
Implementing Anisotropic Adaptive
Mesh Refinement in OpenFOAM
Master’s Thesis in Computer Science, Algorithms, Languages and Logic

JONAS KARLSSON

Department of Computer Science
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012
Master’s Thesis 2012

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that violates copyright
law.

The Author shall, when transferring the rights of the Work to a third party (for example a pub-
lisher or a company), acknowledge the third party about this agreement. If the Author has signed
a copyright agreement with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

Implementing Anisotropic Mesh Refinement in OpenFOAM

Jonas K. Karlsson

c© Jonas K. Karlsson, December 2012.

Examiner: Peter Damaschke

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden December 2012

Abstract

The field of computational fluid dynamics (CFD) is growing steadily, with a rate proportional to
the computational tools available. With today’s computing power available in CPU’s and clusters
we are able to solve cases that were considered impossible just a few years ago. Although as we
all know, even with great computational power and brute-force approaches, some problems will
remain unsolvable. With this realization, adaptive mesh refinement (AMR) was introduced as a
way of adapting the mesh as to reduce the computational error. AMR is relevant for CFD since it
can greatly reduce the computational effort needed to solve a lot of cases. This can in turn make
previously intractable simulations solvable. In this thesis we will look at how implementing a
specific type of AMR could be done - namely anisotropic AMR for the OpenFOAM code-base.

We will briefly look at some papers to get an idea of what constraints the mesh should satisfy
and to see what kind of data-structure for the refinement history is needed. We will also look
at similar functionality currently available in the OpenFOAM code. With this knowledge we
define a design criteria we will use for implementing anisotropic AMR in OpenFOAM.

This implementation will result in a working example of anisotropic AMR. We have also de-
fined a tree used for storing the refinement changes that can be used for other types of AMR
in the OpenFOAM codebase. We also show some graphical results of a case refined using the
anisotropic AMR defined in this thesis and compare these to an isotropic refinement.

Acknowledgements

I would like to thank my supervisors Claes Eskilsson and Andreas Feymark for their great sup-
port and help during my thesis work. I would also like to thank Peter Damaschke for his su-
pervision and also Matz Johansson for his input during the opposition. Lastly I would like to
thank all my friendly colleagues in the Hydrodynamics Group at the Department of Shipping
and Marine Technology, Chalmers.

Jonas Karlsson, Göteborg 14/10/12

Contents

1 Introduction 1
1.1 Adaptive mesh refinement . 2
1.2 Parallelization . 5
1.3 Refinement tree . 5
1.4 Objective . 6

1.4.1 Design Criteria . 7

2 OpenFOAM 9
2.1 Mesh description . 10
2.2 Adaptive mesh refinement . 10

2.2.1 Refinement-engine . 10
2.2.2 Mesh-cutter . 12
2.2.3 Refinement-tree . 12

3 Implementation of AMR 13
3.1 Refinement-engine . 15
3.2 Mesh-cutter . 15
3.3 Refinement-tree . 17

4 Test cases 21
4.1 Refinement-tree . 21
4.2 CFD Cases . 22

4.2.1 Backward facing step . 23
4.2.2 NACA0012 wing . 23

5 Conclusions 26
5.1 Future work . 27

Bibliography 29

A Graph legend 30

B Code documentation 32
B.0.1 dynamicRefineFvMeshHexRef2 Class Reference 32

B.0.1.1 Detailed Description . 33

i

CONTENTS

B.0.1.2 Constructor & Destructor Documentation 33
B.0.1.3 Member Function Documentation 33
B.0.1.4 Member Data Documentation 35

B.0.2 hexRef2 Class Reference . 36
B.0.2.1 Detailed Description . 37
B.0.2.2 Constructor & Destructor Documentation 37
B.0.2.3 Member Function Documentation 38
B.0.2.4 Member Data Documentation 43

B.0.3 refinementTree Class Reference . 44
B.0.3.1 Detailed Description . 45
B.0.3.2 Constructor & Destructor Documentation 45
B.0.3.3 Member Function Documentation 46
B.0.3.4 Friends And Related Function Documentation 48
B.0.3.5 Member Data Documentation 48

ii

Chapter 1

Introduction

In the field of fluid mechanics the introduction of Computational Fluid Dynamic (CFD) has
caused a paradigm shift in how a great deal of the fluid research is executed. CFD can be
defined as [1]:

“the science of computing numerical solutions to Partial Differential or Integral
Equations that are models for fluid flow phenomena”

But the importance of CFD stretches further than just providing insights into the physics of flu-
ids, throughout the years it has evolved to become an important tool for a plethora of engineering
disciplines. Today there is plenty of CFD software available, some of the most well-known be-
ing ANSYS-CFX, ANSYS-Fluent, CFD++, NUMECA and Star-CCM+, just to name a few. It
is common, and almost mandatory, for CFD applications to execute in a parallel environment
typically on computer clusters. The effect of this is that the licensing cost for the used applica-
tions can become quite significant. Therefore there is a need and interest for alternative, and in
particular open source, solutions. Of course, price is just one factor that makes it interesting, the
possibility to modify the code is equally important. Arguably one of the most successful open
source CFD tools is, in terms of user adoption, OpenFOAM R© 1 [2]. The details of OpenFOAM
are described in chapter 2, for now we only mention that OpenFOAM is based on a numerical
technique called finite volume method (FVM).

FVM is a mesh (or grid) based method where the computational domain is subdivided into
several cells, together creating a mesh. The truncation error from a numerical solution can be
seen as en = O(hp), where en is the truncation error, h represents the cell size and p denotes the
order of accuracy of the numerical scheme [3]. From this equation it is obvious that to reduce
the error you need to either decrease the cell size or increase the order of accuracy. Decreasing
the error is crucial if you want to achieve an accurate computation of the flows involved in the
simulation.

1Te work described in this thesis is not approved nor endorsed by OpenCFD Limited, the producer of the Open-
FOAM software and owner of the OPENFOAM R© and OpenCFD R© trade marks.

1

1.1. ADAPTIVE MESH REFINEMENT CHAPTER 1. INTRODUCTION

When representing a mesh in a computer environment there are two basic classifications that are
based upon the connectivity of the mesh, namely structured or unstructured [4]:

• Structured (curvilinear). A structured mesh is a mesh that follows some regularity and
that can store its points connectivity as an n-dimensional matrix. For example in a two-
dimensional mesh an array x(i, j) can store every points x-coordinate. Then i and j can be
selected to represent the position of points in one curvilinear direction. With this approach
any curvilinear coordinate system will also conform into a structured mesh. Naturally a
hexahedral uniform mesh is easiest to imagine stored in a structured grid, but other less
trivial meshes can also be stored in the same structure. A common example used for
understanding the implications of a curvilinear mesh is to imagine a sponge with a uniform
hexahedral mesh drawn upon it. Then you could take this sponge and wrap it around
objects, for instance around a cylinder, whereby the mesh connectivity still will be the
same but the actual cells will be curved. By forcing this regularity the well-representable
meshes are reduced to quadrilaterals (in 2D) and hexahedra (in 3D).

• Unstructured. An unstructured mesh is irregular in the sense that it cannot be readily
stored in an array or a matrix. Compared to a structured mesh an unstructured mesh can
represent any type of cell since it is not restricted to keep the connectivity representable
in a matrix. The downside is of course that the connectivity needs to be stored explicitly,
any vertex can have an infinite (although not in practice) number of connections.

1.1 Adaptive mesh refinement

When performing a computation for a general CFD case it is impossible to know a priori how
to design an optimal mesh, i.e. a mesh with minimal number of cells still satisfying the defined
tolerance of the computational error. For transient problems, where the flux is unsteady and the
points of interest can reposition during the simulation, this becomes most problematic since a
static uniform mesh would need to be very fine to satisfy the error tolerance throughout the whole
simulation. To solve this dilemma a scheme where the mesh self-adapts its structure upon some
criteria can be used. What this usually means is that the mesh initially is divided uniformly and
during runtime the mesh is automatically altered. The criteria is commonly an error-estimation
which will mark cells with error greater than some threshold to be refined and likewise mark
cells with an error lesser than the threshold to be unrefined (if once refined). The effect of this
scheme is a more effective use of cells and thereby lower computational cost. There are three
basic schemes available for adapting the numerical solution:

• h-adaptivity. In h-adaptivity the mesh connectivity is changed. The mesh is refined by
adding points, thus reducing the size of the cell. The mesh is coarsened by deleting points.
In this method the mesh connectivity is changed.

• p-adaptivity. Adaptivity is obtained by increasing or decreasing the order of accuracy
of the underlying numerical scheme. In this method the mesh connectivity remains un-
changed.

2

1.1. ADAPTIVE MESH REFINEMENT CHAPTER 1. INTRODUCTION

• r-adaptivity. Both the mesh connectivity and order of accuracy of the scheme are kept
constant but the points are repositioned to minimize the computational error.

The most common scheme is h-adaptivity, also known as adaptive mesh refinement (AMR). In
this study only AMR is considered. With AMR the overall error can be reduced using less cells
compared to a uniform refinement, which in turn leads to greater efficiency in terms of memory
and computational effort. Because of this, some problems that are intractable to solve with a
uniform grid can become solvable when using AMR [5].

