functions f and g correspond to the two
states.

Partial-Evaluating St-Expressions A role of our type system is to perform
binding-time analysis; the expressions of type St can be statically evaluated,
assuming that predicate applications are terminating. Thus, a standard partial
evaluation suffices to eliminate all the St-expressions and thus we omit the de-
tails. For the example in Sect. 4.2, we obtain the partially evaluated functions

14 Kazutaka Matsuda and Meng Wang

as below.
ppr x = go5 x
. . .
go 5 (Sub x y) = . . . go5 x . . . go6 y . . .
go 5 (Div x y) = . . . go6 x . . . go7 y . . .
. . .
go 6 (Sub x y) = . . . go5 x . . . go6 y . . .
go 6 (Div x y) = par (. . . go6 x . . . go7 y . . .)
. . .
go 7 (Sub x y) = par (. . . go5 x . . . go6 y . . .)
go 7 (Div x y) = par (. . . go6 x . . . go7 y . . .)

Roughly speaking, thanks to the type AST → Doc of the entry point function,
the type system guarantees that every St-type expression must be a constant
itself or a part of some constant obtained by pattern-matching, and thus can
eliminated by partial-evaluation.

Fusing Functions to Obtain 1-tier Programs We show the transforma-
tion of 2-tiered programs to 1-tiered programs, with the understanding that the
procedure can be applied iteratively to transform m-tiered programs to 1-tiered
programs.

The transformation is done by deforestation [21]. Roughly speaking, defor-
estation (or, supercompilation [20]5) performs call-by-name evaluation of expres-
sions; but instead of computing a value, it produces a new expression that has
the same behavior as the original one but with intermediate data structures elim-
inated. Without loss of generality, we assume that AST arguments appear before
Doc arguments in function calls. The deforestation procedure DJeK is defined as
follows.

– DJop e1 . . . enK = op DJe1K . . . DJenK, where op ranges over text "s", (<>),
line, nest i, group and (<+).

– DJf x̃ ẽK = fẽ x̃ z̃. Assuming x̃ have type AST (recall that only variables
have type AST), ẽ have type Doc, and {z̃} are the free variables in ẽ, the
newly generated function fẽ is defined as fẽ p̃ z̃ = DJe[ỹ 7→ ẽ]K for each
corresponding rule f p̃ ỹ = e in the definition of f (with proper α-renaming).
Here, we do not repeatedly generate rules of fẽ if they are already generated
(up to renaming of the free variables in ẽ).

The above procedure follows from the original one [21], and is simplified to
suit the restricted surface language. The procedure terminates if the number of
functions fẽ generated in the latter case is finite. By using DJeK, we replace every
tier-2 rule f p̃ ỹ = e with f p̃ ỹ = DJeK.

Example 1. We deforest the pretty-printer defined in Sect. 4.2.

5 Because of the linearity, Wadler’s deforestation [21] and (positive) supercompila-
tion [20] coincide for the surface language.

FliPpr: A Prettier Invertible Printing System 15

The tier-2 function manyPars is transformed into the following.

manyPars d = d <+ parmanyPars d d
parmanyPars d d = text "(" <> nil <>manyPars d <> nil <> text ")"

And iteratively, we can now apply the procedure to the function go5 (reproduced
below), which is in tier-2 after the above transformation.

go5 x = manyPars (go 5 x)

After renaming parmanyPars d to parMP , we obtain the following tier-1 functions

go5 x = manyParsgo 5 x x

manyParsgo 5 x x = go 5 x <+ parMPgo 5 x x

parMPgo 5 x x = text "(" <> nil <> go 5 x <> nil <> text ")"

assuming calls go5 x are transformed too. This behavior is similar to inlining
except that the deforestation handles recursive functions such as manyPars. ut

Theorem 2 (Termination). For tier-2 expression e, DJeK terminates.

Proof (Sketch). All expressions ẽ in DJf x̃ ẽK must be tier-2 expressions in the
original program or just variables, which implies the finiteness of the number of
functions fẽ generated in the deforestation process. ut

Theorem 3. The resulting tier-1 program is treeless and linear. ut

The correctness of the deforestation is known for call-by-name languages [18].
Note again that call-by-value and call-by-name coincide in our surface language.

In the deforestation process, we treat Wadler’s combinators as constructors
because Doc-values are black boxes. This is key to termination; if we allow
pattern-matching on Doc-values, then we can make a tiered-treeless program for
which deforestation runs infinitely. As a result, Theorem 2 can be generalized and
DJeK terminates for tier-n expression e. Also, since deforestation (supercompila-
tion) is a sort of partial-evaluation, the steps (2) and (3) of the transformation
can be performed at once. We omit a formal discussion on this for space reason.

