

Department of Computer Science and Engineering

CHALMERSUNIVERSITY OF TECHNOLOGY

Gothenburg, SwedenOctober 2012

Report No.

SystemWeaver License Manager
A business aware license scheme and implementation

Master of Science Thesis in Networks and Distributed Systems

MIHAI-VASILE BORZ

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

SystemWeaver License Manager

A business aware license scheme and implementation

MIHAI-VASILE BORZ

© Mihai-VasileBorz, October 2012.

Examiner: Olaf Landsiedel

ChalmersUniversity of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

iii

Abstract

Over the past decade, the field of programming and computing in general has been marked

by the exponential growth of software, web applications and online services. The dynamic of

the software industry led to an increase of unauthorized duplication, illegal distribution and

use of computer software. Besides, the software companies’ constant will of maximizing

their revenue, translated into considerable challenges in terms of security and software

piracy prevention.

A common method that many IT companies employ for preventing and minimizing the

losses due to software piracy is the implementation, besides the actual product, of a license

manager application. This one aims to control where and how the software product is used,

and prevents its illegal copy and distribution.

The present thesis was conducted at Systemite AB and its purpose was to investigate and

implement a license manager for the company’s main product, SystemWeaver. For the

implementation, the license manager required firstly a rigorous analysis of the company’s

current licensing model and the security threats to which the software product is subjected

to. The design and implementation decisions were based on the company’s current needs,

tradeoffs between the proposed system architecture and available technologies, possible

optimizations and future development. In order to test the validity, functionality and

performance of the developed license manager, the system was applied into a simple,

practical scenario.

The first part of this thesis presents an overview of the existing software platform that will

integrate the license manager application, the company’s current licensing model and the

threats to which the main product (SystemWeaver) is subjected to. The second part describes

the analysis, design and implementation of the license manager starting from the general,

conceptual architecture of the system to the detailed definition of its comprising modules.

Acknowledgements

Many people have helped with valuable contributions to my diploma thesis and my sincere

gratitude goes out to them.

I would like to thank my supervisor, Magnus Wängefors for his truly motivating

involvement and interest in the project, his willingness to spend extend periods of his time

researching possible approaches in such a complex domain. During our project meetings he

offered continual guidance, expert knowledge and assistance in a highly enthusiastic and

positive manner.

I would also like to thank the Olaf Landsiedel, for providing me with key pointers on the

direction of the project and suggesting different approaches.

Their advice throughout the project development process has been firm, dependable and

constructive.

v

Contents

Abstract ... iii

Acknowledgements ... iv

Contents .. vi

List of figures .. viii

List of tables .. ix

Chapter 1 Introduction.. 1

1.1 Project Context .. 1

1.2 Problem Domain.. 2

Chapter 2Project theme and objectives .. 3

2.1 Problem statement ... 3

2.2 Objectives ... 3

2.3 Challenges ... 4

2.4 Report organization ... 4

Chapter 3 Literature review.. 7

3.1 License validation procedures.. 7

3.1.2 Product activation.. 7

3.1.2 Other validation methods... 8

3.2 Encryption algorithms ... 9

3.2.1 Symmetric key encryption ... 9

3.2.2 Modes of operation.. 9

3.2.3 AES and DES ...12

3.3 System Weaver ..13

Chapter 4 Related work ...15

Chapter 5System Analysis ..17

5.1 Systemite’s licensing model ...17

5.2 High level needs ...17

5.2.1 Systemite general needs ...17

5.2.2 Sales department ..18

5.2.3 Product (core) development department ...18

vii

5.3 Desired security ... 19

5.3.1 SystemWeaver vulnerabilities and treats .. 19

5.3.2 SystemWeaver customers and area of use .. 19

5.3.4 Security requirements... 20

5.3.5 Attacker model ... 20

5.3.6 Security level analysis .. 21

Chapter 6System design ... 23

6.1 Basic idea... 23

6.2 System conceptual architecture .. 23

6.3 Detailed design .. 24

6.3.1 License management tool ... 24

6.4 SystemWeaver prototype ... 28

Chapter 7 Implementation ... 33

7.1 Technology choices and motivation ... 33

7.2 License management tool ... 34

7.2.1 Database and data access layer ... 34

7.2.2 Business Logic Layer ... 35

7.2.3 Presentation layer ... 38

7.3 SystemWeaver prototype ... 40

7.3.1 Database and data access .. 40

7.3.2 Cryptographic algorithms ... 41

7.3.3 License registration .. 41

7.3.4 User authentication .. 42

Chapter 8 Testing and validation .. 45

8.1 Testing the performance ... 45

8.2 Security analysis .. 47

Chapter 9 Conclusions and further development ... 51

9.1 Conclusions and results .. 51

9.2 Further development .. 52

Bibliography ... 54

APPENDIX A ... 55

List of Acronyms .. 55

List of figures

3.1 Electronic Codebook mode ...10

3.2 Cipher Block Chaining mode..10

3.3 ECB vs CBC ..11

3.4 Cipher Feedback mode ...11

3.5 Output Feedback mode ...12

3.6 Counter mode ...12

3.7 SystemWeaver distributed architecture ...14

6.1 Component architecture ..24

6.2 License management tool architecture ..26

6.3 License management tool database ...27

6.4 SystemWeaver prototype ..30

7.1 DAL class diagram ...35

7.2 BLL class diagram ...36

7.3 Authentication page ..38

7.4 Welcome page ..39

7.5 Customers page ..39

7.6 Create license page ...40

7.7 Navigation bar ..40

7.8 Authentication flowchart ..43

7.9 Receiving ACK flowchart ..44

ix

List of tables

8.1 Performance results .. 3

1

Chapter 1

Introduction

This chapter makes a short introduction to the subject area of the master thesis. The current

context, a brief presentation of the existing software platform that will integrate the license

manager product together with the main fundamental concepts behind it, cover the first part

of this chapter. Further on, a brief presentation of the existing software platform that will

integrate the license manager product is made. We also state few fundamental concepts

behind such an application and, toward the end of the chapter, we refer to the general

domain of the problem and state the approach used for documenting and developing the

project.

1.1 Project Context

The research and development of this master thesis was conducted at Systemite AB, based in

Gothenburg, Sweden. Systemite provides a high performance open platform for component-

based systems development within the area of computer based systems. The research and

development of this master thesis was conducted at Systemite AB, based in Gothenburg,

Sweden. Systemite provides a high performance open platform for component-based

systems development within the area of computer based systems. "The platform, named

SystemWeaver, enables engineering organizations to integrate their design processes using

one enterprise-wide data repository that assembles the design information of each

component, such as: internal structure, interfaces, variants, versions, requirements, status

etc." [1]. In other words, the platform contributes to enhancing product quality, gives the

possibility of refactoring and rationalizing the entire design process, provides better

information maintenance mechanisms and, nevertheless, offers improved methods for

organizing, planning and managing projects.

At this point, SystemWeaver lacks a license management tool able to prevent potential

losses that may occur due to unauthorized replication and use of the application.The term

“License management” is a complex one and it mainly refers to the ability of tacking and

generating licenses for customers. Nevertheless, a license management tool can also control

where and how a software product (in this case, SystemWeaver) is able to run, hence being a

valuable asset in preventing losses due to software piracy.

It is important to differentiate between license manager and software asset management

tools. While the former has the purpose mentioned above, the latter is used to manage,

Master thesis

within a company or organization, the software licensed from other vendors. We underline

here that the outcome of the present master thesis project - SystemWeaver license manager -,

is intended to be a custom/private license manager implementation that will meet

Systemite’s and its customers’ needs.

1.2 Problem Domain

A proper solution for the license manager presented above requires studying different license

validation procedures, Systemite’s licensing models, different cryptographic algorithms,

technologies and related work. Based on the company’s sales, development and deployment

process, as well as on customers’ process and the way they are using the software product,

tradeoffs between security and availability must be identified. Last, but not least, one must

take into consideration the involved costs, maintainability and extensibility of such a

product.

Given the considerations above, we approached the project in the following manner: a first

step was to gather stakeholder’s needs and to investigate the company’s current workflow.

Further on, it was analyzed how the customers are using SystemWeaver and what are the

security threats to which System Weaver is exposed. The obtained results were integrated in

a Vision document together with the non-functional requirements.

A second step aimed at proposing and validating a suitable solution. It involved analyzing

the requirements and proposing several methods that will fulfill them. The proposed

solutions were validated together with the stakeholders and the most suitable one was

chosen. The last step involved implementing the validated solution at the previous step.

In general, providing any software product with a license manager holds numerous

advantages that might outweigh the initial efforts and costs required by its development. For

example, a license manager can strengthen the company’s and the product’s brand image

among the existing customers, consolidating its position and credibility on the development

process oriented software market. From a financial point of view, such an extension opens

the door to new customers and sales perspectives on the international market and generates

incremental revenue beyond the regular profit stream.

3

Chapter 2

Project theme and objectives

The current chapter presents the theme of the master thesis and its tangible objectives. Each

goal is detailed so as to show the tasks involved and some of the related challenges. The

chapter concludes with an overview of the rest of the document, a short presentation of

chapters which follow.

