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Automotive Threat Assessment Design for
Combined Braking and Steering Maneuvers

Mohammad Aliab, Esteban Gelsob and Jonas Sjöbergb

Abstract—The active safety systems available on the passenger
cars market today, automatically deploy automated safety inter-
ventions in situations where the driver is in need of assistance. In
this paper, we consider the process of determining whether such
interventions are needed. In particular, we design a threatassess-
ment method which evaluates the risk that the vehicle will either
leave the road or its maneuverability will be significantly reduced
within a finite time horizon. The proposed threat assessment
method accounts for combined braking and steering maneuvers,
which results in a nonlinear dynamical vehicle behavior. Wefor-
mulate the threat assessment problem as a nonconvex constraint
satisfaction problem and implement an algorithm that solves
it through interval-based consistency techniques. Experimental
validation of the proposed approach indicates that constraint
violation can be predicted, while avoiding the detection offalse
threats.

I. I NTRODUCTION

This paper considers the threat assessment problem in au-
tomotive driver assistance systems. In particular, we consider
automotive safety systems with the capability of activating
automated safety interventions in case there is a risk that
the vehicle will depart the road. According to [1], roadway
departure accidents account for approximately half of traffic
related fatalities [1]. Several systems that attempt reducing
such accident either through warnings or interventions have
therefore been proposed [2, 3]. A common problem in safety
systems is the problem of determining whether a situation
is critical such that an automated intervention needs to be
activated. We refer to this problem as the threat assessment
problem.

A challenging aspect of the threat assessment problem is
that it is inherently associated with potentially conflicting
objectives. On one hand, safety systems need to detect critical
situations and adequately assist the driver whenever this is
necessary in order to ensure vehicle safety. On the other hand,
alerts or interventions which drivers consider unnecessary,
contribute negatively to their confidence in such systems. A
highlighting example of this, is the case where a safety system
suddenly performs an unmotivated full braking intervention.
If such an unmotivated intervention occurs, the driver’s confi-
dence in the safety system would be seriously compromised.
In commercially available safety systems, interventions are
therefore often suppressed in uncertain situations and issued
only once accidents have become unavoidable for the driver.
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In [4], we presented a model based threat assessment
method, specifically accounting for limitations in the vehicle’s
and the driver’s ability in safely driving the vehicle. We
proposed a solution to the problem of evaluating whether an
admissible steering maneuver exists, that can drive the vehicle,
while keeping it within a prescribed subset of the state and
input space, where the driver is deemed capable of preserving
vehicle safety. The underlying idea is that, if such a steering
maneuver does not exist, the driver can be deemed incapable
of maintaining safety without assistance and an autonomous
assisting intervention is thus motivated.

In this paper we extend the problem formulation and instead
propose a solution to the problem of evaluating whether an
admissiblecombinedsteering and braking maneuver exists,
that can drive the vehicle while maintaining it within a
prescribed subset of the state and input space. Just like in
[4], the underlying idea is that, if such a maneuver does not
exist, the driver can be deemed incapable of maintaining safety
without assistance. By excluding the possible existence of
combined maneuvers, the risk for unwanted interventions is
even further reduced and autonomous assisting interventions
are thus even more motivated.

Although the reachability analysis tools used to develop the
method we proposed in [4] are powerful, they are restricted
to linear (and piece-wise affine) systems with polyhedral
constraints. Dynamical models that simultaneously capture
a vehicle’s longitudinal and lateral dynamics are however,
in general, nonlinear. In the design of threat assessment
algorithms that account for combined braking and steering,
the restriction to reachability analysis tools for linear systems
can thus be limiting. For systems with nonlinear dynamics
and possibly nonlinear, non-convex constraints, reachable sets
are more difficult to compute. In [5], the reachable set for a
nonlinear system is approximated by considering a large num-
ber of candidate trajectories generated using rapidly-exploring
random trees. This method can generate a large number of
candidate trajectories but the resulting reachable set is always
a subset of the true reachable set. A different approach is
considered in [6], where an algorithm for computing the
backward reachable set for a nonlinear system is presented.
The approach proposed in [6] however requires the solution
of a time-dependant partial differential equation which, like
many other approaches, is associated with high memory and
computational costs. A discussion on algorithms for computing
reachable sets for complex systems is provided in [7].

