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Numerical Sensitivity of Linear Matrix Inequalities
for Shorter Sampling Periods

Bengt LennartsoMember, IEEE*) and Richard MiddletonFellow, IEEE

Abstract—The numerical sensitivity of Linear Matrix In-  analysis of the underlying mechanisms causing numerical
equalities (LMIs) arising in the H., norm computation in dis-  sensitivity. A scaling of the input and output signals was
crete time is analyzed. Rapid sampling scenarios are exaned then introduced in the same way as in [10], [11]. The shift

comparing both shift and delta operator formulations of the tor based LMI h to b IV Si lar f
equations. The shift operator formulation is shown in geneal to  OP€rator base was shown to become nearly singular for

be arbitrarily poorly conditioned as the sampling rate increases. Short sampling periods, not only for the requested optimal
The delta operator formulation includes both recentering o  ~-value, but also fory-values far away from the optimal
avoid cancellation problems ) and rescaling, and avoids t golution. This ill-conditioned behavior generates sigraifit
dlf_flcultles. However, it is also shown t_hat_rescallng of t_he errors in the computed norm for rapid sampling.
shift operator formulation gives substantial improvemens in In thi the basic di te-ti del is initiall
numerical conditioning, whilst recentering is of more limited n_ IS paPer ¢ aS_'C |scre_e- Ime mode _'S ni |_a y
benefit. considered without any signal scaling, where the inputalign

is assumed to be piece-wise constant between the sam-

I. INTRODUCTION pling instants. Then another ill-conditioned behavioregug,

Linear Matrix Inequalities (LMIs) have been used exteflamely that the symmetric solution matri, of the shift
sively during the last decade for a range of control analyspperator LMl increases with/h for small sampling periods
and synthesis problems (see for example [1], [2]). One kéy This fact makes it dlffICU|t. to solve the shift operator
reason for this is that LMIs can be solved very efficiently b{:M! for small 4. In fact, the increase of’, for small i
applying interior-point methods to solve these problems. 1S shown to have more severe consequences than the more
LMIs are frequently formulated and solved as semidefiniie!l known cancellation, which occurs both in LMIs and
programming (SDP) problems. One typical control pr0b|e,§prrespond|ng Riccati equathns using shift pperator rwode
is H.. gain computation, with many other problems af]: [11]. [5]. The problem with the increasing, can be
extensions or variations on this method. However, it can ¥0ided by solving the LMI for the scaled matriX = hF,.
shown that when using the shift operator formulation of &S means that the cancellation problem can be separated,
discrete time system, with fast sampling, the LMI problen?}nd itis then shown to be of_much _Iess importance than the
generically has very poor numerical conditioning. In thificreasingl, for small sampling periods. _
paper this problem is examined using the delta operator! "€ paper starts with a brief presentation of the shift
formulation. and delta operator models and their relationships. Theseorr
One method, using sensitivity analysis, for studying th%oondin_g LMls are th_en given, and_ the numeri_cal sensitivity
differential sensitivity of the solution to SDP problemsten Of the different LMIs is analyzed. Finally, the differentrer
perturbation of input parameters has been investigated gpntributions are illustrated by an example, where two well
e.g. [3], [4]. In this paper two more specific numerical sensknown LMI solvers are evaluated.
ti\éi_'?t/ problems are(z]| alnal%/ﬁed for LMIs based on discrxeﬂ:ztim 1. SHIET AND DELTA OPERATORMODELS
shift operator models. These sensitivity issues are e : .
scaling and cancellation, two well know numerical problems The ?h'ﬂ .and the dglta operator models are briefly pre-
for shift operator models that are conveniently solved gisi sented in this section, including some useful transforomati
'hetween them.
the delta operator [5]. More recently, delta operator based
LMIs have been introduced, often related ., robust A. Shift operator model

control problems [6], [7]. , _ Consider the following discrete-time state space model on
A preliminary numerical analysis of both shift and deltg,e ghift operator form
x(tk) x(tk)
] =G, l 1)

operator LMIs was given in [8]. [9] gives a more detailed
qo(ty) ]
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time interval between two updates is the sampling period I1l. LINEAR MATRIX INEQUALITIES

h = tiq41 — tk. Computation of théH., norm using linear matrix inequal-
B. Delta operator model ities (LMIs) is briefly presented in this section, both for
systems on shift and delta operator form. It is well known

