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Abstract—In this paper the covariance matrix of received
voltage signals across ports of a multiport antenna in correlated
multipath environments is formulated. This eventually leads
to some expressions for mean effective gain and directivityin
these environments, which to our best knowledge has not been
addressed before. The notion of pattern overlap matrix is utilized
to coin correlated pattern overlap matrix. We show the crucial
role of the latter parameter in general correlated multipath
environments.

Index Terms—correlated multipath; covariance matrix; mean
effective gain; mean effective directivity; spatial correlation;
correlated pattern overlap matrix.

I. I NTRODUCTION

Multiport antennas are indispensable building blocks of
the contemporary wireless communication systems and their
characterization is the main concern of this paper. The co-
variance matrix of the received signals across ports of a
multiport antenna system in multipath environments plays
a significant role in its characterization. For instance, when
normalized properly, the diagonal entries of this matrix are
the corresponding mean effective gains (MEGs) which are
undoubtedly very decisive metrics [1]. To elaborate more,
it suffices to say that in case other sources of noise are
negligible compared to the receiver noise, the received signal-
to-noise ratios at different ports become directly proportional
to their MEGs. Furthermore, the off-diagonal entries provide
the corresponding spatial covariances between different ports
which eventually yield the spatial correlation coefficients.
These metrics, in turn, play a crucial role in multiplexing
efficiency and diversity gains in a multipath environment.

The covariance matrix relies on different system parameters
as well as properties of the associated multipath environ-
ment. Concerning system parameters, the covariance depends
upon coupling between different radiation elements, array
configuration, the structure of different radiation elements
and their radiation efficiencies etc. In parallel, limited to
uncorrelated multipath environments, the covariance reckons
on probability density function of angle of arrival (AoA)
for the incoming electromagnetic (EM) waves for both po-
larizations, and the cross polarization ratio (XPR) [2]. In
[1], a compact formula for a single-port antenna’s MEG in
uncorrelated environments was introduced. Later, the authors
in [2] and [3] studied the MEG formula for different statistical

models, recast it in other ways, and subsequently derived
some useful bounds for it. However, there are a few concerns
about the aforemetioned formulas for MEG. First of all, the
role of terminating impedances in the presence of coupling
has not been properly emphasized. Furthermore, the impact
of total radiation efficiencies in a compact multiport system
was not shown analytically. Finally, to our best knowledge,
all available formulas are solely restricted to uncorrelated
multipath environments (e.g., see [4], [5]).

In this paper, we generalize the definition of MEGs to
hold also in correlated multipath environments. The roles of
the input network parameters, terminating impedances, and
total radiation efficiencies are clarified. Note that the former
parameter contains overall information about coupling in a
radiation structure. In an uncorrelated multipath environment,
the crucial role of pattern overlap matrix in received signals’
covariance matrix is well known [6, Section 6-4], [7]. In
harmony with that, we show that, by slight modifications, a
revised version of the pattern overlap matrix still builds up the
central core for the covariance matrix in correlated multipath
environments.

To set the notations, bold letters denote matrices. Column
vectors are shown by an overbar sign. The transpose,
conjugate and Hermitian transpose operations are designated
by ·T , asterisk, and dagger superscripts, respectively.E

signifies the expectation over time or realization. The symbol
I denotes the identity matrix andη stands for the intrinsic
impedance of the medium.ℜ returns the real part of its
argument.

II. RECEIVED VOLTAGE SIGNALS IN MULTIPATH

ENVIRONMENTS

Let us denote the input impedance matrix of a multiport
antenna byZn×n, in which n designates the number of
ports. Throughout this paper, we assume reciprocal radiation
networks, i.e.,Z = Z

T . The terminating impedances at the
antenna ports can be written in a diagonal matrix shown byZr.
We further denote the open-circuit embedded pattern matrix
by G2×n, whose rows are the corresponding verticalθ polar-
ization and horizontalψ polarization components associated
with different ports.G is function of angular direction denoted
by Ω(θ, ψ). Here, θ is the latitude andψ is the longitude



coordinates in the spherical coordinate system. The embedded
pattern matrixGr in volts is thus