In the approach presented here, we reformulate our threat
assessment problem as a constraint satisfaction problem with
nonlinear equality constraints. This is a non-convex problem
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formulation. In solving this problem we resort to interval-
based consistency techniques, which have been applied in
several different domains. Examples are model-based fault
detection, model-based fault diagnosis, robust control and
robotics, see e.g. [8].

When using interval techniques the solution sets (see Defi-
nition 1) are represented by one or several intervals or boxes.
By restricting the sets to this limited structure, the interval
based methods can be used to obtain approximative solutions
to nonconvex constraint satisfaction problems, enabling the
possibility to utilize nonlinear models and constraints. As will
be shown in Section IV, these solutions can be arbitrarily
close to the true solutions if sufficient computational resources
are available. Nevertheless, in reality computational resources
are always limited and the interval based approaches offer
a flexible trade-off between computation time and accuracy.
Iteratively they improve the accuracy of the approximate
solution and this can continue until the computational timeis
finished. Then a solution, which is guaranteed to enclose the
true solution is returned. This means that a result is returned
even when the available computational time is insufficient to
achieve the desired accuracy. For algorithms that run in real-
time, this is an important benefit.

The rest of the paper is organized as follows. Section II
presents the models used in the threat assessment algorithm
to describe the vehicle behavior. In Section III, the threat
assessment problem is formulated as a constraint satisfaction
problem. Section IV introduces the fundamental concepts
of interval analysis. The proposed algorithm for the threat
assessment problem is presented in Section V. In Section VI
we present experimental results obtained with the proposed
algorithm. Finally, in Section VII we close the paper with
final remarks.

II. M ATHEMATICAL MODELS

To describe the vehicle motion within the lane, we use a
standard single-track vehicle model, illustrated in Figure 1.
Consider the following differential equations,

mv̇x = mvyψ̇ + 2
[

Fxf
+ Fxr

]

, (1a)

mv̇y = −mvxψ̇ + 2
[

Fyf + Fyr
]

, (1b)

Jzψ̈ = 2[lfFyf − lrFyr ], (1c)

ėψ = ψ̇ − ψ̇d, (1d)

ėy = vy cos(eψ) + vx sin(eψ), (1e)

where,m and Jz denote the vehicle mass and yaw inertia,
respectively,Fyf , Fyr are the lateral tire forces at the front
and rear axles, respectively,Fxf

, Fxr
are the longitudinal

tire forces at the front and rear axles, respectively andvx
and vy denote the vehicle’s longitudinal and lateral velocity
components, respectively.ψ denotes the vehicle direction of
travel in a fixed global frame anḋψ denotes the vehicle
rotation rate around a vertical axis located at the vehicle’s
center of gravity.lf and lr denote the distances of the front
and rear axles, respectively, from the vehicle center of gravity
as shown in Figure 1.ey denotes the distance of the vehicle
center of gravity from the road centerline.ψd is the orientation

Fig. 1. Vehicle modeling notation.

of the road centerline, i.e., the orientation of the tangentto the
curveΓd in the pointO in Figure 1 andeψ = ψ − ψd is the
vehicle orientation in the lane.

In a real-time application, the road curvaturec(s), wheres
denotes distance along the road ahead of the vehicle might be
obtained from a digital map or through a vision system. The
sensing technologies in e.g. [9] can be used for this purpose.
Further, assuminġs ≈ vx, the exogenous disturbance signal
ψ̇d, can then be approximated through the relationψ̇d = cvx.
Hence, we make the following assumption.

Assumption 1:We assume an estimate ofψ̇d is available
over a future finite time horizon.

