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Abstract—The optimal bit-wise demodulator for M -ary pulse
amplitude modulation (PAM) over the additive white Gaussian
noise channel is analyzed in terms of uncoded bit-error rate
(BER). The BER analysis is based on studying the bit patterns
that form a labeling. New closed-form BER expressions for4-
PAM with any labeling are developed. Moreover, closed-form
BER expressions for 11 out of 23 possible bit patterns for8-PAM
are presented, which enable us to obtain the BER for8-PAM with
some of the most popular labelings, including the binary reflected
Gray code and the natural binary code. Numerical results show
that, regardless of the labeling, there is no difference between
the optimal demodulator and the symbol-wise demodulator for
any BER of practical interest (below 0.1).

Index Terms—Additive white Gaussian noise channel, binary
reflected Gray code, bit error probability, bit-interleaved coded
modulation, demapper, demodulator, LLRs, logarithmic likeli-
hood ratio, pulse-amplitude modulation, uncoded transmission.

I. I NTRODUCTION AND MOTIVATION

Current wireless communication systems are based on the
bit-interleaved coded modulation (BICM) paradigm introduced
in [1] and later studied in [2], [3]. One key element in
these systems is the demodulator which calculates logarith-
mic likelihood ratios (LLR, also known as L-values) for the
received bits, which are then passed to the channel decoder.
The calculation of L-values is crucial in many other coded
systems. The coded performance analysis of BICM systems is
generally not straightforward and is usually carried out either
numerically by Monte-Carlo simulation or in terms of lower
and upper bounds [2, Sec. 4], [3, Ch. 4]. In this paper, we
analyze theuncodedperformance of bit-wise demodulators
over the additive white Gaussian noise (AWGN) channel.

The optimal bit-wise demodulator (BD) minimizing the
BER implies the calculation of (exact) L-values for the re-
ceived bits. The uncoded performance of such a demodulator
has been studied in [4], where closed-form expressions for the
BER for 4-PAM with the binary reflected Gray code (BRGC)
[5]–[7] are presented. Due to the complexity of the BD, the
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calculation of L-values in practical systems is usually done
based on the so-called max-log approximation [8, eq. (5)],
[9, eq. (1)]. We call this demodulator the approximate BD
(ABD). The ABD is equivalent to the symbol detector in terms
of uncoded BER [10, Sec. IV-A], whose performance is well
documented in literature, e.g., [11, Ch. 5], [12, Ch. 10], [6],
[13]–[18] and references therein.

It is well known that the uncoded BER of one-dimensional
constellation can be expressed as a sum of Gaussian Q-
functions, cf. [11, Ch. 5], [12, Ch. 10] and references therein.
The arguments of the Q-functions depend on the points that
separate the decision regions associated with different bits.
We refer to these points as thresholds. In [19], we generalized
the BER expression to any one-dimensional constellation. The
computation of the thresholds for the BD—the optimal bit-
wise demodulator—is in general complicated and unknown. In
this paper, however, we show that this problem can be solved
analytically for4-PAM and any labeling, extending the results
presented in [4]. Moreover, we also analytically calculatethe
thresholds for8-PAM with some relevant labelings, including
the BRGC, the natural binary labeling (NBC) [20, Sec. II-
B], the folded binary code (FBC) [16] [20, Sec. II-B], the
binary semi-Gray code (BSGC) [20, Sec. II-B], and the anti-
Gray code (AGC) [21]. Numerical results show that optimal
and suboptimal demodulators are different in terms of the BER
only at a very low SNR. At BER below0.1 there is no notable
difference between them.

The rest of the paper is organized as follows. In Sec. II we
introduce the notation convention, the system model, and the
two demodulators. In Sec. III the BER analysis is presented.
The patterns that form a labeling are studied in Sec. III-D. The
threshold computation for the BD is shown in Sec. IV and the
numerical results in Sec. V. The conclusions are drawn in
Sec. VI.

II. PRELIMINARIES

A. Notation Convention

In this paper the following notation is used. Lowercase
lettersx denote real or complex scalars and boldface letters
x denote a row vector of scalars. The complex conjugate
of x is denoted byx∗. Blackboard bold lettersX denote
matrices with elementsxi,j in the ith row and thejth column
and (·)T denotes transposition. Calligraphic capital lettersX
denote sets, where the set of real numbers is denoted by
R. The binary complement ofx ∈ {0, 1} is denoted by
x̄ = 1 − x and its bipolar representation by̌x = 2x − 1.
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Binary addition (exclusive-OR) of two bitsa andb is denoted
by a ⊕ b. Random variables are denoted by capital lettersX
and probabilities byPr{·}. The Gaussian Q-function is defined
asQ(x) ,

(

1/
√
2π

) ∫∞

x
exp(−t2/2) dt.

B. System Model

In this paper we analyze a system where a vector of binary
datab = [b1, . . . , bm] is fed to a modulator. The modulator
carries out a one-to-one mapping fromb to one of theM
constellation pointsx ∈ X = {s1, . . . , sM} for transmission
over the physical channel, whereM = 2m. We assume that
s1 < s2 < . . . < sM .

The modulator is determined by the constellation and its
binary labeling. A binary labeling is specified by the matrix
C = [cT1 , . . . , c

T

M ]T of dimensionsM by m, where theith row
ci = [ci,1, . . . , ci,m] is the binary label of the constellation
point si.

