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Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a

source of free energy that may destabilize electromagnetic waves through a resonant interaction

between the waves and the energetic electrons. In this work, we investigate the high-frequency

electromagnetic waves that are destabilized by runaway electron beams when the electric field is

close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate

for the near-critical case, we calculate the linear instability growth rate of these waves and conclude

that the obliquely propagating whistler waves are most unstable. We show that the frequencies,

wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic

field. Taking into account collisional and convective damping of the waves, we determine the

number density of runaways that is required to destabilize the waves and show its parametric

dependences. [http://dx.doi.org/10.1063/1.4776666]

I. INTRODUCTION

Relativistic runaway electron populations have been fre-

quently observed in various plasmas, e.g., large tokamak dis-

ruptions,1 electric discharges associated with thunderstorms,2

and solar flares.3 Runaway electrons are produced when the

electric field is larger than a certain critical field (Ec), and the

accelerating force overwhelms the friction for high energy

electrons. The anisotropy of the runaway electron distribution

can lead to destabilization of electromagnetic waves through

wave-particle resonant interaction. Several studies have

shown that the velocity anisotropy excites electromagnetic

waves mainly through the anomalous Doppler resonance.4,5

Once the instability is triggered, the distribution is isotropized

due to pitch-angle scattering. Previous work4–6 has consid-

ered whistler wave instability driven by an anisotropic elec-

tron distribution as a possible cause for the observed

magnetic field threshold for runaway generation in large toka-

maks.7,8 These calculations relied on a distribution function

that was based on an approximate solution of the kinetic

equation in the case when the electric field is well above the

critical field, a� 1, where

a ¼ E

Ec
¼ 4p�2

0mec2

nee3 ln K
E; (1)

where ne is the thermal electron density, me is the electron

rest mass, e is the electron charge, ln K is the Coulomb log-

arithm, �0 is the dielectric constant, and c is the speed of

light. Also, in many studies, the runaway electrons were

assumed to be ultra-relativistic (velocities within 5% to the

speed of light) and simplified resonance conditions were

used to describe the wave-particle interaction. However, the

electric field is not always much larger than the critical field

and the velocity of the electrons is often not that close to

the speed of light. An example of this is the observations of

superthermal electron populations in the T-10 tokamak dur-

ing magnetic reconnection events, when the electric field

was transiently larger than the critical field during the

reconnection (for about 0.1 ms) but then it dropped to val-

ues near or even below the critical field.9 Recent work10 has

shown that even in disruptions, the electric field in the core

region of the plasma is only slightly above the critical elec-

tric field, a � 1.

The purpose of this work is to determine what waves

could be destabilized by runaway beams in a near-critical

field. Investigating the lowest relevant limit of the electric

field when runaway production occurs is a step toward gen-

eralizing the analysis of the runaway electron driven insta-

bilities to lower electric fields. This way we can gain

confidence that the analysis of the wave-particle interaction

yields valid results in both the high electric field and the

near-critical limit, before proceeding to the numerical analy-

sis of the interaction for electric fields in between.

In the present work, we use the runaway distribution

derived in Ref. 11, appropriate for a near-critical field, to cal-

culate the instability growth rate of the waves and determine

the frequencies and wave numbers of the most unstable

waves for various parameters. We use a general resonance

condition, without the ultra-relativistic assumption, so the

model can be applied also for electrons with lower energies.

We show that the whistler branch is destabilized via the

anomalous Doppler and Cherenkov resonances. Increasing

magnetic field leads to increasing wave number and fre-

quency while decreasing propagation angle for the most

unstable wave. The observation of these waves could help to

determine the origin and evolution of the energetic electrons.

If the waves grow to significant amplitude, they may contrib-

ute to efficient transport of particles out from the plasma.
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The remainder of the paper is organized as follows. In

Sec. II, the wave dispersion equation is presented, together

with a perturbative approximation of the instability growth

rate. In Sec. III, the runaway electron distribution in a

near-critical electric field is analyzed and the runaway contri-

bution to the susceptibilities is calculated. In Sec. IV, the

instability growth rate of the high-frequency electromagnetic

waves driven by runaways is calculated and the parameters

of the most unstable wave are determined. Here, we also

show the stability thresholds of the waves and study their

parametric dependences. Finally, the results are summarized

and discussed in Sec. V.

II. DISPERSION RELATION

The dispersion relation of high frequency electromag-

netic waves is given by12

ð�11 � k2
kc

2=x2Þð�22 � k2c2=x2Þ þ �2
12 ¼ 0; (2)

where x is the wave frequency, k is the wave number and � is

the dielectric tensor of the plasma. Equation (2) follows

from the wave-equation, with the approximation �33 � n2

cos h sin h, where n ¼ kc=x is a dimensionless vector with

the magnitude of the refractive index, cos h ¼ kk=k, h is the

pitch angle. The subscripts k and ? denote the parallel and

perpendicular directions with respect to the magnetic field.

The dielectric tensor is

� ¼ 1þ vi þ ve þ vr; (3)

where vs is the susceptibility of plasma species s, where i
denotes the ion, e the thermal electron, and r the runaway

electron population, 1 is the dyadic unit. As the contribution

of the runaway population is expected to be small, we con-

sider the dispersion of high frequency electromagnetic waves

without the runaway term and use the cold plasma approxima-

tion12 for the ion and electron populations. The contribution

of runaway electrons is added later as a perturbation, which is

justified in the present case since the runaway electron density

is much smaller than the thermal electron and ion density.