Forces acting on the vehicle are generated at the contact
patch between tire and road. We denote byfxi

and fyi the
force components acting along the longitudinal and lateraltire
axis, which lead to the following longitudinal and lateral force
components in the vehicle body frame,

Fxf
= fxf

cos(δ)− fyf sin(δ), Fxr
= fxr

, (2a)

Fyf = fxf
sin(δ) + fyf cos(δ), Fyr = fyr . (2b)

We assume the vehicle is front wheel driven and calculate
the longitudinal force components as,

fxf
= ρfx, fxr

= (1 − ρ)fx, if fx ≤ 0
fxf

= fx, fxr
= 0, if fx ≥ 0

(3)

whereρ gives the brake distribution between the front and rear
axle imposed by the design of the brake system and the total
longitudinal forcefx is considered as an input signal.

The lateral tire force components are computed using a
simplified version of the magic tire formula [10],

fyi = ϕify0i , fy0i = µFzi sin (Ci arctan(Bi αi)),

ϕi =

√
(µFzi

)2−f2
xi

µFzi

, i ∈ {f, r}, (4)

whereBi andCi are stiffness and shape coefficients, respec-
tively, at the two axles,αi are tire slip angles,µ is the friction
coefficient andFzi denotes the normal force.fy0i is the lateral
force in pure cornering conditions. However, simultaneous
acceleration and cornering results in a reduced lateral force.
This effect is modeled by multiplyingfy0i with ϕi in (4), [10].

Assuming small angles, the tire slip angles are approximated
as,

αf =
vy + lf ψ̇

vx
− δ, αr =

vy − lrψ̇

vx
, (5)
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whereδ denotes the steering angle at the front wheel and is
also considered an input signal.

The friction coefficientµ in (4) is considered an exogenous
disturbance signal.

Assumption 2:In this paper, at each time instant, we will
assume an estimate ofµ is available and this is kept constant
over a finite time horizon.
In general, friction estimation is however difficult and requires
high excitation of the vehicle dynamics. In addition, the most
common estimation techniques, based on vehicle dynamics
signals, provide estimates of the friction coefficient at the
current position but not for the coming road. See e.g. [11, 12]
for an overview on friction estimation techniques.

We write the model (1)-(5) in the following compact form,

ẋ(t) = f(x(t),u(t),w(t)), (6)

where x =
[

vx, vy, ψ̇, eψ, ey

]T

, u = [fx, δ]
T and

w =
[

ψ̇d, µ
]

are the state, input and disturbance vectors
respectively.

A. Constraints

In this section, we express the requirements that the vehicle
stays in the lane while operating in a stable operating region
as constraints on the vehicle state, input and disturbance
variables.

Let eyij , i ∈ {f, r}, j ∈ {l, r}, be the distances of the
four vehicle corners from the lane centerline (eyfr

is shown
in Figure 1). The requirement that the vehicle stays in the lane
is then expressed,

− eymax
≤ eyij ≤ eymax

. (7)

In addition to staying in the lane, we require that the
vehicle operates in a region of the state space where the
vehicle is easily maneuverable by a normally skilled driver.
The requirement that the vehicle operates in stable operating
conditions is ensured by limiting the tire slip anglesαi,

αimin
≤ αi ≤ αimax

, i ∈ {f, r}. (8)

In this region the vehicle behavior is predictable by most
drivers and Electronic Stability Control (ESC) systems are
inactive.

The driver can influence the vehicle’s motion through the
input signalsδ andfx. The force componentfx is limited by
the available friction and the steering wheel angleδ is subject
to mechanical constraints imposed by the vehicle design. We
will also assume that, for convenience purposes, under normal
circumstances, the driver will not impose larger deceleration
and steering rate thanamax, δ̇max. We express these limitations
as,

−δmax ≤ δ ≤ δmax, (9a)

−µFzi ≤ fxi
≤ µFzi , (9b)

−mamax ≤ fx ≤ 0, (9c)

−δ̇max ≤ δ̇ ≤ δ̇max. (9d)

Rate limitations for the braking force are neglected.