2.1 Problem statement

The licensing management and strategies are no longer disregarded in today’s ever changing

IT climate. The fast evolution of the IT market together with the financial and operation

risks to which all independent software vendors are exposed to (e.g. lack of control over the

availability and/or replication of the software), determined them to focus more and more on

solutions that are beneficial for their long term progress and revenue. As a company grows

towards an enterprise, the license management becomes a bottleneck in company’s

operations. Therefore, more and more effort is required for developing a license extension to

the actual software product.

License manager is as well a valuable asset in preventing losses due to software piracy. Also,

given that SystemWeaver customers are increasing constantly in number and in geographic

areas, it becomes more and more difficult to keep track of the expiration date, the number of

users that are using the system, hence making software replication becomes possible.

In this context, a license manager for SystemWeaver becomes a must. The sales department

is encountering difficulties and is spending unnecessary overtime counting users, keeping

track of their software license expiry date and informing the customers to renew their license

agreement. This results in delays and potential business losses.

2.2 Objectives

This section presents the objectives and the scope of the License manager system in a

structured manner, covering the theoretical aspects, the design issues and the experimental

implementation goals.

Throughout the project development the following key ideas served as guiding pointers:

Master thesis

 Collect, analyze, and define high-level needs and features of the SystemWeaver

license manager. It focuses on the capabilities needed by the stakeholders and the

target users, and why these needs exist;

 Investigate both Systemite’s and its customers’ current workflow and the security

threats they are exposed to;

 Identify the key requirements related to license generation and management and

define the needed security level;

 Define a flexible solution that is able to accept changes to the workflows and that

meets the stakeholders needs;

 Implement a prototype as a proof of concept for the proposed solution.

2.3 Challenges

The final product should not affect Systemite’s current processes of development, sales and

deploying. Also, the cost of maintenance and extensibility should not be prone to an

increase due to the proposed solution or its future development. Although the license tool

should prevent the unauthorized use of System Weaver product, it should still provide high

availability to Systemite’s customers.

To summarize, the main challenges are:

 Mediate between different contradictory needs;

 Define the tradeoffs between security and availability, based on the stockholder’s

needs and choose the appropriate software license model;

 Evaluate the security level that is necessary or suited;

 Analyze available cryptographic algorithms and choose an appropriate one to be used

in the actual implementation.

2.4 Report organization

This first chapter of the paper consisted in a short introduction to the subject of licensing

manager in the context of a software product. The current section, Chapter 2, details the

objectives of the project, the systematic task list and highlights some of the thesis challenges.

The third chapter makes a review of the literature studied throughout the development of the

application. It investigates different lines related to licensing schemes in enterprise

computing scenarios and briefly describes several cryptographic algorithms and block

ciphers’ operation modes. Towards the end, the chapter covers a short introduction to

SystemWaver collaborative environment.

2. Project theme and objective

5

Chapter 4 presents some available license manager solutions existing on the market, namely

Microsoft Office and Hydra.

Chapter 5 lays out the fundamental aspects: the analysis and design of license manager. Here

is explained the general system architecture and its modules. It is also shown the roles of

each module from a conceptual point of view and the way these modules interact. The focus

here falls on the decisions and existing tradeoffs based on the needs of stakeholders and their

customers.

In Chapter 6 is discussed the development and the implementation of the proposed solution.

Also, more details are offered regarding the inner-workings of the modules introduced in the

previous section. Relevant details about the employed technologies are explained and the

choices we made are also motivated here.

Chapter 7 concentrates on the methods used to test the system, in order to confirm its

validity. We apply the system in a simple practical scenario and we investigate all the

functional requirements. The system’s performance is also tested. We investigate the

overhead that is added by the license manager to the authentication process.

Finally, Chapter 8 contains the conclusions of this thesis and gives future development

directions. The conclusions drawn after analyzing, designing, implementing and testing the

license manager are presented, by underlining the advantages of the selected solution.

6

7

Chapter 3

Literature review

This chapter makes a review of what was done and studied in the area of license

management and license validation procedures. Since the topic is vast and diverse, the

review is by no means exhaustive, but it should provide relevant hints on the issues related to

license management and product validation. The chapter begins by presenting some license

validation procedures. We continue with describing the available cryptographic algorithms

and their features in order to understand the designing decisions presented in the following

chapters.

For a better understanding of the subsequent design and implementation decisions, we

present a high level overview of Systemite’s product (SystemWeaver), how this one works

and how it meets the customer’s needs. Finally we motivate the need for a proprietary

solution, we present the challenges it address and try to position the approach adopted for the

present work in the outlined context.

3.1 License validation procedures

In the proprietary software industry, every software application is accompanied by a

licensing agreement that establishes the rights the purchaser has for using that software.

Such an agreement defines the terms under which the purchased software copy can be used

and, commonly, is contained only in digital form. The agreement is most of the time

presented to the user as a ‘click-through’ procedure that he/she must accept.

Hence, the term ‘licensing validation’ stands for the procedure carried out each time a user is

entering the software product licensing information. It is a procedure used to verify that the

software license in use is in accordance with the End User License Agreement.

3.1.2 Product activation

Product activation is a license validation procedure required usually after the installation of

software programs. Its main purpose is to reduce a form of software piracy known as “casual

copying” or “soft lifting” and ensures that end users using the final product will receive the

product quality that they are expecting.

Diploma thesis

Casual copying is a form of software piracy in which users share the software in a way that

violates the software license terms. For example, a user buys an operating system for a single

computer, but he installs it on an additional computer. Another example of casual copying is

when a user buys a media format (most of the media formats are easy to replicate) and

creates copies that he shares with others. Casual copying accounts for a large part of the

piracy losses that the software industry experiences.

3.1.2.1 How product activation works

Product activation is complete software and does not need neither special hardware nor any

other external tools. The software vendors usually send to the user a unique product serial

number. While installing the application the user has to type in the product identifier. A

unique identifier for the particular machine on which the product will be running is created

by the product activation software by simply hashing the hardware serial numbers. Further

on, both the machine and the unique serial number are sent via Internet to the manufacturer

that verifies their validity and whether they were used for multiple installations.

The application will receive license information from the manufacturer describing the user’s

license like time limit, list of features available to the current users and so on. After the

activation, the user is allowed to use the product based on the time limit. In case the

customer needs extra features or has to purchase an additional license, the activation

procedure is repeated.

3.1.2.2 Drawbacks

The product activation has as well disadvantages that are presented in the following

paragraphs.

The first disadvantage is the high cost of implementation. The software vendors need to have

a product activations center that has to provide high availability to the end uses. The product

activations servers should be always up and running or, in the case of telephone-based

activation, there is a need of an automated telephone system or customer responsible

personel.

Another disadvantage is that there are situations where the target machine does not have an

Internet connection, thus forcing software vendors to implement a telephone activation

system. However, some activations systems support activations without Internet or telephone

connections. A common approach is to exchange encrypted files.

3.1.2 Other validation methods

There are no standard ways of validating a license. Software vendors usually build their own

custom methods. There are vendors that are sending license files that are activating the

features or use key generators and compare if the introduced product key was generated by

the product key generators. However, there is no standard technique and usually several

techniques are combined for validating a software product.

3. Literature review

9

3.2 Encryption algorithms

All the algorithms presented in this paper are symmetric algorithms.

3.2.1 Symmetric key encryption

Symmetric key encryption (also known as conventional encryption or single key encryption)

is still a widely used cryptography model and, in some case, it is employed together with

public key encryption. In symmetric key encryption, the process of encryption uses the same

key as the decryption process i.e. the decryption algorithm is the reverse of the encryption

algorithm. More specifically, the encryption process consists of dividing the plain text into

several small blocks/chunks (64, 128, 256 bits); the blocks, together with a secret key, serve

as input to the encryption algorithm that performs different transformations and

substitutions, hence resulting ciphertext blocks.

A symmetric algorithm is usually faster than a public key one and ensures the same security

level but with a smaller key size. On the other hand, it holds some disadvantages such as: in

order to decipher the text, the key must be sent through a secure channel. Also, the fact that

several blocks are encrypted using the same key, raises multiple security issues and makes

this type of encryption algorithm prone to brute-force attacks and cryptanalysis (based on

algorithm’s properties).

3.2.2 Modes of operation

NIST (National Institute of Standards and Technology) defined five modes of operation for

the block ciphers. Essentially, it is underlined not only that the block ciphers may be used in

numerous applications but also that the cryptographic algorithm may be adapted to the

application in order to enhance its effect.

3.2.2.1 Electronic Codebook mode (ECB)

Electronic codebook (Figure 3.1) is the simplest mode of operation, in which the plaintext is

split into equal sized blocks (last block may be padded, if necessary) and each block is

encoded independently using the same key. Thus, to each plaintext block corresponds a

cipher text block and, as a characteristic (and also disadvantage) of this mode of operation -

a plaintext block appearing repeatedly in the message will produce the same ciphertext – see

Figure 3.3. In conclusion, ECB may be suitable for encrypting rather short amounts of data,

but for longer messages that contain repetitive sequences or that are highly structured, ECB

is no longer a secure alternative (Figure 3.3).