A. Electron-whistler wave

For the frequency range xce

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
� x, the back-

ground ion and electron contributions to � are12

�eþi
11 ¼ �eþi

22 ¼ 1�
x2

pe

x2 � x2
ce

and �eþi
12 ¼ �i

x2
pexce

xðx2 � x2
ceÞ
:

(4)

Here, xpe and xce are the electron plasma and cyclotron fre-

quencies, respectively. Without runaways, the dispersion

relation can be written as

EðxÞ � x6 � x4½2x2
pe þ x2

ce þ ðk2 þ k2
kÞc2�

þx2 x4
pe þ ðk2 þ k2

kÞc2ðx2
pe þ x2

ceÞ þ k2k2
kc

4
h i

� k2k2
kc

4x2
ce ¼ 0: (5)

Equation (5) has three solutions for x2 and these can be deter-

mined analytically, although their closed form expressions are

very complicated. One of the solutions satisfies x < kkc for

all wave numbers k and propagation angles h and will be

called “electron-whistler” wave, because in certain limits, as

we will show, its dispersion characteristics are the same as the

whistler wave’s. For the two other solutions, x > kkc is satis-

fied. For typical experimental parameters, the solution of the

analytical dispersion relation (5) has excellent agreement with

the numerical solution of the full dispersion relation using the

hot plasma susceptibilities for both ions and electrons from

Ref. 12 instead of Eq. (4). Figure 1(a) shows the three solu-

tions of Eq. (5) together with the solution of the numerical

dispersion relation. The solution for the wave frequency is

plotted as function of wave number for propagation angle

h ¼ p=6. The numerical wave dispersions in Figure 1(a) is

calculated for T¼ 20 keV. The agreement is even better at

lower temperatures.

The whistler approximation is usually defined by13

k2c2

x2

xce

x
cos h� 1

� �
¼

x2
pe

x2
: (6)

To show the whistler character of the lowest frequency solu-

tion of EðxÞ ¼ 0, we plot it together with the solution of Eq.

(6) as functions of k for h¼ 0 and h ¼ p=3, see Figure 1(b).

For h¼ 0, there is very good agreement between the two

solutions. For h ¼ p=3 and wave numbers up to 1000 m�1,

the two solutions overlap, but for higher wave numbers,

they deviate. This difference is due to the approximation

FIG. 1. (a) Solution of the analytical approximation of the dispersion relation from Eq. (5) (solid) together with the numerical solution using the hot plasma

susceptibilities, for plasma temperature T¼ 20 keV, density ne ¼ ni ¼ 5 � 1019 m�3, magnetic field B¼ 2 T, and propagation angle h ¼ p=6. Dashed line shows

x ¼ kkc. For the electron-whistler wave, x < kkc. (b) The lowest frequency solution of the analytical approximation of the dispersion relation Eq. (5) (blue

solid) together with the whistler approximation from Eq. (6) (red dashed), for propagation angles h¼ 0 (thick lines) and h ¼ p=3 (thin lines).
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�33 � n2cos h sin h used when deriving Eq. (2), while when

deriving the whistler wave dispersion given in Eq. (6), no

such approximation was used. By investigating the validity

of Eq. (5) dispersion, we concluded that it yields valid

results compared to the general dispersion relation for mag-

netic fields up to 3 T. In the following, we will therefore

limit our analysis to B < 3 T.

Including runaways, Eq. (5) can be written as

EðxÞ ¼ x4ðx2 � x2
ceÞ vr

11

k2c2

x2
� �eþi

22

� �
þ vr

22

k2
kc

2

x2
� �eþi

11

 !
� 2�eþi

12 vr
12

" #
; (7)

where vr
ij denotes the runaway contribution to the susceptibility tensor. The linear growth rate of a small perturbation of the

wave frequency x ¼ x0 þ dx, is ci ¼ =dx and is given by

ce
i

x0

¼ =
x2

0ðx2
0 � x2

ceÞ vr
11

k2c2

x2
� �0

22

� �
þ vr

22

k2
kc

2

x2
� �0

11

 !
� 2�0

12v
r
12

" #

2f3x4
0 � 2x2

0½2x2
pe þ x2

ce þ ðk2 þ k2
kÞc2� þ x4

pe þ ðk2 þ k2
kÞc2ðx2

pe þ x2
ceÞ þ k2k2

kc
4g ; (8)

where = denotes the imaginary part and �0
ij are the cold

plasma dielectric tensor elements defined by Eq. (4) evaluated

at the unperturbed wave frequency: �0
ij ¼ �eþi

ij ðx ¼ x0Þ.

B. Magnetosonic-whistler wave

To evaluate the wave-particle interaction in a lower fre-

quency region, we analyze the dispersion relation in the fre-

quency range xci � x� xce. Interaction between these

waves and strongly relativistic runaways has been studied

before.4,5 However, in a near-critical field, it is more likely

that the runaways are mildly relativistic, and as both the dis-

tribution function and the resonance condition is different,

the analysis in previous work has to be generalized. In this

frequency range, the contributions to the dielectric tensor

elements are

�eþi
11 ¼ 1�

x2
pi

x2
þ

x2
pe

x2
ce

;

�eþi
22 ¼ 1�

x2
pi

x2
þ

x2
pi

xcixce
;

�eþi
12 ¼ i

x2
pi

xcix
;

(9)

where xpi and xci are the ion plasma and cyclotron frequen-

cies, respectively. Substituting these into Eq. (2) leads to the

following dispersion relation

k2v2
A 1þ

k2
kv

2
A

x2
ci

þ
k2
k

k2

 !
� x2 1þ

ðk2 þ k2
k � 2x2=c2Þv2

A

xcixce
þ
ðk2
k þ k2Þv2

A

x2
pi

� v2
A

c2

x2

x2
pi

 !
� MðxÞ ¼ 0; (10)

where vA ¼ cxci=xpi is the Alfv�en speed. In Ref. 5, a simpli-

fied version of this dispersion relation

k2v2
A 1þ

k2
kv

2
A

x2
ci

þ
k2
k

k2

 !
� x2 1þ

ðk2 þ k2
kÞv2

A

xcixce

 !