The constraints (7)-(9) can be compactly written as,

h(x(t), u(t), w(t)) ≤ 0, (10)

where0 is a vector of zeros with appropriate dimension.

III. T HREAT ASSESSMENT AS A CONSTRAINT

SATISFACTION PROBLEM

In this section we formulate the threat assessment problem
as a Constraint Satisfaction Problem (CSP). At each time
instant, if the vehicle state does not satisfy the constraints (10),
the vehicle’s operation can be considered unsafe. The threat
assessment problem is therefore formulated as the problem
of evaluating whether an admissible sequence ofcombined
steering and braking maneuversu exists, that can drive the
system (6) over a future finite time horizon, while satisfying
the constraints (10).

Denote by,

1) V = {z1, . . . , zn}, a set of numeric variables,
2) D = {Z1, . . . ,Zn}, a set of domains whereZi, is the

domain associated with the variablezi,
3) C = {C1(z), . . . , Cm(z)}, a set of constraints where

a constraintCi(z) is determined by a numeric relation
(equation, inequality, inclusion, etc.) linking a set of
variables under consideration.

We let CSP = (V ,D, C), denote a CSP and introduce the
following definition,

Definition 1: The solution of a CSP,sol(CSP) is the set
of numerical variablesΣ for which all the constraintsCi ∈ C
are satisfied, i.e.,

Σ = {z ∈ Z |Ci(z) holds ∀Ci ∈ C}. (11)

The threat assessment CSP is formulated in discrete time,
the continuous time system (6) is therefore discretized with
a sampling timeTs to obtain the discrete time constrained
system,

x(k+1) = fd(x(k),u(k),w(k)), (12a)

hd(x(k), u(k), w(k)) ≤ 0. (12b)

The threat assessment CSP over a 1-step horizon can now
be stated as,

V = {x(k),x(k + 1),u(k),u(k + 1), e(k)},
D = {Xk,Xk+1,Uk,Uk+1, Ek},
C = {hd(x(k + 1), u(k + 1), w(k + 1)) ≤ 0,

x(k+1) = fd(x(k),u(k),w(k)),

hd(x(k), u(k), w(k)) ≤ 0,

x̃(k) = x(k) + e(k)},

(13)

where x̃(k) is the vector of state variables estimates and
e(k) represents the uncertainty associated with the estimates.
For each estimate, the uncertainty is considered unknown but
bounded, i.e.e(k) ∈ Ek, for some bounded setEk. The
symbolsXk, Uk, denote the domains associated with the state
and input vectors at time stepk, respectively. We note that, in
the CSP (13), the disturbance signalsw(k), w(k+1) are not
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considered as part of the set of numerical variablesV . This is
a consequence of the Assumptions 1 and 2 where estimates
of the disturbance signal are assumed available. We remark
that if the accuracy of the available sensor setup is poor, itis
possible to account for uncertainties by including these signals
in V and associated (uncertainty) domainsWk, Wk+1 in the
set of domainsD. TheN -step threat assessment CSP can be
formulated by repetition of (13).

IV. SOLVING CONSTRAINT SATISFACTION PROBLEMS

USING INTERVAL TECHNIQUES

Several methods can be used to find the solutionΣ to a
CSP (Definition 1). This section gives a brief introduction to
interval based consistency techniques, which have been used
in the results presented in this paper.

In interval-based consistency techniques, the solution to
a CSP,Σ, is approximated by one or several intervals or
boxes[z]i. The solution,Σ, is obtained by pruning the initial
domain of the variables of the CSP, and through successive
elimination of subboxes which cannot contain the solution.
The consistency techniques most commonly used are known
as Hull-consistency (also called 2B-consistency) and Box-
consistency, or are variations of them, [13]. In general, in-
terval techniques are associated with wrapping of generic sets
into boxes, decomposition of constraints and use of interval
operations which leads to overestimation of the solutionΣ.
This overestimation can be done arbitrarily tight with the
cost of increased computational time, as will be described in
the following example. In this manuscript we utilize interval
techniques which provide an outer approximationΣ̂ that is
guaranteed to enclose the true solutionΣ. The choice of such
techniques is commented in Section V.