When performing AMR there is an important distinction between isotropic and anisotropic mesh
refinement. In isotropic mesh refinement, from the Greek iso (equal) and tropos (direction), the
mesh is refined in all directions. This means that all cell edges (or sides in 3D) are split, i.e. one
quadrilateral is split into four quadrilaterals and a triangle is split into four triangles. Isotropic
mesh refinement guarantees that the mesh quality is not degraded and that the underlying ma-
trices stay well conditioned. Isotropic refinement is what the distributed version of OpenFOAM
supports.

Anisotropic mesh refinement is, as the name might suggest, refinement in only one direction,
so for instance a hexahedron gets split into two. In many CFD simulation there is often a
pronounced directional behaviour in the flow field investigated. Two examples of where these
behaviours will arise is on boundary layers (on the boundary of the computational domain) and
with shock waves, where the flow varies dramatically only in the normal direction of the shock
or layer. For these scenarios it is more computationally efficient to use stretched cells refined
in only the direction of the shock so to reduce the error with less cells. These types of cells
are possible to obtain by using a coarse initial mesh and then applying anisotropic refinement.
Typically, the number of cells given by an anisotropic refinement is only a fraction of the number
of cells given by an isotropic refinement, see Figure 1.1.

When refining one cell but not its neighbour cell the face between the two cells will get split,
however this results in that one of the cells will have seven faces (in the case of anisotropic
refinement of a hexahedron). A point is called regular if it constitutes a vertex (corner) for
each of the neighboring cells; otherwise it is irregular [7]. In the context of two-dimensional
meshes, the maximum number of irregular nodes on an element side is referred to as the index
of irregularity. Meshes with an index of irregularity equal to one are called 1-irregular meshes. In
this case the point connecting the neighbour and the two refined cells is called a “hanging node”,
see figure 1.2. This does also extend to three dimensions where in the case of an anisotropic
refinement we will have 2-irregular meshes, that is meshes with a maximum of two irregular
nodes on each side. From this we define a consistent mesh as a mesh where every side of a cell
comprise at most two faces. This is also commonly referred to as the “two-to-one” rule. There
are several practical and theoretical reasons to restrict the mesh to 1-irregularity, especially in
the context of h-p refinement, for more details see [8].

3

1.1. ADAPTIVE MESH REFINEMENT CHAPTER 1. INTRODUCTION

(a) (b) (c)

(a) (b) (c)

Figure 1.1: Computations of a radial dam-break using isotropic mesh refinement (top panel) and
anisotropic mesh refinement (middle panel, and a zoom in the lower panel). The computations have
the same accuracy but have very different degrees of freedom: (a) t = 0.5 the isotropic has 5386
elements while the anisotropic has 2078 elements, (b) t = 1.0 the isotropic has 7198 elements while
the anisotropic has 1920 and (c) t = 1.5 the isotropic has 9510 elements while the anisotropic has
1932 elements. The variable t is the elapsed time. From [6].

Figure 1.2: An example of a hanging node in 2D. The dots represent nodes and the hanging node is
represented by a larger dot. This mesh is 1-irregular.

4

1.2. PARALLELIZATION CHAPTER 1. INTRODUCTION

1.2 Parallelization

In CFD, parallelization has emerged as one of the corner stones to its success. For computer
clusters the most common way to distribute computations among several processes is through a
Message-passing Interface (MPI) [9, Ch. 8]. This can be used to do domain decomposition, that
is decompose the domain into n-sized parts and then send these with MPI communication to n
different processes. The term ’process’ is quite arbitrary and can be either a different node on
a network, or a different core on the same CPU. A more general term for this is load-balancing
which is what a method used for distributing the workload between several different processes is
called. Generally the benefit is that several processes working on small chunks of a problem will
make the computation complete faster than just one processor handling the whole computation,
thus also enabling simulations of much larger scale. Dividing the mesh in too small chunks
might make the communication cost higher than what is gained by dividing the computation so
there are drawbacks too.

OpenFOAM provides support for parallelization through MPI. By default OpenFOAM ships
with the OpenMPI library. OpenFOAM supports load-balancing and decomposition through
some third-party applications like metis[10] (and the parallel version parmetis) and scotch[11]
(and the parallel version ptscotch).

AMR will typically cause initially well-balanced distributions to become unbalanced as new
cells often are clustered on one or a few processors. For instance if one processors decomposition
contains a vortex it will likely produce many more new cells. In the context of AMR, load-
balancing should be performed automatically during run-time in order to redistribute the mesh
after some steps in time or a certain amount of refinement has been done. This is known as
dynamic load-balancing. The vanilla version of OpenFOAM does not currently support dynamic
load-balancing, but the present work is based on an in-house version of OpenFOAM-2.1.x at the
Department of Shipping and Marine Technology [12] that supports dynamic load-balancing, see
Figure 1.3

1.3 Refinement tree

When using AMR a data-structure to hold the refinement changes is needed to be able to do
unrefinement. It is also necessary to have a distributable refinement-tree in a parallel environ-
ment to be able to distribute refined meshes. One commonly used type of refinement is called
octree-refinement. It is based upon the notion of octrees where the nodes of the tree represent
cells in the mesh. This method works by creating a root node (or bounding box) for the whole
domain and then split this node into eight new sub-nodes, hence creating an octree. Every node
represents a cell and also inherits a geometric placement based upon its position in the tree. For
instance, if the whole domain is split into eight cells then every cell contains one eight of the
domain. If any of these cells get split then their children will contain one sixty-fourth of the
domain.

5

1.4. OBJECTIVE CHAPTER 1. INTRODUCTION

(a)

(c)

(b)

(d)

Figure 1.3: Dynamic load-balancing of a rotating mixer: (a) initial partition using metis, (b) initial
partition using scotch, (c) final partition using metis, and (d) final partition using scotch.

Mitchell proposes a data-structure called REFTREE (or refinement-tree) used for AMR [13].
The refinement-tree T (G) = {V,{C(vi)}} contains a set of nodes V = {vi}M

i=0 and each v j ∈ V
containing a set of children C(vi) ⊂ V where G is the grid. Every node is contained in exactly
one set of children C(vi) except for the root node which is not contained in any. If C(vi) = /0 then
vi is called a leaf. If we call the root-node vroot then C(vroot) = G0 where G0 is the initial mesh
(without any refinement). Figure 1.4 shows an example of an oct-tree and refinement-tree.

1.4 Objective

OpenFOAM has support for isotropic AMR, limited to octasectal refinement of hexahedra. Even
though there are examples of studies using anisotropic AMR in OpenFOAM [5], to the author’s
knowledge this functionality is not presently distributed. This work aims to provide OpenFOAM
with support for anisotropic mesh refinement, in order to increase the computational efficiency
when using AMR. The scheme should work in a parallel environment. In order to achieve this,
functions need to be created that:

• Select cells to refine and the direction in which to split them.

• Split selected cells anisotropically.

6

1.4. OBJECTIVE CHAPTER 1. INTRODUCTION

(a) (b)

(c)

Figure 1.4: A three-dimensional mesh (a) and its oct-tree (b) and its anisotropic refinement-tree (c)
representation. The dotted lines means that the cell is refined. Note that the refinement-tree in this
example does not represent the same refinement as the oct-tree but instead an anisotropic refinement.

• Store the refinement changes in a refinement-tree.

• Distribute the refinement-tree.

• Automatically refine and redistribute the mesh and tree.

The work is restricted to only handle hexahedra. Some challenges of implementing AMR is that
a geometric orientation needs to be created. This orientation is needed to be able to know how
faces, edges and points should be modified by a split. Since the mesh must be consistent we
also need to define exactly what this consistency means for a cells ability to be refined and also
what preconditions have to be met for cell to be refineable. Since the mesh is distributable this
geometric orientation for the cells will also need to be distributable. Overall time-complexity
is crucial in every part of the system, as simulations might run for extended periods of time, an
inefficient time-complexity is not acceptable.

1.4.1 Design Criteria

The implementation is limited to function only for hexahedra and it should work in a paral-
lel environment. The implementation should be able to select candidate cells for refinement

7

1.4. OBJECTIVE CHAPTER 1. INTRODUCTION

by some arbitrary error estimation and, if possible by the refinement constraints, refine these
cells. A refinement-tree needs to be implemented to be used together with the application. The
refinement-tree needs to satisfy the following criteria:

• Handle any type of polyhedral cell.

• Function in parallel and handle distribution between processes.

• Efficient in terms of memory and computation cost.

By making the tree handle any type of cell it should thus be implementable in the current Open-
FOAM codebase for octasectal hexahedra refinement.

8

Chapter 2

OpenFOAM

This chapter will give a description about the design of OpenFOAM regarding how it handles
AMR. Figure 2.1 shows the overview of OpenFOAM. OpenFOAM (Open Source Field Opera-
tion and Manipulation) is a library of tools, written in C++, that are used primarily for creating
applications. The tools fall into two different categories; solvers and utilities. Solvers are used to
solve continuum mechanics and the utilities are used for pre- and postprocessing. This modular
structure makes it possible for users, given they posses the ability, to combine and program their
own solvers and applications. The preprocessing part involves tasks for setting up the case like;
mesh creation, mesh conversion (from third-parties) and defining numerical schemes. Postpro-
cessing usually involves visualization of the case, for this the freely licensed open-source appli-
cation paraFoam is provided but other proprietary tools like EnSight can be used by converting
the case data to suitable formats.

