

Överföring av och beräkning med timmätta värden – Från MT2000 till Xpower Examensarbete

SVEN PÅLSGÅRD

Institutionen för Energi och Miljö Avdelningen Elteknik CHALMERS TEKNISKA HÖGSKOLA Göteborg

Överföring av och beräkning med timmätta värden - Från MT2000 till Xpower

SVEN PÅLSGÅRD Department of Electric Power Engineering Chalmers University of Technology

Abstract

New technology makes it possible to remotely measure all consumers in a power network on an hourly basis and store the values in a database.

This thesis work describes the conversion process between automatic meter reading system MActor and calculation software Xpower.

Then the possible differences between calculations of power networks using load curves in combination with a yearly estimate of consumption and calculations using hourly measured values is examined.

The result of the comparison shows that, for the power network under inspection, no significant difference could be noticed. This does not mean that calculations using hourly measured values would be unnecessary. I believe that in a near future calculations using hour measurements will be the primary choice for many power companies to whom technology is available.

Also some basic calculations of fundamental power network parameters, such as power factor and loses, are presented using hourly measured distribution transformers in combinations with its hourly measured loads.

The report is written in Swedish

1	MOTIV	ERING AV EXAMENSARBETE	7
2	INTRO	DUKTION	
3	NÄTFT		Q
4		7 A D A	10
4	MJUK	/AKA	10
	4.1 MT 4.1.1 4.1.2 4.2 XP0 4.3 EX0	2000 <i>Mätare</i> <i>MActor</i> OWER CEL	
5	DATAB	EARBETNING	
U	5.1 Exi 5.2 Ko 5.3 Öv	PORT AV TIMVÄRDEN FRÅN MT2000 nvertering av mätvärden i Excel erföring till Xpower	
6	BERÄK	NINGAR	
	6.1 BEI 6.1.1 6.2 BEI 6.2.1 6.3 BEI 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.4 SAI	RÄKNINGAR MED TYPKURVOR Betty kurvor RÄKNINGAR MED TIMVÄRDEN Timvärden RÄKNINGAR MED XPOWER Nätstation T001 Nätstation T008 Nätstation T008 Nätstation T018 Nätstation T018 Nätstation T028 Nätstation T051 Nätstation T056 Nätstation T056 Nätstation T064 Nätstation T064 Nätstation T089 Nätstation T089 Nätstation T098 Nätstation T387	
	6.5 FAI	KTORER SOM PÅVERKAR BERÄKNINGSRESULTATET	
7	STATIS	STIKMÄTARE	
	7.1 BEI 7.1.1 7.1.2 7.1.3 7.1.4	RÄKNINGAR MED STATISTIKMÄTARE Förluster Effektfaktor Belastningsgrad Beräkningsresultat för statistikmätare	
8	SLUTS.	ATSER	
9	REFER	ENSER	

1 Motivering av examensarbete

Då regeringen år 1999 beslutade om en ny förordning kring mätning av elförbrukning blev elföretagen med nätkoncession tvungna att installera nya system för automatisk avläsning av elmätare.

Tranås Energi AB beslutade då att mäta alla sina kunder varje timma trots att den nya förordningen endast kräver mätning varje månad för schablonavräknade kunder.

Mätvärdena från elnätskunderna utgör sålunda ett mycket bra underlag för belastningsberäkningar på elnätet. Dessa beräkningar skulle då göras med uppmätta timförbrukningar istället för, som idag, uppskattade förbrukningar beräknade med hjälp av effektkurvor kombinerat med årsförbrukningar.

Utvärdering av resultat från beräkningar med timvärden kan sedan ge bättre förståelse av det beräknade elnätets natur men även ligga till grund för beslut om effektiviseringar av nätstrukturen och enskilda nätobjekt.

2 Introduktion

Från och med 1 Juli 2009 skall en ny förordning, 1999:716, träda i kraft om månadsvisa mätningar och rapporteringar av samtliga elförbrukare i hela landet.

Tidigare förordning 1995:1179 kräver enbart en årlig avläsning och rapportering av förbrukningen hos lågförbrukare så som hushåll. Denna nya förordning skall göra att kunderna får en mer överskådlig elräkning och enbart betalar för den energi de faktiskt förbrukar.