We illustrate the main functionality of the interval tech-
niques through a simple example while for a rigorous treat-
ment of consistency techniques for CSPs we refer the in-
terested reader to [14, 8]. For the sake of clear and easy
presentation, a simplified approach has been adopted in the
example.

Example 1:Consider the nonlinear discrete time state-
space model,

x1(k + 1) = −0.32
√

x1(k) + x1(k) + 0.36
√

x2(k), (14a)

x2(k + 1) = −0.07
√

x2(k) + x2(k), (14b)

with its real variablesx1 and x2 ranging in the domains
[0.3, 0.36] × [0.205, 0.3], which definesD. Assume that the
state variables atk = 0 belong to the intervals[x1(0)] =
[0.304, 0.336] and [x2(0)] = [0.256, 0.284], respectively. We
are interested in computing the solution setΣ at time instant
k = 2, i.e., {x(k) ∈ D with k ∈ {0, 1, 2}| x(k + 1) =
fd(x(k)),x(0) ∈ [x(0)]}, wherefd(x(k)) is defined by (14).

We start from[x(0)] which in this example is already a box,
hence no wrapping is needed. We utilize a natural inclusion
function [fd] to propagate[x(0)] two time steps and obtain
interval approximations of{x(1),x(2) ∈ D| x(k + 1) =
fd(x(k)), x(0) ∈ [x(0)]}. Figure 2(a) shows[x(0)], the
computed approximations[x(1)] = [fd]([x(0)]), [x(2)] =
[fd]([x(1)]) andD. We note that portions of[x(1)] and[x(2)]

(a) (b) (c)

Fig. 2. Approximated solution setŝΣ for the problem considered in Exam-
ple 1 with increasing accuracy from left to right. The outer approximationΣ̂
of the solutionΣ is calculated using Box-consistency and a splitting step that
generates sub-boxes by a succession of bisections of[x1(0)] and [x2(0)].
The green (brighter) sets show the domainD and the blue (darker) sets show
the solution sets at time stepsk = 0, 1, 2.

lie insideD hence they cannot be excluded from the solution
set at this point. We also note that a portion of[x(2)] lies
outsideD which indicates that the initial region[x(0)] is
potentially too large.

In order to improve the accuracy of the solution we split the
initial box [x(0)] into four sub-boxes. We utilize the inclusion
function [fd] again to propagate the four sub-boxes two time
steps. The obtained results are shown in Figure 2(b). We note
that, atk = 2 two of the boxes are totally outside the domain
D. Consequently they can be excluded from the solution set
Σ̂ (for all k) and higher accuracy of the solution set can be
obtained.

The process of splitting and propagating boxes can be con-
tinued until the desired accuracy has been reached, the solution
is empty or the computational time is out. In Figure 2(c) the
result after four divisions of the boxes is shown. Clearly, the
solutions in Figure 2(c) are smaller and more accurate than
the solutions in Figure 2(a).

V. I NTERVAL-BASED THREAT ASSESSMENTALGORITHM

In Section III, we formulated the threat assessment prob-
lem as a constraint satisfaction problem and in Section IV
we showed how such problems can be solved with interval
techniques. In this section we formulate the threat assessment
algorithm which is to be repeatedly solved in an automotive
safety system.