Applications
User

Tools
Meshing

Utilities
Standard

Applications
Others

e.g.EnSight

Post-processingSolvingPre-processing

Open Source Field Operation and Manipulation (OpenFOAM) C+ + Library

ParaView

Figure 2.1: Overview of OpenFOAM [14].

9

2.1. MESH DESCRIPTION CHAPTER 2. OPENFOAM

2.1 Mesh description

In OpenFOAM a mesh is described by four basic building blocks:

• Points. A point defines a location in 3D-space by a vector holding its coordinates. Two
points are never allowed to have identical coordinates. A point must also belong to at least
one face.

• Faces. A face is an ordered list of points where every point is represented by its label.

• Cells. A cell is a list of faces represented by their labels.

• Edges. From the field of geometry, represents a line segment connecting two points. The
connecting points are references by their labels.

Every point, face, cell and edge is assigned a unique label representing only that particular
object. The most basic mesh is implemented in the class primitiveMesh which represents
the mesh described above. This class also provide som other useful functionality to the mesh
which is described a bit more in Section 2.2.1.

2.2 Adaptive mesh refinement

The implementation of AMR in OpenFOAM depend upon three key classes; dynamicRe-
fineFvMesh, hexRef8 and refinementHistory. The class dynamicRefineFvMesh
holds the mesh and gets called to do mesh refinement (refinement-engine), hexRef8 is used for
cutting cells (mesh-cutter) and refinementHistory contains the history of the refinement
(refinement-tree).

2.2.1 Refinement-engine

Figure 2.2(a) shows the inheritance diagram for dynamicRefineFvMesh which is a sub-
class (through several subclasses) of primitiveMesh. Through this inheritance dynami-
cRefineFvMesh has been equipped with functions to handle polyhedral cells and to do finite
volume discretization. To fully understand the implications of this inheritance a breakdown of
the classes used is needed to understand their purpose.

The class primitiveMesh is as the name implies the most primitive form of a mesh. This
also means it actually contains the permanent mesh data and that it provides the functions to
create the connectivity structures of the mesh as well as some geometric data. The geometric
data that primitiveMesh provide is functions to calculate cell centres, cell volumes, face
centers and face areas. The connectivity structures contains for instance; which cells and edges
a point belong to or which cells are connected to a certain cell. To get the points and cells into its
structure primitiveMesh provides the virtual (overriding) functions points(), faces(),

10

2.2. ADAPTIVE MESH REFINEMENT CHAPTER 2. OPENFOAM

dynamicRefineFvMesh

dynamicFvMesh

fvMesh

polyMesh

primitiveMesh

(a)

hexRef8

refinementHistory

history_

polyMesh

mesh_ removeFaces

mesh_

Map< label >

savedPointLevel_
savedCellLevel_

faceRemover_

(b)

dynamicRefineFvMesh

dynamicFvMesh HashTable< word >

correctFluxes_

Switch

dumpLevel_

PackedBoolList

protectedCell_

hexRef8

meshCutter_

(c)

Figure 2.2: The inheritance diagram for dynamicRefineFvMesh is shown in (a) and the collab-
oration diagram is shown in (c). The collaboration diagram for hexRef8 is shown in (b).

faceOwner() and faceNeighbour(). Since these functions are virtual the subclasses
will have to implement them. This brings us to the next class in the inheritance hierarchy which
is polyMesh. The class polyMesh can be seen as a mesh of generic polyhedral cells. It
provides the override functions described before; points(), faces(), faceOwner() and
faceNeighbour(). When constructing the polyMesh object the structures for points, faces
and cells can be read from files in the current case directory. So at this level a proper mesh is
actually contained. The next subclass is fvMesh. The class fvMesh adds the functionality to
do finite volume discretization. It adds among other things fields for the face area motion fluxes,
face area vectors and face area magnitudes. The next class is dynamicFvMeshwhich is just an
abstract base class for geometry- and/or topology changing meshes. It provides just one function
besides the constructor and destructor which is a virtual function called update(). Now we
have arrived at the class doing the mesh refinement, namely dynamicRefineFvMesh.

This class provides the function update() which for this class executes an adaptive refine-
ment on the mesh. The update function uses some other internal functions like selectRe-
fineCandidates() for selecting the candidates for refinement and refine() for doing
the refinement of some selected cells. To do the actual cutting of cells dynamicRefine-

11

2.2. ADAPTIVE MESH REFINEMENT CHAPTER 2. OPENFOAM

FvMesh uses another class called hexRef8 stored in the variable meshCutter_.

2.2.2 Mesh-cutter

The class hexRef8 is called a mesh-cutter and is used for splitting hexahedral cells into eight
subcells. The cutting of cells is done by adding mesh modifications to an object of the class
polyTopoChange. The class polyTopoChange has functionality for adding, removing
and modifying points, faces and cells. The class hexRef8 contains a function setRefine-
ment() that takes as input a list of cells and a polyTopoChange and then insert the re-
finement changes of these cells into polyTopoChange. From figure 2.2(b) we can see that
hexRef8 contains a variable history_. This variable is of type refinementHistory
and is the refinement-tree for the mesh. Since hexRef8 is a mesh cutting engine for splitting
hexahedral cells into eight sub-cells OpenFOAM is by default limited to only this type of refine-
ment. Figure 2.2(c) shows the collaboration diagram for dynamicRefineFvMesh. From the
diagram we can see that to be able to implement AMR for anisotropic refinement we need to
replace hexRef8 with a mesh-cutter capable of doing anisotropic refinement.

2.2.3 Refinement-tree

The class refinementHistory is the class containing the history of the refinement done
so far. This history shows how the current cells in the mesh have come to be, i.e. it shows
for every cell which cell it was refined from. Likewise, if a cell has been refined, the history
also show which cells it was refined into. This class provides functions to update the history
and to redistribute the history to other processes. Note that this class only stores the labels of
the cells and their refinement history, no points nor other values are stored. This refinement
history is just like hexRef8 limited to only octasectal refinement. To do anisotropic refinement
refinementHistory needs to be replaced by a tree capable of handling at least anisotropic
refinement, but preferably capable of handling any type of refinement.

12

Chapter 3

Implementation of AMR

As we saw in the previous chapter we need to create a mesh-cutter like the class hexRef8
but capable of doing anisotropic refinement, this new class is called hexRef2. The class re-
finementHistory is replaced with a refinement-tree capable of representing any type of
AMR. Since this tree is independent of the type of refinement executed it is compatible with
both hexRef2 and hexRef8. Ideally we would have been able to use the refinement-engine
dynamicRefineFvMesh for both anisotropic and isotropic refinement but since its imple-
mentation was designed with regards to isotropic refinement it was replaced with a class for
just anisotropic refinement. The structure of the application is the same as for the isotropic
one, i.e. using a refinement-engine, a mesh-cutter and a refinement-tree. Figure 3.1(b) shows
the collaboration diagram of the application and Figure 3.1(a) shows a high level flow diagram
of the application. From these figures we can see how the refinement-engine, mesh-cutter and
refinement-tree collaborate.

To be able to refine a cell some scheme for orienting the cell is needed, without an orientation it
is impossible to know how to execute a split in the wanted direction. The created scheme makes
use of corner points as its underlying framework where each cell has a list of its corner points.
The corner points are used to make sure that a split is done properly by splitting between pre-
determined pairs of corner points. The corner points are defined as the corners of a hexahedron
which means that every cell will always have eight corner points. When the mesh is created,
or rather read, the corner points will need to be calculated. Naturally just knowing the corner
points will not tell you between which pair of points a split is done, therefore a uniform way of
indexing the corner points is needed. The corner points are indexed according to Figure 3.2(a).
Note that the numbering can be arbitrary as long as we keep track of how the split will be done,
that is knowing between which pair of points the splits are to be inserted. If we look at figure
3.2 the edge A→ D will be one axis, the edge A→ E another axis and the edge between A→ B
the last axis. Because of this the direction of a split is stored relative to the corner points and not
the axis.

13

CHAPTER 3. IMPLEMENTATION OF AMR

(1) Select cells for refinement

(2) Cut cells with mesh-cutter

(3) Update refinement-tree

(1) Partition mesh

(2) Distribute corner points

(3) Distribute refinement-tree

Y

N

Y

Solving

N

Distribute?

Refine?

(a)

dynamicRefineFvMeshHexRef2

dynamicFvMesh hexRef2

meshCutter_

removeFaces

faceRemover_

refinementTree

refTree_

(b)

Figure 3.1: Figure (a) shows the high level flow graph of the application. For every time-
step this flow graph is executed. Figure (b) show the collaboration diagram for the class
dynamicRefineFvMeshHexRef2.

0

4 5

7 6

1

23

(a)

A

B C

H G

D

FE

(b)

(... (A, D, F, E, B, C, G, H) ...)
(c)

Figure 3.2: An example of a cells corner points. Figure (a) shows the index numbering of the corner
points used for all cells. Figure (b) show the labels of a cell and figure (c) shows how the cell in (b)
is stored in the list of corner points.