� MsðxÞ ¼ 0 (11)

valid in the limit x2 � k2
kc

2, was used to study destabilization

of waves by an avalanching runaway electron distribution.

The wave determined by Eq. (10) can be identified as the

generalized magnetosonic-whistler wave, as its simplified

limit, Eq. (11), for quasi-perpendicular propagation jkj � jkkj
and k2c2 � x2

pe

k2v2
A 1þ

k2
kc

2

x2
pi

 !
� x2 ¼ 0 (12)

has been previously identified as the magnetosonic-whistler

wave.5

Figure 2 shows contour plots of the electron-whistler

wave together with the magnetosonic-whistler wave (Figure

2(a)) and the electron-whistler wave together with the
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whistler approximation from Eq. (6) (Figure 2(b)). The

electron-whistler and magnetosonic-whistler waves approx-

imately overlap with the whistler approximation for low

k (any propagation angle) and quasi-perpendicular propaga-

tion (any k). In the rest of the k-h-space, the electron-

whistler and magnetosonic-whistler waves have different

dispersion characteristics, as the magnetosonic-whistler

approximation is not valid in the region of very high k num-

bers because its frequency is assumed to be x� xce.

Including runaways, Eq. (10) can be written as

MðxÞ ¼ x2x2
ci

x2
pi

vr
11 1� x2

xcixce
þ k2v2

A

x2
ci

� x2

x2
pi

 !
þ vr

22 1� x2

xcixce
þ

k2
kv

2
A

x2
ci

� x2

x2
pi

 !
� 2i

x
xci

vr
12

" #

and the linear growth rate of a perturbation of the wave frequency is

cm
i

x0

¼ �=
x2

ci vr
11 1� x2

0

xcixce
þ k2v2

A

x2
ci

� x2
0

x2
pi

 !
þ vr

22 1� x2
0

xcixce
þ

k2
kv

2
A

x2
ci

� x2
0

x2
pi

 !
� 2i

x0

xci
vr

12

" #

2½x2
pi þ ðk2 þ k2

k � 4x2
0=c2Þc2ðxci=xceÞ þ ðk2

k þ k2 � 2x2
0=c2Þv2

A�
: (13)

In the following section, we will calculate the runaway con-

tribution to the susceptibilities which will allow us to evalu-

ate the linear growth rate of the wave.

III. RUNAWAY CONTRIBUTION

The susceptibility due to the runaway electron popula-

tion is given by12

vr ¼
x2

pr

xxcr

Xð1
0

2pp?dp?

ð1
�1

dpk
XeSm

x� kkvk � mXe
; (14)

where

Sm ¼
m2J2

m

z2
p?U im

JmJ0m
z

p?U

�im
JmJ0m

z
p?U ðJ0mÞ2p?U

2
664

3
775;

U ¼ @fr

@p?
þ

kk
x

v?
@fr
@pk
� vk

@fr

@p?

� �
;

Xe ¼ xce=c is the relativistic cyclotron frequency of the

electrons, JmðzÞ is the Bessel function of the first kind,

J0mðzÞ ¼ dJm=dz, z ¼ k?v?=Xe ¼ k?cp?=xce, p ¼ cv=c is

the normalized relativistic momentum, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
is the

relativistic factor, fr ¼ f=nr is the normalized runaway dis-

tribution, and m is the order of resonance. The general (and

implicit) condition for the resonant momentum is

pk ¼
x0c� mxce

kkc
: (15)

If the distribution function is known, the resonance condition

allows the integral in Eq. (14) to be evaluated using the Lan-

dau prescription.

A. Distribution of the runaway electrons

To calculate the runaway susceptibilities, the runaway

distribution given in Eq. (83) of Ref. 11 is used for the near-

critical a � 1 case

FIG. 2. (a) Comparison of the lowest frequency so-

lution of Eq. (5) (blue solid) with the magnetosonic-

whistler wave of Eq. (10) (red dashed). The parame-

ters are the same as in Figure 1. (b) Contour plot of

the lowest frequency solution of Eq. (5) and the solu-

tion of Eq. (6). The values plotted are x=xce on both

figures.
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frðpk; p?Þ ¼
A

p
ðCs�2Þ=ða�1Þ
k

exp � ðaþ 1Þp2
?

2ð1þ ZÞpk

� �

� 1F1 1� Cs

aþ 1
; 1;

ðaþ 1Þp2
?