5 An Involved Example

In the introduction, we advertised that “we, and many others who read this
paper, will not need to do it [writing both parser and pretty-printer] for their
own language implementations.”. In this section, we demonstrate the feasibility
of this goal by writing a pretty-printer for the core language in the surface
language, which, if fed to FliPpr, will generate a parser for the core language.

The ASTs of the core language can be expressed by the following datatype.

type Prog = [Rule]
data Rule = Rule String [Pat] Exp
data Exp = ECon String [Exp] | EOp Op Exp Exp | EVar String [Exp]
data Pat = PVar String | PCon String [Pat]
data Op = OCat | OAlt -- <> and <+

16 Kazutaka Matsuda and Meng Wang

We leave out nest and text "s" for simplicity. In the datatype, we use EVar both
for variables and function calls to avoid ambiguity in grammars.

The overall principle of our pretty-printing is to insert breaks after =, and
before <> and <+, with 2-space indentation. We start with lists of rules, and insert
separators with optional whitespaces nil <> text ";" <> line ′ between individual
rules.

ppr x = pprRules x

pprRules [] = nil
pprRules (r : rs) = nil <> pRules r rs <> nil

pRules r′ [] = pprRule r′

pRules r′ (r : rs) = pprRule r′ <> nil <> text ";" <> line ′ <> pRules r rs

For each rule, its right-hand side may start a new line.

pprRule (Rule f ps e) =
group (var f <> space <> pprPats ps <> space ′ <> text "=" <> nest 4 (line ′ <> pprExp e))

var x = text (x as [a-z][a-zA-Z0-9]*’*)

A list of patterns is treated in a similar way to a list of rules.

pprPats [] = text ""
pprPats (p : ps) = pPats p ps

pPats p′ [] = pprPat p′

pPats p′ (p : ps) = pprPat p′ <> space <> pPats p ps

Redundant parentheses in patterns are admissible to the generated parser,
but will not be produced by the pretty-printer.

pprPat p = manyPars (pprPat p)
pprPat (PVar x) = var x
pprPat (PCon c []) = con c
pprPat (PCon c (p : ps)) = par (con c <> space <> pPats p ps)

con f = text (x as [A-Z][a-zA-Z0-9]*’*)

Expressions are printed according to the precedence-levels and associativities
of the operators.

pprExp e = go 4 e

go i e = manyPars (go i e)
go i (ECon c []) = con c
go i (ECon c (e : es)) = parIf (i ≥ 9) (con c <> space <> pExps e es)
go i (EOp OAlt e1 e2) =

parIf (i ≥ 5) (group (go 5 e1 <> nest 2 (line ′ <> text "<+" <> space ′ <> go 4 e2)))
go i (EOp OCat e1 e2) =

parIf (i ≥ 6) (group (go 6 e1 <> nest 2 (line ′ <> text "<>" <> space ′ <> go 5 e2)))
go i (EVar f []) = var f
go i (EVar f (e : es)) = parIf (i ≥ 9) (var f <> space <> pExps e es)

Finally, a list of expressions printed in a similar way to a list of patterns.

pExps e′ [] = go 9 e′

pExps e′ (e : es) = go 9 e′ <> space <> pExps e es

FliPpr: A Prettier Invertible Printing System 17

6 Discussion

We discuss limitations and extensions of FliPpr.

Non-Structured Values in AST ASTs may contain non-structured values such
as Int. It is easy to extend the core system to handle the issue. For example,
our implementation supports the syntax text (f x as r) where f is a bijection
between a non-structured value and a string representation of it. The bijections
can be read bidirectionally for either pretty-printing and parsing.

Higher-Order Functions Higher-order functions, such as map, foldr and foldr1

are useful in writing pretty-printers. For example, pprRules and pprPats in
Sect. 5 can be more conveniently implemented by map and foldr1. However,
general use of higher-order functions in pretty-printing may produce grammars
that go beyond CFG. The linearity restriction is also affected, most of the higher-
order functions use the functional arguments more than once on the right-hand
sides.

In line with the spirit of the surface language, a way forward is to use higher-
order functions only when they can be fused away. A sufficient condition for
fusion is the absence of λ-abstractions and partial-applications. In other words,
functions must be treeless in the sense that intermediate function values are
prohibited, and all the higher-order values must be variables (function names).
We leave this extension as future work.

Spacing We have demonstrated that careful use of whitespaces in the definition of
the pretty-printer is an effectively way to control the behavior of the generated
parser. For example, for pretty-printing constructor application in Sect. 5, we
wrote (con c <> space <> pExps e es); the use of space (representing one-or-more
whitespaces) allows us to parse “S Z” or “S Z” as valid strings. However, it
is difficult to express the use of spaces that are dynamically dependent on the
printing results of adjacent expressions, especially with nondeterminism. In the
above example, if we were to know that the argument of the application is printed
in parentheses as “(Z)”, then in some syntax the space between the constructor
and the argument can be omitted as in “S(Z)”. On the other hand, we cannot
simply replace space with space ′, because we don’t want to accept “SZ” as a
valid constructor application. One possible solution to the problem is to try to
extend the generate parsers with a lexing phase. But it may require some major
surgery to the current system.