For PAM constellations,si = −d(M − 2i + 1), i =
1, . . . ,M , whered =

√

3/(M2 − 1) to normalize the constel-
lation to unit average energy, i.e.,Es = (1/M)

∑M
i=1 s

2
i = 1.

We assume bits transmitted in thejth position Bj to be
independent and identically distributed (i.i.d.) withPr{Bj =
u} = 0.5,∀j and u ∈ {0, 1}, and thus, the symbols are
equiprobable, i.e.,Pr{X = si} = 1/M , ∀i.

In this paper we consider a discrete time memoryless
AWGN channel with outputy = x+ η, wherex ∈ X and the
noise sampleη is a zero-mean Gaussian random variable with
varianceN0/2. The conditional probability density function
(PDF) of the channel output given channel input is

pY |X(y|x) =
√

γ

π
e−γ(y−x)2, (1)

where the average signal to noise ratio (SNR) is defined as
γ , Es/N0 = 1/N0.

The observationy is used by the demodulator to decide on
the received binary sequence, i.e., to produceb̂ = [b̂1, . . . , b̂m].
In this paper we consider two demodulators to obtainb̂ from
y, which are described in the next section.

C. Demodulators

The BD calculates (a posteriori) L-values for them bits
based on the observationy, i.e.,

lj(y) , log
Pr{Bj = 1|Y = y}
Pr{Bj = 0|Y = y} (2)

= log

∑

x∈Xj,1
e−γ(y−x)2

∑

x∈Xj,0
e−γ(y−x)2

, (3)

for j = 1, . . . ,m and Xj,u , {si ∈ X : ci,j = u, ∀i}. To
pass from (2) to (3) Bayes’ rule was used together with the
i.i.d. assumption of the bits and the conditional PDF in (1).
The BD uses the L-values in (3) to make a decision on the
received bit according to the rule

b̂BD
j =

{

1 if lj(y) ≥ 0,

0 otherwise.
(4)

The implementation of the BD in its exact form (3) is
complicated, especially for large constellations, as it requires
calculation of the logarithm of a sum of exponentials. To
overcome this problem, approximations are usually used in
practice. The most common approximation is the so-called
max-log approximation (log

∑

i e
λi ≈ maxi λi) [1, eq. (3.2)],

[2, eq. (9)], [8, eq. (5)], [22, eq. (8)], which used in (3) gives

l̃j(y) = γ

[

min
x∈Xj,0

(y − x)2 − min
x∈Xj,1

(y − x)2
]

. (5)

The use of the max-log approximation transforms the nonlin-
ear relationship (3) into a piece-wise linear relationship(5),
as previously shown in e.g., [23, Fig. 3], [24, eqs. (11)–(14)].
Simplifications of (5) were studied in [25] and [26].

The ABD is defined as the demodulator that applies the
same decision rule (4) based on L-values calculated by (5). As
mentioned in [10, Sec. IV-A] and proved in [19, Theorem 1]
the ABD is equivalent to the symbol detector in terms of
uncoded BER.

III. BER FOR ONE-DIMENSIONAL CONSTELLATIONS

The BER for a given labelingC can be expressed as

PC =
1

m

m
∑

j=1

Pj , (6)

where using the law of total probability, the BER for thejth
bit positionPj , Pr{B̂j 6= bj |Bj = bj} can be written as

Pj =
1

M

M
∑

i=1

Pr{B̂j 6= ci,j |X = si}. (7)

The BER for thejth bit position Pj depends only on the
subconstellationsXj,0 and Xj,1 (cf. (3)–(5)), i.e.,Pj is a
function of thejth column ofC. The matrixC consists of
m columns, one column for each bit position. We refer to
these columns as patterns which are formally defined below.

We define a bit pattern (or simply pattern) as a length-M
binary vectorp = [p1, . . . , pM ] ∈ {0, 1}M with Hamming
weight M/2. The labelingC can now be defined bym
patterns, each corresponding to one column ofC. We index
the patterns aspw with w being the decimal representation
of the vectorp, i.e., w =

∑M
i=1 2

M−ipi. For example, for
M = 4, the pattern[0, 1, 0, 1] is indexed asp5. The BER for
the labelingC does not depend on the order of its columns,
and thus, the BER for the labelingC is fully determined by
a set ofm patterns (indices)W = {w1, . . . , wm}. Examples
of common labelings and the patterns they consist of for 4-
PAM and 8-PAM are given in Table II. Based on the previous
discussion, from now on we concentrate our analysis only on
patterns (and not on labelings).

To analyze the BER of a pattern (PBER), the observation
spaceR is split into two disjoint decision regions, i.e.,Y0 =
{y ∈ R : b̂ = 0} and Y1 = {y ∈ R : b̂ = 1} such that
Y0 ∪ Y1 = R. Using the definition ofY0 andY1, the PBER
for the patternp = [p1, . . . , pM ] can be rewritten as

P =
1

M

M
∑

i=1

Pr{Y ∈ Yp̄i |X = si}. (8)
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Fig. 1. L-values in (3) vs. the received signal for differentγ for 8-PAM and the BD forp85 = [0, 1, 0, 1, 0, 1, 0, 1]. Squares show the constellation points
and crosses show the thresholdsβk in Theorem 5. Gray and white areas indicateY0 andY1, resp. In (a) atγ = 5.5 dB none of the seven thresholds is
virtual. At γ ≈ 4.9 dB, shown in (b), the thresholdsβ1 andβ2 as well asβ6 andβ7 become virtual, shown also in (c) forρ = 4 dB. At γ ≈ 2.2 dB, shown
in (d), β3 andβ5 merge withβ4 and also become virtual.