2ð1þ ZÞpk

� �
; (16)

where

Cs ¼ a� ð1þ ZÞ
4
ða� 2Þ

ffiffiffiffiffiffiffiffiffiffiffi
a

a� 1

r
; (17)

Z is the effective ion charge and 1F1 is the confluent hyper-

geometric (Kummer) function. The distribution function

given above was obtained by matching asymptotic expan-

sions in five separate regions in momentum space. The cal-

culation is similar to the one presented by Connor and

Hastie14 of runaway electron generation, but it is valid for

near-critical electric field. Note, that to have a positive distri-

bution function, the first argument of 1F1 should be positive,

leading to the condition 1 > Cs=ðaþ 1Þ. Furthermore, the

condition fr ! 0 as pk ! 1 requires that Cs > 2. This gives

a region in the a-Z space where Eq. (16) is valid. The param-

eter Cs as function of a and Z is plotted in Figure 3. The

region between the solid and dashed lines gives the combina-

tions of a and Z for which the condition 2 < Cs < 1þ a is

fulfilled. This gives a restriction on the effective charge num-

ber, since if a ’ 1, the charge number can only be slightly

more than unity. In tokamak plasmas, Z seldom exceeds val-

ues of about 3. In the following, we will only consider com-

binations of a and Z such that 2 < Cs < 1þ a. One such

combination is a ¼ 1:3 and Z¼ 1 and this, together with the

parameters ne ¼ 5 � 1019 m�3, B ¼ 2 T, are the baseline pa-

rameters of our study and will be used in the rest of the paper

unless otherwise is stated. Note, that although Cs includes a

term proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffi
a� 1
p

, its value varies very little in

the parameter space where the distribution function is valid,

as Figure 3 shows Cs is between 2.5 and 3 in the region of in-

terest, irrespective of the exact value of a and Z. Therefore,

the distribution function is not very sensitive to these values.

Equation (16) is valid for all p > pc in the case of near-

critical electric field. Note that the integral of Eq. (16) func-

tion in the whole momentum space is divergent. This is

because the electric field continuously accelerates electrons

and more and more electrons will run away. In spite of the

continuous acceleration, the distribution is in quasi-steady

state, as the water leaking out of an unplugged bath tub.15

However, as the existence of the electric field is finite in

time, there is a maximum number of runaways and there is a

maximum energy which runaway electrons can reach in real-

ity. In the expressions for the runaway susceptibilities, we

use a normalized distribution function
Ð

frd
3p ¼ 1. The nor-

malization constant A in Eq. (16) is obtained fromð1
0

dp?2pp?

ðpmax

pc

dpk frðpk; p?Þ ¼ 1; (18)

where pmax is the normalized momentum corresponding to the

maximum energy. This integral can be easily solved numeri-

cally if pmax is known. The value of pmax depends on the exact

value and time evolution of the accelerating field. In this pa-

per, we approximated the maximum energy as 2.6 MeV, cor-

responding to pmax ¼ 5. A typical value of the perpendicular

momentum can be determined from the runaway distribution

function. In the case of pkmax ¼ 5, this is p? 	 3. This value

corresponds to E? ¼ 1:6 MeV. Figure 4 shows Eq. (16) for

Z¼ 1 and a ¼ 1:3. For the baseline parameters of our study,

this corresponds to the electric field of 0.06 V/m, while the

critical field is 0.046 V/m.

It is instructive to compare the distribution in Eq. (16)

with the distribution derived for the case of secondary run-

away generation4–6

f disr
r ðpk; p?Þ ¼

a

2pcZpk
exp

�pk
cZ
� ap2

?
2pk

� �
; (19)

where a ¼ ða� 1Þ=ðZ þ 1Þ and cZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðZ þ 5Þ=p

p
ln K.

The avalanche distribution is based on the solution of the

FIG. 3. Cs as function of a and Z. The distribution function is valid in the

region 2 < Cs < 1þ a. Solid black line shows Cs ¼ 1þ a and dashed black

line is Cs ¼ 2. The region between the solid and dashed lines gives the com-

binations of a and Z for which the condition 2 < Cs < 1þ a is fulfilled.

FIG. 4. Normalized runaway electron distribution function in near-critical

field, fr=A plotted with respect to the parallel and perpendicular momentum

normalized to mec, for Z¼ 1 and a¼ 1.3.
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kinetic equation for relativistic electrons in the limit of a�
1 using the Rosenbluth-Putvinski runaway growth rate16

dnr

dt
¼ nrða� 1Þ

cZs

as boundary condition. Here, s is the collision time for rela-

tivistic electrons. This means that the runaway density grows

exponentially as nr ¼ nr0 exp½ða� 1Þt=ðscZÞ�, where nr0 is

the seed produced by primary generation. Note that for the

avalanching distribution 2p
Ð

p?dp?dpkfr ¼ 1, independent

of the maximum momentum. The distribution (19) is valid if

secondary generation of runaways is dominant, as expected

to be the case in large tokamak disruptions. In contrast, the

distribution (16) is valid when primary runaway production

is the main source of the superthermal electron population.

Comparing the two distributions, we note that the near-

critical distribution function in Eq. (16) represents a broader

beam, with a less rapidly decaying tail. Figures 5 and 6 show

the comparison between the near-critical and the avalanching

distribution functions. Figure 5(a) shows the near-critical dis-

tribution for two different values of a and Z¼ 1.5. Figure 5(b)

shows the comparison between a¼ 1.3 and Z¼ 1 case of the

near-critical distribution with the avalanching distribution,

which is significantly more beamlike. To illustrate that the

distribution is more beamlike and more rapidly decaying in

pk in the avalanche case, in Figure 6 we show the comparison

between the near-critical and avalanching distributions for

specific values of pk and p?. In spite of the differences noted

above, the distribution functions in the a � 1 and a� 1 limits

are similar in the sense that both have an anisotropy in the pk
direction, and a smooth transition between the two can be

envisioned based on Figure 5. The reason for using this par-

ticular distribution function (Eq. (16)) in the present work is

that it is at the lowest limit of a that can possibly produce run-

away electrons.