Denote byWk = [wk,wk+1, . . . ,wk+N−1] a sequence
of disturbance samples over the horizon[k, k + N − 1]. We
formulate anN -step threat assessment CSP and enforce the
constraints (10) to hold for each time step over a finite time
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Fig. 3. Test track used to collect the experimental data. Thedarker color
vehicle’s denote vehicle positions at timesai, the symbol◦ denotes the vehicle
positions at timesbi, the brighter color vehicle’s denote the vehicle positions
at timesci and the symbol2 denotes the vehicle positions at timesdi.

horizon ofN steps,

V = {x(k), . . . ,x(k +N − 1), u(k), . . . ,u(k +N − 1),

e(k)},
D = {[x(k)], . . . , [x(k +N − 1)], [u(k)], . . . ,

[u(k +N − 1)], [e(k)]},
C = {x(i+ 1) = fd(x(i),u(i),w(i)), i = k, . . . , k +N − 2,

hd(x(i),u(i),w(i)) ≤ 0, i = k, . . . , k +N − 1,

x̃(k) = x(k) + e(k)},
CSPTA = (V ,D, C).

(15)
A threat assessment algorithm that sets a safety flag in

case the threat assessment CSP (15) has an empty solution,
hereby referred to as Algorithm1, has been implemented. In
Algorithm 1 an interval-based branch and prune algorithm is
used to find the solution̂Σ = sol(CSPTA), of the threat
assessment CSP (15). As noted in Section IV, the solution
Σ̂ obtained with the interval solver is an outer approximation
that encloses the true solutionΣ, i.e., Σ ⊆ Σ̂. Consequently
Σ̂ = ∅ =⇒ Σ = ∅, hence, based on the model (12), a
violation of the constraints (10) can be guaranteed within
the horizon ofN -steps if Σ̂ is empty. In such case, a flag
notSafe is set, activating an autonomous intervention or
warning. Waiting untilΣ̂ = ∅, reduces the risk of activating
autonomous interventions in situations where the driver isnot
in need of assistance. However, if the difference between the
setsΣ̂ andΣ is large, the autonomous intervention might be
delayed which limits the effect of the intervention.

VI. EXPERIMENTAL RESULTS

In order to validate the proposed threat assessment ap-
proach, experimental testing has been conducted at a test track
located approximately 100 km outside Göteborg, Sweden. The
test track is about 5 km long and is shown in Figure 3.
Measurements of the state variables and disturbances were
collected using a differential GPS unit, a built-in high precision
inertial measurement unit along with a digital map. The test
vehicle was driven several laps by a professional driver, which
adopted both anormal and rougher driving style. In the
normal driving case, the driver was asked to keep the posted

speed limits, while in therougherdriving case, the driver was
driving as fast as possible. During driving, the proposed threat
assessment was inactive and the collected data has instead
been post-processed through Algorithm1 using a laptop PC.
This enables the possibility to evaluate the performance of
the threat assessment approach without influencing the vehicle
motion and driver behavior through safety interventions. For
the post-processing with Algorithm1, no upper bound on the
computational time was set.

The parameter values used are provided in Tables I and II.

TABLE I
VEHICLE MODEL PARAMETERS

m [kg] Jz [kgm2] lf [m] lr [m]

1695 2617 1.14 1.50

a [m] b [m] w [m] µ [-]

1.83 2.69 1.77 1

Bf [-] Br [-] Cf , Cr [-] ρ [-]

-10.5 -12.7 0.5 0.6

TABLE II
DESIGN PARAMETERS

eymax
[m] αfmin

, αrmin
[◦] αfmax

, αrmax
[◦]

1.61 -4 4

amax [m/s2] δmax [◦] δ̇max [◦/s]

2 7 15

Ts [ms] N [-]

40 11

The parameters in Table I are vehicle specific parameters while
the parameters in Table II are design parameters. The desired
behavior of a safety system is subjective and, just like with
e.g. stability control systems, drivers have different preferences
on activation timing and control authority. Large values of
the bounds in Table II delay interventions and can jeopardies
safety while small values will lead to a system that intervenes
often and might be perceived as intrusive. For a commercial
application, it is possible to give drivers possibility to choose
from a set of parameter configurations to accommodate the
needs and preferences of different drivers. In this paper, the
performance of the threat assessment algorithm has been
tuned and evaluated based on its ability to predict constraint
violations that actually occur and avoiding false constraint
violation predictions, rather than relying on preferencesof
specific drivers. The boundeymax

has been set by the road
width and the rest of the design parameters in Table II have
been tuned by balancing between maintaining a capability to
detect threats while avoiding interventions when no constraint
violation is imminent.