Diploma thesis

Figure 3.1 Electronic Codebook (ECB) encryption [2]

3.2.2.2 Cipher –Block Chaining mode (CBC)

As it can be seen in Figure 3.3, cipher block chaining mode (CBC) overcomes the drawbacks

of ECB, thus offering an increased security level. In the CBC mode, the input to the

encryption algorithm is given by the plaintext block combined – XORed - with the

ciphertext resulted from the previous block.

Note that the encryption of the first block is done using an initialization vector, sent in plain

text at the beginning of the encryption procedure. Although the key for each block is the

same, the encryption of subsequent plaintext blocks is chained with the processing of

present/previous block, hence ensuring that the encryption of repetitive patterns will result in

different ciphertext blocks. Given its chaining mechanism, CBC proves appropriate for

encrypting lengthier messages and it is used not only for achieving confidentiality but also

for authentication purposes.

Figure 3.2 Cipher Block Chaining mode encryption (CBC) [3]

Note that in the case of both EBC and CBC, when partitioning a lengthy plaintext into equal

blocks, the last block may require to be padded in order to acquire a certain size. To

eliminate the need for padding and also to enable also the cipher to operate in real-time

mode, block ciphers may be converted into stream ciphers, using the operation modes

described in the followings.

3. Literature review

11

Figure 3.3 ECB vs. CBC [4]

3.2.2.3 Cipher Feedback mode (CFB)

Although it is not properly conformed to the construction of a stream cipher, CFB may be

viewed as one. Just like the previous mode, CFB operates also in a chaining mode. Hence,

the input to the encryption block is a register (initially set to an initialization vector). The

most significant bits resulted after the encryption are XORed with the first plaintext block in

order to produce the first ciphertext block. Additionally, the contents of the shift register are

shifted left (by a number of bits equal to the length of the ciphertext) and the resulted

ciphertext is placed in the rightmost bits of the shift register. The process is repeated until all

plaintext block are encrypted. Just like in CBC mode, the initialization vector may be sent in

clear text but it should be different for messages encrypted with the same key.

Figure 3.4 Cipher Feedback (CFB) mode encryption [5]

3.2.2.4 Output Feedback mode (OFB)

Unlike CFB, where the resulted ciphertext is fed back to the shift register, in the case of OFB

is the output of the encryption block that is input to the shift register. This makes OFB

structurally similar to CFB but, security-wise, more vulnerable to message stream

modification attacks (e.g. a change in the ciphertext is reflected in the decrypted text, thus

Diploma thesis

the integrity of the message can be easily affected) and less prone to propagating

transmission errors.

Figure 3.5 Output Feedback (OFB) mode encryption [6]

3.2.2.5 Counter mode (CTR)

Counter mode (Figure 3.6), just like cipher block chaining, combines the plain text block

with the output of the counter. Combining the counters output with the plaintext ensures that

similar blocks of the plain text are encrypted separately. However, in counter mode, blocks

do not depend on each other. This means that even though a malicious person can change a

block, the other blocks of the plaintext will not be affected. In the CBC mode changing one

block will create an avalanche effect that affects all the following blocks that follow the

affected block.

Figure 3.6 Counter mode encryption [7]

3.2.3 AES and DES

Data Encryption Standard (DES) was one of the most used encryption scheme. The

algorithm takes as input 64 bit blocks and encrypts them using a 64 bit key (more

specifically only 56 of these bits are used, the other 8 being left as parity bits or set

arbitrarily). For a detailed description of this algorithm refer to [8]. Note that technological

advances in hardware and parallel computing made DES insecure and in order to improve its

security, the key size was doubled or tripled while applying the algorithm twice respectively

3. Literature review

13

three times. Although the key space increased (twice or three times), the outcome was not as

expected, the security level failing to expose a double or triple increase. Moreover, the new

algorithm (3DES) became too expensive in terms of computational resources.

As a replacement for DES, a new block symmetric block cipher was approved for a wide

range of applications: AES. Unlike other block ciphers, AES’s structure is rather complex

(for its complete structure and description, see [8]), but its main advantage is a higher speed

on a wide range of CPUs i.e. from 2010 Intel processors include AES-NI instruction which

perform AES operation in hardware.

3.3System Weaver

SystemWeaver is a Systemite product. SystemWeaver is a distributed environment which

provides to its customers real time collaborations between globally distributed sites.

Basically, all SystemWeaver users have instant access to all product data sharing and

building on each other’s result in real time. SystemWeaver allows different development

disciplines and processes.

The SystemWeaver platform uses custom IT solutions mixed with proprietary technologies

all together aiming to reach a high performance. Moreover, it is a general solution that can

be customized for each customer without the intervention of the core development

department based on the idea of model based development. The customer products and

workflow are modeled with a metamodel by the Systemite’s application engineers.

SystemWeaver environment is formed of: SystemWeaver Model Server, SystemWeaver

Mirror Server and SystemWeaver Client. SystemWeaver Model Server is the main server

that coordinates all other servers. It accepts as well connections directly from the

SystemWeaver clients. This server contains the metamodel that describes the customers’

products and workflow as well as authentication information and users’ data.

SystemWeaver Mirror Server is a proxy on each client site. It mediates the connections

between SystemWeaver client and SystemWeaver Model Server. It also chases data to avoid

as much as possible unnecessary communication. Each time the data has changed the

SystemWeaver Model Server sends change events to the mirror servers. In order to keep

providing real time collaboration, the mirror servers use a write through policy i.e. in the

case of a writes in the cache and send further the write to the SystemWeaver Model Server.

Due to the high amount of work, SystemWeaver Model Server is kept as thin as possible.

Most of the business logic is implemented on the client side.

Note that there are several types of client applications, each being designed depending on the

aimed functionality and end users. The first client application - SystemWeaver Admin – is

designed for system administrators and its purpose is to offer CRUD functionality for users,

addition of corresponding roles for its entities and the assignment of user permissions. The

second client application –SystemWeaver Architect- is aimed for metamodeling and its final

Diploma thesis

users are application engineers. The third client application –SystemWeaver Explorer- is

aimed for the end users and based on the metamodel it interprets the clients data.

Figure 3.7 SystemWeaver distributed architecture

15

Chapter 4

Related work

Given the fact that at present time there is no standard validation procedure for the software

products, the market offers a wide selection of license manager solutions. In the followings

are briefly presented some examples implemented by other software vendors.

For example, Microsoft started using product activations in Microsoft Word 97 soled on

Hungarian market. Microsoft supports two ways of product activation: over the Internet or

over the telephone. Over the Internet, the Microsoft servers process the activations requests

and activate the product. For the telephone based activations one has to call the Microsoft

product activation center and must follow the steps provided by an automated telephone

system or by a customer representative.

Another example is “RemObjects Hydra - an application framework that allows developers

to create modular applications that can mix managed (.NET) and unmanaged (native Delphi)

code in the same project, creating a seamless user experience while combining the best

technologies available from either platform” [9].

They provide users with a trial version of the framework without any technical limitations

but tools, compilers and .NET libraries expire 30 days after installation. The project

compiled with the trial version will produce a message dialog indicating that it was created

with a trial version of Hydra. In this case, the vendors are selling licenses per developer. For

buying a license, the user must firstly be registered on RemObject’s web site. Once the

license has been purchased, the user receives a license file that must be registered. During

the registration, the user is required to enter his credentials ensuring in this manner that only

one copy of the license file can be activated.

16

Chapter 5

System Analysis

This chapter presents the details regarding the analysis of the License Manager. The chapter

begins with a presentation of Systemite’s licensing model and high level needs. Afterwards

we sum up some of the most important requirements that deal with security and which had a

large impact on our design decisions.

5.1 Systemite’s licensing model

Today the company sells both temporary and permanent licenses of SystemWeaver. The

licenses are sold per user and, given the fact that the system supports different types of end

users – namely viewers (that have only read access capabilities) and regular users –, different

charges are applied.

Currently, there is no mechanism to prevent the addition of new users into the system and

usage after license expiration time. Basically, once the product is sold to a client, this may

take full advantage of its features for an unlimited number of users. Besides, the sales

department encounters difficulties and spends unnecessary overtime counting users or

informing customers that their license has expired and that they have to renew the license

agreement. This results in delays and potential business losses.

5.2 High level needs

In this section we define high-level needs and features of the SystemWeaver License

Manager. The section focuses on the capabilities needed by the company’s employees and

the target users, and why these needs exist. The details of how the sales department fulfils

these needs are detailed in the following sections.

5.2.1 Systemite general needs

5.2.1.1 Usage limitation

One of the main needs is to limit and prevent piracy and unauthorized usage of

SystemWeaver system. Once the license period expired, the customers should not be any

longer entitled to use the software. Note that at present there is neither a demo version and

any other kind of usage limitation, nor a certain trial period under which a customer can use

the software; hence, once someone obtains a copy of the application, he will be able to use it

Diploma thesis

freely, without any constraints. On long term this brings high financial and business losses to

any software vendor.

