
A PRACTICAL DEPENDABILITY MEASURE FOR DEGRADABLE
COMPUTER SYSTEMS WITH NON–EXPONENTIAL DEGRADA-
TION

E. JONSSON 1), M. ANDERSSON 2), S. ASMUSSEN 3)

1)Department of Computer Engineering, Chalmers University of Technology, Sweden
2)Department of Mathematics, Chalmers University of Technology, Sweden
3)Institute of Electronic Systems, Aalborg University, Denmark

Abstract. This paper proposes a vectorized measure for a set of behavioural de-
pendability attributes. The measure is based on Markov processes and is intended for
practical dependability trade-offs. It describes the system performance on a number
of service levels. Thus, it is possible to merge attributes such as reliability, safety and
performability into one single quality. Whereas reliability describes the functional ful-
fillment of a system, performability reflects its ability of functional degradation. The
safety attribute handles a class of failures with catastrophic consequences and can be
accommodated by means of introducing two or more service levels for a failed sys-
tem. Many systems exhibit time-dependent degradation rates and non–exponential
lifetimes. This situation can be handled by means of applying phase–type assump-
tions and introducing some additional states to the system, which would allow us to
remain within the universe of Markov modelling.

Keywords. Dependability, Safety, Performability, Measure, Computer System

1. INTRODUCTION

The classical viewpoint of dependability is given
in (Laprie 1992). Dependability is described by
four basic attributes which are primarily related
to non-degradable systems: reliability, availabil-
ity, safety and security. Furthermore, performa-
bility is a performance-related attribute used
for degradable systems, see e.g. (Beaudry 1978,
Meyer 1980, Smith and Trivedi 1987) and the
comprehensive overview in (Meyer 1992). This
paper suggests a measure for a set of behavioural
dependability attributes as defined in section 2.
The measure is defined in section 3, and two dif-
ferent methods for computation of the measure are
given in section 4. The measure does not reflect
aspects of self-repair or automatic up-grading, nor
does it include external maintenance or repair.
Thus, the availability attribute is not covered by
the measure. The rationale for this is that mea-
sures of availability are usually based on a binary
notion of the system’s performance and are there-
fore unable to convey intermediate levels of readi-
ness. There is no widely recognized or obvious
definition that would account for availability re-

duction due to degraded operational states (Meyer
1992).

In many cases the assumption of exponential fail-
ure rates for the components of the system is not
realistic. This situation can be handled using
phase–type assumptions as described in section 5.

2. BEHAVIOURAL ATTRIBUTES

The measure derived in this paper is based on
the traditional dependability attributes as given in
the introduction, including performability. How-
ever, a behavioural view of the attributes is taken.
Here, behavioural refers to the behaviour of the
object system as seen by its user and related to
the service delivered from the system. Thus, the
measure reflects reliability for operational service
levels and safety for non-operational levels.

Security is covered to the extent that it describes
behavioural aspects, i.e. privacy (or confidential-
ity) considerations. Whereas reliability refers to
the delivery-of-service to the authorized user of

1

the system, privacy refers to the denial-of-service
to unauthorized users. See (Jonsson and Olovsson
1992). This means that unauthorized users shall
not be able to get information from the system,
nor be able to use it in any other way. Degrada-
tions or failures can be due to ”reliability” faults
as well as ”privacy” faults. Note that safety is
the non-occurrence of catastrophic failures of both
those kinds. Privacy aspects are not further con-
sidered in this paper. A treatment of these is
found in (Jonsson et al. 1994).

Another aspect of security is its ability to resist ex-
ternal faults, in particular intentional faults. This
aspect relates to fault prevention or intrusion-
tolerance and is not directly covered by the mea-
sure described in this paper.

3. A DEPENDABILITY MEASURE

This section provides a mathematical definition
of the vectorized dependability measure, as well
as presents the method and equations used for
the calculations. The method is based on a pre-
defined set of service levels and a set of corre-
sponding failure rates, which quantify the rate of
transitions between levels. A service level is de-
fined as a group of system states, each with a user-
specified degree of performance or functional ac-
complishment.