14

3.1. REFINEMENT-ENGINE CHAPTER 3. IMPLEMENTATION OF AMR

3.1 Refinement-engine

Since dynamicRefineFvMesh is tailored to work with octasectal refinement some modifi-
cations are needed for it to work for anisotropic refinement. The major change is in the selection
of cells to refine. Since we use corner-points and split directions for the cells we need a way
of selecting in which direction to split. This functionality is implemented in selectRefine
CandidatesHessian by computing the hessian to find the most effective (according to the
hessian) direction to split a cell. Recall that the hessian is the square matrix of the second-order
partial derivaties of a function, so it describes how the function curves and bends with respect to
its variables. From the hessian we can approximate in which direction the flux fluctuate the most.
There is of course indefinitely many ways of choosing the best cells and directions to split and
using the hessian is only one such way. The most prominent function in this class is update
which selects the refinement candidates by calling selectRefineCandidatesHessian
and then call the mesh-cutter to refine the cells that are possible to refine. One difference is that
dynamicRefineFvMesh now also handles the redistribution of the mesh. This is achieved
by using the decompositionMethod class. From this we get a list that for every cell in
the mesh contains the processor number of the processor it should be sent to. With this infor-
mation the mesh is distributed to the other processors. Redistributing the mesh will make the
calculated corner points and the refinement-tree invalid since they depend upon cells that may
be distributed. To counteract this problem the refinement-tree contains a function to redistribute
itself, likewise the mesh-cutter also contains a function to redistribute the corner-points.

3.2 Mesh-cutter

The mesh-cutter had to be rewritten to handle anisotropic refinement. When doing cell splitting
we need to make sure the mesh is consistent and satisfies the “two-to-one” rule. If we look at
figure 3.3 we can see the three different ways the side of a hexahedron can be split and two cases
where splitting is not allowed. Note that these different cases assume the mesh is consistent, any
consideration for inconsistent meshes is not taken. From these cases we can see that for a face
to be splittable it needs to contain four corner points from its neighbour. The neighbour is in
this setting defined as the neighbouring cell to the cell marked for refinement. From this we can
formulate a simple constraint for keeping a mesh consistent;

let c be a cell marked for refinement and F : { f0,..., fn} the set of faces fi on c needed to be split
for a certain anisotropic refinement direction d of c. For every face f ∈ F we define the set N of
neighbour corner points:

N(f) =

{
Corner points of f:s face neighbour if neighbour exist

/0 otherwise

We say that a cell is consistently refinable if all faces with a neighbouring cell contain exactly
four corner points on it or the neighbour is nonexistent. More formally, c is consistently refinable

15

3.2. MESH-CUTTER CHAPTER 3. IMPLEMENTATION OF AMR

(a) (b)

Figure 3.3: Column (a) show the three different types of splits a side of a hexahedron is allowed to
do and column (b) shows the disallowed splits. The bold lines represent the edges the cell split aims
to create.

in direction d if:
∀ f ∈ F , N(f) = { /0}∨ |N(f)|= 4

The class hexRef2 provides the functionality of consistent refinement in the function con-
sistentRefinement. The function consistentRefinement() takes a list of cell la-
bels and their split direction as input, then unmarks the cells that are not splittable and returns a
new list of cells to split.

16

3.3. REFINEMENT-TREE CHAPTER 3. IMPLEMENTATION OF AMR

The actual refinement commands will be executed when calling setRefinement(). The
function setRefinement() takes as input a list of cells for refinement and an object of
polyTopoChange. The class polyTopoChange contains functions for changing the mesh
(adding/removing points, faces and cells) and also holds the new mesh that is updated when-
ever any mesh-changing function is called. The function setRefinement() works by first
calculating for all faces by which points or edges the face will be split. The faces are then syn-
chronized between the processor boundaries to know how faces on the other processes will be
split. Then for the edges that will get split their midpoints are computed and synchronized. Next
the faces that are in some way affected by any change are collected. For instance a change can
come from a split, new points or a change of owner and neighbour. Now the new cells for the
refinement are created. The cell refinement is achieved by creating one new cell and modifying
the old. Now the faces gets split, new points gets added and the neighbours and owners for
every face gets updated. Lastly the middle face between the old and new cell is created. For
each modified and added cell the corner points gets updated and lastly the split is added to the
refinement-tree.

3.3 Refinement-tree

The refinement-tree is replaced with a class refinementTree that is based on REFTREE
[13]. To limit the amount of work needed to replace refinementHistory the public func-
tion interface is kept as similar as possible in refinementTree. Mitchell describe a way
of distributing the refinement-tree across multiple processes where every child can be sent to
any process leaving its siblings on another process. This is done by keeping a lightweight sub-
stitute data structure of the sibling on the processor it was moved from. This feature was not
implemented due to time limit and complexity, however the problem of distribution is solved
by another method. This method forces the distribution-method to only distribute children of
the root node and with them all their children. It is then up to the application computing the
distribution to put the weights on the initial mesh based on the size of the tree for these cells
i.e. their number of children. Then the application will compute a load balancing and call re-
finementTree to distribute the tree according to the load balancing. When redistributing
OpenFOAM’s current refinement history some refined cells might be placed on a different node
than some of its sibling cells. This renders these cells unrefineable, not in theory but at least
in the current implementation. By using the agglomeration approach in the refinement-tree the
phenomenon of orphan cells is avoided completely since only complete family trees are redis-
tributed.

The whole tree is defined by the class refinementTree containing a list of children of type
refinementNode. The refinementTree can be seen as the root node and its children
as the initial mesh. The class refinementNode is a regular node in the tree that contains a
variable-sized list of children of type refinementNode, see figure 3.4.

It is common in OpenFOAM to do a run, save the case to disk and later continue running the
case. This means that we need to be able to read and write the refinement-tree in plaintext.

17

3.3. REFINEMENT-TREE CHAPTER 3. IMPLEMENTATION OF AMR

(a)

refinementTree

regIOobject List< refinementNode >

children_

Map< refinementNode * >

leaves_

(b)

refinementTree

regIOobject

(c)

refinementTree::refinementNode parent_

List< refinementNode >

children_

Figure 3.4: Figure (a) and (b) shows the collaboration and inheritance diagram for
refinementTree and (c) shows the collaboration diagram for refinementNode.

Therefore we make refinementTree an instance of regIOobject which is a class sup-
porting reading and writing itself in plaintext. Being an instance of regIOobject means we
need to implement functions to read and write the class. To do the conversion from the tree to
plaintext we first convert the tree into a list of a list of labels and then let the built-in functions
in OpenFOAM for reading and writing this label list handle the rest. The algorithm to transform
a tree into a list of list of labels is shown in Algorithm 1 and Figure 3.5 shows an example of its
result. Cells that are not visible gets the label −1 since they are not actually present in the mesh.
The labels of the leaves are in practice numbers but in the examples letters are used for clarity.

Algorithm 1: TreeToList, converts a refinement-tree into a list of list of labels.
Input: A Refinement-tree
Output: The tree as list of list of labels
begin

create TreePlainList;
foreach child in Refinement-tree’s children do

ChildList← NodeToList(child);
append ChildList to TreePlainList;

end
return TreePlainList

end

If we look at the function interface for the class refinementTree we see that the children
of the root node are stored as a list of refinementNode in the variable children_. The

18

3.3. REFINEMENT-TREE CHAPTER 3. IMPLEMENTATION OF AMR

Algorithm 2: NodeToList converts a refinement-node into a list of labels.
Input: A Refinement-node
Output: The refinement-node as a list of labels
begin

create LabelList;
append node’s label to LabelList;
append node’s number of children to LabelList;
foreach child of the refinement-node do

ChildList← NodeToList(child);
append ChildList to LabelList;

end
return LabelList

end

-1 -1

-1 C

A B

D E

(a)

((-1, 2, -1, 2, A, 0, B, 0, C, 0), (-1, 2, D, 0, E, 0))
(b)

Figure 3.5: Figure (a) shows an example of a refinement-tree and figure (b) shows the tree as its
representation in plaintext.

class also contains a variable leaves_ that is a list of pointers to the leaves in the tree. The
refinement-tree provide a function addSplit() for adding a split. It takes as input the cell to
split and a list of the cell labels for the children. There is also a function combineCells()
for combining a list of cells into one master cell. The efficiency of updating the tree is dependent
upon the efficiency of both the list of leaves and the creation and deletion of the refinementNode
objects.

If we look at the functions for adding a refinement to the tree and for combining cells in the
tree, we can get an approximation of its complexity. We let l be the leaf that should be split
and cn be the number of children it is split into. Figure 3.6 shows the average and worst-case
complexity for the tree. From the figure we see that the average and worst complexity is O

(
cn
)
.

Since we know that every split is always into either two, four or eight sub-cells that means that
we can interpret cn as a constant and the complexity of the tree for splitting and combining will

19

3.3. REFINEMENT-TREE CHAPTER 3. IMPLEMENTATION OF AMR

Split Cells:

Description Average comp. Worst-case comp.

Find leaf l to add split to (hash-table lookup) O
(
1
)

O
(
1
)

Create and copy the list of children to l O
(
cn
)

O
(
cn
)

Erase l from the list of leaves O
(
1
)

O
(
1
)

Set cell label and parent label for every child of l O
(
cn
)

O
(
cn
)

O
(
cn
)

O
(
cn
)

Combine Cells:

Description Average comp. Worst-case comp.