Under these circumstances, the aim is to have a license agreement between the software

provider and the customer in which is stipulated the exact number of users that will be using

the system. From a technical point of view, the license manager application should be able to

limit the user accounts number to the one agreed with the customer.

5.2.1.2 Overhead in developing and usage process

The License Manager should not add overhead to Systemite’s departments and customers. In

contrast, introducing the license manager to the actual software package should optimize and

minimize the administrative overhead with which the sales department is confronting. Also,

the clients (system administrators) will either receive, on timely basis, the status information

regarding the purchased licenses and the expiration time, or will be able to access by

themselves this information. Warning the users regarding the license status is intended to be

an unintrusive process that will affect by no means the customer’s normal workflow.

5.2.2 Sales department

5.2.2.1 Clients management

Another requirement for the licence manager is to store client general information and

support CRUD (Create/Read/Update/Delete) functionality for these entities. This includes

also address information and contacts. Licence management should be able to accommodate

tracking of licences, invoicing and maybe integration with a financial system.

5.2.2.2 Users and system administrators alerts

The SystemWeaver users and administrators should be informed when they are close to (or

reached) the expiration date or when they approached (or reached) the maximum amount of

resources agreed in the license.

5.2.2.3 Deactivate the license manager for trusted users

The license manager is not intended to be an impediment or to bring any prejudices to the

regular workflow of trusted customers. Systemite is willing to provide software availability

to trusted customers even after license expiration.

5.2.3 Product (core) development department

5.2.3.1 Costs

License manager should not increase the costs of maintenance and future development.

5. System analysis

19

5.2.3.2 Server migration

If the customers need to move the server to new hardware they should not need to contact

Systemite. For example, in case of a server machine failure, in order to provide high

availability the SystemWeaver server must be migrated quickly to a different machine.

Some clients develop their own metamodel and have the QA department testing it.

Therefore, the QA needs a copy of the current database in order not to affect or alter the

developers’ real data.

5.2.3.3 Active license manager

The license manager should be always active i.e. all builds should include the license

manager. Since it is cumbersome to manage all the builds, it is very easy to leak a build

without a licence manager.

5.3 Desired security

In order to define the security level of an application, one has to analyze security treats, has

to take into consideration the type of users and customers the application is intended forand,

nevertheless, the areas of usage and the number of users.

5.3.1 SystemWeaver vulnerabilities and treats

A vulnerability of SystemWeaver is due to the fact that Systemite sells licenses per user

and/or usage time. After deploying the system, the company has no control over the number

of users that are using the application. At the end of the agreed time period, when the

licenses must be renewed, the financial department will start counting the current number of

active users. However, when the time to negotiate a new contract comes, the customer’s

system administrator can deactivate users and activate them again after renegotiations.

Currently, customers are still able to use SystemWeaver even after license expiration,

therefore Systemite sales’ department has to contact them and initiate the negotiations.

Another threat is that SystemWeaver is easy to replicate and reuse. The applications

contained within SystemWeaver are simple executable files and no installation wizard or

validation is required. Therefore, one can get a copy of SystemWeaver and use it without

any impediments.

5.3.2 SystemWeaver customers and area of use

Taking into consideration that SystemWeaver is a system designed to provide precision and

power in managing complex business models, it is used mostly in the industry and in

organizations that are geographically distributed, where a constant need of collaboration

between engineers exists. Therefore, SystemWeaver is useless for domestic use and the final

Diploma thesis

customers are mostly in the high-tech industries (automotive, aerospace, construction

equipment) such as Volvo Group, Denso, Ford Motor Company, Land Rover etc.

5.3.4 Security requirements

After analyzing the overall requirements, in this section we extracted and redefined those

that are directly related to security. These are the followings:

- In case someone holds a copy of SystemWeaver applications he/she shall not be able

to take advantage of SystemWeaver’s full functionality in the absence of a license.

Hence, there is a need of a trial mode in which the application has resources

constraints or features limitation.

- After the expiration date, it shall be impossible to use SystemWeaver unless the

current resources are downgraded to those available in the trial version.

- One should not be able to add more users than the ones agreed in the license.

- The license manager shall work offline. There are customer sites where the machine

that runs the SystemWeaver server does not have an Internet connection.

5.3.5 Attacker model

Our focus is not on SystemWeaver’s security but on the license manager’s security.

Therefore, an attacker can take advantage of any methods except reverse engineering the

SystemWeaver server. Reverse engineering the SystemWeaver server is an issue related to

the SystemWeaver’s security and is not the purpose of this project.

In this section we try to propose a well defined attacker model for the license manager.

Defining the attacker model is of a big importance since it helps the designers to rigorously

analyze the security threats the application is subjected to. Moreover, it eases the process of

comparing various solutions against each other and selecting thesuitable one.

According to [10], an attacker model comprises of a set of basic attacker models. At its turn,

a basic attacker model can be defined as a pair (i, p) of values, where i stands for

“Intervention – What the attacker can do” and p stands for “Presence – Where can he do

it”.For a correct and realistic identification of the (i,p) pairs that map onto our system, we

focused mainly on how an attacker can modify, affect or disrupt the normal behavior of the

application. Nevertheless, from where the attack may be conducted and what are the points

and parts of the system that might be affected by an attack must also be taken into account.

Intervention:

- Enable extra resources in trial mode: when running in trial mode, an attacker should

not be able to enable/use more resources than those allocated for trial mode;

- Addition of extra resources (in our case, user accounts) over those stipulated in the

license agreement: although similar to the previous one, this intervention is possible

only after license activation;

5. System analysis

21

- Usage of the same number of resources after license expiration;

- Use the License Manger to perform a DoS (Denial of Service) attack;

- Affect time’s flow on the server’s side (make the time run backwards at server’s

side). This intervention affects the expiration date. More specifically, an attacker can

postpone to an indefinite date the license’s expiration by simply making the time on

server’s side run backwards;

- Eavesdropping – this intervention is more related to SystemWeaver’s security.

However, it can also be regarded as a license manager problem since an attacker can

eavesdrop the license registration messages and reuse their content.

Presence:

- Local: the attacker has direct access to the machine that runs the SystemWeaver

server and also to the data base;

- Remote: the attacker can access the server through the client applications.

5.3.6 Security level analysis

According to the presented vulnerabilities and risks, but also considering the company’s

current size, its actual customers and the area of use, there is no need for an expensive

solution. However, the solution should be resistant to the above mentioned security

requirements and attacker model.

Moreover, it is worth investing and developing a highly secured mechanism only for those

products that can be used for personal purposes. A trivial example would be MS Office

Excel that can be used by companies but also by single users. Hence, the rate of attempts to

illegally use and replicate this software is higher than for a product that has no use for a

regular user. As stated previously, SystemWeaver is not aimed for domestic use therefore it

is worth finding tradeoffs between security and costs.

Diploma thesis

Chapter 6

System design

We begin this chapter by introducing the main idea on which the system’s architecture relies

on. In the last part we focus on a more detailed description of the system’s conceptual

architecture and design.

6.1 Basic idea

We chose to use as license validation the file based approach, where customers receive a

license file that activates the resources they paid for. In our case, the license file will mainly

contain information about the number of users that are allowed to use the application, the

time duration they are allowed to use it, as well as configuration data that describes how the

system should behaving under certain conditions.

Given that Systemite is a small company and does not have enough resources to afford

product activation, the license file approach is preferred to the product activation one.

Another reason behind our option is that SystemWeaver is not intended for personal use -it is

an expensive system designed for large enterprises – therefore, the number of customers is

not that high. Moreover, most of Systemite’s customers keep confidential data into

SystemWeaver server, making communication with a product activation server difficult. The

telephone activation is excluded since the implementation costs are too high.

Using a license file, the design is flexible and it is easy to change to product activation in the

future. Meanwhile, the license file can be used as well for disabling and enabling different

product features that are customizations for particular clients. Also, an Internet connection is

not mandatory. On the other hand, this approach has the disadvantage that a license file may

be used to register multiple copies of the database.

6.2 System conceptual architecture

The conceptual architecture of the license manger as well as the involved components and

the interaction between them is presented in Figure 6.1.

OnSystemite’s site there is a standalone application, License management tool, responsible

for license generation. The tool is used also by the sales department to keep track of the

customers and sold licenses.

Diploma thesis

Figure 6.1 Component architecture

As it can be seen in the Figure 6.1 only swAdmin tool and the SystemWeaver server need

to be modified. The swAdmin tool needs a mechanism for registering the license file while

the SystemWeaver server needs a mechanism for preventing unauthorized use and for

registering the license file. Each component will be detailed in the detailed design section

(Chapter 6.3).

