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Abstract—The optimal bit-wise demodulator for M-ary pulse
amplitude modulation (PAM) over the additive white Gaussian
noise channel is analyzed in terms of uncoded bit-error rate
(BER). The BER analysis is based on studying the bit patterns
that form a labeling. New closed-form BER expressions ford-
PAM with any labeling are developed. Moreover, closed-form
BER expressions for 11 out of 23 possible bit patterns fog8-PAM
are presented, which enable us to obtain the BER fo8-PAM with
some of the most popular labelings, including the binary reftcted
Gray code and the natural binary code. Numerical results sha
that, regardless of the labeling, there is no difference beteen
the optimal demodulator and the symbol-wise demodulator fo
any BER of practical interest (below 0.1).

Index Terms—Additive white Gaussian noise channel, binary
reflected Gray code, bit error probability, bit-interleaved coded
modulation, demapper, demodulator, LLRs, logarithmic likeli-
hood ratio, pulse-amplitude modulation, uncoded transmision.

I. INTRODUCTION AND MOTIVATION

Current wireless communication systems are based on
bit-interleaved coded modulation (BICM) paradigm introdd

IEEE

calculation of L-values in practical systems is usually €on
based on the so-called max-log approximation [8, eq. (5)],
[9, eq. (1)]. We call this demodulator the approximate BD
(ABD). The ABD is equivalent to the symbol detector in terms
of uncoded BER [10, Sec. IV-A], whose performance is well
documented in literature, e.g., [11, Ch. 5], [12, Ch. 10], [6
[13]-[18] and references therein.

It is well known that the uncoded BER of one-dimensional
constellation can be expressed as a sum of Gaussian Q-
functions, cf. [11, Ch. 5], [12, Ch. 10] and references there
The arguments of the Q-functions depend on the points that
separate the decision regions associated with differdast bi
We refer to these points as thresholds. In [19], we genewliz
the BER expression to any one-dimensional constellatibe. T
computation of the thresholds for the BD—the optimal bit-
wise demodulator—is in general complicated and unknown. In
this paper, however, we show that this problem can be solved
analytically for4-PAM and any labeling, extending the results

resented in [4]. Moreover, we also analytically calculde
Rfesholds for-PAM with some relevant labelings, including
the BRGC, the natural binary labeling (NBC) [20, Sec. II-

in [1] and later studied in [2], [3]. One key element ing) the folded binary code (FBC) [16] [20, Sec. II-B], the
these systems is the demodulator which calculates '°ga”Hi‘nary semi-Gray code (BSGC) [20, Sec. II-B], and the anti-
mic likelihood ratios (LLR, also known as L-values) for thesray code (AGC) [21]. Numerical results show that optimal
received bits, which are then passed to the channel decod@ly syhoptimal demodulators are different in terms of th& BE

The calculation of L-values is crucial in many other codegmy at a very low SNR. At BER below.1 there is no notable
systems. The coded performance analysis of BICM systemgjierence between them.

generally not straightforward and is usually carried othezi

The rest of the paper is organized as follows. In Sec. Il we

numerically by Monte-Carlo simulation or in terms of lowefnoqyce the notation convention, the system model, aad th
and upper bounds [2, Sec. 4], [3, Ch. 4]. In this paper, W, gemodulators. In Sec. Il the BER analysis is presented.
analyze theuncodedperformance of bit-wise demodulatorsrpg patterns that form a labeling are studied in Sec. lll-Be T

over the additive white Gaussian noise (AWGN) channel.

threshold computation for the BD is shown in Sec. IV and the

The optimal bit-wise demodulator (BD) minimizing theén merical results in Sec. V. The conclusions are drawn in
BER implies the calculation of (exact) L-values for the reggq v

ceived bits. The uncoded performance of such a demodulator

has been studied in [4], where closed-form expressionsfor t
BER for 4-PAM with the binary reflected Gray code (BRGC)

Il. PRELIMINARIES

[5]-[7] are presented. Due to the complexity of the BD, thA. Notation Convention
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In this paper the following notation is used. Lowercase
lettersx denote real or complex scalars and boldface letters
x denote a row vector of scalars. The complex conjugate
of = is denoted byxz*. Blackboard bold letterX denote
matrices with elements; ; in theith row and thejth column
and (-)T denotes transposition. Calligraphic capital lettafs
denote sets, where the set of real numbers is denoted by
R. The binary complement of € {0,1} is denoted by
Z = 1 — z and its bipolar representation hy = 2z — 1.
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Binary addition (exclusive-OR) of two bits andb is denoted  The implementation of the BD in its exact form (3) is
by a & b. Random variables are denoted by capital lett8rs complicated, especially for large constellations, as dfuiees
and probabilities byr{-}. The Gaussian Q-function is defineccalculation of the logarithm of a sum of exponentials. To
asQ(z) £ (1/v2r) [ exp(—t*/2) dt. overcome this problem, approximations are usually used in
practice. The most common approximation is the so-called
max-log approximationlg >, e* ~ max; A;) [1, €q. (3.2)],