En annan tanke bakom propositionen är att göra kunderna mer medvetna om sin energiförbrukning och på så vis få befolkningen att bli mer upplysta och skapa nya mer genomtänkta förbrukningsmönster.^[1]

Månadsmätningarna gör även att de årliga avstämningsfakturorna inte längre kommer att behövas.

Tranås Energi AB har gått ett steg längre och valt att mäta förbrukningen hos alla sina kunder varje timme. Detta ger en stor mängd mätvärden som skulle kunna användas till mer än bara väl specificerade elräkningar och rapportering till energibolag och myndigheter. Att kunna använda dem vid beräkningar på det egna nätet skulle med stor sannolikhet ge en bättre bild av de ingående lasternas faktiska förbrukning vid en specifik tid. Belastningskurvorna som används i dag ger en bra generell bild av förbrukningen men kan av naturliga skäl inte ge en exakt bild av förbrukningen. Timmätta värden tillsammans med ett väl definierat elnät skulle med största sannolikhet förbättra beräkningsresultatens noggrannhet betydligt.

I dagsläget har Tranås Energi AB ingen möjlighet att på ett enkelt sett utnyttja alla tillgängliga mätvärden till beräkningar. Detta examensarbete grundas därför på att skapa en koppling mellan mätvärdesinsamling och beräkningsprogramet. Därtill kommer en analys av hur beräkningsresultaten skiljer sig vid beräkning med typkurvor tillsammans med årsförbrukning kontra timmätta värden.

3 Nätet

Tranås Energi AB har ett elnät med runt tiotusentvåhundra kunder lokaliserat i och söder om staden Tranås i norra Småland som bild 2.1 visar.

Elnätet har en anslutningspunkt till regionnätet, ägt av Vattenfall, där den ena av deras fem fördelningsstationer transformerar ner spänningen från regionnätets 130kV till 40kV. Ett nät för 40kV finns sedan byggt runt Tranås och vidare ut på landsbygden som förbinder de fem fördelningsstationerna och de två vattenkraftverk som ägs av företaget.

Under detta nät finns ett 10kV-kabelnät inom Tranås och i de mindre orter som ingår i nätet samt ett 10kV-kraftledningsnät ute på landsbygden. Mycket jobb läggs ner på att gräva ner stora delar av nätet för att säkra elleveransen vid stora störningar så som de allt mer förekommande vårstormarna. Man får då inte bara ett säkrare elnät utan undviker även de höga bötesbelopp som nu mera utgår då kunder i elnätet utsetts för elavbrott som varar i mer än tolv timmar. I nätet finns cirka tvåhundratretio nätstationer som sköter spänningstransformeringen ner till 400V.

Tranås Energi driver även två vattenkraftsstationer som är lokaliserade till Forsnäs och till Olstorp vid sjön Östra Lägern. Då även fjärrvärme produceras finns en ångturnbinsgenerator vid fjärrvärmeverket. Den egna elproduktionen ligger kring 12 GWh/år medan elleveransen

ligger på cirka 175 GWh/år. De resterande cirka 163GWh tas från regionnätet.

För år 2006 var medelavbrottstiden (SAIDI¹) i nätet 58 minuter/kund och år och tillgängligheten (ASAI²) var 99,99%.

År 2007 var medelavbrottstiden 303min/kund och år, alltså hela 5 gånger längre än 2006. Tillgängligheten var i stort sett den samma som året innan.^[2] Planer finns för att utvinna vindkraft i regionen men inga beslut är ännu tagna. Inom nätet agerar mellan 15 och 20 energibolag med elförsäljning till kunderna där även dotterbolaget Tranås Energi Elförsäljning AB är en aktör.

Bild 2.1. Karta över elnätsområdet för Tranås Energi.

¹ SAIDI = System Average Interruption Duration Index

² ASAI = Average System Availability Index

4 Mjukvara

Flera mjukvaror används under examensarbetets gång. Metrima's MActor sköter mätvärdesbehandlingen och exporten av mätvärdena från insamlingssystemet MT2000. Tekla's Xpower används för nätberäkning.