Although Eq. (16) describes primary generation of run-

aways, it does not mean that the generation rate is small. Pri-

mary generation implies that the runaway generation is

smaller than ne=s. But since ne=s is very large, primary gen-

eration can result in a substantial runaway electron popula-

tion and its importance has been shown in many numerical

simulations, see, e.g., Ref. 17.

B. Resonance condition

In a plasma with a slightly supercritical electric field,

the characteristic value of the normalized momentum p in

the runaway region satisfies p > 1=
ffiffiffiffiffiffiffiffiffiffiffi
a� 1
p

. To obtain an

explicit formula for the resonant momentum, the expression

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

? þ p2
k

q
should be substituted into the resonance

condition and that leads to

presðp?; kk;x0Þ

¼
�kkcmxce 6 x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
kc

2 � x2
0Þð1þ p2

?Þ þ m2x2
ce

q
k2
kc

2 � x2
0

:

(20)

By using this general resonance condition, the expressions

giving the imaginary part of the runaway susceptibilities

become quite complicated. The full expressions for the sus-

ceptibilities are given in the Appendix.

FIG. 5. (a) Contour plot of the distribution function,

fr=A for a ¼ 1:3 (solid, corresponding to

E¼ 0.06 V/m) and a ¼ 1:5 (dashed, E¼ 0.069 V/m).

The effective charge is Z¼ 1.5. (b) Comparison

between the near-critical, fr=A (blue solid) and ava-

lanche, 100f disr
r (red dashed) distribution functions.

For the near-critical distribution, we used Z¼ 1 and

a¼ 1.3. For the avalanche distribution, we used

ln K ¼ 18, Z¼ 1, and E¼ 40 V/m (corresponding to

a¼ 865).

FIG. 6. Comparison between the near-critical,

fr=A (blue solid) and avalanche, 100f disr
r (red

dashed) distribution functions. For the near-critical

distribution, we used Z¼ 1 and a¼ 1.3. For the av-

alanche distribution, we used ln K ¼ 18, Z¼ 1,

and E¼ 40 V/m (corresponding to a¼ 865). (a)

The distribution function as a function of pk for

p? ¼ 0 (thin lines) and p? ¼ 0:5 (thick lines). (b)

The distribution function as a function of p? for

pk ¼ 20 (thick lines) and pk ¼ 40 (thin lines).
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Only the pres > 0 resonant momenta are physically rele-

vant. By studying the pres > 0 condition for different signs of

m, using the relation between kkc and x0ðk; hÞ it can be

shown that the Doppler resonances (m > 0) cannot be satis-

fied for any of the solutions in Eqs. (5) or (10).

1. Anomalous Doppler resonance

For the anomalous Doppler resonance (m < 0), the

pres > 0 condition, defining the physically relevant region of

the pres resonant momentum, is

kkcjmjxce þ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
kc

2 � x2
0Þð1þ p2

?Þ þ m2x2
ce

q
k2
kc

2 � x2
0

> 0 (21)

leading to k2
kc

2 > x2
0ðk; hÞ, which is only satisfied for the

electron-whistler branch and not for the other two solutions

of Eq. (5). Also the magnetosonic-whistler wave can be

destabilized via this resonance.

2. Cherenkov resonance

For the Cherenkov resonance (the case of m¼ 0) the

pres > 0 condition is

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
kc

2 � x2
0Þð1þ p2

?Þ
q

k2
kc

2 � x2
0

> 0: (22)

This also leads to the condition k2
kc

2 > x2
0ðk; hÞ, narrowing

down the possible waves once again to the electron-whistler

wave and the magnetosonic-whistler wave. Summarizing the

results above, we conclude that for m 
 0, only the electron-

whistler waves can yield physically relevant results out of the

high frequency electron waves defined by the dispersion rela-

tion in Eq. (5). The magnetosonic-whistler waves can also be

destabilized via m 
 0 resonances. However, combining the

region of the validity of the wave frequency with the reso-

nance condition, it can be seen that in the magnetosonic-

whistler case, the destabilization is most effective by very

energetic (around 10 MeV) runaway electrons.

If p� 1, for the beam-like distribution function in Eq.

(16) with pk � p?, the c � jpkj approximation can be used

(which will be called the ultra-relativistic limit), and the res-

onance condition in Eq. (14) simplifies to

pk ¼
�mxce

kkc� x
(23)

and m < 0 for physically relevant results.

IV. UNSTABLE WAVES

The instability growth rates for the electron-whistler and

the magnetosonic-whistler waves can be calculated from

Eqs. (8) and (13) as functions of k. Figures 7(a) and 7(b)

show the growth rates for the electron-whistler wave using

the ultrarelativistic limit and the general resonance condi-

tion, respectively, for the baseline parameters. The growth

rate increases with decreasing k throughout the range of va-

lidity of the electron-whistler approximation. Comparing

Figures 7(a) and 7(b), it can be seen that by using the ultrare-

lativistic condition, one gets somewhat different results than

by using the general condition, but the qualitative behaviour

is the same.