By expressingP as in (8), it is clear that the PBER in (7) can
be calculated using the decision regionY0 only, as opposed to
alternative approaches where (8) is expressed in terms of the
PDF of the L-values [27, eq. (19)].

A. Decision Thresholds

One key element in the BER analysis presented in this paper
is the decision thresholds. Decision thresholds (or simply
thresholds) for a given patternp are the points that separate the
decision regions for zeros and ones, and thus, they determine
the PBER for the BD/ABD in (8). For a given patternp, we
associate the thresholdβk ∈ R to the bitpk whenpk 6= pk+1.
Since there is no thresholdβk whenpk = pk+1, the number of
thresholds is at mostM − 1. The indices of the thresholds for
the patternp form a set of indicesK, with 1 ≤ |K| ≤ M − 1.
For example, the patternp54 = [0, 0, 1, 1, 0, 1, 1, 0] hasK =
{2, 4, 5, 7}. K contains four elements indicating that there are
four thresholds associated with the second, the fourth, thefifth,
and the seventh bits in the patternp54.

The thresholds for the ABD, which we denote bỹβ, are
independent ofγ and placed at the midpoints between adjacent
constellation points with different binary labels, which follows
directly from (5). On the other hand, the thresholds for the
BD depend onγ. We denote these thresholds byβ, where
to simplify the notation, the dependency onγ is omitted.
From (3) it is clear that the L-value is a function of the
observation. For a given SNR the problem of finding the
thresholds can be solved graphically by finding the points

where the functionlj(y) crosses the zero-level. Fig. 1 shows
the BD thresholds forp85 = [0, 1, 0, 1, 0, 1, 0, 1] for four
different SNR values. This figure shows that some thresholds
can merge at low SNR and seem to disappear. To take this
effect into account, we define virtual thresholds as follows. A
thresholdβk is said to bevirtual at γ < γ0 if it merges with
another thresholdβk′ at γ = γ0 (i.e., βk = βk′ whenγ = γ0)
and does not exist atγ < γ0.

B. General Expression for One-Dimensional Constellations

The BER expression for the ABD and anM -PAM constel-
lation with any labeling is well known and can be found in [7,
eq. (21)]. The PBER expression can easily be obtained in a
similar way. In [19, Theorem 2] the PBER expression for the
ABD was generalized to any one-dimensional constellation.
In the following theorems we generalize this expression to the
BD, first, assuming that none of the thresholdsβk is virtual,
and second, extending the results to the virtual threshold case.

Theorem 1:The PBER of the BD or the ABD using an
arbitrary one-dimensional constellation with a patternp can
be expressed as

P =
1

2
+

1

M

M
∑

i=1

∑

k∈K

gi,kQ
(

(βk − si)
√

2γ
)

, (9)

where none of theβk is virtual, andgi,k ∈ {±1} is

gi,k , (pk+1 − pk)(1− 2pi). (10)
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Proof: We define a set̄K = {1, . . . ,M−1}\K. For each
k′ ∈ K̄ we define a valueβk′ equal to the nearest threshold
βk, i.e.,βk′ = βk wherek′ ∈ K̄ andk = argminj∈K |j − k′|.
Using the valuesβk, k = 1, . . . ,M−1 as thresholds, the proof
follows directly from [19, eq. (11)] using the fact thatgi,k = 0
for k ∈ K̄ and anyi.

The following theorem shows that Theorem 1 also holds
when some of the thresholds become virtual, provided that
their values are chosen properly.

Theorem 2:When a thresholdβk merges with another
thresholdβk′ at SNRγ0 (i.e, βk becomes virtual), the PBER
for the BD can be calculated for any SNRs belowγ0 using (9)–
(10) with βk = βk′ .

Proof: We will show that the PBER in (9) is not affected
by the virtual thresholdβk if βk = βk′ . Without loss of
generality assumek′ > k. Let Si be the two terms in the
inner sum in (9) associated with the thresholdsβk and βk′ ,
i.e.,

Si , gi,kQ
(

(βk − si)
√

2γ
)

+ gi,k′Q
(

(βk′ − si)
√

2γ
)

.

(11)

Sinceβk andβk′ are thresholds that merge,pk+1 = pk′ and
pk = pk′+1 must hold. Using these relations in (10), we obtain
gi,k = −gi,k′ , which used in (11) givesSi = 0, ∀i if βk =
βk′ .

Remark 1:Theorem 2 holds regardless of whetherβk′ is
virtual or not. If βk′ is not virtual forγ < γ0, βk must be set
to the value ofβk′ for γ < γ0. If βk′ is virtual for γ < γ0,
βk = βk′ can be set to any real value.

C. BER for the ABD andM -PAM

For M -PAM and the ABD, the PBER can be expressed
as a bit-wise version of [7, eq. (21)] by using mid-points as
thresholds and combiningQ-functions with the same argu-
ments in (9)

P̃ =
1

M

M−1
∑

n=1

anQ
(

(2n− 1)d
√

2γ
)

, (12)

where

an =

M−1
∑

k=n

(pk+1 − pk)(1 − 2pk+1−n)

− (pk+2−n − pk+1−n)(1− 2pk+1). (13)

The valuesan correspond to values in [7, eq. (22)] calculated
for a pattern instead of a labeling and scaled by a factor
2M . The elementa1 is equal to twice the number of pairs of
constellation points at minimum ED whose bits are different
(for a given pattern). For example,a1 = 2 for patterns of the
form p = [0, . . . , 0, 1, . . . 1] as there is only one pair of points
at minimum ED.