We shall assume that the state of the system can
be modelled as a continuous time Markov process
{Xt}t≥0 with a finite state space E, in which each
service level, SLn, can be identified with a sub-
set of states in E. Thus, E is the disjoint union
SL0 + · · · + SL�, where � is the number of ser-
vice levels. Further, we imagine that service levels
0, . . . , k correspond to operational states O, i.e.
the states in which the system functions, in the
sense that it delivers a full, SL0, or degraded ser-
vice to the user. Thus, the system reliability can
be modelled.

Service levels k + 1, . . . , � correspond to the failed
states F , i.e. states in which the system is not
functioning, meaning that it is not delivering any
service of interest to the user. The reason for in-
troducing service levels for failed states is to model
the severity of the consequences of the failure
involved, which is especially relevant for safety-
critical systems, rather than the service delivered
to the user as in operational states. In the sim-
plest case we group failures into two classes, non-
catastrophic and catastrophic. The ability of a
system to avoid catastrophic failures is the sys-

tem safety. Thus

E = O + F where
O = SL0 + · · · + SLk,

F = SL(k + 1) + · · · + SL�.

In the simplest case, corresponding to the tradi-
tional operational-failed model, O consists of one
single state o, and F consists of one single state
f . In more complex situations, the different states
in O represent different full or degraded service
levels, and F represents different types of failed
states.

Transitions i → j have intensity λij (i, j ∈ E,
i �= j), and the initial probability IP(X0 = i) is
denoted by πi. In most situations, the system will
always start in a fixed state i0 so that

πj =
{

1 j = i0
0 j �= i0

. (1)

We shall also assume that the system starts at
the highest service level, so that i0 ∈ SL0. Tran-
sitions between operational states represent degra-
dations, and transitions to a failed state represent
failures. It is assumed that a transition will never
take place from a failed state, i.e. after entering
a failed state the system stops evolving. There-
fore, failed states are absorbing so that λfj = 0
for f ∈ F and all j ∈ E. For mathematical con-
venience we shall denote the intensity for leaving
state i as λi =

∑
j �=i λij , and we write λii = −λi.

Assuming that O has n states and F m, we sug-
gest the n + m vector

w = ((ui)i∈O, (vi)i∈F) , (2)

as a measure of dependability of the system (the
”dependability” vector). Here ui is the mean
time in state i or Mean Time To Degradation
(= MTTD) and vi is the Mean Time To Failure
(=MTTF), i.e. the sum of the MTTDs of the op-
erational states, divided by the probability pi of
ending up in the failed state i. The measures vi

that we allocate to the failed states represent a
splitting of the mean operational lifetime of a se-
quence of identical systems, so that a more prob-
able failed state receives a smaller allocation than
a less probable state. The lowest state normally
represents a catastrophic failure. Obviously we
want the value for a catastrophic state to be as
large as possible. In formal mathematical terms
we have

ui = IE
∫ ∞

0

I(Xt = i)dt, i ∈ O, (3)

vi =
1
pi

∑
j∈O

uj , i ∈ F, (4)

2

where I is the indicator function (i.e., I(Xt = i) =
1 in (3) if Xt = i and I(Xt = i) = 0 if Xt �= i).
For computational purposes, we note that ui and
the probability pi that the system ever enters i
can be denoted

ui =
pi

λi
, pi = IP(τi < ∞), i ∈ E = O + F, (5)

since we have assumed that there is no feedback.
Here τi = inf{t ≥ 0 : Xt = i} (τi = ∞ if no t with
Xt = i exists) is the hitting time of i, i.e. the time
of first entry. In order to illustrate the use of the
dependability measure (2) a very simple example
is given below.