B. System Model 2, eq. (9)], [8, eq. (5)], [22, eq. (8)], which used in (3) g&

In this paper we analyze a system where a vector of binary _
datab = [b1,...,by] is fed to a modulator. The modulator Lily) =7 zgl)l(n (y —x)? — Igl)l{n (y—z)*|. (5
carries out a one-to-one mapping frabnto one of the M 70 i
constellation points: € X = {s1,...,sy} for transmission The use of the max-log approximation transforms the nonlin-
over the physical channel, whefd = 2. We assume that €ar relationship (3) into a piece-wise linear relationstfip
51 <8< ... <8Mm. as previously shown in e.g., [23, Fig. 3], [24, eqgs. (11)}}14

The modulator is determined by the constellation and i@mplifications of (5) were studied in [25] and [26].

binary Iabehng A binary labeling is specified by the matrix The ABD is defined as the demodulator that applies the
C=cl,...,c],]7 of dimensions\ by m, where theith row ~Same decision rule (4) based on L-values calculated by &). A

ci = [ci,l, cl7m] is the binary label of the constellationmentioned in [10, Sec. IV-A] and proved in [19, Theorem 1]
point s;. the ABD is equivalent to the symbol detector in terms of

For PAM constellations,s; = —d(M — 2i + 1),i = uncoded BER.
., M, whered = /3/(M? — 1) to normalize the constel—
lation to unit average energy, i.ez. — (1/M)Z 1 1. BER FORONE-DIMENSIONAL CONSTELLATIONS
| i=1 i_ . .

We assume bits transmitted in thgh position B, to be ~ The BER for a given labeling can be expressed as
independent and identically distributed (i.i.d.) wiRr{Bj = 1o
u} = 0.5,¥j andu € {0,1}, and thus, the symbols are Pr = —ZPj, (6)
equiprobable, i.ePr{X = s;} = 1/M, Vi. j

In this paper we consider a discrete time memorylewhere usmg the law of total probablhty, the BER for thith

noise sample is a zero-mean Gaussian random variable with

variance Ny /2. The conditional probability density function

(PDF) of the channel output given channel input is b= Z;Pr{Bj 7 gl X = s "
py|x (ylz) = \/ie—v(y—mf’ (1) The BER for thejth bit position P; depends only on the
7T subconstellationsY; , and X;; (cf. (3)—(5)), i.e.,P; is a
where the average signal to noise ratio (SNR) is defined fagiction of the jth column of C. The matrixC consists of
v & E,/Nog = 1/Ny. m columns, one column for each bit position. We refer to
The observation is used by the demodulator to decide othese colgmns as patterns whigh are formally defined below.
the received binary sequence, i.e., to prochiee s, ..., b,,].  We define a bit pattern (or simply pajgem) as a lengyth-
In this paper we consider two demodulators to obfaiinom Pinary vectorp = [pi,...,pu| € {0,1}* with Hamming
y, which are described in the next section. weight M/2. The labelingC can now be defined byn

patterns, each corresponding to one columrCofWe index
the patterns ap,, with w being the decimal representation

C. Demodulators of the vectorp, i.e., w = Y7, 2M~ip, For example, for
The BD calculates (a posteriori) L-values for the bits = 4, the pattern0, 1,0, 1] is indexed ag;. The BER for
based on the observatiop i.e., the labelingC does not depend on the order of its columns,
and thus, the BER for the labeling is fully determined by
1;(y) £ log PriB; = 1Y =y} (2) @ set ofm patterns (indices)V = {wx,...,w,}. Examples
Pr{B; =0]Y =y} of common labelings and the patterns they consist of for 4-
Zmexj ) e~ y—2)? PAM and 8-PAM are given in Table Il. Based on the previous
= log D eX’ (=)’ (3) discussion, from now on we concentrate our analysis only on
x 3,0

patterns (and not on labelings).
forj =1,....mandX;, = {s; € X : ¢;; = u,Vi}. To To analyze the BER of a pattern (PBER), the observation
pass from (2) to (3) Bayes’ rule was used together with tf&®aceR is split into two disjoint decision regions, i.€/y =
i.i.d. assumption of the bits and the conditional PDF in (1{y € R : b=0}andy, = {y € R : b = 1} such that
The BD uses the L-values in (3) to make a decision on thé U Y1 = R. Using the definition of), and )1, the PBER
received bit according to the rule for the patternp = [p1,...,pa] can be rewritten as

jBD _ {1 if 1;(y) >0,

M
1
: 4 P=—> Pr{Y € Vs |X = s;}. 8
! 0 otherwise ) M; Y € Vp| si} (8)
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Fig. 1. L-values in (3) vs. the received signal for differenfor 8-PAM and the BD forpgs = [0, 1,0, 1,0, 1,0, 1]. Squares show the constellation points
and crosses show the thresholéls in Theorem 5. Gray and white areas indicafg and )1, resp. In (a) aty = 5.5 dB none of the seven thresholds is
virtual. At v =~ 4.9 dB, shown in (b), the threshold$; andp2 as well asBs and 87 become virtual, shown also in (c) far= 4 dB. At v ~ 2.2 dB, shown

in (d), 83 and 85 merge with3, and also become virtual.