Gr = G · i , (1)

where the columns ofi are the current weight vectors at the
ports associated with the corresponding embedded element
pattern. If the embedded element patterns are obtained by
exciting each port with a1 volt voltage source, we have

i = (Z+ Zr)
−1 . (2)

The incident wave fromΩ direction is given byĒ2×1, whose
components are againEθ(Ω) andEψ(Ω). Using the chosen
notations, we can recast the received voltage at the ports ofa
multiport antenna in an uncorrelated multipath as [8, Equation
(3-16)]

v̄r =
2λ

jη
Zr

∮

4π

G
T
r (Ω) · Ē(Ω) P(Ω) dΩ , (3)

wherein P is the AoA probability density function of the
random incoming EM waves. If it is preferable to rely on
open-circuit embedded patterns, we may use (1)-(2) to rewrite
(3) as

v̄r =
2λ

jη
Zr (Z+Zr)

−1

∮

4π

G
T (Ω) · Ē(Ω) P(Ω) dΩ . (4)

Identifying the expression for open-circuit received voltagev̄◦
in (4), we can write

v̄◦ =
2λ

jη

∮

4π

G
T (Ω) · Ē(Ω) P(Ω) dΩ . (5)

It should be evident that the relation between the received
terminated signals and their open-circuit counterparts is
simply v̄r = Zr (Z+ Zr)

−1v̄◦, which is already known [9].

III. R ECEIVED SIGNALS’ COVARIANCE IN

UNCORRELATEDMULTIPATH ENVIRONMENTS

Limiting ourselves to zero-mean complex Gaussian random
incoming EM waves, we use the expression in (5) for calcula-
tion of open-circuit covariance matrixC◦ = E[v̄◦v̄

†
◦] in volts

squared. Doing so and after some manipulations we arrive at

C◦ =
8λ2

η

∮

4π

G
T · Γ ·G∗

P dΩ (6)

whereinΓ2×2 is the polarization matrix of the uncorrelated
incoming EM waves. Recall that the polarization matrix has
been originally defined in [9, Equation (2)-(3)], [10]. Here,
with a slight modification to its initial form, we redefine it as

Γ(Ω′,Ω) =
1

2η
E[Ē(Ω′) · Ē†(Ω)] , (7)

in watts/m2. In a special case of uncorrelated multipath en-
vironment, the incoming EM waves fromΩ′ andΩ directions
are uncorrelated. Thus,Γ = Γ(Ω′,Ω)δ(Ω′ − Ω). Although
in (6) we only derived the open-circuit covariance matrix,
the relation between the covariance matrix of an arbitrary
terminated multiport antenna and its open-circuit counterpart
has already been given in [11, Equation (1)].

IV. RECEIVED SIGNALS’ COVARIANCE IN CORRELATED

MULTIPATH ENVIRONMENTS

In a tantamount way to the preceding Section, we can gen-
eralize the covariance expression in (6) to hold for correlated
multipath environments too. By virtue of (7) one can write

C◦ =
8λ2

η

∫∫

4π

G
T (Ω′) ·Γ(Ω′,Ω) ·G∗(Ω) P(Ω′,Ω) dΩ′dΩ

(8)
in which P is the joint probability density function for the
incoming waves fromΩ′ andΩ directions. It is further inter-
esting to recast the covariance matrix in terms of the associated
directivities. Without loss of generality, let us considerthe case
of Zr = Z◦ = Z◦ In×n with Z◦ being the characteristic
impedance of the system, which is commonly of resistive
nature. Now, using (3) and expressing the embedded pattern
matrix in terms of its associated embedded directivity matrix
Dr which is dimensionless, we can recast the terminated
covariance matrixCr in watts as

Cr =
√
etot CDr

√
etot , (9)

wherein

CDr
=
λ2

4π

∫∫

4π

D
T
r (Ω

′)Γ(Ω′,Ω)D∗
r(Ω) P(Ω,Ω

′) dΩ′dΩ

(10)
andetot is a diagonal matrix of ports’ total embedded element
radiation efficiencies. For lossless multiport antenna systems,
the embedded radiation efficiency equals the multiport
matching efficiency. This latter metric was introduced in
[12] providing a compact formula for its calculation based
on the input network parameters. The expression in (9) is
an important one separating out the impacts of radiation
efficiencies and the shape of the embedded patterns in
conjunction with properties of the multipath environment.
Under the restrictions imposed by (1)-(2), the embedded
directivity matrix can be further recast in a way to factor out
the effects of terminating impedances inCDr

.