Som länk mellan dessa båda program skall Microsoft Excel användas för, med hjälp av makron, import, bearbetning och export av mätvärden. Excel kommer även att användas för uppförande av statistik utifrån importerade mätvärden av timmätta transformatorer.

Arbetsgången från mätdata till beräkning kan ses i bild 3.1. Först exporteras mätvärdena till Excel genom en exportfunktionalitet i programvaran för mätvärdesinsamlingsystemet MT2000. I Excel görs de justeringar som behövs för att mätvärdena skall kunna skrivas till en textfil där formatet på innehållet är förutbestämt. Textfilen importeras sedan via ett skript till beräkningsprogrammet Xpowers databas för timmätta värden.

Bild 3.1. Arbetsgång för överföring av mätvärden.

4.1 MT2000

Samtliga kunder i nätet har fått en fjärravläst elmätare installerad hos sig. Till varje elmätare finns bland annat ett unikt ExportId kopplat som gör att mätvärden lätt kan inhämtas för en unik mätare. Elmätarna samlar varje timme in aktuell timförbrukning samt aktuell mätarställning.

Noggrannheten på mätvärdena varierar från kund till kund, från heltal till decimaltal med två decimaler. Antalet decimaler bestäms vid konfigureringen av mätaren. Dessa insamlade värden skickas sedan tillbaka till en router i nätstationen via de matande elledningarna. Routern skickar sedan signalen vidare, ofta via ett nätverk av routrar, över till en central server, placerad hos Tranås Energi. Detta sker vid några schemalagda tidpunkter under dagen. Allt detta sköts av ett mätvärdesinsamlingssystem från Metrima kallat MT2000.

Överföringen av mätvärden från nätstationen kan göras via ett flertal medium. Informationen kan skickas via befintliga kraftledningar om avståndet är kort, via radiovågor och via vanlig dataöverföring på nätverkskabel, allt beroende på vilken infrastruktur som finns tillgänglig. Då överföringen från mätare till nätstation görs via elledningarna kan vissa områden ibland drabbas av störningar på elledningarna, även kallad EMI³. Är frekvensen på störningarna i just det frekvensband som mätarna kommunicerar kan det göra att mätare ej går att läsa av. Dessa störningar är inte alltid lätt att lokalisera men uppkommer ofta från t.ex. defekta elektroniktransformatorer som då inte längre följer uppsatta standarder för elektromagnetisk kompabilitet.

Då insamlingen av timvärden ännu inte fullt trimmats in och systemets mätvärden inte alltid rensats på felaktiga värden finns många gamla felaktiga värden kvar i systemet. Värden som till exempel anger samma värde för mätarställning som timförbrukning. Timförbrukningen blir då orimligt hög men dessa värden kan vara svåra att upptäcka då mängden data är mycket stor.

³ EMI= Elektromagnetisk interferens

Dessa mätvärden påverkar så klart beräkningsresultatet men så länge beräkningsresultaten kan anses rimliga är de ej något stort problem. Ju mer insamlingssystemet blir intrimmat desto bättre beräkningar kommer det att gå och göra.

För att beräkningarna inte skall påverkas allt för mycket av dessa felaktiga värden har extremvärden gallrats bort då de vid jämförelse med förbrukarens övriga mätvärden är allt för osannolika.

4.1.1 Mätare

Mätarna från Metrima kommer från Siemens och är av typen Landis & Gyr Dialog. På dessa sitter sedan kommunikationsmoduler som optiskt läser av uppmätt effekt och sköter överföringen till mätvärdesinsamlingen. Dessa moduler har betäckningarna LG-20 samt LG-50 och levereras även de av Metrima. LG-20 kommunicerar enbart via elledning medan LG-50 även kan kommunicera via tvåtrådsanslutning. För högspänningskunder och de transformatormätare som är utplacerade i vissa nätstationer används en mätare av typen Landis & Gyr Dialog ZMD410CT vilken har en noggrannhet på $\pm 1,0$ % för aktiv effekt med symmetrisk last och cos $\varphi = 1$. Noggrannheten för mätning av reaktiv effekt är $\pm 1,0$ %. För mätning av hushållens förbrukning och mindre laster används Landis & Gyr Dialog ZMF120Ace.