By expressingP as in (8), it is clear that the PBER in (7) carwhere the functiori;(y) crosses the zero-level. Fig. 1 shows
be calculated using the decision regigmonly, as opposed to the BD thresholds forpg; = [0,1,0,1,0,1,0,1] for four
alternative approaches where (8) is expressed in termseof tlifferent SNR values. This figure shows that some thresholds

PDF of the L-values [27, eq. (19)]. can merge at low SNR and seem to disappear. To take this
effect into account, we define virtual thresholds as followvs
A. Decision Thresholds thresholdg,. is said to bevirtual at v < ~y if it merges with

One key element in the BER analysis presented in this pag&tother threshold, aty = o (i.e., 5 = S wheny = 1)
is the decision thresholdsDecision thresholds (or simply @nd does not exist at < 7o,
thresholds) for a given pattegnare the points that separate the
dhecision refgionﬁ for z/eros andé)nes, and thus, they determi) General Expression for One-Dimensional Constellations
the PBER for the BD/ABD in (8). For a given pattern we .
associate the threshok}, 7é tc() t)he bit ?/L\;lenp #Iﬂ W The BER expression for the ABD and ad-PAM constel-
Pk Pk 7" PEt1: ation with any labeling is well known and can be found in [7,

Since there is no thresholtl. whenp, = px.1, the number of . X . .

thresholds is at most/ — 1. The indices of+t1he thresholds for®9- (21)]. The PBER expression can easily be obtained in a

the patterrp form a set of indicesC, with 1 < || < M — 1 similar way. In [19, Theorem 2] the PBER expression for the
' - T " ABD was generalized to any one-dimensional constellation.

For example, the patterp;, = [0,0,1,1,0,1,1,0] hask = In the followina th lize thi oD {

{2,4,5,7}. K contains four elements indicating that there ar. D <fe_ (1 owing t eo;ﬁnj[s we ge??;altzrf 'ﬁ exp_resgi) |

four thresholds associated with the second, the fourtHifthe » [I1SL, assuming that none ot tne thres olilsis virtual,
and second, extending the results to the virtual thresredd.c

and the seventh bits in the patt .
ba e, Theorem 1:The PBER of the BD or the ABD using an

The thresholds for the ABD, which we denote By are bi di onal lati ith
independent ofy and placed at the midpoints between adjaceﬁf itrary one-dimensional constellation with a pattgrrean
e expressed as

constellation points with different binary labels, whiailéws

directly from (5). On the other hand, the thresholds for the 1 1 M
BD depend ony. We denote these thresholds By where P=5+47 3> 9ixQ ((Bk — 8i)V/ 27) , 9
to simplify the notation, the dependency onis omitted. i=1 kek

From (3) it is clear that the L-value is a function of thgyhere none of thes;, is virtual, andg; ,, € {+1} is
observation. For a given SNR the problem of finding the ’

thresholds can be solved graphically by finding the points ik = (Per1 — pr)(1 — 2pi). (10)
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. = TABLE |

Proof: We define a sell = {1,..., M —1}\ K. For each CLASSES OF PATTERNS FOR-PAM WITH THEIR CORRESPONDING
k' € K we define a valuggy,, equal to the nearest threshold REPRESENTATIVESp, TYPES, DECIMAL REPRESENTATIONS OF THE
B, i.e., B = B, wherek’ € K andk = argmin ., |j — ¥'| PATTERNSw, VECTORSa DEFINING THE PBERFOR THEABD, AND

L J ) THRESHOLDS FOR THE REPRESENTATIVES

Using the valuegy, k = 1,..., M —1 as thresholds, the proof
follows directly from [19, eq. (11)] using the fact that), = 0 q p Type| w a Thresholds
for k € K and anyi. O 1/10,0,1,1] |ARE|[3 12|[2, 2, 0]|B2=0

The following theorem shows that Theorem 1 also holds 51101 1 0] RE |6 9|4, 2, 2|8 = —p
when some of the thresholds become virtual, provided thatw 0,1,0,1] |ARE |5 10] (6, —4, 2] |fBs = —p1, Bz = 0
their values are chosen properly.

Theorem 2:When a thresholds;, merges with another

thresholdf;, at SNRv (i.e, fx becomes virtual), the PBER mitiplying the Q-function with the smallest argument,.i.e
for the BD can be calculated for any SNRs betgywsing (9)- , If two patterns have identical coefficients, the next
(10) with By = B S coefficientsa, should be compared, and so on.