One direct consequence of (12) is that the vectora ,

[a1, . . . , aM−1] with an given by (13) completely defines
the performance of the ABD forM -PAM and allows us to
compare the performance of different patterns. From (12),
the PBER for high SNR is determined by the coefficient

TABLE I
CLASSES OF PATTERNS FOR4-PAM WITH THEIR CORRESPONDING

REPRESENTATIVESp, TYPES, DECIMAL REPRESENTATIONS OF THE
PATTERNSw, VECTORSa DEFINING THE PBERFOR THEABD, AND

THRESHOLDS FOR THE REPRESENTATIVES

q p Type w a Thresholds

1 [0, 0, 1, 1] ARE 3 12 [2, 2, 0] β2 = 0

2 [0, 1, 1, 0] RE 6 9 [4, 2,−2] β3 = −β1

3 [0, 1, 0, 1] ARE 5 10 [6,−4, 2] β3 = −β1, β2 = 0

multiplying the Q-function with the smallest argument, i.e.,
a1. If two patterns have identical coefficientsa1, the next
coefficientsa2 should be compared, and so on.

Using (6) and (12), the average BER for anM -PAM with
a labelingC can be expressed as

P̃C =
1

mM

M−1
∑

n=1

αnQ
(

(2n− 1)d
√

2γ
)

, (14)

whereα , [α1, . . . , αM−1] is the sum of vectorsa for them
patterns used inC. The equation in (14) in fact corresponds
to [7, eq. (21)], where the value ofαn is a scaled version of
the so-called differential average distance spectrumδ̄(n, λ),
i.e., αn = 2Mδ̄(n, λ).

D. Bit Patterns

We distinguish between three types of patterns [19]. The
patternp is said to bereflective (RE) if pi = pM+1−i for
i = 1, . . . ,M . The patternp is said to beanti-reflective
(ARE) if p′i = p̄i for i = 1, . . . ,M . Finally, the pattern
p is called asymmetric(ASY) if it is neither RE nor ARE.
For example,p60 = [0, 0, 1, 1, 1, 1, 0, 0] is an RE pattern,
p43 = [0, 0, 1, 0, 1, 0, 1, 1] is an ARE pattern, andp216 =
[1, 1, 0, 1, 1, 0, 0, 0] is an ASY pattern.

As it was shown in [19, Sec. IV], forM -PAM all the length-
M bit patterns can be grouped intoQ classes, where

Q =
1

4

(

(

M
M/2

)

+
(M/2
M/4

)

+ 2M/2
)

. (15)

All the patterns within one class have the same PBER and each
class is represented by a unique class indexq ∈ {1, . . . , Q},
shown in the first column of Tables I and III. All the patterns
within one class have the same PBER. For4-PAM there are
six patterns which are grouped intoQ = 3 classes as shown in
Table I. As an example, one of the patterns of a class is shown
in the second column. These patterns are calledrepresentative
and are used to analyze the PBER of the patterns in the class.
Three labelings that give different BER for 4-PAM are listed
in the first part of Table II.

For 8-PAM (M = 8), there areQ = 23 classes of patterns,
11 of them are either reflective or anti-reflective and they are
shown in the first 11 rows of Table III and ordered from the
best to worst PBER for high SNR, as predicted by the vectors
a. The 12 classes of asymmetric patterns are listed in the last
12 rows of Table III and also ordered in a similar way. As
shown in [19], there are 460 labelings that give different BER
and five of the most common ones are shown in the second
part of Table II (listed from best to worst).
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TABLE III
CLASSES OF PATTERNS FOR8-PAM WITH THEIR CORRESPONDING REPRESENTATIVESp, TYPES, DECIMAL REPRESENTATIONS OF THE PATTERNSw,

VECTORSa DEFINING THE PBERFOR THEABD, AND THRESHOLDS FOR THE REPRESENTATIVES

q p Type w a Thresholds

1 [0, 0, 0, 0, 1, 1, 1, 1] ARE 15 240 [ 2, 2, 2, 2, 0, 0, 0] β4 = 0

2 [0, 0, 1, 1, 1, 1, 0, 0] RE 60 195 [ 4, 4, 2, 2,−2,−2, 0] β6 = −β2 = f(t2)

3 [1, 1, 1, 0, 1, 0, 0, 0] ARE 23 232 [ 6,−2, 2, 0, 2, 0, 0] β5 = −β3 = f(t1), β4 = 0

4 [0, 1, 1, 1, 0, 0, 0, 1] ARE 113 142 [ 6, 4, 4,−4,−2,−2, 2] β7 = −β1 = f(t2), β4 = 0

5 [0, 0, 1, 1, 0, 0, 1, 1] ARE 51 204 [ 6, 6,−4,−4, 2, 2, 0] β6 = −β2 = f(t2), β4 = 0

6 [0, 1, 1, 0, 0, 1, 1, 0] RE 102 153 [ 8, 6,−6,−4, 4, 2,−2] β7 = −β1 = f(t2), β5 = −β3 = f(t3)

7 [0, 0, 1, 0, 1, 0, 1, 1] ARE 43 212 [10,−6, 4,−2, 0, 2, 0] β6 = −β2 = f(t2),
β5 = −β3 = f(t3), β4 = 0