V. DUAL -PORT DUAL -POLARIZED IDEAL REFERENCE

ANTENNA

As introduced by the author in [1], for normalization of
the covariance matrix we need to opt for a suitable reference
antenna. For this purpose, a dual-port, dual-polarized ideal
isotropic antenna does more than suffice. To achieve maximum
available power in a multipath environment, the terminating
impedances at the port of this ideal two-port reference antenna
should be conjugate matched to its input impedance matrix.
For sake of simplicity, let us assume that the input impedance
matrix of this ideal reference antenna isZref = Z◦ I2×2. With
some straightforward manipulations, it follows that the open-
circuit embedded pattern matrix for this ideal dual-polarized
reference antenna is

Gref =

√

ηZ◦

4π
I2×2 . (11)



Using the expressions in (1)-(3) and (7), and under presump-
tion of zero-mean complex Gaussian random incoming EM
waves, we can derive the total average received power at the
ports of this ideal reference antenna as

Pref =
λ2

4π

∥

∥

∥

∥

∫∫

4π

Γ(Ω′,Ω) P(Ω′,Ω) dΩ′dΩ

∥

∥

∥

∥

F

, (12)

where subscriptF indicates the Frobenius norm.

VI. N ORMALIZATION OF COVARIANCE MATRIX

A proper normalization is essential for a fair study of
received signals’ covariance matrix. In this Section we first
present an expression for the covariance matrix in a general
multipath environment. Later, we offer equivalent expressions
for two particular multipath environments which are of prac-
tical interest.

For a general multipath environment, using (8), [11, Equa-
tion (1)] and (12), the normalized arbitrary terminated covari-
ance matrixCrn becomes

Crn =
1

2Pref
×

ℜ[Zr]−
1

2Zr(Z+ Zr)
−1

C◦ (Z+ Zr)
−1†

Z
†
r ℜ[Zr]−

1

2 (13)

Here the subscriptn only signifies the normalized metric.
Since the number of ports has also been shown byn, we may
not allow this subindex to create any source of confusion.
The diagonal entries of (13) are the corresponding MEGs at
different ports. That is

M
G
= diag[Crn ] (14)

whereM
G

is the diagonal matrix of MEGs associated with
different ports. This is a quite general expression. The off-
diagonal entries in (13) represent the spatial correlationbe-
tween different ports which after further normalization yield
the corresponding renowned spatial correlation coefficients [7].

A. Case of Uncorrelated Multipath

Uncorrelated multipath environments are commonly re-
ferred to those multipath environments wherein incoming
waves of different AoAs and those of the same AoAs but dif-
ferent polarizations are uncorrelated. In these environments the
polarization matrix in (7) is diagonal. The cross-polarization
ratio (XPR), denoted byχ, has been defined for these environ-
ments signifying the amount of polarization power imbalance
of the incoming EM waves. In other words,

Γ =

[

Γθθ 0
0 Γψψ

]

= Γψψ

[

χ 0
0 1

]

(Uncorrelated Multipath) (15)

with Γθθ and Γψψ being the steradic power densities of the
incoming EM waves inθ and ψ polarizations, whose ratio
renders the XPR. In the frame of this paper, we assume
that XPR is independent of angular directionΩ. Using the
aforementioned covariance matrix in (8) and the reference
power in (12), and by virtue of (1) and (2), we can derive

the corresponding arbitrary terminated normalized covariance
matrix as

Crn =
16π

η
ℜ[Zr]−

1

2×

Zr

∮

4π

G
T
r

[ χ
1+χ 0

0 1
1+χ

]

G
∗
r P dΩ Z

†
r ℜ[Zr ]−

1

2 (16)