By introducing the delta operator, cf. [5] oFE
that for a stable syster§, with input « and outputy, the

dx(te) = (2(tr+r) — x(te))h ™! Hoo norm |G|« is given by the induced norm, cf. [12]
= (Aq — I)h 'a(ty) + Bohtulty) [Glloo = supjy) 20 % This norm can be calculated by
the state space model (1) can be rewritten in delta opera?&lvmg linear matrix inequalities (LMIs) [13], [1].
form as A. Shift operator LMI
[6I(tk) ] | As Bs | | z(tk) ] a [x(tk) ] @) For the shift operator case, the following lemma shows
y(tr) | c D u(ty) u(ty) how to solve theH ., norm.

Observe that the delta operator model is an exact repr%—:}terg&?ats(f)gfrfgr ?1)St§|1'2|:73 |sc;itr§r;1t||r‘r1ge|‘ sys<te£noirfw
q . e o] [e'e] ’

sentation of the discrete time system, assuming that tﬁﬁd only if there exists a symmetric matd such that
input signal is piece-wise constant as in the shift operator

model. This can be compared with e.g. the discrete Euler Fy(Py,) =diag—My(Py, ), P;) >0 (6)
approximation, where the system matrix+ hA. is an where
approximation of4,. The relation between the state space

matrices on shift and delta operator form are Mgy, (Py) Mgy, (Py)

My(Py,7) = @)
Ay By I, +hAs hBs o Mélg (Py) Mg,y (Py, )
Gy = = ()
C D C D and
Introducing the matricest = diagl,, 0) and 7}, = My, (P;) = A P,A; — P, +C'C
diaglhl,, I), where the dimension of the lower identity / /
LT L . ; . M,,(P,)=A P,B,+C'D 8
matrix in T}, is given by the adjacent matrices, the relation a:(Fa) aaPat ) ®)
between the the shift and delta operator form can be shortly Mg,,(Py,y) = ByPyBy+ D'D —~4°1 a

expressed a&, = E + 1},Gs. . . . .
There are two main reasons for introducing the delt-lt:;\he minimal value ofy is obtained at the same time

operator for discrete-time models. Firstly, there is nauredt as the ‘unknownP, > 0 is computed. This result
transition and convergence from an ordinary discrete-tin%%1 based “on the_bounde_d re_al_ Iemm_a, see e.g. [13],
model in the shift operatarto the corresponding continuous- €€ Hg”‘ﬁf v i tbe Riccatl |_nequ§\I|'Fquu(Pq) N
time model. Secondly, the shift operator exhibits bad numef.:2 (Py)Mg,, (Py,v) Mg, (Py) < 0 is satisfied for?;, > 0

q22 q12 ]
ical behavior for short sampling periods. Both problems a‘a_elr\llldl 6‘122 (Pg;v) < 0. A Schur complement then gives the
naturally solved by the delta operator. ©)

C. Convergence to continuous-time model B. Delta operator LMI
Assume a related continuous-time model In the same way as for the shift operator case, an LMI can
be formulated for delta operator models. The corresponding
A. B
C (&

(4) Riccati equation can be found in e.g. [5], [11]. Ones again,
¢ D a Schur complement gives the following result.
and introduce the functio(h) = Y50 (Ach)*/(k + 1)1, Lemma 2:Consider a stable discrete-time syst&min

which converges td'(k) = I + O(h) for short sampling delta operator forr‘rG(; ). TheHO? norm ||Glloc < 7, if
periods. Furthermore, assume a piecewise constant inBOf Only if there exists a symmetric matdx such that

G, =

signal. Then the delta operator modej can be expressed Fs(P,~) = diag(—Mjs(P,v), P) >0 9)
as
O where
Gs = G.— G. when h—0 (5) Ms, (P) Ms,(P)

. . B Mé (P) M522(P77)
On the other hand, the shift operator system mattjx= 12

edh ~ T+ A.h — 1 when h— 0independently ofd,. and

This means that all eigenvalues 4, converge to 1, and the Mjs,,(P) = AP 4+ PAs + hALPAs + C'C
information from the system behavior iA. is completely
lost whenh — 0. Ms,,(P) = PBs + hA§PBs + C'D (11)