8 [0, 1, 0, 0, 1, 1, 0, 1] ARE 77 178 [10, 0,−6, 2, 4,−4, 2] β7 = −β1 = f(t2),
β6 = −β2 = f(t3), β4 = 0

9 [0, 1, 1, 0, 1, 0, 0, 1] ARE 105 150 [10, 0,−4, 6,−4,−2, 2] β7 = −β1 = f(t2),
β5 = −β3 = f(t3), β4 = 0

10 [1, 0, 1, 0, 0, 1, 0, 1] RE 90 165 [12,−6, 0, 6,−6, 4,−2] β7 = −β1 = f(t1),
β6 = −β2 = f(t3), β5 = −β3 = f(t2)

11 [0, 1, 0, 1, 0, 1, 0, 1] ARE 85 170 [14,−12, 10,−8, 6,−4, 2] β7 = −β1 = f(t2), β6 = −β2 = f(t3),
β5 = −β3 = f(t1), β4 = 0

12 [0, 0, 0, 1, 1, 1, 1, 0] ASY 30 120 135 225 [ 4, 3, 3, 2,−2,−1,−1] β3, β7

13 [0, 0, 0, 1, 1, 1, 0, 1] ASY 29 71 184 226 [ 6, 1, 2,−3, 1, 0, 1] β3, β6, β7

14 [0, 0, 0, 1, 1, 0, 1, 1] ASY 27 39 216 228 [ 6, 2,−3, 1, 1, 1, 0] β3, β5, β6

15 [0, 0, 1, 1, 1, 0, 0, 1] ASY 57 99 156 198 [ 6, 5, 0,−3,−3, 2, 1] β2, β5, β7

16 [0, 0, 1, 0, 1, 1, 1, 0] ASY 46 116 139 209 [ 8,−1, 2,−1, 3,−2,−1] β2, β3, β4, β7

17 [0, 0, 1, 1, 1, 0, 1, 0] ASY 58 92 163 197 [ 8,−1, 3,−2, 2,−1,−1] β2, β5, β6, β7

18 [0, 1, 0, 0, 1, 1, 1, 0] ASY 78 114 141 177 [ 8, 2,−1,−1,−1, 3,−2] β1, β2, β4, β7

19 [0, 0, 1, 1, 0, 1, 1, 0] ASY 54 108 147 201 [ 8, 3,−6, 3, 3,−2,−1] β2, β4, β5, β7

20 [0, 0, 1, 0, 1, 1, 0, 1] ASY 45 75 180 210 [10,−3,−3, 6,−4, 1, 1] β2, β3, β4, β6, β7

21 [0, 0, 1, 1, 0, 1, 0, 1] ASY 53 83 172 202 [10,−3, 1, 0,−2, 1, 1] β2, β4, β5, β6, β7

22 [0, 1, 0, 1, 1, 0, 0, 1] ASY 89 101 154 166 [10, 0,−3, 1, 1,−3, 2] β1, β2, β3, β5, β7

23 [0, 1, 0, 1, 0, 1, 1, 0] ASY 86 106 149 169 [12,−6, 3,−1,−1, 3,−2] β1, β2, β3, β4, β5, β7

TABLE II
SOME COMMON LABELINGS FOR4-PAM AND 8-PAM WITH THEIR

CORRESPONDING PATTERNS INDICESW , AND VECTORSα DEFINING THE

BER FOR THEABD

M Labeling W α

4 BRGC {3, 6} [6, 4,−2]

4 NBC {3, 5} [8,−2, 2]

4 AGC {5, 6} [10,−2, 0]

8 BRGC {15, 60, 102} [14, 12,−2, 0, 2, 0,−2]

8 FBC {15, 60, 90} [18, 0, 4, 10,−8, 2,−2]

8 NBC {15, 51, 85} [22,−4, 8,−10, 8,−2, 2]

8 BSGC {105, 60, 102} [22, 10,−8, 4,−2,−2, 0]

8 AGC {90, 105, 85} [36,−18, 6, 4,−4,−2, 2]

IV. T HRESHOLDS FOR THEBD

In this section, we show that the thresholds for the BD can
be found by solving an(M −1)th power polynomial equation
and give a closed-form solutions for4-PAM and8-PAM with
RE and ARE patterns.

A. Threshold Computation

The problem of finding the thresholdsβk for the BD
is equivalent to finding the solutions ofl(y) = 0. In the
following theorem we show how this can be done forM -PAM
constellations.

Theorem 3:The thresholds for the BD andM -PAM con-
stellations with a patternp are

βk =
1

4γd
log zn, (16)

wherezn are the real and positive solutions of

M
∑

i=1

p̌iA
(M/2−i)(M/2+1−i)

2 zi−1 = 0, (17)

and
A = e−8γd2

. (18)

Proof: Using (3), l(y) = 0 is equivalent toel(y) = 1,
which can be restated as finding roots of

h(y) ,

M
∑

i=1

p̌ie
−γ(y+d(M−2i+1))2 , (19)
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Fig. 2. Thresholdsβk in (16) for 16-PAM with the ASY patternp
45745

=
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1] obtained by solving (17) numerically.
The constellation points are shown with squares. Gray and white areas indicate
Y0 andY1, resp.

where the definition of theM -PAM symbols was used. Fac-
torizing (19) gives

h(y) = e−γy2−2γdy(M−1)−γd2

·
M
∑

i=1

p̌ie
4γdy(i−1)e−8γd2 (M/2−i)(M/2+1−i)

2 . (20)

Using (18) in (20) together with substitutionz = e4γdy, (17)
is obtained by settingh(y) = 0 and removing the nonzero
factor preceding the summation in (20). The expression in
(17) is a polynomial1 of degreeM − 1, and thus, it always
hasM − 1 roots. Because of the substitutionz = e4γdy, only
the positive (and real) roots need to be considered.