Example 1: Consider a process control system P ,
consisting of three units: a high-performance, real-
time computer C for basic process support, i.e. ”sur-
vival” functions; a general purpose computer B for di-
rect process control, i.e. controlling the characteristics
of the product to be produced; and one I/O computer
A for remote control, hard-copy print-outs etc. If C
fails, the process will be interrupted and a re-start has
to be initiated at considerable cost. This is considered
a catastrophic failure. If B fails the process as such
will continue, but there will be no meaningful prod-
uct. This is regarded as a ”normal” system failure.
Finally, a disruption of the function of A means that
remote control is disabled and that logged info cannot
be printed out immediately. However, as the process
can still be controlled locally, this is only interpreted
as a degradation.

In view of the discussion above, the service levels may
be interpreted as

SL0 = ABC (full service level)

SL1 = aBC (degraded service level)

SL2 = AbC + abC (failed service level)

SL3 = ∗ ∗ c (catastrophically failed service level)

where an upper–case letter, e.g. A, denotes a com-
ponent that is functioning and a lower–case letter,
e.g. a, that it has failed. We can identify E with
{SL0, SL1, SL2, SL3} where O = {SL0, SL1}, F =
{SL2, SL3}. A state diagram for the system is given
in Fig. 1.

SL0 SL1 SL2 SL3� �

��

�νA νB

νB

νC

νC

Figure 1. State diagram for process system

Here νA denotes the failure intensity for component
A, etc. We see that

uSL0 =
1

νA + νB + νC
,

pSL1 =
νA

νA + νB + νC
, uSL1 = pSL1 · 1

νB + νC
,

pSL2 = pSL1 · νB

νB + νC
+

νB

νA + νB + νC
=

νB

νB + νC
,

pSL3 = pSL1 · νC

νB + νC
+

νC

νA + νB + νC
=

νC

νB + νC
,

vSL2 =
uSL0 + uSL1

pSL2
= · · · =

1

νB
,

vSL3 =
uSL0 + uSL1

pSL3
= · · · =

1

νC
,

In this simple example we see that the entries for the
failed states are simply the inverse of the transition
rate to that state. Inserting numerical values νA =
νB = 9.5/10000 failures per hour and νC = 1/10000
failures per hour, yields the dependability vector

w = (500 452 1053 10000) , (6)

where the higher figure on the lowest level represents
the fact that a catastrophic failure is much less prob-
able than is the other type of failure. �

4. COMPUTATION PROCEDURES

In this section, we develop two different algo-
rithms for computing the dependability measure
(2). The first algorithm is a hierarchical proce-
dure, which in essence was used in the first ex-
ample, even though the formalism was not made
evident there. Here, the word hierarchical is used
in the sense ”no feed–back”, i.e. the state dia-
gram contains no loops. Thus, the hierarchical
approach is suitable for calculations by hand for
small systems.

The second algorithm is based on a general matrix
formalism that may well be used for larger sys-
tems, when computer-aided tools are used. The
matrix approach can be described by a compact
mathematical form and it is applicable also in the
absence of a hierarchical structure (i.e. feed–back
is possible). Only when systems become so large
that the matrix inversion presents a problem, does
the hierarchical approach again become the most
feasible. Such examples could occur, e.g. if one
relaxes the assumption of exponential lifetimes, cf.
Section 5.

4.1 A hierarchical computation procedure

This section presents a hierarchical procedure for
calculating the dependability measure. Under
this assumption, it is possible to group the states
i ∈ E into subclasses E0, E1, . . . , EL such that
any state i ∈ Ek can only be entered from some
j ∈∑k−1

�=0 E�, and this decomposition then serves
to provide a recursive scheme for computing the
degradability measure. It should be noted that

3

the decomposition E =
∑L

�=0 E� is a purely tech-
nical tool. As will be seen from the examples be-
low, it has not necessarily any intrinsic interest
and in particular it is not related in a natural way
to the different decompositions given by the ser-
vice levels.