Ett äldre mätsystem körs parallellt för vissa högspänningskunder som baseras på ett pulsräknarsystem via uppringd anslutning för fjärravläsning. Detta system fanns redan då högspännigskunder sedan tidigare är timavräknade och då haft en mer övervakad förbrukning och specificerad avräkning. Dessa värden importeras till samma databas och behandlas lika som de timvärden som de nya mätarna rapporterar in.

4.1.2 MActor

De lagrade mätvärdena från de fjärravlästa mätarna kan sedan bearbetas med hjälp av mjukvaran MActor som är en serie program utformade kring MT2000 och den databas med mätvärden som kontinuerligt byggs på.

Program som används i MActor är dels det databasrelaterade programmet Dataview som med ett enkelt och funktionellt användargränssnitt presenterar mätvärden från databasen på ett lättöverskådligt sätt och ger möjlighet till export av mätvärden.

En satt begränsning på 500'000 mätvärden per sökning finns dock. Begränsningen är en inställnings sak och är vald till 500'000 på Tranås Energi.

MAMonitor uppför statistik över insamlingen och rapporterar felaktigheter i inrapporterade mätvärden.

Program för mer administrativa uppgifter finns sedan där till exempel de inställningar och den hierarki som finns för elmätare och routrar går att justera och administrera.

4.2 Xpower

För dokumentation och beräkning av elnätet har Xpower från finska Tekla börjat användas hos Tranås Energi. Programmet ger en bra översikt över det nät som är i bruk och hur det matas.

Flera olika bakgrundskarta finns över elnätsområdet vilket möjliggör enkel orientering och projektering av kraftnätet.

Parametrar för de ingående elnätskomponenterna finns angivna i databastabeller och kan lätt justeras från användargränssnittet.

Xpower används även till fjärrvärmenätet i staden och underhåll, drift och avbrottsrapportering ska bli framtida uppgifter.

För Xpowers beräkningsdel finns en timmodul utvecklad. Den gör det möjligt att använda uppmäta timvärden vid beräkningar på det kraftnät som finns inlagt. Detta skulle i teorin kunna ge beräkningsresultat med lägre felmarginal och osäkerhet än vid sedvanlig beräkning med hjälp av årsförbrukning, kombinerat med uppskattade typkurvor, så kallade Betty-kurvor. En jämförelse av resultat från de båda beräkningssätten är en stor del av slutresultatet för arbetet.

4.3 Excel

För sortering och bearbetning av mätvärden skall Microsoft Excel användas där avsedd mätdata först exporteras från databasen för mätvärdesinsamlingen i MT2000, via programmet DataView, för att sedan importeras till överföringsprogrammet i Excel. Här sker sedan den bearbetning och uppspaltning av mätvärdena som krävs med hjälp av flertalet specialskrivna makron som skapats som del av detta examensarbete skrivet i Visual Basic for Applications. Se appendix för kod.

Den bearbetade mätvärdena exporteras sedan till Xpowers databas som indata till beräkningen med Xpowers timmodul. Utseendet för användargränssnittet kan ses i bild 3.2.

Alternativ 1.	Skapa utdata direkt! Göra samma sak som alternativ 2 fast i ett svep. Att föredra då processen annars kan ta extra lång	- Manuell -
- Automatisk -	tid och kräver viss användarövervakning. Alternativ 2: Manuell körning	Importera timvärden från textfil
Skapa utdata direkt!	För att skapa en tabell över förbrukad energi: Infoga lista över alla kanaler fråm MAMonitor till blad "Kanaler" (behöver bara göras då nya kanaler tillkommit sedan senaste körningen)	Skapa tabell över förbrukning
pdatera Xpower databas	* Kanallistan anvands för att binda ihop Nodid och Exportid Importera timvärden från textfil	Skriv till fil
	Infoga önskad period av timvärden från Datariev m.h.a. knappen "Importera timvärden från textfil". Flera filer kan importeras samtidigt.	Uppdatera Xpower databas
	Skapa tabell over förbrukning Tryck på knapp "Skapa tabell över förbrukning". Resulterande tabell kan sedan ses på blad "Data" För t.ex. snabb överblick och kontroll av resultatet.	
na fristående kontroller	Skriv till fil: Skapar textfil (i ASCII format) från tabellen över förbrukning för vidare import till Xpower	
	Uppdatera Xpower databas: För över de skapade timvärdesfilerna till Xpowerservern och startar en §ärrskrivbordsession.	
Rensa bort	onòdiga kanaler Ta bort blad med tirrwärden Törn Data	Нійр