Theorem 3 gives a general expression for finding the
thresholds forM -PAM with any patternp. After finding the
roots of (17), the thresholdsβk may easily be obtained from
(16). The main problem is that finding the roots of (17)
in closed-form is, in general, not always possible. However,
the roots can always be found numerically. Fig. 2 illus-
trates the thresholds for16-PAM with the patternp45745 =
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1]obtained by solving (17)
numerically. In the following two sections we show how this
problem can be solved analytically for4-PAM and 8-PAM
with RE or ARE patterns.

B. Thresholds for4-PAM

The following theorem shows how the thresholds are found
for 4-PAM with any pattern.

1Interestingly, sinceM is even, fori = 1, . . . ,M with i 6= M/2 and
i 6= M/2+1, the powers ofA in (17) are the so-called “triangular numbers”.

Theorem 4:The thresholdsβk for any pattern for4-PAM,
as listed in the last column in Table I, can be expressed as

β1 = −β3, (21)

β2 = 0, (22)

β3 =
1

4γd
log

∣

∣

∣

∣

∣

1+p̌1p̌4A+
√

(1+p̌1p̌4A)2 − 4A2

2A

∣

∣

∣

∣

∣

, (23)

whereA is given by (18).
Proof: The proof is given in Appendix A.

Theorem 4 gives closed-form expressions for any pattern
for 4-PAM, and thus, it allows us to compute the BER for
all the labelings in the first part of Table II. The results in
Theorem 4 can be shown to coincide to those in [4, eq. (10)]
when the BRGC is considered.

C. Thresholds for8-PAM

For 8-PAM, finding the thresholds for the BD requires
solving a 7-power polynomial equation given by (17). This
problem in general does not have a closed-form solution.
However, as the following theorem shows, (17) can be reduced
to a cubic equation for RE or ARE patterns. These patterns are
of great value because all the most commonly studied labelings
(e.g., BRGC, NBC, FBC, BSGC, AGC) can be composed from
them (cf. Table II). The proposed technique, however, does not
work for ASY patterns and thresholds for ASY patterns can
be obtained, for instance, numerically.

Theorem 5:The thresholdsβk for the patterns in the classes
q = 1, 2, . . . , 11 for 8-PAM can be expressed as

βk = −β8−k =

{

f(tn) if k = 5, 6, 7,

0 if k = 4,
(24)

f(t) ,
1

4γd
log

∣

∣

∣

∣

∣

|t|+
√

|t|2 − 4

2

∣

∣

∣

∣

∣

, (25)

with

t1 ,
1

6p̌1A3

(

T +
2 3
√
2C

B
+

3
√
4B

)

, (26)

t2 ,
1

6p̌1A3

(

T −
3
√
2(1 +

√
3)C

B
− 1−

√
3

3
√
2

B

)

, (27)

t3 ,
1

6p̌1A3

(

T −
3
√
2(1−

√
3)C

B
− 1 +

√
3

3
√
2

B

)

, (28)

A is given by (18),

T , 2(p̌8A
3 − p̌2), (29)

B ,
3

√

√

D2 − 4C3 − p̌1p̌8D, (30)

C , 7A6 + p̌2p̌8A
3 − 3p̌1p̌3A+ 1, (31)

D , 7p̌1A
9 − 12p̌1p̌2p̌8A

6 − 18p̌3A
4

+ 3p̌1(1 + 9p̌4p̌8)A
3 − 9p̌2p̌3p̌8A+ 2p̌1p̌2p̌8, (32)

and the relationship betweenk andn in (24) for the different
classesq is listed in the last column of Table III. As the
relationship betweenn andk depends on the particular pattern,
the representative of the class (the second column of Table III)
should be used in the presented equations.
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Fig. 3. The thresholds forp
165

= [1, 0, 1, 0, 0, 1, 0, 1] (q = 10) for 8-PAM
in Theorem 5 vs. SNR. Virtual thresholds are shown with dashed lines. The
thresholds for the ABDβ̃k and the constellation points (squares) are also
shown. Gray and white areas indicateY0 andY1, resp.

Proof: The proof is given in Appendix B.
Theorem 5 shows how to analytically obtain the thresholds

for the BD with 8-PAM and any RE or ARE pattern, for
instance, thresholds shown in Fig. 1. Using these results,
the PBER can be calculated using (9), which gives PBER
expressions for11 out of 23 classes, or equivalently, for56
different labelings, including the 5 shown in the second part
of Table II.

Remark 2: In the high SNR regime, i.e.,γ → ∞, all the
thresholds in Theorems 4 and 5 tend to midpoints, i.e., the
same constant thresholds used in the ABD for all SNR. This
fact can easily be proven analytically for4-PAM by evaluating
limγ→∞ β3 and applying l’Hôpital’s rule. For8-PAM a similar
proof exists, however, in this case it is not straightforward due
to the complexity of the threshold expressions. These results
can be intuitively understood from the fact that the max-log
approximation in (5) becomes more precise when the SNR
increases, and hence, the thresholds for the BD and ABD are
expected to coincide whenγ → ∞.