We define Ek as the set of states which can be
reached in k or less transitions. That is, i ∈ Ek if
there exists i0, . . . , ik−1 ∈ E such that

i0 �= i1, . . . , ik−1 �= i, πi0λi0i1λi1i2 · · ·λik−1i > 0,

and k is the maximal number with this property.
It is immediate that the Ek are disjoint. Further-
more, λij = 0 whenever i ∈ E�, j ∈ Ek and � ≥ k
(otherwise there is a chain of length � + 1 leading
to j which contradicts k being maximal) . The
hierarchical assumption of no feedback amounts
to

E =
L∑

�=0

E� (7)

for some L. This structure is found in the preced-
ing example and would appear to cover a broad
class of systems without repair or maintenance.

The following result shows that we can compute
the ui, pi, vi recursively.

Theorem 1: In the presence of the hierarchical
structure (7),

pi = πi, ui =
πi

λi
, i ∈ E0, (8)

pi =
k−1∑
�=0

∑
j∈E�:λji>0

pj
λji

λj
, i ∈ Ek, (9)

ui =
pi

λi
, i ∈ Ek ∩ O, (10)

vi =
1
pi

∑
j∈O

uj , i ∈ F. (11)

Proof Formula (8) is trivial. For (9), note that a
i ∈ Ek is necessarily entered from some state in
Ek−1, say j. The probability of going to j from
i is λji/λj and since pj represents the probabil-
ity of ever entering j, (9) follows. The remaining
formulas are exactly as before.

4.2 A computation method using matrix calculus

Here we present a second algorithm that is based
on a general matrix formalism. Let Λ be the O×O
matrix with ijth entry λij , i, j ∈ O. Note that Λ

does not involve the λji, i ∈ F ; these are repre-
sented instead in terms of the (column) vectors
�(i) = (λji)j∈O, i ∈ F . We also let e(i) denote
the ith (column) unit vector and q(i) the column
vector −Λ−1�(i). Note that the initial vector π is
written as a row vector. Thus for example in (12)
below, πΛ−1 is a row vector and πΛ−1e(i) a real
number (as should be).

The following result shows that once the key step
of computing Λ−1 has been overcome, the perfor-
mance measure can immediately be calculated:

Theorem 2:

ui = −πΛ−1e(i), i ∈ O, (12)
pi = uiλi, i ∈ O, (13)

pi = −πΛ−1�(i), i ∈ F, (14)

vi =
1
pi

∑
j∈O

uj , i ∈ F. (15)

Proof Formula (12) follows by noting that the
t–step transition matrix of the Markov process
is eΛt, hence the vector of state probabilities at
time t is πeΛt and the probability of being in i is
πeΛte(i), so that by standard formulas for inte-
grating matrix–exponentials (Graham 1981)

ui =
∫ ∞

0

πeΛte(i)dt = −πΛ−1e(i).

Similarly, since the contribution to pi from the
Markov process being in state j in the time inter-
val [t, t + dt] is πeΛte(j) · λjidt, we have

pi =
∑
j∈O

∫ ∞

0

πeΛte(j) · λjidt =
∫ ∞

0

πeΛt�(i) = .

.
= −πΛ−1�(i).

Formulas (13) and (15) follow from Theorem 1.

�

Example 2: We shall reinspect the formulas of Ex-
ample 1 in view of Theorem 2. Recalling that O =
{SL0, SL1}, we have

Λ =

(
−νA − νB − νC νA

0 −νB − νC

)
,

�(SL2) =

(
νB

νB

)
, �(SL3) =

(
νC

νC

)
.

Thus

Λ−1 =

(− 1
νA+νB+νC

− νA
(νA+νB+νC)(νB+νC)

0 − 1
νB+νC

)
.