These expressions explipitly shqw the convergence of the Ms,,(P.~) = hB,PBs + D'D — 21
delta operator modelss to its continuous-time counterpart
G., and the bad numerical behavior of the shift operat&@imilar LMI's based on the delta operator can be found in
model, see further comments in Middleton and Goodwin [5¢.g. [6], [14].

d



C. Relation between delta operator and continuous LMIs  On the other handdet F,(P,,vy) = det(—Ms(P,7))
For a continuous-time syster@. (4), the LMI matrix det(P/h) = det(=Ms(P,~))O(1/h). Hence, it is hard to

corresponding toFs (P, ~) is determine if det £ (Py,7) ~ 0 for small sampling peri-
_ ods, since this condition then includes a multiplication of
Fo(P,v) = diag —M.(P,v), P) >0 (12) a small valuedet(—M;s(P,v)) ~ 0 with a large value
where det(P/h) = O(1/h). This analysis shows that the evaluation
) ) ) of the optimality condition is an ill-conditioned problem
M,(P.ry) = AP+ PA.+C'C PB.+C'D for short sampling periods, which is also confirmed by the
(5 B.P+D'C D'D —~2] numerical investigation in Section V.

(13) E. Scaled shift operator LMI

The ill-conditioned property of the LMIF,(P,,~) > 0
Fs(P,y) = Fe(P,v) + O(h) is easily avoided by observing that this condition accord-
n4’ng to (16) is based on the two conditiodd,(P,,y) =

Using (5) and (9)-(11), it means that

Hence, the LMI formulation in the delta operator for X
illustrates very explicitly the convergence of the disergine MQ(P/h’_V) <,,0 and P, = P/h > 0. Since the latter one
solution to the corresponding continuous-time one. This fan be simplified ta” > O,_the LMI F,(Fy,~) > 0 can be
an expected but also essential convergence property in [ﬁglaced by the scaled shift operator LMI

following numerical sensitivity analysis. Fs(P,~) = diag(—My(P/h,~),P) >0 (17)

D. Relation between shift and delta operator LMIs where P = O(1) is the unknown matrix and we remind

In the original shift operator mode¥, in (3) recall that that alsoM,(P/h,v) = Ms(P,~) = O(1). Hence,Fs is
A, = I+hAs, B, = hBs. This means that the block matricesiumerically well behaved except for the cancellatiodp,, .

(8) in M, alternatively, using (11), can be expressed as  gp;ft operator LMI without cancellation

My, (Py) = AsPyh + PyhAs + hA5PhAs + C'C The block matrixM,,, = A, P;A, — Py + C'C in (8)
= Mj,, (P,h) includes for short sampling periods a cancellation between
e / two large matrices. Since theh, = I+O(h) andP, = P/h,
qu (Pq) = (I + hA5)thB5 +C'D = ]\/[512 (th) we find that
Mgy, (Py,y) = hB5PghBs + D'D — 421 = My, (Pyh, ) My = (I+O(h))' P/h(I+O(h)) — P/h+C'C
Hence, we find that = P,/h—P/h+C'C
M,(Py,v) = Ms(P,v) (14) where P, ~ P = O(1). This cancellation can be avoided

either by using the delta operator formulation, or simply by

where P = P,h. Introducing this result in (6) and (9), WeintroducingAA — A and replacing the block matrix/,,,

obtain the following result.

Lemma 3:The solution?, > 0 to the LMI F,(P,;,v) > 0 in M, by
for the system, (3) can alternatively be obtained as Ma,, = ANPy+ PjAx + ANPJAN+C'C (18)
P, = % (15) The LMI F,(P,,~) > 0 is then reformulated as
Fa(Py,v) = diag—Ma(Py,7), Py) (19)

where P > 0 is the solution to the LMIF5(P,v) > 0.
Furthermore, sincés — F. whenh — 0 the solutionP > where