V. NUMERICAL RESULTS

In Fig. 3 we show the thresholds given by Theorem 5 for
the patternp165 (q = 10) for 8-PAM. The figure is symmetric
with respect to zero due to the symmetry of the pattern. At
γ ≈ 5.3 dB the pairs of thresholdsβ2 andβ3, andβ5 andβ6

merge and become virtual for allγ < 5.3 dB. All the virtual
thresholds shown with dashed lines satisfy the conditions in
Theorem 2. As expected (see Remark 2), whenγ → ∞, the
BD thresholds coincide with the ABD thresholds.

The PBER for8-PAM with some selected patterns from Ta-
ble III using (9) is presented in Fig. 4. The thresholds are
calculated analytically forq = 3, 10 and numerically for

0 5 10 15

10
−1

 

 0.5

γ [dB]

P
B

E
R

q = 3
q = 10
q = 16
q = 22

Fig. 4. The PBER for8-PAM with ARE (q = 3) and RE (q = 10) patterns
and ASY patterns (q = 16, 22). Solid lines correspond to the BD and dashed
lines to the ABD. The threshold for the BD were obtained usingTheorem 5
for q = 3, 10 (the thresholds forq = 10 are shown in Fig. 3) and solving (17)
numerically forq = 16, 22.

q = 16, 22. For very low SNR the gap between the BD and the
ABD can reach up to several dB, however, this gap decreases
when the SNR increases. The same conclusion can be drawn
for all other patterns except forq = 1, as in this case only one
threshold existsβM/2 = 0 for all SNR. Hence, forq = 1 the
BD and the ABD have the same performance forM -PAM. To
conclude, we present in Fig. 5 the BER for8-PAM with the
labelings in Table II. From the presented results we conclude
that the BD outperforms the ABD, however, for any BER of
practical interest (below0.1), the difference between the BD
and the ABD is negligible.

VI. CONCLUSIONS

We proposed a general approach for estimating the per-
formance of the optimal bit-wise demodulator and presented
closed-form expressions for the BER for4-PAM and 8-
PAM with different labelings. We conclude that a suboptimal
symbol-wise demodulator shows no loss compared to the
optimal demodulator for all the SNR of interest, which justifies
its use in practical systems.

All results presented in this paper can be easily general-
ized to anyN -dimensional constellation obtained as a direct
product ofN PAM constellations, with the labeling obtained
as a direct product of the corresponding PAM labelings. This
generalization includes 16-QAM and 64-QAM labeled with
the BRGC.

The proposed technique for finding the zero crossings of
the L-values for8-PAM works only for reflective or anti-
reflective patterns, which includes 11 out of 23 classes of
patterns. Extending these results to the remaining classesof
patterns for8-PAM is left for further investigation as well as
generalizing the results to arbitraryM . An extension of the



8 IEEE TRANSACTIONS ONCOMMUNICATIONS, TO APPEAR, 2013

0 5 10 15

10
−1

 

 0.5

γ [dB]

B
E

R

BRGC
FBC
NBC
BSGC
AGC

Fig. 5. The BER for8-PAM with the 5 labelings in Table II. Solid lines
correspond to the BD and dashed lines to the ABD.

present system model to other channel models is also left for
future work.

APPENDIX A
PROOF OFTHEOREM 4

Define the functionh(z) as

h(z) = p̌4Az
3 + p̌3z

2 + p̌2z + p̌1A. (33)

According to Theorem 3, for4-PAM with a patternp =
[p1, p2, p3, p4], equationh(z) = 0 needs to be solved in order
to find the thresholds. The patterns for4-PAM are either RE
(p̌i = p̌M+1−i, ∀i) or ARE (p̌i = −p̌M+1−i, ∀i). Therefore

h(z) = p̌1Az
3 + p̌2z

2 ± p̌2z ± p̌1A, (34)

where the upper and the lower signs correspond to RE and
ARE patterns, resp. Usinǧp2i = 1 and the fact thaťp1p̌4 = ±1
for RE and ARE patterns, resp.,h(z) can be factorized as

h(z) = p̌1(z + p̌1p̌4)(Az
2 + (p̌1p̌2 −Ap̌1p̌4)z +A). (35)

Solvingh(z) = 0 gives the three rootsz1 = −p̌1p̌4 and

z2,3 =
p̌1p̌4A− p̌1p̌2 ±

√

(p̌1p̌4A− p̌1p̌2)2 − 4A2

2A
. (36)

For q = 1 (where p̌1p̌4 = −1 and p̌1p̌2 = 1) the root
z1 = 1, that used in (16) gives the thresholdβ2 = 0. The
other two roots in (36) are complex for all SNR and do not
result in thresholds.

In a similar way, for q = 3 (where p̌1p̌2 = −1 and
p̌1p̌4 = −1) β2 = 0. WhenA ≤ 1/3, or equivalently, when
γ ≥ 5 log 3/8 ≈ −1.63 dB, the roots in (36) are real and
positive resulting in thresholdsβ1 andβ3 by using (16). When
A > 1/3 (low SNR), the roots in (36) are complex and can
no longer be used in (16) for calculating the thresholds. To
overcome this,|z2| and |z3| are used in the calculation of the

thresholds, which together witȟp1p̌2 = −1 gives (23). The use
of | · | does not affect the result when the roots are real. When
the roots are complex, their absolute values are equal to one
(can be seen from (36)), which gives two virtual thresholds
β1 = β3 = 0 merging with the zero-thresholdβ2 at around
−1.63 dB. Theorem 2 allows the use of these thresholds in
the calculation of the PBER.