Erase all the children from the hash-table O
(
cn
)

O
(
cn
)

Erase all the children from the parent l O
(
cn
)

O
(
cn
)

O
(
cn
)

O
(
cn
)

Figure 3.6: The complexity for the refinement-tree when splitting and combining cells.

thus become O
(
1
)
. The reason we can store the leaves as a list is because the cell labels in

OpenFOAM go from zero to the number of cells in the mesh. Naturally these labels are used as
indices for the list. When we try to add a label that is out of bounds for the list it gets expanded.

20

Chapter 4

Test cases

4.1 Refinement-tree

In this section we will compare how well the refinement-tree works in a typical setting, which in
this case is in the old mesh-cutter hexRef8. We will run a comparison on the wall-clock time
on one of OpenFOAM’s standard tutorial cases. The case is called breaking of a dam and is a
two-dimensional case shown in figure 4.1. The case consists of a column of water resting at the
left of the tank. A very thin membrane is holding the water and at time zero the membrane is
removed and the water will fall.

We will run the case with one of OpenFOAM’s meshcutters, namely hexRef8 , with its stan-
dard refinement history and one run with the same meshcutter but with the refinement-tree de-
scribed in this thesis. The case is decomposed into two meshes with thirty-two thousand cells and
runs from time 0 to 0.4. For the first run we test how well the mesh-cutter hexRef8 performs
with its standard history (RefinementHistory in Table 4.1) and in the second case we test the
performance of hexRef8 with the refinement-tree. During the simulation both refinement and
unrefinement occurs which means that the refinement-tree will do both insertions and deletions.
Note that this test is not a benchmark but only a crude way of making sure the refinement-tree
behaves well in a typical setting.

If we look at the time for the two cases we see that the case with the old refinement history
outperforms the refinement-tree case with 1%.

Execution time Clock time

Refinement-tree 25911.2 s 25920 s

RefinementHistory 25537.3 s 25560 s
Table 4.1: The execution- and clock time for the dam-break case using hexRef8 and OpenFOAM’s
refinement history and the refinement-tree respectively.

21

4.2. CFD CASES CHAPTER 4. TEST CASES

0.584 m

water column

0.292 m

0.1461 m 0.1459 m
0.024 m

0.048 m

0.584 m

Figure 4.1: The geometry of the dam in the ‘breaking of a dam’ case.

4.2 CFD Cases

For readers not very familiar with CFD much of the terminology in this chapter will not be
comprehendible, but these underlying schemes, methods and values are present for complete-
ness. While the AMR implementation described above is general and not equation or solver
dependent, we will here initially only use the steady-state incompressible RANS solver sim-
pleFoam, a segregated solver using the SIMPLE algorithm. As the AMR is encapsulated in
the OpenFOAM libraries that are linked to the solvers, the solvers themselves needs only minor
alteration to incorporate AMR – typically only a few lines of code needs to be changed.

OpenFOAM supports a wide array of discretization schemes but we restrict ourselves to use
only one convection scheme: limitedLinear which is a second-order TVD scheme. All
other operators, the gradient, the Laplacian, interpolation, etc, are all employing second-order
central differencing.

With regard to AMR we use a very simple error indicator, based on the jump in pressure over
the cell faces see e.g. [15, 16], for both isotropic and anisotropic mesh refinement. For the
anisotropic refinement we use the Hessian of pressure to determine the direction of the split.
Please note that a present restriction of the AMR implementation is that we do not allow any

22

4.2. CFD CASES CHAPTER 4. TEST CASES

refinement of wall boundary cells, the y+ is set manually and the cells are not to be modified
during the simulations. In these simulations the anisotropic refinements differ in its refining
method compared to the isotropic one since it is not using a method called spreading. Imagine
a scenario where a cell needs to be refined but is constrained, due to 2:1 consistency, by its
neighbours geometry. In this scenario the application should be able to recursively refine the
neighbouring cells until the cell becomes refinable, which is the method called spreading.

4.2.1 Backward facing step

The classical backward facing step in the ERCOFTAC C-30 database is initially used for testing
the AMR. The Reynolds number based on step height, H m is 50000 and the tunnel extends
is 40H downstream of the step and 4H upstream. The height of the tunnel is 9H. We use the
Spalart-Allmaras RANS model with a continuous wall function and a y+ of roughly 10. The
inflow conditions are the same as developed for the Lisbon Uncertainty Workshops.

We use the pressure jump error indicator with a tolerance of 1× 10−3. Figure 4.2 shows the
resulting meshes using anisotropic and isotropic refinement, respectively. The initial mesh was
made up of 3300 hexahedra (as computations in OpenFOAM always is 3D). The used tolerance
is rather lax and the isotropic refinement needs just one refinement step to fulfill the tolerance,
ending up with a mesh of 5000 cells while the anisotropic mesh is just short of 4000 cells. Both
simulations show similar results with a reattachment length of roughly 6.

4.2.2 NACA0012 wing

Next we apply the AMR to resolve the tip-vortex of a NACA0012 with a rounded wing tip at 10
degrees angle of attack. The chord based Reynolds number is 4.35×106. We compute this with
anisotropic and isotropic refinement using a tolerance of the error indicator of 1× 10−4. Here
we also turn off the spreading in isotropic refinement.

In Figure 4.3(a) the refinement is shown. The bulk of the refinement occurs in the downstream
tip vortex and some at the leading edge of the wing. The areas are virtually identical for the
three AMR approaches but the isotropically refined mesh is denser (0.90M cells) compared to
isotropic with no spreading (0.89M) and anisotropic (0.78M). The pressure in the vortex core
(defined as the position of minimum pressure) is presented in Figure 4.3b. Here we also compare
to two static meshes (gridA has 0.75M and gridC 2.98M cells). It is interesting to note that it is
only the standard isotropic AMR that picks up the low pressure at x/c≈ 0.7, indicating that the
only a few restrictions of cells that should be refined can be devastating. We also believe that
the lack of spreading gives a lot of unnecessary hanging nodes that are responsible for the rapid
damping of the core pressure (as this does not happen for the static coarse mesh) .

23

4.2. CFD CASES CHAPTER 4. TEST CASES

(a)

(b)

(c)

Figure 4.2: Meshes for the backward facing step: (a) initial mesh, (b) anisotropic mesh and (c)
isotropic mesh.

24

4.2. CFD CASES CHAPTER 4. TEST CASES

(a) (b)

x/c

C
p

0 0.5 1 1.5 2 2.5 3
4

3.5

3

2.5

2

1.5

1

0.5

0

gridA static mesh

grid C static mesh

isotropic

isotropic (no spreading)

anisotropic (no spreading)

Figure 4.3: NACA0012 wing. (a) areas of refinement and (b) pressure in the vortex core.

25

Chapter 5

Conclusions

From the design criteria set up in chapter 1 we saw that an application with the following func-
tionality was needed:

• Select cells to refine and the direction in which to split them.

• Split selected cells anisotropically.

• Store the refinement changes in a refinement-tree.

• Distribute the refinement-tree.

• Automatically refine and redistribute the mesh and tree.

Also some demands on the refinement-tree were set so it should satisfy these criteria:

• Handle any type of cell (octahedra and hexahedra among others).

• Function in parallel and handle distribution between processes.

• Efficient in terms of memory and computation cost.

The result of this thesis show that all these items were indeed possible to achieve although
some limitations are set; like only allowing consistent meshes. If one were to allow inconsistent
meshes more work on the orientation of the cells would be needed since the cells could appear
in unexpected geometries. By looking at the cases computed in the previous section we can see
that the implementation described achieves its goal of doing anisotropic AMR. Since this thesis
introduces an abstract (not bound to any programming language) scheme for doing AMR some
interested parties could, by using the same or a similar scheme, implement it in other settings.
Ultimately the aim is that this particular application will reach its feature completion and be part
of the standard OpenFOAM distribution. This thesis also argue that using a basic refinement-tree
together with the AMR enables it to do unrefinement, altough this is not shown or proven.

26

5.1. FUTURE WORK CHAPTER 5. CONCLUSIONS

5.1 Future work

What has been described in this thesis is a primitive form of anisotropic AMR. It is primitive
because it lacks some features that are almost vital for the application to be workable in real-life
scenarios. The implementation lacks two important features; spreading and unrefinement. The
unrefinement is a very crucial component particularly for cases where some point of interest
moves across the domain during the simulation. Not using unrefinement in cases like that will
result in a mesh that is too fine-coarsed in some areas of the domain. Achieving a too fine-
coarsed grid from AMR defeats one of its main goals which is reducing the number of cells in
the mesh. Implementing unrefinement for a split into two should be quite straightforward. For
instance you could use the refinement-tree to find siblings and then merge them by removing
the face between the cells and then coalesce the points. Another useful improvement would be
on the initial selection of corner points. In the current state corner points can only be created
from perfect hexahedra thus forcing that no side of the cell is split beforehand. This becomes
a problem when for instance an anisotropically refined mesh is exported and the corner points
are lost then the corner points cannot be calculated for several cells since they are not proper
hexahedra. So creating a more competent function for calculating the corner points would be
quite beneficial too. Some improvements on the refinement-tree could also be done, in particular
adding features desribed in [13] like unrestrictive redistribution and using space filling curves as
a partitioning method.