Non-Linearity In the literature of tree transducers [9], the discussion of linearity
can be separated into input- and output-linearity. In our case, variables of type
AST can be seen as inputs, and those of type Doc can be seen as outputs.

For AST variables, sometimes we want to pretty-print the same AST twice;
for example, an element e in XML is printed as <e>...</e>. A naive solution to
admit this behavior is to check the equivalence of values of duplicated variables
in semantic actions. More concretely, we relax] to allow overlapping domains

18 Kazutaka Matsuda and Meng Wang

in the operands, and define {x 7→ v}] {x 7→ v} = {x 7→ v}. This naive solution
works effectively for XML, because the number of possible ASTs is usually finite.
However, in general parsing becomes undecidable with non-linear use of AST
variables, as shown in [13] (Theorem 4.4). Thus, for this kind of non-linear uses,
a method that checks the finiteness of parse trees is required.

The non-linearity of Doc values has non-trivial interaction with nondetermin-
ism. In the absence of linearity, the call-by-value and the call-by-name seman-
tics may cease to coincide. This is a problem because call-by-value is suitable for
grammar-based inversion [15], but call-by-name is suitable for deforestation [18].
We also need to resort to grammars beyond CFGs, which may pose difficulties
in inversion. It is a challenging problem to find a sweet spot between obtaining
efficient inverses and supporting fusion in the surface language.

7 Related Work

Different approaches have been proposed to simultaneously derive a parser and a
printer from some intermediate descriptions. In particularly, one could start from
an annotated CFG specification to derive both a parser and a pretty-printer [2].
Compared to these systems, FliPpr offers finer control over pretty-printing. In
particular, we are able to deal with contextual information and to define auxiliary
functions like par in printing, which is made conveniently available by the surface
language. Other approaches include invertible syntax descriptions [17] based on
invertible programming, and BNFC-meta [4] based on meta programming. Both
work recognizes the importance of good printing, but is not able to support
pretty-printing.

There are also general-purpose bidirectional languages [3, 6, 11] that in the-
ory can be used to build the printer/parser pair from the definition of one of
them. Notably quotient lenses [7] are designed to include a representative of a
quotient before performing bidirectional conversions; in our case, roughly speak-
ing this quotient operation is the erasure of redundant whitespaces and paren-
theses. However, there is a gap between the theoretical possibility and practi-
cally execution. In particular, the pretty-printing libraries of Wadler [22] and
Hughes [10] are not only user-friendly but also highly optimized. Moreover, for
efficient parsing we have to perform whole-program analysis (as in conventional
parsing algorithms like LR-k) or use sophisticated data structures and memo-
ization [8,16]. It is not obvious how these sophisticated implementations can be
packed into a bidirectional program. In our approach, we avoid this problem by
using grammar-based inversion [15], which generates grammars and outsources
the parsing algorithms to selected parser generators.

There are a lot of discussions on how to make deforestation (supercompila-
tion) terminate (e.g., [12]) for Turing-complete languages. These approaches use
conditions to give up fusion, and reuse the already-generated deforested func-
tions. As a result, these approaches may fail to fuse some functions, and thus
are not suitable for our purpose. The completeness of deforestation, in the sense
whether all the nested calls are fused away, has not been the focus of study in

FliPpr: A Prettier Invertible Printing System 19

the literature. Notable exceptions are Wadler’s original work [21] and tree trans-
ducer fusion [1, 9, 14]. However, there is a gap between treeless functions and
tree transducers; especially, treeless functions can take multiple inputs. It is not
obvious how existing results can be directed applied in our case.

8 Conclusion

In this paper, we proposed a method to derive parsers from pretty-printers.
We start with a program written in a language equipped with Wadler’s pretty-
printing combinators [22], and an additional “choice” operator. The choice op-
erator allows us to enrich the pretty-printer with information about valid but
yet non-pretty strings, without changing the pretty-printing behavior. This en-
riched pretty-printer can be transformed and inverted using grammar-based in-
version [15] to produce a CFG parser. For the inversion to be possible, the
language is restricted to be linear and treeless [21]. We also provide a surface
language that has relaxed restrictions, which eases programming. The surface
language is transformed into the linear and treeless language through fusion.