Uncertainties in the state estimates have been accounted for
by setting,

[e(k)] = [e1(k)]× [e2(k)]× [e3(k)]× [e4(k)]× [e5(k)],

ei(k) = [−0.05|x̃i(k)|, 0.05|x̃i(k)|] , i ∈ {1, 2, 3, 4, 5}.
(16)

wherex̃i(k) denotes thei-th component of the measured state
vector x̃(k). We remark that, potentially, the performance
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Fig. 4. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb1 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

of the proposed threat assessment method could be further
improved by utilizing knowledge about the measurement ac-
curacy of the sensors used to acquire the state estimates.

The performance of the proposed algorithm wherecombined
steering and braking maneuvers of the driver are considered
is compared to a previously published algorithm where only
steering is considered. We will refer to this alternative al-
gorithm as Algorithm2. In Algorithm 2, the vehicle model
is linear and the threat assessment problem is then easier to
solve. Details about the alternative algorithm are provided in
[15]. The proposed threat assessment algorithm, Algorithm1,
proved capable of predicting violation of the constraints (10)
within the prediction horizon without issuing any false detec-
tions in the considered dataset.

Next, we show results obtained in the situations illustrated
in Figure 3, where the following notation is used:ai denotes a
time instant where the Algorithm1 returnsnotSafe = 1, i.e.,
when the solution set̂Σ is empty. In Figure 3, the vehicle
positions at timesai are marked out with a darker color
vehicle. bi = ai − 100ms and corresponding positions are
marked with the symbol◦ in Figure 3. These positions have
been indicated for analysis purposes.ci are time instances
where the alternative (steering only) threat assessment algo-
rithm, Algorithm 2, predicts a constraint violation and the
corresponding positions are marked with the brighter color
vehicle in Figure 3. Finally,di denotes a time instance where
a violation of the constraints (10) occurs and corresponding
positions are marked with the symbol�.

Consider the time instancesd1, d2 andd3. At times,d1, d2,
the vehicle is traveling at a speed of approximately90 km/h
and at d3 the speed is approximately 110 km/h. We note
that, at these time instances, the vehicle violates the position
constraints (7) by crossing the lane marking at the inner side
of the curves. In Figure 3, the positions at the time instances
c1, c2, c3 indicate that Algorithm2 predicts these situations
somewhat early. At the timesc1, c2, c3 it is according to
Algorithm 2 no longer possible to avoid a constraint violation
by the adopted steering only approach. Figures 4, 5 and 6,
show the solution setŝΣ obtained by Algorithm 1, at times
b1, b2 and b3 respectively. At these time instances the

Fig. 5. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb2 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

Fig. 6. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb3 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

solution setŝΣ are not empty which indicates that, potentially,
there exists some combined braking and steering action that
can keep the vehicle within the lane from these positions.
Nevertheless, the Figures 4, 5 and 6 show that the driver
chooses to maintain the high velocity and steering angle in
these situations. Potentially, the driver was willing to risk
slightly crossing the lane markings in order to be able to
maintain a high speed throughout the curve, while keeping
away from the outer lane border. Consequently at timesa1, a2
and a3 the solution setŝΣ are empty, hence at these points,
according to the assumed model and control limitations, the
constraint violation has become unavoidable. At these time
instances, it took the algorithm690ms, 300ms and< 1ms,
respectively, to conclude that̂Σ is empty.

If the available actuators can overcome the assumed control
limitations of the driver, an assisting intervention mightbe
issued in such situations in order to avoid the imminent
constraint violation. In Figure 3 we note that an intervention
based on Algorithm 2, would come early and hence increase
the possibility of avoiding the constraint violation as compared
to Algorithm 1 which, as noted in Figure 3, detects the
constraint violation late. In general however,curve cutting
is often actively chosen by the driver and thus becomes
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Fig. 7. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb4 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

unavoidable very late. In such situations, the driver mightthus
perceive an early intervention as intrusive.