Proof: We will show that the PBER in (9) is not affected Using (6) and (12), the average BER for af-PAM with

generality assumé’ > k. Let S; be the two terms in the Mt

inner sum in (9) associated with the thresholtisand 3;., - 1
© fisand 5 Po=— %" anQ((2n - 1)d\/27), (14)
n=1

ie.,

S; & gi,kQ((ﬂk — si)\/2’y) + g@k/Q((ﬂk, — si)\/2’y). wherea 2 [ay,...,ay—1] is the sum of vectora for them
(11) patterns used iC. The equation in (14) in fact corresponds
to [7, eq. (21)], where the value @f, is a scaled version of

Since fx and §y, are thresholds that merggy.1 = pir and  1he go-called differential average distance spectrifm \),
Pr = prr+1 Must hold. Using these relations in (10), we obtaip, an = 2M5(n, \)

gi.k = —9ik, Which used in (11) gives; = 0, Vi if 5 =

B O .
Remark 1:Theorem 2 holds regardless of whethsy is D. Bit Ffat.terns.

virtual or not. If 3, is not virtual fory < ~o, 8, must be set ~ We distinguish between three types of patterns [19]. The

to the value ofBy for v < ~o. If B is virtual for v < ~o, Patternp is said to bereflective (RE) if p; = par1-; for
B, = B can be set to any real value. i = 1,...,M. The patternp is said to beanti-reflective

(ARE) if p, = p, for ¢ = 1,..., M. Finally, the pattern
p is called asymmetric(ASY) if it is neither RE nor ARE.
C. BER for the ABD and/-PAM For example,ps, = [0,0,1,1,1,1,0,0] is an RE pattern,
For M-PAM and the ABD, the PBER can be expressetlss = [0,0,1,0,1,0,1,1] is an ARE pattern, ang,;; =
as a bit-wise version of [7, eq. (21)] by using mid-points &, 1,0,1,1,0,0,0] is an ASY pattern.
thresholds and combining-functions with the same argu- Asitwas shownin [19, Sec. IV], fak/-PAM all the length-

ments in (9) M bit patterns can be grouped infp classes, where
M-1 1 M M/2 M/Q)
-1 S _
P=— 3 (- 1ay), (12) Q=1 (i) + Gi) +2 (15)
n=1 All the patterns within one class have the same PBER and each
where class is represented by a unique class ingdex{1,...,Q},
M1 shown in the first column of Tables | and lll. All the patterns
ay, = Z (Prst — pi)(1 = 2prs1—n) within one class have the same PBER. BdPAM there are

six patterns which are grouped infp= 3 classes as shown in
— (Prsoen — prr—n)(1 = 2pp11). (13) _TabIe I. As an example, one of the patterns of a class is_shown
in the second column. These patterns are catpdesentative
The valuess,, correspond to values in [7, eq. (22)] calculatednd are used to analyze the PBER of the patterns in the class.
for a pattern instead of a labeling and scaled by a fact®hree labelings that give different BER for 4-PAM are listed
2M. The element; is equal to twice the number of pairs ofin the first part of Table II.
constellation points at minimum ED whose bits are different For 8-PAM (M = 8), there are) = 23 classes of patterns,
(for a given pattern). For example; = 2 for patterns of the 11 of them are either reflective or anti-reflective and they ar
formp=10,...,0,1,...1] as there is only one pair of pointsshown in the first 11 rows of Table 11l and ordered from the

k=n

at minimum ED. best to worst PBER for high SNR, as predicted by the vectors
One direct consequence of (12) is that the veeio’® a. The 12 classes of asymmetric patterns are listed in the last
[a1,...,an—1] with a, given by (13) completely defines12 rows of Table Ill and also ordered in a similar way. As

the performance of the ABD fol/-PAM and allows us to shown in [19], there are 460 labelings that give differenBE
compare the performance of different patterns. From (12nd five of the most common ones are shown in the second
the PBER for high SNR is determined by the coefficiergart of Table Il (listed from best to worst).
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TABLE Il

CLASSES OF PATTERNS FOR-PAM WITH THEIR CORRESPONDING REPRESENTATIVEB, TYPES, DECIMAL REPRESENTATIONS OF THE PATTERN®),
VECTORSa DEFINING THE PBERFOR THEABD, AND THRESHOLDS FOR THE REPRESENTATIVES