27

Bibliography

[1] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, Springer, 1999.

[2] OpenFOAM - The Open Source Computational Fluid Dynamics (CFD) Toolbox (June
2012).
URL http://openfoam.com/

[3] E. Süli, An introduction to numerical analysis, Cambridge University Press, Cambridge
New York, 2003.

[4] Handbook of grid generation, CRC Press, Boca Raton, Fla, 1999.

[5] H. Jasak, Error analysis and estimation in the Finite Volume method with applications to
fluid flows, Ph.D. thesis, Imperial College, University of London (1996).

[6] J.-F. Remacle, S. S. Frazão, X. Li, M. S. Shephard, An adaptive discretization of shallow-
water equations based on discontinuous Galerkin methods, International Journal for Nu-
merical Methods in Fluids 52 (8) (2006) 903–923.
URL http://dx.doi.org/10.1002/fld.1204

[7] L. Demkowicz, J. Oden, W. Rachowicz, O. Hardy, Toward a universal h-p adaptive finite
element strategy, part 1. Constrained approximation and data structure, Computer Methods
in Applied Mechanics and Engineering 77 (1–2) (1989) 79 – 112.

[8] R. B. Andrew, A. H. Sherman, A. Weiser, Some Refinement Algorithms and Data Struc-
tures For Regular Local Mesh Refinement (1983).

[9] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering, Addison Wesley, 1995.
URL http://www.mcs.anl.gov/~itf/dbpp/text/node94.html

[10] METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering (2012).
URL http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

[11] SCOTCH – Software package and libraries for sequential and parallel graph partitioning,
static mapping, and sparse matrix block ordering, and sequential mesh and hypergraph
partitioning (2012).
URL http://www.labri.fr/perso/pelegrin/scotch/

28

http://openfoam.com/
http://dx.doi.org/10.1002/fld.1204
http://www.mcs.anl.gov/~itf/dbpp/text/node94.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.labri.fr/perso/pelegrin/scotch/

BIBLIOGRAPHY

[12] Q. P. Hafermann D., E. C., Parallelisation and load balancing in dynamic grid control.
Confidential Report, Streamline Deliverable 32.2. (2012).

[13] W. F. Mitchell, A refinement-tree based partitioning method for dynamic load balancing
with adaptively refined grids, J. Parallel Distrib. Comput. 67 (4) (2007) 417–429.
URL http://dx.doi.org/10.1016/j.jpdc.2006.11.003

[14] OpenFOAM Foundation, OpenFOAM User Guide, version 2.1.1 (May 2012).
URL http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf

[15] C. Eskilsson, R. Bensow, A mesh adaptive compressible Euler model for the simulation of
cavitating flow, Proceedings of the IV International Conference on Computational Methods
in Marine Engineering (2011) 458–469.

[16] J. Windt, C. Klaij, Adaptive mesh refinement in MARIN’s viscous flow solver ReFRESCO:
Implementation and application to steady flow, Proceedings of the IV International Con-
ference on Computational Methods in Marine Engineering (2011) 528–543.

[17] OpenFOAM C++ Documentation (Novemeber 2012).
URL http://www.openfoam.org/docs/cpp/

29

http://dx.doi.org/10.1016/j.jpdc.2006.11.003
http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf
http://www.openfoam.org/docs/cpp/

Appendix A

Graph legend

This page explains how to interpret the graphs that are generated by Doxygen [17]. Consider the
following example:

/∗ ! I n v i s i b l e c l a s s b e c a u s e o f t r u n c a t i o n ∗ /
class Invisible { } ;

/∗ ! T r u n c a t e d c l a s s , i n h e r i t a n c e r e l a t i o n i s h id den ∗ /
class Truncated : public Invisible { } ;

/∗ C l a s s n o t documented wi th doxygen comments ∗ /
class Undocumented { } ;

/∗ ! C l a s s t h a t i s i n h e r i t e d u s i n g p u b l i c i n h e r i t a n c e ∗ /
class PublicBase : public Truncated { } ;

/∗ ! A t e m p l a t e c l a s s ∗ /
template<class T> class Templ { } ;

/∗ ! C l a s s t h a t i s i n h e r i t e d u s i n g p r o t e c t e d i n h e r i t a n c e ∗ /
class ProtectedBase { } ;

/∗ ! C l a s s t h a t i s i n h e r i t e d u s i n g p r i v a t e i n h e r i t a n c e ∗ /
class PrivateBase { } ;

/∗ ! C l a s s t h a t i s used by t h e I n h e r i t e d c l a s s ∗ /
class Used { } ;

/∗ ! Super c l a s s t h a t i n h e r i t s a number o f o t h e r c l a s s e s ∗ /
class Inherited : public PublicBase ,

protected ProtectedBase ,
private PrivateBase ,
public Undocumented ,

30

APPENDIX A. GRAPH LEGEND

public Templ<int>
{
private :

Used ∗m_usedClass ;
} ;

This will result in the following graph:

Inherited

PublicBase

Truncated

ProtectedBase PrivateBase Undocumented Templ< int >

Templ< T >

< int >

Used

m_usedClass

The boxes in the above graph have the following meaning:

• A filled gray box represents the struct or class for which the graph is generated.

• A box with a black border denotes a documented struct or class.

• A box with a grey border denotes an undocumented struct or class.

• A box with a red border denotes a documented struct or class forwhich not all inheri-
tance/containment relations are shown. A graph is truncated if it does not fit within the
specified boundaries.

The arrows have the following meaning:

• A dark blue arrow is used to visualize a public inheritance relation between two classes.

• A dark green arrow is used for protected inheritance.

• A dark red arrow is used for private inheritance.

• A purple dashed arrow is used if a class is contained or used by another class. The arrow
is labeled with the variable(s) through which the pointed class or struct is accessible.

• A yellow dashed arrow denotes a relation between a template instance and the template
class it was instantiated from. The arrow is labeled with the template parameters of the
instance.

31

Appendix B

Code documentation

B.0.1 dynamicRefineFvMeshHexRef2 Class Reference

A fvMesh with built-in refinement. Refines Hexahedra into two subcells. Determines which
cells to refine/unrefine and does all in update().

Public Member Functions

• TypeName ("dynamicRefineFvMeshHexRef2")
• dynamicRefineFvMeshHexRef2 (const IOobject &io)
• virtual ∼dynamicRefineFvMeshHexRef2 ()
• const hexRef2 & meshCutter () const
• const PackedBoolList & protectedCell () const
• virtual bool update ()
• virtual bool writeObject (IOstream::streamFormat fmt, IOstream::versionNumber ver,

IOstream::compressionType cmp) const

Protected Member Functions

• void readDict ()
• autoPtr< mapPolyMesh > refine (const labelList &cellsToRefine, const labelList &split-

CellDirection)
• virtual void selectRefineCandidatesHessian (const scalar lowerRefineLevel, const scalar

upperRefineLevel, const volScalarField &vFld, PackedBoolList &candidateCell, PackedList<
2 > &splitCellDirection, scalar maxAspectRatio)
• virtual Pair< labelList > selectRefineCells (const label maxCells, const label maxRefine-

ment, const PackedBoolList &candidateCell, PackedList< 2 > &splitCellDirection)
• scalar getMergeDistance (const Time &runTime, const boundBox &bb)

32

APPENDIX B. CODE DOCUMENTATION

Static Protected Member Functions

• static label count (const PackedBoolList &, const unsigned int)

Protected Attributes

• hexRef2 meshCutter_
• HashTable< word > correctFluxes_
• label nRefinementIterations_
• PackedBoolList protectedCell_

Private Member Functions

• dynamicRefineFvMeshHexRef2 (const dynamicRefineFvMeshHexRef2 &)
• void operator= (const dynamicRefineFvMeshHexRef2 &)

B.0.1.1 Detailed Description

Source files

• dynamicRefineFvMeshHexRef2.H
• dynamicRefineFvMeshHexRef2.C

B.0.1.2 Constructor & Destructor Documentation

dynamicRefineFvMeshHexRef2 (const dynamicRefineFvMeshHexRef2 &) [private]

Disallow default bitwise copy construct.

dynamicRefineFvMeshHexRef2 (const IOobject & io) [explicit]

Construct from IOobject.

∼dynamicRefineFvMeshHexRef2 () [virtual]

Destructor.

B.0.1.3 Member Function Documentation

Foam::label count (const PackedBoolList & l, const unsigned int val) [static, protected]

33

APPENDIX B. CODE DOCUMENTATION

Count set/unset elements in packedlist.

void readDict () [protected]

Read the projection parameters from dictionary.

Foam::autoPtr< Foam::mapPolyMesh > refine (const labelList & cellsToRefine, const labelList
& splitCellDirection) [protected]

Refine cells in given direction. Update mesh and fields.

void selectRefineCandidatesHessian (const scalar lowerRefineLevel, const scalar upperRefineLevel,
const volScalarField & vFld, PackedBoolList & candidateCell, PackedList< 2 > & splitCellDirec-
tion, scalar maxAspectRatio) [protected, virtual]

Select candidates for refinement based on the hessian.

and set the candidates split direction

Foam::Pair< Foam::labelList > selectRefineCells (const label maxCells, const label maxRefine-
ment, const PackedBoolList & candidateCell, PackedList< 2>& splitCellDirection) [protected,
virtual]

Subset candidate cells for refinement.

scalar getMergeDistance (const Time & runTime, const boundBox & bb) [protected]

Get the merge distance for distribution.

void operator= (const dynamicRefineFvMeshHexRef2 &) [private]

Disallow default bitwise assignment.