Let us instead consider the situation occurring between
the time instancesc4 and d5 where the relation between
excessive speed and the constraint violations is more clear. At
time c4, the vehicle is traveling at a speed of approximately
85 km/h and Algorithm2 indicates that it is not possible
to avoid a constraint violation within the prediction horizon
by steering only. At timeb4, the vehicle speed has been
slightly reduced to84 km/h and Algorithm1 can still find
a nonempty solution set̂Σ. The obtained solution set̂Σ is
reported in Figure 7 and indicates that constraint violations
are potentially still avoidable throughcombinedbraking and
steering. A safety intervention, triggered by Algorithm2 might
in this case have been considered unnecessary or at least
early since no constraint violation occurred within the time
interval [c4, c4 + NTs]. Nevertheless it turns out that the
speed reduction adopted by the driver is insufficient. At time
a4, Algorithm 1 indicates that a constraint violation is no
longer avoidable, after< 1ms of computational time. At time
d4 ∈ [a4, a4 +NTs], the vehicle indeed violates the stability
constraints (8), hence the constraint violation predictedby
Algorithm 1 can be considered correct.

The experimental vehicle was equipped with an electronic
stability control system which, in this situation, was activated.
The stability control system can apply braking to individual
wheels and is thus not restricted by the assumed control
limitations of the driver. By braking individual wheels, ad-
ditional yaw moment is generated by the stability system
forcing the vehicle back in to the stable operating region.
Keeping the vehicle in the lane is however not an objective
of the electronic stability system. Instead, the driver needs
to steer the vehicle correctly in order to stay in the lane. In
this case, even though the vehicle is forced back in to the
stable operating region, the stabilizing intervention combined
with the driver’s steering action does not keep the vehicle
in the lane. At timea5, Algorithm 1 recognizes that even
though the vehicle is operating within the stable operating
region, due to the position and motion of the vehicle, a
violation of the constraints (7) is unavoidable. This took

Fig. 8. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb5 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

Fig. 9. (a)-(f) compare the approximated solution setΣ̂ obtained through
Algorithm 1 at positionb6 to measured vehicle states and steering angles. Each
box shows predicted admissible variables for each step overthe prediction
horizon and the red solid line shows the actual trajectory traversed by the
vehicle.

28ms. At timed5 ∈ [a5, a5 + NTs], the vehicle’s front left
corner indeed crosses the outer lane marking violating the
constraints (7) as predicted by Algorithm1. In this situation,
both the violations of the stability constraints at timed4 and
the position constraints at timed5, seems to be related to
the excessive speed adopted when the vehicle approached the
curve. In this case, a braking safety intervention issued based
on either Algorithm1 at the time instanta4 or by Algorithm
2 at the time instantc4 might have reduced the speed enough
to avoid the constraint violations.

Finally we highlight that, in the considered dataset, no false
constraint violations where indicated by Algorithm1, while
Algorithm 2, in some cases, predicted constraint violations
which the driver managed to avoid by reducing speed. As an
example, consider the point corresponding to the time instant
b6, shown in Figure 3. In this point, the solution set obtained in
Algorithm 2 is empty. Since no subsequent constraint violation
occurs however, this can be considered a false threat detection.
The solution set obtained with Algorithm1 is on the other hand
nonempty and is shown in Figure 9. We note that the solution
set obtained with Algorithm1 encloses the actual trajectory
traversed by the vehicle and that no intervention is needed in
this scenario.
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VII. C ONCLUDING REMARKS

A model based threat assessment method, which accounts
for combined braking and steering maneuvers in assessing the
risk of unintended roadway departures has been presented and
evaluated using experimental data. Compared to previously
published approaches, which account for steering only, the
present method reduces the risk of false threat detection while
maintaining the ability to predict constraint violations.The
preliminary results presented in this manuscript motivatefur-
ther investigation of the algorithm’s ability to predict constraint
violations and the frequency of false threat detections.
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