Figure 6.1 shows also the interaction between the components. Therefore, the normal usage

flow of the system is as follows:

1. A standalone license management tool is used to generate an encrypted license file;

2. The license file, together with the customer registration number is sent to the

customers. Note: the customer registration number is sent only once and it is used to

uniquely identify a customer;

3. The customers use the admin tool to send the registration data to the SystemWeaver

server;

4. The SystemWeaver model server, reads the registration data and validates it;

5. SystemWeaver server writes the content to the SystemWeaver database.

6.3 Detailed design

6.3.1 License management tool

The standalone license management application is responsible for license generation. It will

also be able to accommodate tracking of licenses customers, invoicing etc. The standalone

6. System design

25

application stores client and licenses’ general information and will offer CRUD

(Create/Read/Update/Delete) functionality for its entities.

The License management tool is structured into several layers. Figure 6.2 presents its three

tier architecture. In this section are presented some of the advantages and motivation behind

this approach. Each component of the architecture, starting from the bottom to the top level

is presented in this section.

Each layer of the architecture provides services to the layer above by adding more

functionality and exposing more specialized functionality of the layer below. Each level

communicates only with the level situated immediately below and each level exposes its

services to the layer above through a SAP (Service Access Point).

Diploma thesis

Figure 6.2 License management tool architecture

The License management tool database is structured in three tables: “Customers”, “Users”

and “Licenses”. In Figure 6.3 is presented a diagram of the database that shows the tables’

columns and the relation between them. The “Customers” table contains different

information related to customers. “Users” is a table that contains the users of the license

management tool, while“License”has as purpose the storage of the soled licenses. The

License

management tool

database

Business Logic Layer (BLL)

Presentation Layer

Data Access Layer (DAL)

6. System design

27

“UserId” and the “CustomerId” from the Licenses table are foreign keys pointing to the user

that created the license, respectively, to the intended customer.

Figure 6.3 License management tool database

The Data Access Layer contains all the code needed to access the database. It simplifies the

design since one does not have to think at database access while designing the Business

Logic Layer. It contains LicenseManagerEntities which serves as a SAP to the business

logic layer.LicenseManagerEntities offers to the business layer functions such as retrieving

all the information from the database and also commit (make the changes persistent)

functionality in case there are changes.

The rest of this layer’s components are data entities. Entities are richly structured records

with a key. The entities are grouped in entity sets. In Figure 6.2, in the data access layer can

be seen three entities like: Customer that represents a record in the “Customers” table,

License that represents a record in the “Licenses” table and User that represents a record in

the “Users” table.

The Business Logic Layercontains most of the code for this application. It uses the

functionality provided by the Data Access Layer and the utility classes LmUtils and

CryptoUtils exposing more specialized services to the layer above. The business layer

exposes its functionality to the layer above through ApplicationContext which is a

singleton. This provides the presentation layer with all the needed functionality. Presentation

layer only has to delegate requests to the ApplicationContext. Some of functionality exposed

by the AplicationContext is as following:

 Login and Logout;

Diploma thesis

 Generate license key and customer registration number;

 Retrieve all customers, users and licenses;

 Get licenses by customers;

 Get license content byte array.

The Presentation Layer consists of a frame (MainWindow) and several pages as it can be

seen in the presentation layer shown in Figure 6.2. The MainWindow contains a frame that

serves as container for the pages. The pages and their usage scenarios are presented in more

detail in the implementation section together with the used technology.

The three tier architecture comes with several advantages. Using this approach it is easier to

replace one layer of the architecture with a new one without affecting the others.Another

advantage of this architecture is that other layers can be inserted without affecting the

existing ones. For example a WCF Service Hosting Layer can be inserted between the

presentation and the Business Logic Layer. Presentation layer can communicate with the

lower levels (BLL) through WCF over the Internet. It will only invoke services exposed by

the WCF Service Hosting Layer that further delegates the requests to the Business Logic

Layer (BLL). For more details refer to [11].

6.4 SystemWeaver prototype

As it can be seen in the Figure 6.1, it is required to extend the functionality of the

SystemWeaver server and the SystemWeaver admin tool.Therefore, it is neededto modify

only two of the applications, fact which proves advantageous also when it comes to

decreasing the costs. However, in this project it is built only a prototype that simulates

SystemWeaver server for proof of concept. The prototype is built from scratch and it

contains a server and two client applications.

The reasons why we chose to implement a prototype instead of integrating directly

SystemWeaver were the following:

 Given the fact that the company sends constantly new release updates to its

customers, an integration would have been difficult to achieve;

 It is intended to introduce the license manager only after this has been fully

integrated and tested. Since Systemite’s purpose is to offer high availability to its

customers, it is beyond the scope to add, at this stage, a daemon that might be

triggered in unknown conditions thus generating errors and preventing the users to

accomplish their work;

 An alternative possibility to cope with the frequent updates that the company sends to

its customers would have been to create a special branch aimed only for license

manager. Again, even in this case, this would have increased significantly the

complexity: several builds would have been created thus increasing the possibility for

mishandling and bad deliveries to the customer;

6. System design

29

 Also, using a prototype instead of the real application, the focus would be more on

testing the functionality of the license manager itself rather that dealing with

integration issues.

From an architectural point of view, the prototype uses the same principles as

SystemWeaver, namely: it is based on a client – server architecture, supporting different

types of clients intended to different kinds of users. Figure 6.4 presents the SystemWeaver

main prototype applications like the normal client, the administrative tools and the server but

also the interactions between the client and the server.

The Server Prototype offers basic functionality like authentication, adding users and license

file registration. swDefs is a unit which contains functions used for the communication

protocol like generating messages and information retrieval from the messages.

CryptoUtils and CryptoUtils256 are two help units that tare exposing the same functions

used for encryption and decryption. The only difference is that CryptoUtils provides support

for 128 bit key while the other provides supports for 256 bit key support.

The TUserEntity is abstractization of a user. TLicenseWrapper represents a wrapper over

the license content that knows how to interpret the file and provides fast access to the

licensing information.

The ServerForm contains the actual user interface of the server application. It contains also

the TCP server and all of the requests handlers. It stores the users and the licenses in the

database. We choose to store the database information in the database rather than in the

Windows registry. Storing the licensing information in the Windows registry violates

product development’s need according to which the clients should not contact Systemite if

they have to move the server to another machine.

Storing the licensing information in the database presents both advantages and

disadvantages. First of all, it is easy to move the server to another machine since the

licensing information is stored in the database and it will be moved at the same time with the

server. In the case a separate database server is used, they have to move only the

SystemWeaver server. Another advantage is that Systemite is able to easily send new

releases to its customers.

One of the disadvantages is that one can replicate a database and give a copy to someone

else. However we accept this problem since it is part of some of Systemite’s customers’

workflow. They are developing the metamodel and afterwards they send a copy of the

database to quality insurance department for testing.

In the current prototype the database contains only authentication information and licensing

information.

The Admin Prototype simulates the swAdmin tool. The prototype provides functionality

like authentication, addition of users and registering the license file.

Diploma thesis

The Client Prototype simulates the swExplorer tool which is the client that is mostly used

by the normal users. In the scope of the license manager the only functionality that we need

from this client is the authentication.

Figure 6.4SystemWeaver prototype

Since the prototype is build from scratch there was a need for a communication protocol

between the clients and the server.

The prototype uses a XML base communication protocol. Each message is formatted as

XML. Using this has in general several advantages like:

 In general the clients are completely agnostic about the server supporting different

types of clients.

 In our particular case it is a flexible way of exchanging data, information can be

easily added and removed from the messages.

For authentication the clients send a login request containing the user id and the password.

When receiving an authentication request the server looks at the resources available

resources. The server verifies the authentication and the available resource. In the case of a

successful login it can also add an information messages such as the date at which the

application will expire. If the server requires acknowledge for the info messages, an ACK

flag is set to true. The client application displays the message and if the ACK flag is set, it

sends an acknowledgment that it has displayed the message. When the server receives this

acknowledge, it computes the next alert date for the current users and saves it in the

database.

6. System design

31

For registration the admin tool will sent a registration request. The request contains license

file content and also the customer registration number. The server analysis the request and

registers it in the database if it is valid and sends back a registration response.

For creating new users the admin tools sends a new user request. The server checks that

there are still resources left and sends an appropriate response.

Diploma thesis

Chapter 7

Implementation

In this chapter we present the technologies involved in the implementation step. We will also

present the motivation behind the employed technologies as well as the problems

encountered throughout this phase.

7.1 Technology choices and motivation

According to the conceptual architecture, the License Manager is formed of a standalone

application and a client - server prototype that simulates the SystemWeaver server. The

stand alone application is implemented in C# over .NET Framework 4.0.

.NET Framework is an integral Windows component and its purpose is to offer a framework

for building desktop and web applications. It provides developers with an object oriented

programming environment while minimizing the deployment effort and versioning conflicts.

It is a cluster of several technologies such as:

 .Net languages like C#, F#, Visual Basic and C++;

 .Net framework class library contains prebuilt functionality that the programmers can

use into their applications;

 ASP.NET is the engine that hosts the web applications;

 Common language routine (CLR) is the engine that executes all .NET programs;

 Visual Studio is an optional development tool.

C# is a modern, powerful component oriented language containing strong typing,

declarative, imperative, and functional paradigms.

SystemWeaver is implemented using Delphi. The language behind is Object Pascal, that is a

variant of Borland Pascal which adds object oriented capabilities. The syntax is a bit

different from C/C++ but it is well-structured, minimizing the development time without

altering the performance.