4

Since π = (1 0), πΛ−1 is simply the first row of Λ−1,
which according to (12) is (−uSL0 − uSL1) — in
accordance with the formulas of Example 1. Further-
more, vSL2 for example can be calculated by noting
that

pSL2 =
(− 1

νA+νB+νC
− νA

(νA+νB+νC)(νB+νC)

)
·

·
(

νB

νB

)
=

νB

νB + νC
,

�

5. MODELLING OF NON–
EXPONENTIAL
LIFETIMES

The analysis above is based on the assumption
that the lifetimes of the components in the object
system are exponentially distributed. This may
often be quite unrealistic, especially when dealing
with faults related to human interaction, such as
software design faults. Using phase–type distri-
butions instead of the exponential distribution al-
lows us to dispense with this assumption at the
expense of a higher complexity of the involved
calculations. Still, phase–type assumptions give
the possibility of remaining within the universe of
Markovian modelling by introducing some addi-
tional states to the system. Furthermore, there is
no essential loss of generality since any distribu-
tion can be approximated arbitrarily closely by a
phase–type distribution.

5.1 Definition

A random variable Y is said to be phase–type dis-
tributed if it can be described as the time to ab-
sorption of a Markov process {Jt}t≥0 with state
space G and intensity matrix T . The Markov
process must have fixed transition rates and n
states where one state is absorbing and all oth-
ers are transient. If we let {n} be the absorbing
state, this means that λni = 0 and λi > 0 for
1 ≤ i ≤ n − 1. Hence, we can never leave state
n but we must always leave the others sooner or
later. By introducing the initial distribution π
where πi = IP(J0 = i), we can formally express Y
as Y = min{t : Jt = n}.

This means that we can extend a Markov repre-
sentation of a physical system by replacing any
fixed state with a number of phase–type states
and internal transition rates. Hence the sojourn
times of the physical states become phase–type
distributed rather than exponentially distributed.

Typically, a phase–type model of a lifetime is
purely descriptive in the sense that there is no
physical interpretations of the phases. Thus, the
representation (π, T , G) is obtained on the basis
of empirical data of the lifetimes only. A recent
software package is described in (Haggstrom et
al. 1992) and the theoretical background is given
in (Asmussen and Nerman 1991). An algorithm
for estimating a phase–type distribution from cen-
sored samples is presented in (Olsson 1993). For a
more complete exposition, see (Neuts 1981). Note
that both the hyperexponential distribution and
the Erlang distribution can be regarded as special
cases of phase–type distributions.

5.2 Examples

Example 3: Consider a software package consisting
of one interactive application program module and
one user interface program module. The purpose of
the interface module is to protect the application pro-
gram by checking that all data and commands en-
tered by the user fulfill certain requirements stated by
the application program, e.g. that no illegal data or
command is entered. An illegal entry may cause the
application program to crash. Assume that the soft-
ware package has an exponential lifetime distribution
with intensity λ1, under the given trajectory in the
command input space, (Littlewood 1988). However,
due to a mistake in the program loading sequence, oc-
curring say with probability p, the interface module
may be missing so that all user input is simply trans-
ferred into the application module. Thus, the software
package contains a deficiency. See (Jonsson 1993). If
we adopt a conservative approach, we assume that
the first illegal data/command input will then cause
a program crash.

Suppose that the arrival intensity of il-
legal data/commands is λ2, which typically is much
larger than λ1. We may take O = {1, 2}, 2 represent-
ing an unprotected application program, 1 a protected
one, and F consisting of a single state f . This leads
to a simple hyperexponential distribution with a state
diagram as given in Fig. 2, where the initial probabil-
ities are 1 − p and p for states 1 and 2, respectively.

1 f 2�λ1 �λ2

Figure 2. State diagram for deficient software

Using the notation of Section 4.2 we get

π = (1−p p), Λ =

(
−λ1 0

0 −λ2

)
, �(f) =

(
λ1

λ2

)
.

�

5

Example 4: Consider again the software package of
the preceding example, but assume now that the life-
time distribution of the protected software module is
much better approximated by an Erlang(2) distribu-
tion, say with intensity λ1, than by an exponential
distribution. Then we could split state 1 up into two
states 0 and 1, representing the fictitious stages (which
of the two exponential units are working) of the life-
time. We get the formulas

π = (1 − p 0 p), Λ =

(−λ1 λ1 0
0 −λ1 0
0 0 −λ2

)
,

�(f) =

(
0

λ1

λ2

)
.

and the state diagram as given in Fig. 3, with ini-
tial probabilities 1 − p, 0 and p for states 0, 1 and 2,
respectively.