It should be evident that the MEGs in uncorrelated environ-
ments are the diagonal entries in (16). Furthermore, expressing
the corresponding embedded element patterns in terms of the
associated directivities reveals a compact expression formean
effective directivity (MED) matrixM

D
and its relation with

M
G

in (14). To find out more about this relation, let us restrict
ourselves toZr = Z◦. This leads to

M
G
=

√
etot ·MD

· √etot , (17)

in which

M
D
= diag

[
∮

4π

D
T
r

[ χ

1+χ 0

0 1
1+χ

]

D
∗
r P dΩ

]

. (18)

Until now the MED definition has been limited to un-
correlated multipath environments [13]. Yet, based on the
expressions provided in the frame of this paper, we are
able to redefine it for general cases of correlated multipath
environments too. For this purpose, one only needs to take
the diagonal entries (i.e.,diag) in (10) when normalized by
(12).

B. Case of Isotropic Multipath

An uncorrelated multipath environment of uniform AoA
(i.e., P = 1/4π) and balanced polarization (i.e.,χ = 0 dB)
is referred to as isotropic multipath environment [13]. An
isotropic multipath environment is important more due to the
fact that it is the only type of multipath environment that can
be created simply in a well stirred reverberation chamber. The
measurement results in this case are not subject to considerable
variations due to repetition and hence are most reliable ones.
Inserting the necessary parameters (e.g.,χ = 0 dB and
P = 1/4π) into (13), we arrive at

Crn =

2 ℜ[Zr]−
1

2Zr(Z+ Zr)
−1

C (Z+ Zr)
−1†

Z
†
r ℜ[Zr]−

1

2

(19)

where thepattern overlap matrix C is [14]

C =
1

η

∮

4π

G
T ·G∗ dΩ . (20)

Recall that in (20),G represents the open-circuit embedded
pattern matrix. It is not difficult to show that the diagonal
entries in (19) equal12 etot. This fact was anticipated in
[13] and subsequently demonstrated in [2]. Table 1 in [15]
indirectly shows the links between MEGs and the total embed-
ded element efficiencies with regards to the selected reference
antenna.

One point about the pattern overlap matrix in (20) merits
further regards. Indeed, it has been said that for single-mode



lossless multiport antennas, the pattern overlap matrix isa
real matrix [9]. In this way, it can approximate the real part
of the corresponding input impedance matrix [7, Equation
(8)]. That is,C = ℜ[Z]. This is of considerable help when
one needs to calculate the covariance matrix in isotropic
environments solely in terms of the input network parameters.

VII. C ORRELATED AND UNCORRELATEDPATTERN

OVERLAP MATRICES

Referring back to the normalized terminated covariance
matrix in (19) which is dimensionless, we stress on the central
role of the pattern overlap matrix in this important expres-
sion. Note that although this expression has been derived for
isotropic multipath environments, with slight modifications, it
can be applied for both uncorrelated and correlated multipath
environments too. For this purpose, only the pattern overlap
matrix C has to be replaced by its properly modified versions
referred to asuncorrelated pattern overlap matrix, Cu, and
correlated pattern overlap matrix, Cc. The uncorrelated pat-
tern overlap matrix is obtained by

Cu =
8π

η

∮

4π

G
T

[ χ

1+χ 0

0 1
1+χ

]

G
∗
P dΩ . (21)

Remember that in (21),χ is a constant independent of angular
directionΩ. Similarly, the correlated pattern overlap matrix is
achieved through

Cc =
8π

η

∫∫

4π

G
T (Ω′) Γ G

∗(Ω) P dΩ′dΩ
∥

∥

∥

∥

∫∫

4π

Γ(Ω′,Ω) P(Ω′,Ω) dΩ′dΩ

∥

∥

∥

∥

F

. (22)

In (20)-(22) some arguments were intentionally dropped for
sake of conciseness. It follows that the correlated patternover-
lap matrix in (22) reduces to (21) in uncorrelated multipath
environments and to (20) in isotropic multipath environments.