The prototype that simulates the SystemWeaver is implemented using Delphi XE2 in order

to be consistent with SystemWeaver. We could not choose .NET Framework for the

Diploma thesis

prototype because when some of the concepts will be moved to the real SystemWeaver,

problems regarding the incompatibilities between technologies may arise. Using Delphi, this

migration will be easier since most of the functionality is already implemented.

7.2 License management tool

7.2.1 Database and data access layer

SystemWeaver uses SQLite database, therefore it was a requirement to use SQLite for the

stand-alone application that was developed for this project. SQLite is a self-contained, server

less, zero configuration transactional database engine. It is one of the most deployed

database engines in the world. Connecting to a SQLite database proved not to be easy since

ADO .NET does not have a provider for this database engine.

Hence, for the implementation, a third party provider was needed. The open source provider

that matched our needs and that was further used was System.Data.SQLite.

System.Data.SQLite consists of a complete SQLite database engine and a complete

ADO.NET 2.0/3.5 provider. It can be used as well as a standalone database engine since it is

a drop-in replacement of the original one. The ADO.NET provider supports all of the most

recent changes added to the ADO.NET framework. It supports nearly all of the Entity

Framework functionality that the SQL Server supports.

ADO.NET Entity Framework enables DAL to grant its functionality to the layer above.

Moreover it helps the software developer to create “data access applications by

programming against a conceptual application model. Nevertheless, it decreases the amount

of code that has to be maintained for data oriented applications. Another advantage is that

Language-integrated query is supported providing compile-time syntax validation for queries

against a conceptual model” [12].

The class diagram of the data access layer and the relation between entities can be seen in

Figure 7.1. Customer entity represents a row (record) from the customers table. As one can

see, most of the Customer entity properties correspond to a column of the Customers tables.

It contains information related to the Systemite’s customers. The stored information may be

changed and one can add more information without modifying the business logic or the

presentation layer.

The User entity contains license manager end users’ related information. It contains the

necessary information for authentication and identifications but also for tracking users and

their actions. The Password property does not contain the password in plain text but it

contains the hashed password.

The License entity contains most of the properties that were detailed in the Analysis and

design and some more. It contains as well the username of the user that has issued the

license as well as the foreign key of the target customer. The additional information that is

not contained in the License entity is taken from the customer due the relation between them.

7. System implementation

35

The above layer accesses the data through LicenseManagerEntities. This contains three

properties like: Customer, Licenses and Users. The properties are sets that contain all entities

which covers all the data from the database. It contains as well methods for adding

customers, users and licenses. The SaveChanges method will make all the changes persistent

in the database.

Figure 7.1 DAL class diagram

7.2.2 Business Logic Layer

The Business Logic Layer is the place where most of the code for this application is residing.

It uses the functionality provided by the Data Access Layer exposing more specialized

services to the layer above using LINQ to Entities and other utility classes like CryptoUtility

and LmUtil. LINQ to Entities is referencing the entities model provided by the DAL.

Whenever a LINQ query is executed, this will be translated by the Entity Framework to the

Business Model (entities) that represents the conceptual entity model. Further on, the entity

Diploma thesis

aspects are mapped to the database tier and a SQL query that is to be executed towards the

database is generated.

The business logic class diagram is presented in Figure 7.2

Figure 7.2 BLL class diagram

7.2.2.1 ApplicationContext class

The business layer exposes its functionality to the layer above through ApplicationContext,

which is a singleton. This provides the presentation layer with all the needed functionality.

Presentation layer only has to delegate requests to the ApplicationContext.

ApplicationContext is a multithread singleton. This is needed in a multithread environment

due to the fact that the private constructor executes initialization code like the instantiation

of LicenseManagerEntities. Therefore, we do not want to open several points of access to

the DAL. We need to ensure that only one instance of it can exist in the system in the

7. System implementation

37

presence of multiple threads. In the current implementation this would not be the case, but

when moving to a more distributed environment it might cause problems. A technique called

“Double-Check locking” [13] [14] is used to avoid several threads creating more than one

instance of the ApplicationContext.

Encrypt and Decrypt are the two functions used for encryption, respectively decryption. The

encryption and decryption is not implemented in this class but the ApplicationContext

delegates the call to the CryptoUtils utility class. The methods GenerateLicesingKey,

GenerateCustomerRegistrationNumber are offering the functionality by delegating the call to

the LmUtil. The rest of the methods are using LINQ.

7.2.2.2CryotoUtilsclass

For encryption and decryption we use the AesCryptoProvider and ICryptoTransform.

The GetAesTransform takes as arguments a string and a Boolean. The string contains a

password that is used for generating the encryption key. The password is hashed using

SHA256 and takes the first KEY_SIZE bytes as encryption key. KEY_SIZE is a constant

that defines the size of the key. In case it is wanted to change the key size, this can be done

easily by modifying this constant.

The used encryption mode is CBC; therefore there is a need of an initialization vector. Since

it is must be a random number, we used a used a function GetRandomIv.

GetAesTransform returns an ICryptoTransform that defines basic operations for

cryptographic transformation. Based on the decryptor flag it returns a decryptor or an

encryptor. AesCryptoServiceProvider performs symmetric encryption and decryption

containing an implementation of Advance Encryption Standard.

AesEncrypt takes as arguments a plaintext and a password. It calls the GetAesTransform

in order to get an encryption cryptographic transform and returns a string that contains the

ciphertext.

AesDecrypt is the inverse function of AesEncrypt. It takes as arguments a ciphertext and the

passwords. It calls the GetAesTransform in order to get a decryptor. It decrypts the cipher

text and it returns a string containing the plaintext. All the three functions are static and are

located in a utility class.

7.2.2.3LmUtil class

LmUtil class - most of the utility functions implemented in this class are used for generating

random string like: passwords for new user, license keys, customer registration numbers. It

uses Random class which is a random number generator. This class is provided by the .NET

Framework.

Diploma thesis

7.2.3 Presentation layer

The presentation layer is implemented using WPF (Windows Presentation Foundation).

WPF is providing powerful tools that can be used by designers and developers to create

friendly interfaces, interfaces that can be of varied content (documents, multimedia, 2D and

3D graphical objects, etc.) , without being limited to buttons and simple lists.

One of its main advantages offered by WPF consists in that the interface is kept in a separate

file type, XAML (eXtensible Application Markup Language). In this way an interface

designer, using a dedicated environment for interface design (WPF Designer that is included

in Microsoft Visual Studio 2010 or Expression Blend), can create interfaces that are saved as

XAML files. These files will be used directly and the programmer will write only the

interaction code for every action executed by the user. Using XAML has another advantage:

the application can be easily migrated to a web one.

As describes in [15], the WPF navigation system provides the application’s user interface

with a browser style design. For example, WPF Frame component serves as a container for

WPF Page. Using the navigation system provided by the former, one can navigate through

the available pages by using hyperlinks. Moreover, WPF keeps track of the viewed pages

and gives the possibility of back and forward navigation.

The current application’s user interface consists of a frame which serves as a container for

nine pages:

 PageLogin

 PageWelcome

 PageLicesnses

 PageCustomers

 PageUsers

 PageCreateUser

 PageCreateLicense

 PageCreateCustomer

 PageLicenseFile

When starting the application the login page Figure 7.3 is displayed. After entering the

correct login information the user reaches the welcome page that can be viewed in the Figure

7.4.

7. System implementation

39

Figure 7.3Authentication page

In the welcome page there are several hyperlinks to other pages like: Users page, Customers

page, Licenses page and a special page where the users can load a license file to read its

content.

Figure 7.4Welcome page

Only one of the above pages is presented since the other pages are quite similar and the

usage workflow is almost the same. If a user clicks on the License page, the page shown in

Figure 7.5 is displayed. This page contains a grid that displays the license and the related

information. It also has a toolbar where users can filter by a text. They can filter by column

or they can search through all columns if they do not pick a particular one. It also provides

the users with sorting capabilities.

Figure 7.5Customers page

To create a new license the user has to press the create license button. A new page is

displayed, see Figure 7.6, that contains a form for the creation of a new license.

Diploma thesis

Figure 7.6Create license page

The user can always drop the operation and can return to the previous page using the

navigation bar presented in Figure 7.7. The users can either use the arrows or use the drop

down menu to select one of the previous pages.

Figure 7.7 Navigation bar

7.3 SystemWeaver prototype

7.3.1 Database and data access

To access a SQLite database in Delphi requires too much work. The scope is to build a

prototype as a proof of concept not to connect to a SQLite database. The connection to a

SQLite database is already done for the SystemWeaver server. For those reasons we choose

to use for the prototype to use a Microsoft Access database and we use SQL query to access

it.

7. System implementation

41

The SystemWeaver prototype database structure is simple and contains information only

needed for licensing and for authentication. Therefore it contains two tables: Users and

Usages. The Users tablecontains information related to the users like: Username, Password,

Type, Name, InformDate, Email etc. The Type refers to the actual type of the user like root,

admin viewer and normal user. The Inform data contains the dateat which the user must be

informed about the license expiration.