We feel that the specific problem we addressed in this paper has much wider
implications. It suggests a general framework for program inversion problems
with “information mismatch”. A compression/decompression pair is another ex-
ample of this kind. For the example of runlength encoding, we want to decode
both A3B1 and A1A2B1 as AAAB, but an encoder “prefers” the former. Our result
for pretty-printing/parsing benefits from Wadler’s combinators, in which the
“preference” is encapsulated in the combinators in a compositional way. It is an
interesting problem to see how the technique may apply in different contexts.

Acknowledgments We thank Nils Anders Danielsson for his critical yet con-
structive comments on an earlier version of this work, without which the surface
language probably would not exist. We also thank Janis Voigtländer and Aki-
masa Morihata for their insightful comments on deforestation. This work was
partially supported by JSPS KAKENHI Grant Number 24700020. Part of this
research was done when the first author was visiting Chalmers Univeristy of
Technology supported by Study Program at the Overseas Universities by Grad-
uate School of Information Science and Technology, the University of Tokyo.

References

1. Baker, B.S.: Composition of Top-down and Bottom-up Tree Transductions. Infor-
mation and Control 41(2), 186–213 (1979)

2. Boulton, R.J.: Syn: A Single Language for Specifiying Abstract Syntax Tress,
Lexical Analysis, Parsing and Pretty-Printing. Technical Report UCAM-CL-TR-
390, University of Cambridge Computer Laboratory (1996)

3. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual Syntax for XML Languages.
Inf. Syst. 33(4-5), 385–406 (2008)

20 Kazutaka Matsuda and Meng Wang

4. Dureg̊ard, J., Jansson, P.: Embedded Parser Generators. In: Haskell 2011: Proceed-
ings of the 2011 ACM SIGPLAN Haskell Symposium, pp. 107–117. ACM (2011)

5. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: Functional Enumeration of Algebraic
Types. In: Haskell 2012: Proceedings of the 2012 ACM SIGPLAN Haskell Sympo-
sium, pp 61–72. ACM (2012)

6. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

7. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient Lenses. In: ICFP 2008: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 383–396. ACM (2008)

8. Frost, R.A., Hafiz, R., Callaghan, P.: Parser Combinators for Ambiguous Left-
Recursive Grammars. In: Hudak, P., Warren, D.S. (eds.) PADL. LNCS, vol. 4902,
pp 167–181, Springer (2008)

9. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree
Transducers. 1st edn. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1998)

10. Hughes, J.: The Design of a Pretty-Printing Library. In: Jeuring, J., Meijer, E.
(eds.) Advanced Functional Programming. LNCS, vol. 925, pp. 53–96, Springer
(1995)

11. Jansson, P., Jeuring, J.: Polytypic Data Conversion Programs. Sci. Comput.
Program. 43(1), 35–75 (2002)

12. Jonsson, P.A., Nordlander, J.: Positive Supercompilation for a Higher Order Call-
by-Value Language. In: POPL 2009: Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 277–288, ACM
(2009)

13. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-Order Multi-Parameter Tree Trans-
ducers and Recursion Schemes for Program Verification. In: POPL 2010: Proceed-
ings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 495–508, ACM (2010)

14. Kühnemann, A., Glück, R., Kakehi, K.: Relating Accumulative and Non-
Accumulative Functional Programs. In: Middeldorp, A. (ed.) RTA. LNCS, vol.
2051, pp. 154–168, Springer (2001)

15. Matsuda, K., Mu, S.C., Hu, Z., Takeichi, M.: A Grammar-Based Approach to
Invertible Programs. In: Gordon, A.D. (ed.) ESOP. LNCS, vol. 6012, pp. 448–467,
Springer (2010)

16. Might, M., Darais, D., Spiewak, D.: Parsing with Derivatives: A Functional Pearl.
In: ICFP 2011: Proceeding of the 16th ACM SIGPLAN International Conference
on Functional Programming, pp. 189–195, ACM (2011)

17. Rendel, T., Ostermann, K.: Invertible Syntax Descriptions: Unifying Parsing and
Pretty Printing. In: Haskell 2010: Proceedings of the 2010 ACM SIGPLAN Haskell
Symposium, pp. 1–12, ACM (2010)

18. Sands, D.: Proving the Correctness of Recursion-Based Automatic Program Trans-
formations. Theor. Comput. Sci. 167(1&2), 193–233 (1996)

19. Søndergaard, H., Sestoft, P.: Non-Determinism in Functional Languages. Comput.
J. 35(5), 514–523 (1992)

20. Sørensen, M.H., Glück, R., Jones, N.D.: A Positive Supercompiler. J. Funct.
Program. 6(6), 811–838 (1996)

21. Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Theor.
Comput. Sci. 73(2), 231–248 (1990)

22. Wadler, P.: A Prettier Printer. In Gibbons, J., de Moor, O., eds.: The Fun of
Programming. Palgrave Macmillan (2003)