FIG. 7. Normalized growth rate 103ci=xce

for the electron-whistler wave (a,b) and

the magnetosonic-whistler wave (c,d). Both

in (a,b) and (c,d), the black line is

x ¼ xce=45, the electron-whistler approxi-

mation is valid in the region above it. In

(c,d), the dashed line denotes x ¼ xci, the

magnetosonic-whistler approximation is

valid in the region above it. The rest

of the parameters is ne ¼ 5 � 1019 m�3,

nr ¼ 3 � 1017 m�3; B ¼ 2 T, and pmax ¼ 5.

(a,c) Ultrarelativistic resonance condition

for m ¼ �1. (b,d) General resonance condi-

tion, sum of the cases m ¼ �1 and m¼ 0.
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Figures 7(c) and 7(d) show the growth rates for the

magnetosonic-whistler wave. In contrast to the electron-

whistler wave, the growth rate has a well-defined maximum.

However, as it was mentioned before, the resonance condi-

tion cannot be satisfied in the region close to the maximum

growth rate unless the resonant energy is very high (around

10 MeV for the parameters given in the figure caption),

which is only expected to be reached by few electrons in the

near-critical case considered in this paper. Interestingly in

both cases, the largest instability growth rate occurs for the

region in the k-h-space where the whistler approximation (6)

is valid (see the low k and perpendicular propagation part of

Figure 2). However, we note that only high energy electrons

can interact with the quasi-perpendicularly propagating

whistler wave, therefore it is more likely that the electron-

whistler branch with slightly higher k and more oblique

propagation is the one which is the most unstable wave.

A. Most unstable wave

The normalized momentum corresponding to the maxi-

mum energy of 2.6 MeV is approximately pres ¼ 5. The cor-

responding wave numbers and propagation angles of the

electron-whistler wave can be calculated by using the gen-

eral resonance condition and the dispersion relation. The

growth rate and the values corresponding to pres ¼ 5 are

shown in Figure 8. The most unstable wave in the near-

critical case is an electron-whistler wave with frequency

4:2 � 1010 s�1 ’ 0:12xce (for a magnetic field of 2 T), wave

number of approximately 650 m�1 and angle of propagation

h 	 0:9.

It should be noted that the parameters of the most unsta-

ble wave are sensitive to the magnetic field. The reason is

that the resonance condition is highly dependent on the mag-

netic field through the gyrofrequency. Due to this fact, the

p < 5 condition for the momentum of the runaway electrons

yields very different wave numbers for the most unstable

wave. For example, if the magnetic field is 4 T instead of

the 2 T in Figure 8, the pres ¼ 5 resonant momentum yields

k � 1600 m�1 wave number and h � 0:3. Therefore, by

increasing the magnetic field, the wave number and fre-

quency of the most unstable wave increase, while the angle

of propagation decreases.

The wave number, propagation angle, and frequency of

the most unstable wave also depend on the maximum run-

away energy. Figure 9 shows that as the energy grows, the

propagation angle becomes larger and the wave number and

frequency drop. This means that for low energy runaway

electrons (energies just above the critical energy for runaway

acceleration), we expect frequencies around one third of the

electron cyclotron frequency, propagating angles of h ’ 0:5,

and wave numbers of 1100 m�1. As the runaway energy

grows, the frequency and wave number of the most unstable

wave fall.

B. Stability diagram

In order to determine the stability limits, the instability

growth rate of the wave has to be compared to the damping

rates. In cold plasmas, collisional damping is dominant, and

the damping is approximately equal to cd ¼ 1:5s�1
ei ,18 where

sei ¼ 3p3=2m2
e0v

3
Te�

2
0=niZ

2e4 ln K is the electron-ion collision

time. In addition to collisional damping, the wave is damped

due to the fact that the extent of the runaway beam is finite,

and the wave energy is transported out of its region with a

@x=@k? perpendicular group velocity. This mechanism can

be accounted for by adding a convective damping term

cv � ð@x=@k?Þ=ð4LrÞ, where Lr is the radius of the runaway

beam.6 The linear growth rate of a wave is thus

cl ¼ ci � cd � cv, and the wave is unstable, if cl > 0. A sim-

ple estimate of the order of magnitude of the damping rates

shows that for typical parameters, and for reasonably narrow

electron beams, the convective damping is expected to domi-

nate if Te > 200 eV. However, as the plasma temperature sel-

dom reaches such a high value in the relevant case of tokamak

disruptions,19 collisional damping should not be neglected.

FIG. 9. The value of wave number (blue

dashed) and propagation angle (red dotted)

(a) and frequency (b) of the most unstable

wave as function of maximum runaway

energy.

FIG. 8. Most unstable wave in the near-critical case: maximum of the

growth rate (103ci=xce, contour lines) on the line corresponding to the maxi-

mum runaway energy (2.6 MeV, white dots). The parameters are

ne ¼ 5 � 1019 m�3, nr ¼ 3 � 1017 m�3; B ¼ 2 T.
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The linear stability threshold was determined in the fol-