SOME COMMON LABELINGS FOR4-PAM AND 8-PAM WITH THEIR

q P Type w a Thresholds
1][0,0,0,0,1,1,1,1] |ARE| 15 240 (2, 2 2 2 0, 0, 0| 81=0
2110,0,1,1,1,1,0,0]| RE 60 195 (4, 4, 2, 2,2 -2 0|8 =P =f(t2)
3[[1,1,1,0,1,0,0,0] | ARE| 23 232 [6,-2, 2 0, 2, 0, 0|85 = —Bs=f(ta), B1 =0
4][0,1,1,1,0,0,0,1] | ARE| 113 142 | [ 6, 4, 4,4, 2,2, 2| | fr = —B1 = f(t2), f1 =0
5000,0,1,1,0,0,1,1] | ARE| 51 204 (6, 6,4, 4, 2,2, 0]|fs=—P2=[(2), Bs =0
6][0,1,1,0,0,1,1,0]| RE| 102153 |[ 8, 6,-6,—4, 4, 2, 2] | Br = —B1 = f(t2), B5 = —fs = [(i3)
7100,0,1,0,1,0,1,1] | ARE| 43 212 [10, -6, 4,2, 0, 2, 0]]f6 = —f2 = [(t2),
Bs =—P3= f(ts), fa=0
8100,1,0,0,1,1,0,1] | ARE| 77 178 [0, 0,6, 2, 4,4, 2]|Br = —p1 = [(t2),
Bo=—P2=f(ts), B+ =0
9070,1,1,0,1,0,0,1] | ARE| 105 150 | [10, 0,4, 6,4, 2, 2] | B = —B1 = f(t2),
Bs =—P3=f(ts), B+ =0
10 [1,0,1,0,0,1,0, 1] RE 90 165 [12, —6, 0, 6,—06, 4, —2] Br =—p1 = f(t1),
Bo = —B2 = f(t3), Bs = —B3 = f(t2)
11 [07 1,0,1,0,1,0, 1] ARE 85 170 [147 —12,10, —8,6, —4, 2] Br=—p1 = f(tg), Be = —P2 = f(tg),
Bs=—P3=f(t1), B+=0
12[[0,0,0,1,1,1,1,0] | ASY |30 120 135 225 [ 4, 3, 3, 2,2, 1, 1] | 55, B
13[[0,0,0,1,1,1,0,1] |ASY |29 71 184226 [ 6, 1, 2,-3, 1, 0, 1]|Bs,Be, 07
14[[0,0,0,1,1,0,1,1] | ASY | 27 39 216 228 [ 6, 2,-3, 1, 1, 1, 0] | Bs, 55, fo
15[[0,0,1,1,1,0,0,1] | ASY |57 99 156 198 |[ 6, 5, 0,3, -3, 2, 1] B2, 05, 07
16[[0,0,1,0,1,1,1,0] | ASY |46 116 139 209 | [ 8, 1,2, -1, 3, -2, —1] | B2, B3, B, B
17[[0,0,1,1,1,0,1,0] | ASY |58 92 163 197 | [ 8, 1,3, 2, 2, —1, 1] | Ba, 35, o, B
18[[0,1,0,0,1,1,1,0] | ASY |78 114 141 177 | [ 8, 2, —1, -1, 1,3, —2] | B1, B2, Bu, B
19[[0,0,1,1,0,1,1,0] | ASY | 54 108 147 201 | [ 8, 3,6, 3, 3,2, 1] | Ba, Ba, Bs, B
20([0,0,1,0,1,1,0,1] | ASY |45 75 180 210 | [10, -3, -3, 6,—4, 1, 1] | Bz, B3, Ba, B, B
21][0,0,1,1,0,1,0,1] | ASY |53 83 172 202| [10, -3, 1, 0,2, 1, 1]| B2, B4, Bs, Be, B~
22]10,1,0,1,1,0,0,1] | ASY | 89 101 154 166 | [10, 0,3, 1, 1,3, 2|| A1, B2, B3, s, fr
23[(0,1,0,1,0,1,1,0] | ASY | 86 106 149 169 | [12, —6,3, —1, —1, 3, 2] | B1, B2, B3, Ba Bss o7

TABLE Il

A. Threshold Computation

CORRESPONDING PATTERNS INDICEBY, AND VECTORS & DEFINING THE

BERFOR THEABD
M | Labeling w «
4 | BRGC {3,6} [6,4,—2]
4 NBC {3,5} [8,—2,2]
4 AGC {5,6} [10, —2,0]
8 | BRGC | {15,60,102} |[14,12,-2,0,2,0, —2]
8 | FBC | {15,60,90} [[18,0,4,10,—-8,2,—2]
8| NBC | {15,51,85} |[22,—4,8,—10,8,—2,2]
8 | BSGC |{105,60,102} | [22,10, 8,4, —2, —2,0]
8 | AGC | {90,105,85} |[36,—18,6,4,—4,—2,2]

IV. THRESHOLDS FOR THEBD

The problem of finding the thresholds, for the BD
is equivalent to finding the solutions dfy) = 0. In the
following theorem we show how this can be done f6rPAM
constellations.

Theorem 3:The thresholds for the BD andl/-PAM con-
stellations with a patterp are

Br = T log 2p, (16)
wherez, are the real and positive solutions of
M
Y o p AT, (17)
=1
and
A= 8 (18)

Proof: Using (3),1(y) = 0 is equivalent toe!¥) = 1,

In this section, we show that the thresholds for the BD camhich can be restated as finding roots of

be found by solving afiM — 1)th power polynomial equation

and give a closed-form solutions fafrPAM and 8-PAM with
RE and ARE patterns.