The “Usages” table contains licensing information. It contains a blob where the encrypted

content of the license file relies. Besides the blob it also contains other column with the

resources that are available and configured in the license file. Apart from the license

information it contains also a registration date. The SystemWeaver server is always using the

last registered license.

7.3.2 Cryptographic algorithms

The cryptographic library caused a lot of problems while implementing the SystemWeaver

prototype. A first attempt was to use TurboPowerLockBox 3. According to [16],

TurboPowerLockBox 3 is a Delphi Cryptographic Library that offers the main

encryption/decryption related functionality such as: public key encryption, symmetric

encryption and hashing functions. However, after spending some time trying to make it work

we gave up the idea of using it due to the poor documentation and incompatibilities between

the technologies. Therefore we chose to use the Windows ADVAPI32.dll. It provides

additional functionality to the Windows kernel. ADVAPI32 is an advance API that supports

numerous functionality including security and registry calls.

7.3.3 License registration

The license registration can be done by an admin or by the root user. In the admin tool the

user has to select the file and input the customer registration number. The registration date is

send afterwards to the server prototype. On the server side, the server verifies that the

customer registration number provided is the correct one. The server adds a new record in

the Usages table. Afterwards, it saves the encrypted content in the blob filed. It also adds the

resources of the license file in the other columns in plain text as well as the registration date.

The “Usage” table can contain several entries. It keeps as well the previous registered

licenses. When the server retrieves license information, it sorts the records in the Usages

table based on the registration date and the last registered license. This mechanism is also

good in the case of permanent licenses when the customers need more users for a certain

time period. Then they will receive the new license with the number of the users that they

need for the requested duration. After expiration they have to remove the last license and

return to the permanent one.

When retrieving the licensing information the server always takes the information from the

encrypted field. Each time the server is accessing the licensing information it has to decrypt

its content.

Diploma thesis

7.3.4User authentication

The authentication is a complex process. On each login, the server retrieves the license

information from the Usages table. The authentication process flowchart is presented in the

Figure 7.8. When the server receives the authentication request it retrieves the user from the

database. If the authentication data is incorrect it stops and returns the appropriate messages.

In the case the authentication data is correct, it checks if the user is root. If the user is root

and the client is the admin tool it returns true. We need an account that is able to connect

even after the expiration date or in the case the number of users exceeds the agreed one, to

be able to remove or deactivate users or register a new license file.

In the case of another user we cheek the expiration date. If the license is not permanent and

the license has expired it verifies the “Allow connections after expiration” flag. In the case it

is set to true the user is still able to login but is downgraded to viewer. Otherwise the

authentication will fail.If the license is permanent or the data is still valid it verifies the

number of users. If the number of users exceeds the agreed one, the authentication process

will fail and an appropriate message will be generated. This check is done to avoid addition

of users directly in the database.

After verifying the users it checks the InformDate field in the user’s record. In the

InformDate is less than the current date the server will generate the inform message and will

set the ackRequired flag. The authentication process succeeds.

7. System implementation

43

Figure 7.8 Authentication flowchart

If the SystemWeaver client receives a login response with the ackRequired flag on, it

displays the information messages (when the license expires) and sends an acknowledge

message containing the username back to the server.

Diploma thesis

When the server receives the ACK message the algorithm presented in Figure 7.9 is

executed. There will be three expiration date alerts. The first expiration date alert will be at

start alert date. The second alert will be at the half of the interval between date alert and

expirations date. The final alert will be at three quarters of the interval between alert date and

expiration date. There are no alerts regarding the number of users to inform normal users. In

the admin tool there is a panel that will inform the administrator about the number of

resources left (time and users).

Figure 7.9 Receiving ACK flowchart

Chapter 8

Testing and validation

This chapter presents the approach used to test the system in order to confirm itsfunctionality

and, the system analysis based on the attacker model presented in the System analysis

chapter. The costs that are introduced by adding the license manager mechanism are also

mentioned.

The testing and validation of the current proposed system was performed in two stages. At a

first stage the testing and the validation of the proposed solution were performed in a

theoretical way. Afterwards, different usage scenarios were proposed based on the system

specification (uses cases). We tried to run them conceptually, following the same steps the

final user has to perform in order to complete the proposed scenarios. In this manner we

analyzed whether the solution satisfies the license manager requirements. We also tried to

analyze if the proposed solution is resistant to the defined attacker model (see chapter 5.3.5).

After the first step, the solution was validated but, this did neither exclude the existence of

bugs, nor that is not feasible to be implemented. It is not eliminated the existence of other

problems or security issues that might not have been easily seen from the very beginning.

Nevertheless, it is important to prove that the proposed solution is implementable given the

mixture of technologies involved (Delphi, C#).In this scope, a final application (for license

generation) and a prototype that simulates SystemWeaver system were built for testing and

validation. The reason behind implementing a prototype was to limit the testing scope. By

using just a prototype having the needed functionality, the testing of the License Manager

focuses only on its functionally and not on the functionality of the overall system. The

scenarios from the previous step were used but this time they were run and tested on a real

application.

8.1 Testing the performance

This section is aimed for analyzing how the license manager may affect the performances of

the SystemWeaver. In other words, we are interested in identifying the exact overhead the

license manager adds to the current solution. We intended not only to measure the overhead

that was introduced by the license manager itself, but also to make a comparison between the

overhead introduced by varying the key sizes. It should be mentioned that in the current

case, a certain limitation in testing existed mainly because we tested on a prototype that has

Diploma thesis

only the authentication and lacked all the other features of SystemWeaver. The proposed

solution affects only the authentication, therefore we tested the time duration between the

authentication request and the authentication response. Note that this test serves only for

having a high overview of the penalty performances that may be introduced solely by the

license manager mechanisms. In a regular usage scenario other delays may occur i.e., when

the server is busy decrypting the licensing information required for authentication, other

operations may suffer from inherent delays.

For testing the performance, both the server and the client prototype were run on the same

machine. This will also ensure that delays due to network communications that might vary

from one test to another and thus prevent us from making truthful observations, were

avoided.

Firstly the tests were run having enabled only the authentication mechanism i.e. we verified

only whether the authentication data is correct. The purpose was to measure the time that is

consumed by the authentication itself. Secondly, tests were run while having the license

manager enabled and using a 128 bit key for the encrypting/decrypting licensing

information. Same test was also performed but using a 256 bit key. The purpose here was to

motivate the selected key size while checking how an increase in security leads to a

performance penalty.

The testing was performed on an i7-2600 @ 3.4 GHz 8MB cache computer. The results were

summarized in the table below. As it can be seen, without the license manager the

authentication takes on around 16[ms]. This number includes the amount of time required

for validating the user’s credential after retrieving them from the database.

As expected, enabling the licensing manager with a 128 bit key causes certain latency and

affects the overall performance: the authentication time is doubled. As in the previous

method, part of the time duration comes from requesting and validating user’s credentials.

The difference comes in from: retrieving the licensing information decrypting the content

and checking the current resources against the ones stated in the licensing information (refer

to the Implementation chapter, Figure 7.8).

Enabling the license manager with a 256 bit key causes even higher differences when it

comes to performances (the time duration is tripled compared to the first case). Apart from

the decryption, all the performed operations are identical to the ones in the previous

scenario. As shown in the Table 7.1, a double key size adds a delay of up to 16[ms]

compared to the previous case.

In conclusion, there is always a trade-off between security and performance: by adding extra

security we decrease the performances and vice-versa. The decryption process proves to be

an expensive process in terms of computational resources. Meanwhile, the content of the

license file might increase in the future thus causing even higher performance penalties. As

mentioned above, keeping the CPU busy with decryption will cause delays in the normal

work flow of the application.

8. Testing and validation

47

Key size Test1 Test 2 Test3

Without

verification

16[ms] 15[ms] 16[ms]

Verification 128 key 31[ms] 31[ms] 32[ms]

Verification 256 key 47[ms] 46[ms] 40[ms]

 Table 8.1 Performance results

Therefore, we do not want to pay for the cost of a 256 bit key since this proves to be too high

and on a loaded system, the delays might increase considerably. Also a 128 bit key provides

good computational security against brute force attacks and easier ways of hacking the

license manager - other than brute force on the key - exists.

8.2Security analysis

In the Analysis chapter we identified an attacker model comprising of a set of (i,p)

(Intervention, Presence) pairs that can map over our system. This section describes what an

attacker can do and what the behavior of the system is in case these attacks occur.

We identified two different types of presence:

 Local

 Remote

The local presence means that the attacker has direct access to the machine that is running

SystemWeaver server. In this case the attacker has full access to the SystemWeaver database

as well as to machine and to the operating system.

The remote presence means that the attacker does not have direct access to the machine that

is running the SystemWeaver server. Note that using a remote desktop is still part of the

local presence. The only way to harm the system in this presence is by using the

SystemWeaver clients or another application that is talking to the SystemWeaver server or

by sending directly other packets that might harm the system.