lowing way. For any given value of the magnetic field, the

growth rate is calculated (for m ¼ �1; m ¼ 0, then adding

them for all k and h), then the collisional and convective

damping rates are subtracted from it. The parameters of the

most unstable wave are then determined. The stability thresh-

old of the most unstable electron-whistler wave is shown in

Figure 10(a). We conclude that for typical parameters, the

runaway density needed to counter the damping rates, there-

fore to destabilize an electron-whistler wave is of the order of

1017 m�3 or nr=ne ¼ 0:2%. For the magnetosonic-whistler

wave, the stability threshold is shown in Figure 10(b). In this

case, we assumed pmax ¼ 20, since in this case the resonant

particles have higher energies than in the electron-whistler

case. Figures 10(c) and 10(d) show the dependence of the sta-

bility threshold on the normalized electric field a. We con-

clude that above B � 1:5, the runaway density needed for

destabilization is sensitive to a, for higher normalized electric

field, lower runaway density is needed to destabilize the

wave. This dependence on a is due to the fact that for a higher

electric field, the anisotropy of the runaway distribution and

thus the destabilizing effect is stronger, therefore a lower den-

sity of runaways suffices for a resonant destabilization of the

wave. This is by no means because of the special characteris-

tics of the model distribution we used, but is due to the under-

lying physics.

It is instructive to compare the order of magnitude of the

runaway density required for destabilization of the whistler

wave to the one that is measured in an experimental setup.

Figure 11 shows the stability thresholds as function of mag-

netic field, for various runaway beam radii and for parame-

ters relevant to an experiment in the T-10 tokamak.9 We

note that the runaway density needed for destabilization is

about 1017 m�3 even for a narrow runaway beam. The run-

away density estimated in the experiment was almost an

order of magnitude higher than this: 7 � 1017 m�3.

V. CONCLUSIONS

The presence of high energy electrons is often associ-

ated with bursts of high-frequency waves. The emission of

radiation is most often due to Bremsstrahlung and synchro-

tron radiation, but in certain cases, they are due to instabil-

ities caused by the velocity anisotropy. The observation of

these waves can help to determine the origin and evolution

of the energetic electrons, and also in some cases, the prop-

erties of the background plasma.13 The instability may

result in pitch-angle scattering induced isotropization and

may therefore prevent the harmful effects of the runaway

electron beam.4

The reason for the generation of an anisotropic runaway

electron population is the high electric field that is often

caused by reconnection events in magnetized plasmas. In

previous calculations regarding waves driven by runaways,

the electric field was assumed to be much higher than the

critical field a� 1. This is not often the case in reality.

Therefore, in this paper, we use an electron distribution func-

tion that is valid in the near-critical case. We show that in

FIG. 10. Stability thresholds for the most unstable

wave in near-critical electric field, for electron tem-

perature Te ¼ 20 eV. (a,b) Stability threshold as

function of magnetic field for the electron-whistler

wave and magnetosonic-whistler waves, respec-

tively. The runaway-beam radius is Lr ¼ 0:1 m

(dashed) and Lr ¼ 0:2 m (solid). In (a), we assume

pmax ¼ 5 and in (b) pmax ¼ 20. (c,d) Sensitivity of

the stability threshold to the normalized electric

field a for the electron-whistler wave. The runaway

beam radius is Lr ¼ 0:1 m, ne ¼ 5 � 1019 m�3 and

the maximum runaway energy is 2:6 MeV, corre-

sponding to pmax ¼ 5. In (c) Z¼ 1 and in (d)

Z¼ 1.5.

FIG. 11. Stability threshold for the most unstable electron-whistler wave in

near-critical electric field, for the experimental parameters of the T-10 toka-

mak. The parameters are a ¼ 1:9, Z¼ 3, ne ¼ 4 � 1019 m�3; Te ¼ 0:5 keV;
pmax ¼ 1:5.
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this case, the distribution is broader and less rapidly decay-

ing compared to the a� 1 case.

By studying the linear growth rate of the electron-whistler

branch (valid in the frequency region xce

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
� x) and

the magnetosonic-whistler branch (valid in the frequency

region xci � x� xce) separately, we find that the frequency

of the most unstable wave is in the region where these overlap

and have characteristics similar to the whistler approximation.

For typical tokamak parameters, we find that the frequency of

the most unstable wave is around 0:12xce, in the near-critical

case with a ¼ 1:3 and E ¼ 2:6 MeV. The frequency and wave

number of the most unstable wave depend strongly on the

magnetic field and on the maximum runaway energy. By com-

paring the ultra-relativistic limit of the resonance condition

and the general one, we show that although the behaviour of

the instability growth rates of the electron-whistler and

magnetosonic-whistler waves are similar, the actual values for

the growth rate may differ, and therefore the frequency and

wave number of the most unstable wave might be different.

The instability growth rate of the electron-whistler

wave was compared to the collisional and convective damp-

ing rates. We find that the number density of runaways that

is required to destabilize the waves increases with increas-

ing magnetic field. For low magnetic fields, the convective

damping decreases, while the collisional damping rate

remains constant, making it dominant in this region. As the

growth rate also decreases, the stability limit is high for low

magnetic fields. We investigated the stability of the whistler

waves for parameters relevant to the T-10 tokamak,9 where

the effective electric field is near-critical. We found that the

observed runaway density is about an order of magnitude

higher than the density needed for the most unstable

electron-whistler wave to be destabilized. Thus, the

runaway population may indeed give rise to this whistler

wave.