M
o) & 3 ez
i=1

(19)
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Fig. 2. Thresholdgs,, in (16) for 16-PAM with the ASY patternp5-,5 =
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,0, 1] obtained by solving (17) numerically.
The constellation points are shown with squares. Gray ari\ateas indicate
Yo and Y, resp.

where the definition of thé//-PAM symbols was used. Fac-
torizing (19) gives
h(y) = e~y = 2ydy(M—1)—yd®

M
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Theorem 4:The thresholdss, for any pattern ford-PAM,
as listed in the last column in Table |, can be expressed as

p1 = —Ps, (21)
B2 =0, (22)
1 1+ p1psA+/(1+p1paA)? — 4A2
where A is given by (18).
Proof: The proof is given in Appendix A. O

Theorem 4 gives closed-form expressions for any pattern
for 4-PAM, and thus, it allows us to compute the BER for
all the labelings in the first part of Table Il. The results in
Theorem 4 can be shown to coincide to those in [4, eq. (10)]
when the BRGC is considered.

C. Thresholds foR-PAM

For 8-PAM, finding the thresholds for the BD requires
solving a 7-power polynomial equation given by (17). This
problem in general does not have a closed-form solution.
However, as the following theorem shows, (17) can be reduced
to a cubic equation for RE or ARE patterns. These patterns are
of great value because all the most commonly studied ladpelin
(e.g., BRGC, NBC, FBC, BSGC, AGC) can be composed from
them (cf. Table II). The proposed technique, however, do¢s n
work for ASY patterns and thresholds for ASY patterns can
be obtained, for instance, numerically.

Theorem 5:The thresholdg), for the patterns in the classes

.Zﬁiezwdy(i_l)e_&dz<M/2—w<§w/z+1—w. (20) g=1,2,...,11 for 8-PAM can be expressed as
Pl t,) ifk=5,6,7,
. o R S Bl (24)
Using (18) in (20) together with substitutian= e*7*¥, (17) 0 if k=4,
is obtained by settindi(y) = 0 and removing the nonzero
factor preceding the summation in (20). The expression in £t 2 Llog [t + V1t]* —4 (25)
(17) is a polynomidl of degreeM — 1, and thus, it always dyd 2 ’
hasM — 1 roots. Because of the substitution= ¢**%, only .
. . with
the positive (and real) roots need to be considered. v
0 t 2 Vl 3(T+2 2C+€/ZB), (26)
Theorem 3 gives a general expression for finding the 6p1 A B
thresholds forM-PAM with any patternp. After finding the A 1 V20 +V3)C  1—-+/3y
i i 2= (T~ - B, (27)
roots of (17), the thresholds, may easily be obtained from 61 A3 B Y2
_(16). The main p_roblem is that finding the _roots of (17) L 1 21 -V3)C 143
in closed-form is, in general, not always possible. Howgver t3 = EWE T — Iz — 7 B, (28)
the roots can always be found numerically. Fig. 2 illus- P1
trates the thresholds for6-PAM with the patternp,.,; = A is given by (18),
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,0, 1] obtained by solving (17) T 2905 A3 — 5 29
numerically. In the following two sections we show how this (Ps p2), (29)
problem can be solved analytically fa-PAM and 8-PAM B2 f’/ /D2 — 4C3 — p1ps D, (30)
with RE or ARE patterns. O 2745 1 pyps A — 3ppsA + 1, (31)
D 27p1 A% — 12p1paps A® — 18p3 A*
B. Thresholds for-PAM + 3p1 (1 + 9paps) A® — popsps A + 2p1popis,  (32)

The following theorem shows how the thresholds are fourhd the relationship betweénandn in (24) for the different

for 4-PAM with any pattern.

interestingly, sinceM is even, fori = 1,..., M with i # M/2 and
i # M /241, the powers of4 in (17) are the so-called “triangular numbers”.

classesq is listed in the last column of Table Ill. As the
relationship between andk depends on the particular pattern,
the representative of the class (the second column of Tdble |
should be used in the presented equations.
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) Fig. 4. The PBER foB-PAM with ARE (¢ = 3) and RE ¢ = 10) patterns
Fig. 3. The thresholds fgp,¢5 = [1,0,1,0,0,1,0,1] (¢ = 10) for 8-PAM  ang ASY patternsq = 16, 22). Solid lines correspond to the BD and dashed
in Theorem 5 vs. SNR. Virtual thresholds are shown with dadies. The jines to the ABD. The threshold for the BD were obtained usTingorem 5

thresholds for the ABDS;, and the constellation points (squares) are alsgyr ¢ = 3, 10 (the thresholds fog = 10 are shown in Fig. 3) and solving (17)
shown. Gray and white areas indic@¥g and )1, resp. numerically forq = 16, 22.