0 converges to the corresponding cont_inuous-time solution. Ma,,(P)) My, (P,)
This implies thatP, = P/h increases without bound when Ma(Py,v) = , (20)
h — 0. O Mq12 (PIJ) quz (an ’7)
Utilizing (15) in (6) and (14) means thaf,(P,,~) can Note that algebraicallyFa = Fj, but numerically the
alternatively be expressed as cancellation problem is avoided ifia.
_ In fact, we have now separated the two properties of the
Fy(Py,v) = diag(—My(P/h,v), P/h) delta operator from an LMI perspective. The cancellation is
= diag—M;s(P,~), P/h) (16) avoidedinF (20), and the system scaling, including the

factor in bothA; and in the delta operator, is introduced in

The minimaly-value of the LMIF,(Fy,~) > 0 is normally - g by replacingP, by P = hP, as the unknown matrix.
obtained by an interior-point method [2], where the bar-

rier function ¢(P,,v) = —logdet F,(P,,~) is introduced. IV. ERRORANALYSIS

Starting with a feasible solution such tha}(P,,~v) > 0 We will now investigate the numerical error in the compu-
means thatdet F,,(P,,v) > 0. Decreasingy means that tation of the LMI matricesFy,, Fa, Fg, and F5. Especially
finally det F,(P,,~) gets close to zero, and at the optimunthe contribution from the cancellation i, and F's will be
F,(P,,~) is approximately singular andet F,(P,,v) ~ 0. analyzed as a function of the sampling perfad



A. Errors in the LMI matrices where the error matrix due to the cancellatiBf = O(u),
Motivated by floating point arithmetic implementations?nd t_he storage error in the lower diagonal matrix in the LMI
we will use a relative error analysis [15]. It is well knownMatricesF is neglected. |
that subtraction between two uncertain numbers being dlmosThis theorem highlights the fact that there are mainly
equal yields cancellation of digits. To be more preciseqfet two error sources in the shift operator based LMI calcu-
and b“ be stored representations of two numberand b. lations. The first has to do with the large value Bf =
Thena® = (1 + ¢;)a andb® = (1 + e,)b, wherele,| < u P/h = O(1/h) for shorter sampling periods, resulting in ill-
and|e,| < i, andy is the machine precisionu(= 2-107'°  conditioned matrices?, and Fa. The other error source is
in MATLAB). Now assume that the subtraction is performeehe cancellation inV/,, resulting in the error ternP¢/h in
according to the IEEE-standard, [15]. Then the stored teswl, and Fs. Both these error sources are avoided in the delta
is (@ =) = (1+¢)(a = b) with |e;] < p. operator versiornfy.
For matrices similar expressions can be formulated intro-
ducing the Hadamard (entry-wise) matrix multiplicatioB]1 B Error sensitivity in the objective function
the one matrix1, and the relative error matri€, where
[1]13 =1 and [5]” = €. Then A€ = (1 + EA) o A and
(A=B)f=(1+€,)o0((1+€4)0A—(1+Ep)oB). Ne-
glecting the quadratic error termigo€ 40 A and€ 0E go B,
the error in the matric subtraction can be expressed as

(A—B)t = (1+(E,4€4))0(A—B)+(E4—Ex)oB (21)

To investigate in more detail how the cancellation error
influences the optimization, first assume that the LMI con-
dition F > 0 is handled by introducing a barrier function.
The original minimization criteriony is then replaced by the
approximation

f(Pa’Yve) = 97 - logdet F(P,")/,E) (29)

Apply this formulation onM,,, in (8), by letting A =
AFyAq+CyCq andB = Py, which leads tad— B = M,,,.  where the approximation error is reduced when the parameter
Since the analysis is focused on the cancellation, it isjs increased [2]. Then the partial derivative
assumed for simplicity thatd; P, A, + C'C is computed
without error, but stored with a relative error as well Bs of(P,v,e) 1
Based on (21), the error in the computationidf,, can then O¢;
be expressed as

Mell(Pq) = (1 + 81111) o

q

P
- 9 det F(P
det F(P,7y,¢) dei - © (P,€)

_ 0
—tr(F 1(P,7,6)%F(P7%€))

(30)

a1(Py)+Epo P, (22)

where the relative errors,,, and€ p are of sizeO(x). The This partial derivative is now analyzed for the scaled LMI

other block matrices in\/, are computed without cancella-

tion, and can therefore be simplified fd¢

q12 (Pq) = (1 +
81112) O]\/[qn(P) and]\/‘[qezz (P7 7) = (1 +€Q22)OMQ22 (P’ 7)’

where&,,, = O(p) and&,,, = O(u). Introduce the error

matrix due to the cancellation in/,,,

P =diag€po P, 0, xn,) (23)