Finally, for q = 2 (wherep̌1p̌2 = −1 and p̌1p̌4 = 1) z1 =
−1, which results in no threshold. The two roots in (36) are
positive for all SNR, resulting in the thresholdsβ1 andβ3 by
using (16). As the roots are positive the use of| · | does not
affect the result, which gives (23). This completes the proof.

APPENDIX B
PROOF OFTHEOREM 5

Define the functionh(z) as

h(z) = p̌8A
6z7 + p̌7A

3z6 + p̌6Az
5 + p̌5z

4 + p̌4z
3

+ p̌3Az
2 + p̌2A

3z + p̌1A
6. (37)

According to Theorem 3 for8-PAM with pattern p =
[p1, p2, . . . , p8] equationh(z) = 0 needs to be solved in
order to find the thresholds. For RE and ARE patterns,
p̌i = ±p̌M+1−i, ∀i, where the upper and the lower signs
correspond to RE and ARE patterns, resp. Using this property,
h(z) for RE and ARE patterns is

h(z) = p̌1A
6z7 + p̌2A

3z6 + p̌3Az
5 + p̌4z

4

± p̌4z
3 ± p̌3Az

2 ± p̌2A
3z ± p̌1A

6. (38)

Factorizing (38) gives

h(z) = (z ± 1)
(

p̌1A
6z6 +

[

p̌2A
3 ∓ p̌1A

6
]

z5

+
[

p̌1A
6 ∓ p̌2A

3 + p̌3A
]

z4 +
[

∓p̌1A
6+ p̌2A

3∓ p̌3A+ p̌4
]

z3

+
[

p̌1A
6 ∓ p̌2A

3+p̌3A
]

z2 +
[

p̌2A
3 ∓ p̌1A

6
]

z + p̌1A
6
)

.
(39)

Rearranging the terms in (39)h(z) can be written as

h(z) = z3(z ± 1)
(

p̌1A
6(z3 + z−3)

+
[

p̌2A
3 ∓ p̌1A

6
]

(z2 + z−2)

+
[

p̌1A
6 ∓ p̌2A

3 + p̌3A
]

(z1 + z−1)

+
[

∓p̌1A
6 + p̌2A

3 ∓ p̌3A+ p̌4
])

. (40)

Using the substitution

t(z) = z + z−1, (41)

and the relations

t(z3) = t3(z) + 3t(z), (42)

t(z2) = t2(z) + 2, (43)

(40) can be expressed as

h(z) = z3(z ± 1)
(

p̌1A
6t3(z) +

[

p̌2A
3 ∓ p̌1A

6
]

t2(z)

+
[

−2p̌1A
6 ∓ p̌2A

3 + p̌3A
]

t(z)

+
[

±p̌1A
6 − p̌2A

3 ∓ p̌3A+ p̌4
])

. (44)

Finding positive roots ofh(z) = 0 can now be done
analytically. For ARE patterns the second factor in (44) gives
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a root equal to one resulting inβ4 = 0. The roots of the last
factor in (44) need to be found. As a first step we solve it
with respect tot(z), where the rootstn are shown in (26)–
(28), where±1 was replaced by+p̌1p̌8 to distinguish between
RE and ARE patterns. Asz should be real and positive, only
real and positivetn need to be considered. Two out of three
roots tn may combine into a complex conjugated couple, but
the third root is always real. Every positive roottn gives two
roots forz in (39), which can be found from (41) as

z2n−1,2n =
tn ±

√

tn
2 − 4

2
, (45)

wherez2n−1 = 1/z2n. Due to (16) and the symmetry of the
patterns, these two roots give the two thresholdsβk = −β8−k,
which justifies the first equality in (24). Whentn is real and
tn ≥ 2, the roots in (45) are positive and give thresholds
βk = −β8−k. Because oftn is real and the rootsz2n−1 and
z2n are positive, the use of| · | (three times) in (25) does not
change the result. By analyzing all the rootstn, the thresholds
were found and listed in Table III, where the last column shows
the relation between the thresholdβk and the rootstn shown
in (26)–(28).

For the listed thresholds in Table III,tn in (26)–(28) is
never real and negative, howevertn can be either complex or
real with 0 ≤ tn < 2 for someγ < γ0, resulting in virtual
thresholdsβk andβ8−k. In what follows, we show that these
thresholds are equal to each other when using (25), i.e., they
fulfill the conditions in Theorem 2. First, consider the case
when tn is real but0 ≤ tn < 2. In this casez2n−1 and
z2n are complex with unit magnitude and according to (24),
the corresponding thresholdsβk = −β8−k are equal to zero.
By analyzing the thresholds for all the RE and ARE patterns,
we find thatβ5 = −β3 for q = 3, 6, 9, 11 and β6 = −β2

for q = 5, which are separated by either no threshold or by
the thresholdβ4 = 0. These thresholds can be used in (9)
according to Theorem 2.

Second, consider the case whentn is complex. One of the
other two roots of (44)tn′ giving βk′ = −β8−k′ is such that
tn′ = tn

∗, which means that|tn| = |tn′ |. This leads to two
pairs of the thresholdsβk = βk′ andβ8−k = β8−k′ . Revising
the thresholds for all the RE and ARE patterns we conclude
that corresponding thresholds are:β6 = −β2 andβ7 = −β1

for q = 8, 11 and β5 = −β3 and β6 = −β2 for q = 7, 10.
These thresholds can be used in (9) according to Theorem 2.
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