Proof: The proof is given in Appendix B. [ ¢ = 16,22. For very low SNR the gap between the BD and the
Theorem 5 shows how to analytically obtain the thresholgBD can reach up to several dB, however, this gap decreases
for the BD with 8-PAM and any RE or ARE pattern, forwhen the SNR increases. The same conclusion can be drawn
instance, thresholds shown in Fig. 1. Using these resultgy all other patterns except far= 1, as in this case only one
the PBER can be calculated using (9), which gives PBERreshold exists);/» = 0 for all SNR. Hence, fo = 1 the
expressions for 1 out of 23 classes, or equivalently, fai6  BD and the ABD have the same performancef6+PAM. To
different labelings, including the 5 shown in the second pagonclude, we present in Fig. 5 the BER #PAM with the
of Table II. labelings in Table II. From the presented results we corelud
Remark 2:1n the high SNR regime, i.ey — oo, all the that the BD outperforms the ABD, however, for any BER of
thresholds in Theorems 4 and 5 tend to midpoints, i.e., theactical interest (below.1), the difference between the BD
same constant thresholds used in the ABD for all SNR. Thigid the ABD is negligible.
fact can easily be proven analytically ft#PAM by evaluating
lim,, . B3 and applying I'Hopital’s rule. Fog-PAM a similar VI. CONCLUSIONS
proof exists, however, in this case it is not straightfordvdue o
to the complexity of the threshold expressions. These tesul e Proposed a general approach for estimating the per-
can be intuitively understood from the fact that the max-li%mance of the optimal bit-wise demodulator and presented
approximation in (5) becomes more precise when the SNgPSed-form expressions for the BER farPAM and 8-

increases, and hence, the thresholds for the BD and ABD &M with different labelings. We conclude that a suboptimal
expected to coincide when — oco. symbol-wise demodulator shows no loss compared to the

optimal demodulator for all the SNR of interest, which jtied
its use in practical systems.
All results presented in this paper can be easily general-
In Fig. 3 we show the thresholds given by Theorem 5 fazed to any/N-dimensional constellation obtained as a direct
the pattermp,45; (¢ = 10) for 8-PAM. The figure is symmetric product of N PAM constellations, with the labeling obtained
with respect to zero due to the symmetry of the pattern. At a direct product of the corresponding PAM labelings. This
~ = 5.3 dB the pairs of thresholds, and 53, and3; and3s  generalization includes 16-QAM and 64-QAM labeled with
merge and become virtual for ajl < 5.3 dB. All the virtual the BRGC.
thresholds shown with dashed lines satisfy the conditions i The proposed technique for finding the zero crossings of
Theorem 2. As expected (see Remark 2), wher oo, the the L-values for8-PAM works only for reflective or anti-
BD thresholds coincide with the ABD thresholds. reflective patterns, which includes 11 out of 23 classes of
The PBER for8-PAM with some selected patterns from Tapatterns. Extending these results to the remaining clases
ble Il using (9) is presented in Fig. 4. The thresholds afeatterns for8-PAM is left for further investigation as well as
calculated analytically fory = 3,10 and numerically for generalizing the results to arbitraf. An extension of the

V. NUMERICAL RESULTS
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thresholds, which together wifh p; = —1 gives (23). The use
of |- | does not affect the result when the roots are real. When
the roots are complex, their absolute values are equal to one
(can be seen from (36)), which gives two virtual thresholds
81 = B3 = 0 merging with the zero-threshold, at around
—1.63 dB. Theorem 2 allows the use of these thresholds in
the calculation of the PBER.

Finally, for ¢ = 2 (wherep1p, = —1 andpipy = 1) 21 =
—1, which results in no threshold. The two roots in (36) are
positive for all SNR, resulting in the thresholds and 83 by
using (16). As the roots are positive the use| of does not
affect the result, which gives (23). This completes the firoo

BER

10 F -

APPENDIXB
PROOF OFTHEOREMS5

Define the functiom(z) as

h(z) = pgAS2T + prA325 + P AzD + ps2t 4 Py’

7 [dB] § § }
+ pg/lz2 + p2A32 + p1A6. (37)
Fig. 5. The BER for8-PAM with the 5 labelings in Table Il. Solid lines . .
correspond to the BD and dashed lines to the ABD. According to Theorem 3 for8-PAM with patternp =

[p1,p2,...,ps] equationh(z) = 0 needs to be solved in
order to find the thresholds. For RE and ARE patterns,
= +ppmy1-i, Vi, where the upper and the lower signs
respond to RE and ARE patterns, resp. Using this property
h(z) for RE and ARE patterns is

present system model to other channel models is also left ﬁdgr
future work.