SinceP = O(1), we observe thaP¢ = O(u). Together with

(22), reminding thatP, = P/h and M, (P,,~) = Ms(P,~),
M¢E(P,,~) can now be formulated a&f$(P/h,v) = (1 +
€) o Ms(P,~v) + P¢/h, whereg = gfll gm ]: O(p).

problem Fs > 0, which only includes the cancellation error
but not the ill-conditioning problem. The error term due to
the cancellation”¢/h, defined in (23), depends on the error

matrix € p. Hence, we investigate (30) with respect to the

elements in this matrix,,, = [€p]; ;. First consider (27),
where we only include the error matrép but not€ in Mj.
This means thab/j is simplified toMs, and we obtain

Fs(P,~,Ep) =diag —Ms(P,vy) — —, P)

h
. 1 ..
= diag( — Ms(P,v) — Edlaqu o P, On,xn,), P)

Based on this type of analysis the errors in the four LMkhich gives

matricesFy (6), Fa (19), Fs (17), andF;s (9) are now be

presented in the following theorem.

Theorem 4:Assume that\/s is computed and stored with

relative error€ as
M§(P,y) = (1 +€&) o Ms(P,v) (24)

where€ = O(u). The corresponding errors if,, Fa, Fs,
and F5 can then be expressed as

FE(P/h,~) = diag —Mg(P,y) — P¢/h, P/h) (25)
FA(P/h,7) = diad =M (P,7), P/h) (26)
F§(P,y) = diag—M5(P,y) = P°/h,P)  (27)
F§(P,v) = diag —M5(P,7), P) (28)

{6F5(P,%8p)} R k==
dep, k,l 0 otherwise

where p;; = [P);;. Since the inverseF'(P,v,Ep)~! =
diag( — (Ms(P,~) + P¢/h)~', P'), the partial derivative
of the objective function (30) can now be expressed as

df(P,v,€p) PN py
T M;(P,7) + o

This result is used in the following theorem.
Theorem 5:For the scaled LMI problemfs > 0 the
sensitivity of the approximative objective functigii P, v, €)



in (29), with respect to the cancellation erregs, = [Ep]; ;
in P¢, can approximately be determined as

8f(Pa’Yv EP) ’
Oe Ep=0

f(P?’Y7€Pij) ~ f(Pa’Y7O)+€Pij

Pij
= (P7,0) + ¢, 2
fori,j=1,...,n, where
cij = —pij[Ms(P,7) ™

O
Observe thaff (P, ~,0) becomes large at the optimum due

10° 10°

Fig. 1 Relative error as a function of the sampling period

to a larged, but alsoc;;, since it includes the inverse of 10

My that is near-singular at the optimum. This is valid for
arbitrary sampling periods, which shows that the objective 4 for the SDP solvers SeDuMi (solid) and SDPA (dashed),
function will be sensitive to the error ife¢ for sufficiently when~ is minimized for the scaled LMFs > 0.
small sampling periods.

Now introduce a relative error in the determination of the

optimal y value for the actual LMI problems The LMiIs are solved by two different semi definite pro-

v =l (31) gramming (SDP) solvers SeDuMi [17] and SDPA [18]. They
% are all run on top of MATLAB via the user friendly interface

where~ is the true optimal value andis the optimal value YALMIP [19].

computed by the different LMIs. As already observed, for I Order to obtain a correct relative errey (31) the true
the scaled LMI problemFs > 0, the objective function gamma valuey, is determined by the maximum frequency

becomes more and more sensitive to the erroPindue esPonse based on the delta operator with a very dense

to cancellation for shorter sampling periods, according &9 (2000?] poklnti_aroundl the maxmu:jn :atlhrad/s)._As
Theorem 5. Since this error sensitivity is proportional fa, 2" €xtra check, this result is compared to the continuous-

and the determination of the optimalvalue is based on this ime infinity norm function in MATLAB for very short
objective function, the relative err@rf for the LMI Fy > 0 sampling periods, and the corresponding discrete one for

is also expected to increase with the same fatfdr, that is longer samlpillng periods, with a very small relative differe
. around10—*.
s