TypeName (”dynamicRefineFvMeshHexRef2”)

Runtime type information.

const hexRef2& meshCutter () const [inline]

Direct access to the refinement engine.

const PackedBoolList& protectedCell () const [inline]

Cells which should not be refined/unrefined.

34

APPENDIX B. CODE DOCUMENTATION

bool update () [virtual]

Update the mesh for both mesh motion and topology change.

Implements dynamicFvMesh .

bool writeObject (IOstream::streamFormat fmt, IOstream::versionNumber ver, IOstream::compressionType
cmp) const [virtual]

Write using given format, version and compression.

B.0.1.4 Member Data Documentation

hexRef2 meshCutter_ [protected]

Mesh cutting engine.

HashTable<word> correctFluxes_ [protected]

Fluxes to map.

label nRefinementIterations_ [protected]

Number of refinement/unrefinement steps done so far.

PackedBoolList protectedCell_ [protected]

Protected cells (usually since not hexes)

35

APPENDIX B. CODE DOCUMENTATION

B.0.2 hexRef2 Class Reference

Anisotropic refinement of hexahedrons using polyTopoChange.

Public Member Functions

• ClassName ("hexRef2")
• hexRef2 (const polyMesh &mesh)
• hexRef2 (const polyMesh &mesh, const refinementTree &refTree)
• const polyMesh & mesh () const
• const refinementTree & refTree () const
• const labelListIOList & cornerPoints ()
• Pair< Foam::labelList > consistentRefinement (const labelList &cellsToRefine, const

PackedList< 2 > &splitDirection)
• labelList setRefinement (const labelList &cellLabels, const labelList &splitDirection-

Packed, polyTopoChange &meshMod)
• void updateMesh (const mapPolyMesh &)
• void updateMesh (const mapPolyMesh &, const Map< label > &pointsToRestore, const

Map< label > &facesToRestore, const Map< label > &cellsToRestore)
• void subset (const labelList &pointMap, const labelList &faceMap, const labelList &cellMap)
• void distribute (const mapDistributePolyMesh &)
• const labelList & cellLevel ()
• void checkMesh () const
• void setInstance (const fileName &inst)
• bool write () const

Private Member Functions

• point calculateFaceMidPoint (const label faceLabel) const
• void calculateCornerPoints ()
• void calculateSplittableFaces (const labelListList &cornerPoints, boolList &splittable-

Faces) const
• void unmarkInconsistentCells (const labelList &cellsToRefine, PackedBoolList &re-

fineCell, boolList &splittableFaces, const PackedList< 2 > &splitDirection) const
• void orientCornerPoints (const labelList &cornerPointsI, labelList &tempCornerPoints,

const label splitDirection) const
• int set_intersection_size (const labelList &a, const labelList &b) const
• void addCornerPoints (const labelList &cellAddedCell, const labelList &splitDirection,

const labelList &edgeMidPoint)
• void arrangeFace (labelList &faceVerts, label faceI)

36

APPENDIX B. CODE DOCUMENTATION

• label middlePointGeometric (const label point0, const label point1, const label cellI)
const
• label pointIndexFace (const label pointLabel, const label faceLabel)
• label findInternalFacePoint (const labelList &pointLabels) const
• label basePointFace (const label pA, const label pB, const label flabel)
• bool onBaseCell (const labelList &splitDirection, const label cellI, const label pointI)

const
• label faceFromPoints (const label cellLabel, const labelList &points) const
• void getFaceInfo (const label faceI, label &patchID, label &zoneID, label &zoneFlip)

const
• label addFace (polyTopoChange &meshMod, const label faceI, const face &newFace,

const label own, const label nei) const
• void modFace (polyTopoChange &meshMod, const label faceI, const face &newFace,

const label own, const label nei) const
• void getFaceNeighbours (const labelList &cellAddedCell, const labelList &splitDirec-

tion, const label faceI, const label pointI, label &own, label &nei) const
• void dumpCell (const label cellI) const
• hexRef2 (const hexRef2 &)
• void operator= (const hexRef2 &)

Private Attributes

• const polyMesh & mesh_
• labelListIOList cornerPoints_
• labelIOList cellLevel_
• refinementTree refTree_
• removeFaces faceRemover_

B.0.2.1 Detailed Description

Source files

• hexRef2.H hexRef2C

B.0.2.2 Constructor & Destructor Documentation

hexRef2 (const hexRef2 &) [private]

Disallow default bitwise copy construct.

hexRef2 (const polyMesh & mesh)

Construct from mesh, read_if_present refinement data and corner points (from write below)

37

APPENDIX B. CODE DOCUMENTATION

hexRef2 (const polyMesh & mesh, const refinementTree & refTree)

Construct from mesh and refinement-tree.

B.0.2.3 Member Function Documentation

Foam::point calculateFaceMidPoint (const label faceLabel) const [private]

Calculate the intersection point of the face.

void calculateCornerPoints () [private]

Calculates the corner points for every cell.

void calculateSplittableFaces (const labelListList & cornerPoints, boolList & splittableFaces)
const [private]

Calculates for all faces if they are splittable A face is splittable if it contains four corner points
from its owner and neighbour.

Parameters

cornerPoints The Corner points for all cells

splittable-
Faces

The list showing if a face is split

void unmarkInconsistentCells (const labelList & cellsToRefine, PackedBoolList & refineCell,
boolList & splittableFaces, const PackedList< 2 > & splitDirection) const [private]

Unmarks cells that cannot be split in the given direction.

Parameters

cellsToRefine The cells we want to refine

refineCell True if cell can and will be refined, false otherwise

splittable-
Faces

True if face is splittable, false otherwise

splitDirection The direction we want to split the cells

void orientCornerPoints (const labelList & cornerPointsI, labelList & tempCornerPoints, const
label splitDirection) const [private]

38

APPENDIX B. CODE DOCUMENTATION

Orients a cells corner points according to the split direction.

Parameters

cornerPointsI The corner points for the cell

tempCorner-
Points

The oriented corner points

splitDirection The split direction for the cell

int set intersection size (const labelList & a, const labelList & b) const [private]

Returns the size of the set intersection of two label lists.

void addCornerPoints (const labelList & cellAddedCell, const labelList & splitDirection, const
labelList & edgeMidPoint) [private]

Adds corner points for the split cells (overwrites cornerPoints_)

Parameters

cellAddedCell For each refined cell the added cell’s label

splitDirection For each refined cell the direction it is split

edgeMidPoint For all edges if the edge is split edgeMidPoint contains the label of the added
point on the edge

void arrangeFace (labelList & faceVerts, label faceI) [inline, private]

Arranges the face so that a corner point is first in the list.

Parameters

faceVerts The list of points making the face

faceI Label of original face faceVerts was created from

Foam::label middlePointGeometric (const label point0, const label point1, const label cellI)
const [private]

Returns the point geometrically between two points in a Cell. If no such point exists returns -1.

39

APPENDIX B. CODE DOCUMENTATION

Parameters

point0 The first point

point1 The second point

cellI The cell containing the points

Foam::label pointIndexFace (const label pointLabel, const label faceLabel) [private]

Returns the index of a point in a face. For instance if the point is first in the list the value 0 is
returned.

Parameters

pointLabel The label of the point

faceLabel The label of the face

Foam::label findInternalFacePoint (const labelList & pointLabels) const [private]

Returns first point in pointLabels that uses an internal face. Used to find point to inflate cell/face
from (has to be connected to internal face). Returns -1 (so inflate from nothing) if none found.

Foam::label basePointFace (const label pA, const label pB, const label flabel) [private]

Goes through a face and returns the index of the point such that it is _either_ pA and next point
in the face is pB _or_ it is pB and next point is pA.

Parameters

pA The first point

pB The second point

flabel The label of the face

bool onBaseCell (const labelList & splitDirection, const label cellI, const label pointI) const
[private]

Returns true if the point is on the base of the cell and false if it is on the extended (refined) cell.

Parameters

splitDirection The split direction for all cells

cellI The that is split

pointI The global point we want to check

40

APPENDIX B. CODE DOCUMENTATION

Foam::label faceFromPoints (const label cellLabel, const labelList & points) const [private]

Return the face containing the given points on the cell. Note that the points can be a subset of
the face.

Parameters

cellLabel The label of the cell we search

points The points comprising the face

void getFaceInfo (const label faceI, label & patchID, label & zoneID, label & zoneFlip) const
[private]

Get patch and zone info.