0 1 f 2�λ1 �λ1 �λ2

Figure 3. State diagram for phase–typed system

Note that the lifetime of such a system will typically
have a failure rate with the commonly encountered
’bathtub’ shape. �

In examples 3 and 4, it is the distribution of the
lifetime of the system as a whole that is of phase–
type. However, it is equally interesting to use
non–exponential models for the lifetimes of indi-
vidual components.

Example 5: In this example we shall apply the
phase–type reasoning of example 3 and 4 to the pro-
cess control system in example 1. See the correspond-
ing state diagram in Fig. 4.

∗bC

A1BC1

aBC1

A2BC1

A1BC2

aBC2

A2BC2

∗ ∗ c
�
νA1

�νA2

�
νA1

�νA2

�νB �νC1

�νC1

�
νC1

�νC2

�
νB

�

νB

�

νC2

�
νC2

Figure 4. Process control system with two
phase–type states

Suppose that the I/O computer A with probability p
has deficient software according to example 3. Also
suppose that the basic process support computer C

has been equipped with a cold redundancy so that
the safety of the object system may be improved. A
switchover to the redundant computer is automati-
cally made in the case when the first one fails. The
switchover mechanism is assumed to be ideal. This is
modelled by an Erlang distribution according to the
”left branch” of example 4. State ∗bC is attained by
pooling states ∗bC1 and ∗bC2. The service levels can
readily be identified in the figure. For example, ser-
vice level 0 is constituted by the two upper and the
two lower boxes.

The entries in the dependability vector can be calcu-
lated using the following formulas:

uA1BC1 = p · 1

νA1 + νB + νC1

uA2BC1 = (1 − p) · 1

νA2 + νB + νC1

paBC1 = p · νA1

νA1 + νB + νC1

+

+(1 − p) · νA2

νA2 + νB + νC1

uaBC1 = paBC1 · 1

νB + νC1

pA1BC2 = p · νC1

νA1 + νB + νC1

pA2BC2 = (1 − p) · νC1

νA2 + νB + νC1

uA1BC2 = pA1BC2 · 1

νA1 + νB + νC2

uA2BC2 = pA2BC2 · 1

νA2 + νB + νC2

paBC2 = pA1BC2 · νA1

νA1 + νB + νC2

+

+pA2BC2 · νA2

νA2 + νB + νC2

+paBC1 · νC1

νB + νC1

uaBC2 = paBC2 · 1

νB + νC2

p∗bC = · · · =
νB

νB + νC1

(
1 +

νC1

νB + νC2

)
p∗∗c = · · · =

νC1

νB + νC1

· νC2

νB + νC2

v∗bC = · · · =
1

νB

v∗∗c = · · · =
νB + νC1 + νC2

νC1νC2

Assume that the software in computer A is deficient
with a probability of p = 0.05 and that the degrada-
tion rate in this case is νA2 = 1000/10000. Also as-
sume that the redundant computer C has the same
failure rate as the original one, i.e. νC1 = νC2 =
1/10000. With the remaining values unchanged, i.e.
νA1 = νB = 9.5/10000, we obtain the dependability
vector

w = (499 544 1053 115000) (16)

hours. We note that the two operational entries are
virtually unchanged. The entry for the ”normal” fail-
ure is unchanged as expected. However, due to the
insertion of a redundant computer C, the value for

6

the catastrophic state is considerably higher than it
previously was, i.e. the safety of the object system is
improved. �

6. SUMMARY

We have taken a step toward a quantitative under-
standing of dependability. This has been done by
merging attributes such as reliability, performabil-
ity and safety into a more general quality and by
defining a measure for it. A method to accommo-
date non-exponential failure rates for system com-
ponents using phase–type distributions has also
been suggested. Two different algorithms for the
calculation of the measure have been given. The
first one is appropriate for small systems and man-
ual calculations. The second one, which makes use
of matrix calculus, gives a general approach and
is applicable to big systems and computer–based
calculations.