e,é; o for small h (32) The resulting relative erroresg for the scaled LMIFs > 0
. . o _are shown in Fig. 1 for the two different solvers. Since the
whereeg is a constant factor. This error function is verifie¢gncellation remains if the erroreS increases for shorter
in the next section, where two different SDP solvers geaer%tamp“ng periods for both solverswapproximately@dh,
the same error behavior for shorter sampling peribdand ihe thin line in Fig. 1. The constamt ~ 5 - 10-7, which
the value ofes is shown to be of the same order as thg; of the same order as the machine precision in MATLAB
machine precision. (2 - 10~16). This is reasonable since the error source is a
V. NUMERICAL ILLUSTRATIONS cancellation. The result also coincide with the analysis in
. ﬁection IV and especially Theorem 5 and (32).
wit . .
. : . Furthermore, note that for longer sampling periods the
continuous-time transfer function :
relative error depends more on the general accuracy of
Ge(s) = 12 the individual LMI solver. No adjustments of the tuning
(s+1)(s* +0.25+1)(s* + 0.4s + 4) parameters for the two solvers have been performed, and we
where the accuracy in the computation of the correspondinfserve that the solver SDPA is generally tuned to achieve
discrete-time#., norm will be evaluated. This is done byless relative accuracy{10~7) than the SeDuMi solver.
solving the four different LMIs considered in this paper for Corresponding relative errors for the delta operator case
various sampling periodé < 1 using two different SDP agree with the more constant behavior @j‘ for longer
solvers. sampling periods, withei around 10~7 for SDPA and
First a balanced state-space model is generated usifig® — 10~ for the SeDuMi solver. The difference is that
the MATLAB function ssbal . Corresponding discrete-timethe delta operator LMI behaves equally well also for very
state-space models with zero-order hold circuit at therobntshort sampling periods. For all practical choices of sangpli
input are then computed for different sampling periodshboperiods we find on the other hand that the scaling mechanism
in shift and delta operator versions. Finally, the minimal in Fs is sufficient to achieve perfect numerical results. The
value is computed for the different LMI8, (6), Fa (19), cancellation error simply shows up only for unrealistigall
Fs (17), andF;s (9), resulting in corresponding relative errorshort sampling periods.

ed, 2 es, andei. The ill-conditioned behavior in both, and Fa is however

€y

Consider the following resonant dynamic system




10
10+
10"+
—10|
10 % ‘ ‘
10° 10° 10° 10°

Fig. 2 Relative error as a function of the sampling period

h for the SDP solvers SeDuMi (solid) and SDPA (dashed),

when~ is minimized for the shift operator LMF;, > 0.

(1]

(2]
(3]

[4

[l

[5

—

[6

—_

=

(8]

shown to be much more severe. The relative errors for the
shift operator case? are shown in Fig. 2. It is evident that o]
especially the SDPA solver has great difficulties to gemerat
accurate results also for moderate sampling periods. Thé]
removal of the cancellation i®A does not change the error
behavior. The same severe errors as for the shift operatdr LM
are shown for shorter sampling periods. The reason is teat fhi]
cancellation error according to Fig. 1 appears at much short

sampling periods than the error caused by the ill-conditign

problem, still included inFa.

To summarize, a numerically robust solution for short
sampling periods is to use the delta operator model, or

introduce the simple scaling of the unknowhmatrix. Both

[12]

i

approaches work fine for all practical choices of samplir@“]

periods.

VI. CONCLUSIONS

[15]

Numerical properties have been analyzed when the!
H, norm is calculated for discrete-time systems by Lineg7)

Matrix Inequalities (LMISs). In particular, the behaviorrfo

shorter sampling periods has been investigated. By alsaly[g'b]
and numerical illustrations it has been shown that there are
two main error sources when systems are modeled by the

ordinary discrete-time shift operator. The quite well-wmo

cancellation problem in the shift operator case is shown [ry)
be less important compared to the fact the LMI problem is

fundamentally ill-conditioned for shorter sampling peisa.

In a study of a numerical example, two different numerical

solvers for LMIs exhibit problems with this ill-conditiode

behavior.

All these numerical problems are solved by using a delta

operator formulation of the LMI. Alternatively, it is posde

to use the shift operator model but then apply a simple
scaling of the matrixP. This transformation captures the

system scaling mechanism in the delta operator model,

but

does not avoid the cancellation problem. The relative error
then however becomes negligible for all practical choides o

sampling periods.
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