Enable extra resources in trial mode: when running in trial mode, an attacker should not be

able to enable/use more resources than those allocated for trial mode. From a remote

presence point of view, in order to add extra resources, admin tool must be used. Note that

all the checks are done at the server’s side, admin tool having as purpose only the delegation

of requests to the server. Therefore it would be impossible to add other resources using

admin tool.

Another approach the attacker can use is that he could try to generate a license file to

activate the resources. This proves also to be unfeasible since the secret key as well as the

license file structure is needed in order to generate it. From a local presence point of view, in

Diploma thesis

trial mode, there is no license information in the database thus the server will generate a

temporary one. In this way the existing data cannot be altered in order to accept the addition

of extra resources (users).

Addition of extra resources (in our case, user accounts) over those stipulated in the license

agreement: although similar to the previous one, this intervention is possible only after

license activation. For this, an attacker should firstly decrypt the content of the license file.

The license file is encrypted using AES128, hence an attack, either coming from a local or

from a remote location, that has as purpose the decryption of the file is not feasible (AES128

is secure).

Another approach is to alter the license content by flipping some bits in order to increase the

number of resources. However, this is impossible not only because the amount and structure

of information contained in the license file will differ from one file to another (more

specifically, the license file is structured as an XML therefore the location within the file of

the number of users will not be the same in separate files) but also due to the usage of CBC

mode (the modification of one block will cause subsequent changes in the following blocks).

An attack that might be possible for both of the above interventions is to add resources

directly in the database. This is only in the case where the attacker has access to the database

(local presence). For example, an attacker may perform the following steps:

 Create a new entry in the Users table of the SystemWeaver server database;

 Generate/Create a new unique ID for the user;

 Choose a password and compute the hash using the ID as salt;

 Fill in the remaining data (username, email etc.);

As we presented in the implementation section we do not check the available resources only

when adding new users but also during each authentication. Therefore, if the number of

users is larger than the number stipulated in the license agreement, the server refuses to

accept new connections. New connection requests will be refused until the number of users

is less or equal to the agreed one.

Affect time’s flow on the server’s side (make the time run backwards at server’s side): this

intervention affects the expiration date. More specifically, an attacker can postpone to an

indefinite date the license’s expiration by simply making the time on server’s side run

backwards.This can be done only by having access to the machine that is running the

SystemWeaver server (either remote or local). It is easy to realize, one has only to set the

date in the past before reaching the expiration date. The current solution does not cover this

intervention but this will be implemented in a next version. This intervention was not

considered in the current implementation since it is not a good approach for Systemite’s

customers to run the time backwards. More specifically, it has an impact on the issue

management and it will prove difficult to follow the progress of projects. Also, considering

time registrations - no one will have access to the real time when an item or an issues was

created.

8. Testing and validation

49

Eavesdropping – this intervention is more related to SystemWeaver’s security. However, it

can also be regarded as a license manager problem since an attacker can eavesdrop the

license registration messages and reuse their content. Since all Systemite’s customers have

confidential data in the SystemWeaver server, this uses TLS (Transport Layer Security) to

ensure a secure communication between the SystemWeaver server and the client.

Diploma thesis

Chapter 9

Conclusions and further development

This section details the conclusions drawn after analyzing, designing, implementing and

testing the SystemWeaver license manager. We will begin by making a brief overview of the

topic and the steps followed in the implementation process. Also we will focus on the

outcome of this thesis work showing the advantages and disadvantages of the given solution

and what has been achieved compared to the initial goals. Further on, we will remind some

of the encountered issues and, nevertheless, discuss the suitability of the license manager

prototype for a real implementation. At the end of the chapter we give some suggestions for

further development.

9.1 Conclusions and results

The aim of the current thesis was to investigate and implement a solution for preventing

software piracy and managing software licenses, that meets Systemite’s requirements.

Overall, the scope was to have a flexible design, easy to implement and maintain and which,

on the long run, does not add extra overload to the initial application or increases the costs.

Several steps were followed in order to fulfill the ahead mentioned goal. The first step

consisted in gathering and analyzing the company’s needs in terms of a license manager

application and investigating the company’s and its customers’ ways of working. The

outcome of this initial step was the selection of a single solution that maps best to the actual

resources and to the current process. Several scenarios were created and ran against the

proposed solution, verifying whether they meet our expectations in terms of security and

company’s needs. The following step was to design and implement the chosen solution. The

aim was to better understand the behavior, analyze and test the outcome in real-life use

cases.

Throughout the analysis and design stages we tried to find out the alternative that has the

least impact on the already existing applications and current way of working. The chosen

solution consisted in using a license file (refer to Chapter 6, System Design). The advantages

this approach has over others are its increased flexibility and ease of modifying the product

activation in the future. Meanwhile, the license file can be used as well for disabling and

enabling different product features that are customizations for particular clients. Also the

license file is used for configuring how the license manager should behave in different

Diploma thesis

situations, e.g. once the time expired, can be configured in the license file to accept

connections but the normal users will be treated as simple viewers. A license file validation

procedure is preferred also because it is not dependent on an active Internet connection.

Security wise, this approach has the disadvantage that a license file may be used to register

multiple copies of the database. Anyhow, this may be difficult to avoid without using a

connection to a registration server.

Throughout the project, the main challenges were to define the tradeoffs between security

and availability, based on the stockholder’s needs and to choose the appropriate software

validation procedure. Another encountered issue was to mediate between different

requirements coming from separate departments, e.g. sales department requesting high

availability (access to the resources) for the ‘trusted’ customers, versus keeping the license

manager active at all time.

Technology incompatibility was another major issue encountered during the development

phase. Delphi has no support for providing encryption mechanisms/libraries. The third party

library that was tried out proved to be incompatible with the .NET solution and had as well

other limitations. Instead, for ensuring encryption capabilities, we chose to use the Windows

ADVAPI32.dll library that provides additional functionality to the Windows kernel.

The outcome of this project is a complete stand-alone application, “License Manager Tool”.

This application is the final one and it implies no major changes in the near future. Besides

the license manager tool we developed another set of applications that serve as a prototype

and their scope is to simulate the current SystemWeaver platform and to prove the selected

solution validity. Apart from these aims, building the prototype eased the testing and

verification procedure by limiting the testing scope only to the license manager functionality.

9.2 Further development

As future developments, we intend, on short term, to continue the verification tests and

migrate the concept and the implementation to the real SystemWeaver server. Also, as

mentioned in the Testing and Validation chapter, the current solution is not resistant against

running the time backwards at the server machine.

On the long term, we plan to integrate the license management tool with the financial

system. Given the issues mentioned in the previous paragraphs, a long term solution will

imply avoiding the registration using the same license file for several times. Hence, the

clients will still be able to replicate the database and use it for both testing and development

but they should not be any longer able of activating both copies.

Systemite sells licenses also through resellers. In the future it may prove to be useful to have

a centralized database for tracking all the sold licenses irrespective of who sold them to the

customers. The next step would be to change the current license manager tool in order to be

able to generate license files via Internet. Nevertheless, the license management tool should

9. Conclusions and future work

53

support, in the nearest future, the possibility of buying license files through the Internet and

online payment processing.

Bibliography

[1] http://systemite.se/content/products-services/systemweaver-concept

[2] http://en.wikipedia.org/wiki/File:Ecb_encryption.png

[3] http://en.wikipedia.org/wiki/File:Cbc_encryption.png

[4] http://en.wikipedia.org/wiki/File:Tux_ecb.jpg

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

[5] http://en.wikipedia.org/wiki/File:Cfb_encryption.png

[6] http://en.wikipedia.org/wiki/File:Ofb_encryption.png

[7] http://en.wikipedia.org/wiki/File:Ctr_encryption.png

[8] Cryptography and Network Security Principles and practices.

[9] http://www.remobjects.com/

[10] Felix Freiling class lecture of “"Protocols and Security for Wireless Sensor Actor

Networks”, University of Mannheim, Germany, March 2008

http://pi1.informatik.uni-mannheim.de/filepool/presentations/attacker-models.pdf

[11] http://msdn.microsoft.com/en-us/magazine/cc700340.aspx?ppud=4

[12] http://msdn.microsoft.com/en-us/library/bb399572%28v=vs.90%29.aspx

[13]http://msdn.microsoft.com/en-us/library/ff650316.aspx

[14]Lea, Doug. Concurrent Programming in Java, Second Edition. Addison-Wesley, 1999

[15] http://msdn.microsoft.com/en-us/library/ms750478.aspx

[16]Turbo Lockbox web page

http://lockbox.seanbdurkin.id.au/HomePage

http://msdn.microsoft.com/en-us/library/ms750478.aspx

55

APPENDIX A

List of Acronyms

AES Advanced Encryption Standard

BLL Business Logic Layer

CBC Cipher Block Chaining

CRUD Create/Read/Update/Delete

DAL Data Access Layer

DoS Denial of Service

ECB Electronic Code Book

SAP Service Access Point

SHA256 Secure Hash Algorithm with 256 digest

IDE Integrated Development Environment

WCF Windows Communication Foundation

XAML eXtensible Application Markup Language

XML eXtensible Markup Language