7. ACKNOWLEDGEMENT

This work was supported in part by the PDCS2
project (Predictably Dependable Computing Sys-
tems) of the European ESPRIT/BRA program,
under contract No. 90-02692P from the Swedish
National Board for Industrial and Technical De-
velopment (NUTEK).

REFERENCES

Asmussen, S. and O. Nerman (1991). ‘Fitting
phase-type distributions via the EM algo-
rithm’. Symposium i anvendt statistik, UNI-
C, Copenhagen pp. 335–346.

Beaudry, M. (1978). Performance-related reliability
measures for computing systems.. In ‘IEEE
Transactions on Computers’. Vol. C-27.

Bobbio, A. and A. Cumani (1990). Ml estimations
of the parameters of a PH distribution in
canonical triangular form. Technical report.
Instituto elettroteccnico nazionale galileo fer-
raris. Torino, Italy.

Graham, A. (1981). Kronecker products and ma-
trix calculus with applications. Ellis Horwood,
Chichester.

Haggstrom, O., S. Asmussen and O. Nerman
(1992). ‘EMPTH - a program for fitting
phase-type distributions’. Studies in statisti-
cal quality control and reliability.

Heimann, D., N. Mittal and K.S. Trivedi (1991).
Dependability modelling for computer sys-
tems. In ‘Proceedings of the annual Reliabil-
ity and Maintainality Symposium’. pp. 120–
127.

Howard, R. (1971). Dynamic probabilistic systems.
Wiley, ISBN 99-0002431-1. New York, USA.

Jonsson, E. (1993). A unified approach to depend-
ability impaitments in computer systems. In
‘IASTED international conference on reliabil-
ity, quality control and risk assessment, Cam-
bridge, MA’. IASTED-ACTA Press, ISBN 0-
88986-181-1. pp. 173–178.

Jonsson, E. and T. Olovsson (1992). On the in-
tegration of security and dependability in
computer systems. In ‘Proceedings of the
IASTED International Conference: Reliabil-
ity, Control and Risk assessment’. ISBN 0-
88986-171-4. IASTED. pp. 93–97.

Jonsson, E., M. Andersson and S. Asmussen
(1994). An attempt to quantitative secu-
rity modelling. Technical Report 178. De-
partment of computer engineering. Goteborg,
Sweden.

Laprie, J. (Ed.) (1992). Dependability: Basic con-
cepts and terminology. ISBN 3-211-82296-8.
Springer Verlag.

Littlewood, B. (1988). Software reliability mod-
elling and identification. In S. Bittanti (Ed.).
‘Lecture notes in computer science’. Vol. no.
341. Springer Verlag, Germany, ISBN 3-540-
50695-0.

Meyer, J. (1980). On evaluating the performa-
bility of degradable computing systems. In
‘IEEE Transactions on Computers’. Vol. C-
29. pp. 720–731.

Meyer, J. F. (1992). Performability: a retrospec-
tive and some pointers to the future. In ‘Per-
formance evaluation’. Vol. 14. North-Holland
Ltd, England, ISBN 0-7458-0613-9. pp. 139–
156.

Neuts, M. (1981). Matrix-Geometric Solutions in
Stochastic Models. John Hopkins University
Press, Baltimore.

Olsson, M. (1993). Estimation of phase-type
distributions from censored samples. Tech-
nical Report 36. Department of Mathe-
matics, Chalmers University of Technology.
Göteborg, Sweden.

Smith, R. and K.S. Trivedi (1987). A performabil-
ity analysis of of two multi-processor systems.
In ‘Proc. 17th IEEE International Sympo-
sium on Fault-tolerant Computing, FTCS17’.
Pittsburg, Pennsylvania. pp. 224–229.

Trivedi, K. (1982). Probability and Statistics with
Reliability, Queuing and Computer Science
Applications. ISBN 0-13-711564-4. Prentice-
Hall, New Jersey.

7