APPENDIX A h(z) = p1A%27 + paA®20 4 pg A5 + pyzt
PROOF OFTHEOREM 4 + a2’ £ Py Az £ pa APz £ p1 AC. (38)

Define the functiom.(z) as Factorizing (38) gives

h(z) =(z%1) (131/1626 + [132/13 :Fﬁ1A6} 2°
According to Theorem 3, fod-PAM with a patternp = [51A° F 5o A% + psA] 2% + [F1 A+ o AP F ps A+ g 2°

[p1,p2, 3, p4], €QUationh(z) = 0 needs to be solved inorder . o _ . .5 . 9 s 43— . 46 . 16
to find the thresholds. The patterns fPAM are either RE T [PLA° F p2 A+ A] 2° + [p2A° F LA°] 2 + 1 A7).

h(z) = paAz® 4 p3z? + Poz + prA. (33)

(Pi = Prmy1—i, Vi) or ARE B, = —par+1—i, Vi). Therefore (39)
h(2) = o AZS + poz® & oz & 1 A, (34) Rearranging the terms in (39)z) can be written as
_ .3 ~ 6.3 -3
where the upper and the lower signs correspond to RE and h(z) = Zv (Z:E 1)v(p16A (22 + Z_z )
ARE patterns, resp. Usingf = 1 and the fact thap, s = +1 + [92A4° F 91 A (% + 277)
for RE and ARE patterns, resp(z) can be factorized as + [p1A® F poA® + psA] (2 + 271
h(z) = pa (2 + prpa)(A2% + (1 — Aprpa)z + A). (35) + [FP1A” + 52 A’ ¥ psA + pa]) - (40)
Solving h(z) = 0 gives the three roots; = —p; 4 and Using the substitution
_ -1
_ P1paA = iz £/ (P1aA — pip2)® — 4A2 Hz) =242, (41)
223 = . (36) :
24 and the relations
For ¢ = 1 (wherepipy, = —1 and p1p2 = 1) the root 3 .3
z; = 1, that used in (16) gives the threshald = 0. The t(ZQ) o t2(z) +3t(2), (42)
other two roots in (36) are complex for all SNR and do not t(z7) =t°(2) + 2, (43)
result in thresholds. (40) can be expressed as
In a similar way, forq = 3 (where p;po = —1 and
pips = —1) B2 = 0. When A < 1/3, or equivalently, when  h(z) = z°(z £ 1) (p1 A% (2) + [p2A® F p1A°] £2(2)
y z_t_5log 3/é|3t_z _—%[h63 th,I the rc()jots kin (3_6) arlti5 reva\L/Ihand + [—2]51A6 T P2 A° +153A} t(2)
positive resulting in thresholds;, and s by using (16). en " [ip1A6 AR T A +134D . (44)

A > 1/3 (low SNR), the roots in (36) are complex and can
no longer be used in (16) for calculating the thresholds. ToFinding positive roots ofh(z) = 0 can now be done
overcome this|z;| and|z3| are used in the calculation of theanalytically. For ARE patterns the second factor in (44)egiv
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a root equal to one resulting ify = 0. The roots of the last [7]
factor in (44) need to be found. As a first step we solve it
with respect tot(z), where the roots,, are shown in (26)- (g
(28), wheret1 was replaced by-p,ps to distinguish between
RE and ARE patterns. As should be real and positive, only o]
real and positive,, need to be considered. Two out of three
rootst,, may combine into a complex conjugated couple, but
the third root is always real. Every positive ragt gives two  [10]
roots forz in (39), which can be found from (41) as

tn £V/t,2 —4 H%}

2 b)
13
wherezy,,—1 = 1/29,. Due to (16) and the symmetry of the[ ]

patterns, these two roots give the two threshglds= —5s_,
which justifies the first equality in (24). Whe, is real and [14]
t, > 2, the roots in (45) are positive and give thresholds
B = —fBs_i. Because of,, is real and the roots,,,_; and [15]
29, @re positive, the use df | (three times) in (25) does not
change the result. By analyzing all the roots the thresholds [1¢]
were found and listed in Table Ill, where the last column show
the relation between the threshgld and the rootg,, shown
in (26)—(28).

For the listed thresholds in Table Ilt,, in (26)—(28) is
never real and negative, howewugrcan be either complex or
real with 0 < ¢, < 2 for somey < ~p, resulting in virtual
thresholdss,, and Ss_. In what follows, we show that these
thresholds are equal to each other when using (25), i.ey, tHE]
fulfill the conditions in Theorem 2. First, consider the case
when t,, is real but0 < ¢, < 2. In this casez,,_; and [20]
2o, are complex with unit magnitude and according to (24),
the corresponding thresholdg = —(s_;, are equal to zero. [21]
By analyzing the thresholds for all the RE and ARE patterns,
we find thatgs; = —p5 for ¢ = 3,6,9,11 and 5 = —f2 (22]
for ¢ = 5, which are separated by either no threshold or by
the thresholds, 0. These thresholds can be used in (9[)
according to Theorem 2. 23]

Second, consider the case whgnis complex. One of the
other two roots of (44}, giving B = —fBs_x/ is such that [24]
tn = t,*, which means thatt, | = |t,/|. This leads to two
pairs of the threshold8;, = 8, and Bs_i, = Bs—i. Revising [25]
the thresholds for all the RE and ARE patterns we conclude
that corresponding thresholds afg = —f2 and8; = —f
forg = 8,11 and 85 = —p3 and g = — 3, for ¢ = 7,10.
These thresholds can be used in (9) according to Theorem[zg.

22n—1,2n = (45)

[17]

(18]

[26]
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