The importance of this study is that it considers the case

where the electric field is near-critical, which is opposite to

the other limit that has been considered in previous work4–6

(when the electric field is far above the critical). By investigat-

ing this case, we show that the high-frequency instabilities are

qualitatively similar, but have different frequencies and wave

numbers. This result may open up the possibility of diagnos-

tics. Understanding the properties of the waves destabilized

by runaway electrons can be important in view of obtaining

information about the energetic electron population and the

background plasma. Regardless of the fact that the distribu-

tion used in this work is only valid in the near-critical case, if

we compare it to the avalanche distribution we observe a

smooth transition between the two, and so we expect that the

distribution does not change qualitatively. Also, the character-

istics of the growth rates in the near-critical and high electric

field limits are similar, in the sense that the maximum of the

growth rate is at low wave numbers and near-perpendicular

propagation in both cases.5 The differences in the parameters

of the most unstable wave for near-critical and avalanching

cases are mainly due to the maximum runaway energy. The

similarity of the results, added to the relaxation of the approxi-

mations used in previous work, opens the way toward more

general numerical studies of wave-particle interaction for ar-

bitrary electric fields.

The whistler waves, if they grow to significant amplitude,

in principle could perturb the background magnetic field and

lead to efficient transport of particles (specially energetic

ones) out from the plasma. The effect of magnetic field pertur-

bation has been studied before,20–22 and it has been shown

that runaway avalanches can be prevented altogether with suf-

ficiently strong radial diffusion. However, the magnetic fluc-

tuation level that is required for this to happen is estimated to

be dB=B � 10�3, and the magnetic fluctuation level induced

by these high-frequency whistler waves would be several

orders of magnitude lower than this value. Therefore, as men-

tioned before, the runaway electron population will be

affected mostly through pitch-angle scattering and concomi-

tant isotropization and synchrotron radiation damping.

ACKNOWLEDGMENTS

This work, supported by the European Communities

under the contract of association between EURATOM,
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APPENDIX: RUNAWAY SUSCEPTIBILITIES

In the general case, the susceptibilities have the follow-

ing form

Imvr
11ðk;x0Þ ¼ �

2p2x2
prx

2
ce

x2
0k2
?c2

ð1
0

dp?

ð1
�1

dpk
X

m2J2
mðzÞ

� @frðpÞ
@p?

mxce

c

� �
þ @frðpÞ

@pk

kkcp?

c

� �
1

c
� d x0 �

kkcpk
c
� mxce

c

� �
; (A1)

where we used the resonance condition cx0 � kkcpk ¼ mxce to replace the factor ðx0 � kkcpk=cÞ. The Imvr
22 and Imvr

12 terms

only differ in multiplicative constants and will be presented later.
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For a general function gðpkÞ, we can rewrite the integral in pk as follows:

ð
dpkd x0 �

kkcpk
c
� mxce

c

� �
gðpkÞ ¼

ð
dxd A� Bxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ x2
p þ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cþ x2
p

� �
gðxÞ; (A2)

where x ¼ pk, A ¼ x0, B ¼ kkc, C ¼ 1þ p2
?, and D ¼�mxce. Changing variables y¼ðBx�DÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ x2
p

; so that

dx ¼ ðCþ x2Þ3=2

BCþ xD
dy; x ¼ BD 6 y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 � y2ÞCþ D2

p
B2 � y2

:

Equation (A2) yields

ð
dy
ðCþ x2Þ3=2

BCþ xD
dðA� yÞg BD 6 y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 � y2ÞCþ D2

p
B2 � y2

 !

¼

�
AD 6 B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 � A2ÞCþ D2

p �3

ðB2 � A2Þ3 � BCþ D

B2 � A2

�
BD 6 A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 � A2ÞCþ D2

p �� � g
BD 6 A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 � A2ÞCþ D2

p
B2 � A2

 !
: (A3)

Using the above expression to solve the integrals in the runaway susceptibilities, we arrive to the following formulas:

Imvr
11ðk;x0Þ ¼ �

2p2x2
prx

2
ce

x2
0k2
?c2

ð1
0

dp?
X

m2J2
mðzÞ �

@frðpÞ
@p?

mxce

c

� �
þ @frðpÞ

@pk

kkcp?

c

� �� �
pk¼pres

hðp?; kk;x0Þ
c

; (A4)

where

hðp?; kk;x0Þ ¼
1

ðk2
kc

2 � x2
0Þ

3
�

�
�x0 mxce 6 kkc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
kc

2 � x2
0Þð1þ p2

?Þ þ m2x2
ce

q �3

kkc ð1þ p2
?Þ �

mxce

k2
kc

2 � x2
0

�
�kkc mxce 6 x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
kc

2 � x2
0Þð1þ p2

?Þ þ m2x2
ce

q �" # :
(A5)

Similarly, the other two terms of the runaway susceptibility

Imvr
22ðk;x0Þ ¼ �

2p2x2
pr

x2
0

ð1
0

p2
?dp?

X
ðJ0mðzÞÞ2

� @frðpÞ
@p?

mxce

c

� �
þ @frðpÞ

@pk

kkcp?

c

� �� �
pk¼pres

�
hðp?; kk;x0Þ

c
; (A6)

�Revr
12ðk;x0Þ ¼�

2p2x2
prxce

x2
0k?c

ð1
0

p?dp?
X

mJmðzÞJ0mðzÞ

� @frðpÞ
@p?

mxce

c

� �
þ@frðpÞ

@pk

kkcp?

c

� �� �
pk¼pres

�
hðp?;kk;x0Þ

c
: (A7)

Equation (A7) gives the real part of the runaway susceptibil-

ity v12 since this term is the one needed in the expression for

the growth rate. By substituting these runaway susceptibil-

ities into the expression of the growth rate, the calculations

yield results in the general, relativistic case regarding the

runaway electrons interacting with the corresponding wave.
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