Let us spend a few moments reviewing some important
points. Recall the dimensionless normalized covariance
matrix in (19). The diagonal entries in this matrix are the
corresponding ports’ MEGs while its off-diagonal entries
are the spatial correlations between the received signals at
different ports. The latter when further normalized yields
the corresponding spatial correlation coefficients which
are more known in the literature. It is of importance to
observe that the pattern overlap matrix is the core of the
aforementioned expression containing also the necessary
information about the properties of multipath environments.
The normalized covariance matrix in a general correlated
multipath environment can be obtained by replacingC in
(19) withCc in (22). Note also that the impact of terminating
impedances upon MEGs and spatial correlations is entirely
described by (19). As a quick reminder, different pattern
overlap matrices are credible under zero-mean complex
Gaussian random incoming EM waves restriction. In a similar

d

1

2

3

4

Fig. 1. Four equidistant lossless monopoles above a perfectelectric conductor
(PEC) plane. Parameterd denotes the element separation in this structure.

way to Section VI-A, one can recast the pattern overlap
matrices (20)-(22) in terms of the corresponding embedded
directivities. This is left for the interested reader.

VIII. S IMULATION

The main goal in this Section is to choose an arbitrary multi-
port antenna and verify the formulas presented in the frame of
this paper. For this purpose, we chose four quarter wavelength
equidistant lossless thin monopoles above a perfect electric
conductor (PEC). The resonance frequency of these identical
monopoles slightly exceededf◦ = 1 GHz (λ◦ = 0.3m). The
element separation is denoted byd. This multiport radiation
structure, which is illustrated in Fig. 1, is an actual example of
lossless single-mode antennas. For sake of simplicity we se-
lectedZr = Z◦ for these simulations. The embedded element
patternsGr and the associated input network parameters (e.g.,
Z) were all obtained by the well known full-wave method of
moments (MoM) [16, Section 8.4]. We first emulated a random
multipath scenario and exposed the embedded patterns of this
multiport antenna to the incoming EM waves. Subsequently,
we calculated the received voltage signals. This process of
realization is repeated to achieve sufficient number of random
voltage samples across the antenna ports. To leave one more
option for verification of the results, which shall be cleared
in a moment, we restricted ourselves to an isotropic multipath
environment. In each realization, the number of random zero-
mean complex Gaussian incoming waves incident on this
antenna structure was300 being sufficient for convergence in
covariance [15]. The total number of realizations (or random
voltage samples at the ports) was104 rendering the desired
accuracy. Further elaboration and details of this simulation
method can be found in [8, Chapter 4].

Upon calculation of the received random signals, the
pattern overlap matrixC could be achieved by virtue of
equation (19). In parallel, it could also be directly obtained
by the expression provided in (20) and the open-circuit
embedded patterns by the full-wave MoM simulation. In
addition, as already pointed out, since this structure is a
single-mode lossless structure,C should approximate the
resistive part of input impedance matrix. This stands as an
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Fig. 2. Pattern overlap entries̺versus element separationd for four lossless
monopoles above a PEC plane atf = 1 GHz.

extra option for verification of our analysis. Note that due
to the symmetry in the structure, only four independent
entries represent the covariance matrix. This considerably
simplifies the presentation of the results. The outcome of
these simulations are illustrated in Fig. 2 where the entries
of the normalized covariance matrix versus the element
separation at the frequencyf = f◦ are plotted. As evident,
the agreements between different curves are remarkable to
a negligible error caused most likely by slight inaccuracy
inherent in our numerical computations.

IX. CONCLUSION

In this paper, we provided a general compact expression
for the normalized covariance matrix of an arbitrary multiport
antenna system in correlated multipath environments. The
formulas have been cast in a way to separate out the impact

of terminating impedances and the total embedded radiation
efficiencies. More for practical interests, two compact
expressions for covariance matrices in uncorrelated and
isotropic multipath environments were presented. The notion
of pattern overlap matrix, which plays a central role in
the normalized covariance matrix, was extended to general
correlated multipath environments. The latter has led to
definitions of two novel parameters referred to as correlated
and uncorrelated pattern overlap matrices. Based on the
aforementioned achievements, we could also generalize the
definitions of MEGs and MEDs to correlated multipath
environments. Some of the presented expressions were
verified by a simulation tool which had already been well
developed in the literature [8].
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