Foam::label addFace (polyTopoChange & meshMod, const label faceI, const face & newFace,
const label own, const label nei) const [private]

Adds a face on top of existing faceI. Reverses if nessecary.

void modFace (polyTopoChange & meshMod, const label faceI, const face & newFace, const
label own, const label nei) const [private]

Modifies existing faceI for either new owner/neighbour or new face points. Reverses if nesse-
cary.

void getFaceNeighbours (const labelList & cellAddedCell, const labelList & splitDirection, const
label faceI, const label pointI, label & own, label & nei) const [private]

Get new owner and neighbour of pointI on faceI.

void dumpCell (const label cellI) const [private]

Debugging: dump cell as .obj file.

void operator= (const hexRef2 &) [private]

Disallow default bitwise assignment.

ClassName (”hexRef2”)

Runtime type information.

41

APPENDIX B. CODE DOCUMENTATION

const polyMesh& mesh () const [inline]

Returns the mesh.

const refinementTree& refTree () const [inline]

Returns the refinement tree.

const labelListIOList& cornerPoints () [inline]

Returns the corner points.

Foam::Pair< Foam::labelList > consistentRefinement (const labelList & cellsToRefine, const
PackedList< 2 > & splitDirection)

Given valid mesh and proposed cells to refine calculate any clashes (due to 2:1) and return ok list
of cells to refine and their split direction. Will remove cells not refinable from the set. Returns a
pair of label lists where first list is the labels of the cells to refine and second list is their direction.

Parameters

cellsToRefine The cells we want to refine

splitDirection The direction we want to refine

Foam::labelList setRefinement (const labelList & cellLabels, const labelList & splitDirection-
Packed, polyTopoChange & meshMod)

Insert refinement. All selected cells will be split into 2. Returns per element in cellLabels the
cell it was split into.

void updateMesh (const mapPolyMesh & map)

Update local numbering for changed mesh.

void updateMesh (const mapPolyMesh & map, const Map< label > & pointsToRestore, const
Map< label > & facesToRestore, const Map< label > & cellsToRestore)

Update local numbering.

void subset (const labelList & pointMap, const labelList & faceMap, const labelList & cellMap)

Update local numbering for subsetted mesh. Gets new-to-old maps. Not compatible with unre-
finement.

42

APPENDIX B. CODE DOCUMENTATION

void distribute (const mapDistributePolyMesh & map)

Update local numbering for mesh redistribution.

const labelList& cellLevel () [inline]

Return cell level.

void checkMesh () const

Debug: Check coupled mesh for correctness.

void setInstance (const fileName & inst)

Set instance for mesh files.

bool write () const

Force writing refinement tree to polyMesh directory.

B.0.2.4 Member Data Documentation

const polyMesh& mesh_ [private]

Reference to underlying mesh.

labelListIOList cornerPoints_ [private]

Per cell its corner points.

labelIOList cellLevel_ [private]

Per cell the refinement level.

refinementTree refTree_ [private]

Refinement history.

removeFaces faceRemover_ [private]

Face remover engine.

43

APPENDIX B. CODE DOCUMENTATION

B.0.3 refinementTree Class Reference

The complete refinementTree.

Classes

• class refinementNode

Public Member Functions

• refinementTree (const IOobject &)
• refinementTree (const IOobject &, const label)
• refinementTree (const IOobject &, const refinementTree &)
• refinementTree (const IOobject &, Istream &)
• bool active () const
• void addSplit (const label cellLabel, const labelList &children)
• void addSplit (const label cellLabel, const label siblingLabel)
• void combineCells (const label masterCellI, const labelList &combinedCells)
• refinementNode ∗ findLeaf (const label cellLabel) const
• label sameProc (const refinementNode &child, const labelList &toProc)
• void calculateAgglomeration (const polyMesh &mesh, labelList &fineToCoarse, vector-

Field &coarsePoints, scalarField &coarseWeights) const
• const refinementNode ∗ parent (label cellLabel) const
• const labelList leavesList () const
• label nLeaves () const
• label nChildren () const
• label getDepth (const label cellLabel)
• void updateMesh (const mapPolyMesh &)
• void subset (const labelList &pointMap, const labelList &faceMap, const labelList &cellMap)
• void distribute (const mapDistributePolyMesh &)
• void writeDebug () const
• virtual bool readData (Istream &)
• virtual bool writeData (Ostream &) const
• bool operator== (const refinementTree &rt) const
• bool operator!= (const refinementTree &rt) const

44

APPENDIX B. CODE DOCUMENTATION

Private Member Functions

• TypeName ("refinementTree")
• refinementNode ∗ findNode (const label cellLabel)
• label numChildren () const
• label firstLeaf (const refinementNode &child)
• bool createMap ()
• void fromListList (const labelListList &childToProc)
• void addChildrenDistributed (const labelListList &newChildren, const Map< label >

&oldToNew)
• void calculateFineToCoarse (const polyMesh &mesh, labelList &fineToCoarse, const

List< refinementNode > &children, vector &coarsePoint, label coarseCell, int &weight,
bool &firstTime, labelList &testList) const

Private Attributes

• List< refinementNode > children_
• List< refinementNode ∗ > leaves_

Friends

• Istream & operator>> (Istream &, refinementTree &)
• Ostream & operator<< (Ostream &, const refinementTree &)

B.0.3.1 Detailed Description

A refinementTree contains a list of refinementNodes, its children.
Source files

• refinementTree.H
• refinementTree.C

B.0.3.2 Constructor & Destructor Documentation

refinementTree (const IOobject & io)

Construct (read) given an IOobject.

refinementTree (const IOobject & io, const label nCells)

Construct (read) or construct from initial number of cells.

45

APPENDIX B. CODE DOCUMENTATION

refinementTree (const IOobject & io, const refinementTree & rt)

Construct as copy.

refinementTree (const IOobject & , Istream &)

Construct from Istream.

B.0.3.3 Member Function Documentation

TypeName (”refinementTree”) [private]

Foam::refinementTree::refinementNode ∗ findNode (const label cellLabel) [private]

Find node from label (return NULL if not present)

label numChildren () const [inline, private]

Number of children.

Foam::label firstLeaf (const refinementNode & child) [private]

Find and return the label of the first leaf of the node.

bool createMap () [private]

Construct the hashmap.

void fromListList (const labelListList & childToProc) [private]

Construct tree from labelListList.

void addChildrenDistributed (const labelListList & newChildren, const Map< label > & oldToNew
) [private]

Add children from distribution.

void calculateFineToCoarse (const polyMesh & mesh, labelList & fineToCoarse, const List<
refinementNode > & children, vector & coarsePoint, label coarseCell, int & weight, bool &
firstTime, labelList & testList) const [private]

Calculates which coarse cell a refined cell is part of.

46

APPENDIX B. CODE DOCUMENTATION

bool active () const [inline]

Is there unrefinement history.

void addSplit (const label cellLabel, const labelList & children)

Add a split to a cell.

void addSplit (const label cellLabel, const label siblingLabel)

Add a split to a cell with only one sibling.

void combineCells (const label masterCellI, const labelList & combinedCells)

Store combining cells into master.

refinementNode∗ findLeaf (const label cellLabel) const [inline]

Look for leaf in leaves_.

Foam::label sameProc (const refinementNode & child, const labelList & toProc)

Check if the children are in fact sent to the same processor.

void calculateAgglomeration (const polyMesh & mesh, labelList & fineToCoarse, vectorField &
coarsePoints, scalarField & coarseWeights) const

Calculate agglomeration for (re)distribution.

const refinementNode∗ parent (label cellLabel) const [inline]

Return parent for cell.

const Foam::labelList leavesList () const

Returns the leaves as a label list.

label nLeaves () const [inline]

Returns the number of leaves.

label nChildren () const [inline]

Returns the number of the root’s immediate children.

47

APPENDIX B. CODE DOCUMENTATION

Foam::label getDepth (const label cellLabel)

Returns the depth in the tree of a cell.

void updateMesh (const mapPolyMesh & map)

Update numbering for mesh changes.

void subset (const labelList & pointMap, const labelList & faceMap, const labelList & cellMap)

Update numbering for subsetting.

void distribute (const mapDistributePolyMesh & map)

Update local numbering for mesh redistribution.

void writeDebug () const

Debug write.

bool readData (Istream & is) [virtual]

ReadData function required for regIOobject read operation.

bool writeData (Ostream & os) const [virtual]

WriteData function required for regIOobject write operation.

bool operator== (const refinementTree & rt) const [inline]

bool operator!= (const refinementTree & rt) const [inline]

B.0.3.4 Friends And Related Function Documentation

Istream& operator>> (Istream & , refinementTree &) [friend]

Ostream& operator<< (Ostream & , const refinementTree &) [friend]

B.0.3.5 Member Data Documentation

List<refinementNode> children_ [private]

48

APPENDIX B. CODE DOCUMENTATION

Storage for the root nodes children.

List<refinementNode∗> leaves_ [private]

List for access to leaves.

49

	Introduction
	Adaptive mesh refinement
	Parallelization
	Refinement tree
	Objective
	Design Criteria

	OpenFOAM
	Mesh description
	Adaptive mesh refinement
	Refinement-engine
	Mesh-cutter
	Refinement-tree

	Implementation of AMR
	Refinement-engine
	Mesh-cutter
	Refinement-tree

	Test cases
	Refinement-tree
	CFD Cases
	Backward facing step
	NACA0012 wing

	Conclusions
	Future work

	 Bibliography
	Graph legend
	Code documentation
	dynamicRefineFvMeshHexRef2 Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	hexRef2 Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	refinementTree Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