Bild 3.2. Användargränssnittet i Excel

Användargränssnittet består av hjälptexter som refererar till de knappar som är placerade ute i periferin. Mycket jobb har lagts på att det skall vara lätt att genomföra de procedurer som krävs för att konvertera mätvärdena.

5 Databearbetning

På grund av historiska skäll finns flera oberoende betäckningar för förbrukningspunkterna i Tranås Energis nät. För att kunna använda mätvärdena från MT2000, som använder en betäckning kallad ExportId, i Xpower, som använder en betäckning kallad NodId, måste först en tabell skapas där dessa betäckningar kan översättas mellan de olika systemen.

Detta görs i Excel där även aktuella timvärden spaltas upp för varje enskild last och vid aktuellt datum.

Tabellen ger en bra översikt för enklare sannolikhetskontroll av data samt ett enkelt upplägg för vidare bearbetning av datan, så som databasuppdatering. Denna tabell användas sedan för att uppdatera Xpowers databas för timmätningar som programmet använder vid beräkningar med timvärden.

All bearbetning och omstrukturering av data i Excel görs med hjälp av makron skrivna i Visual Basic for Applications.

5.1 Export av timvärden från MT2000

Min arbetsgången vid konvertering av timmätta värden från MT2000 till Xpower har varit att först söka ut timmätta värden för de distrikt (nätstationer) som skall beräknas. Timvärden för ett år krävs för beräkningarna i Xpower.

I Dataview måste man således ange distrikt, tidsintervall och vilken typ av mätvärden, det vill säga timvärden, man vill söka ut.

Mätvärdestyperna kan utöver timvärden var till exempel mätarställning, avbrott och fjärrvärmerelaterade mätvärden.

På bild 4.1 visas användargränssnittet för programmet Dataview som ingår i programsviten MActor och används för hämtning och export av mätvärden från databasen.

Arkiv Redi	gera Visa '	Verktyg Hjälp									
Kategori:	- Alla -	~	Distrikt:	T105 T	elefonen PL-A		~				
Från:	2007-01-0	1 😺 00-00-01	MātarId:								
Tront.	2007 01 0	1 00100101	v								
10000	-		KanalId:	Timvärd	len						
Till:	2008-01-0	1 🛛 00:00:00	\$					-	_		
-			Spara som					2			
Mätvärden	Markto uare	ton Salanada uše	opara som						-		
	Fidinca vare		Spara i:	📋 Timvärde	n	~	G 🧊 📂 🖽	-			
Hämi			oparan							Hittade 70080 matchand	e värden
Папт	La			i arkiv		E T	'imvärden T063 Ävik J	an-Juni 2007.txt			
				🔋 Timvärden	T004 Ängen Jan-Juni	.txt 📋 T	'imvärden T063 Åvik J	uli-Dec 2007.txt			2
Distrikt		MätarId	Senast använda	Timvärden	T004 Ängen Juli-Dec.	txt 🗐 T	imvärden T078.1 ian-	feb 2008.txt	de	Enhet	^
T105 Telef	onen PL-A	1000102 EL - 2	dokument	Timuardan	TOE1 Publicen April 21	107 byb 🗊 T	invärden 1079 2 jan-	Feb 2008 byb		kWh	
T105 Telef	onen PL-A	1000102 EL - 2			TOST Rubinen April 20		ninvarden 1070.2 jan-	160 2000.cxc		kWh	
T105 Telef	onen PL-A	1000102 EL - 2		E Imvarden	1051 Rubinen Aug 20	107.0X0 🗐 I	Imvarden 1098 kullen	Jan-Feb 2007.c	α	kWh	
T105 Telef	onen PL-A	1000102 EL - 2		Timvärden	T051 Rubinen Dec 20	07.txt 📃 T	ïmvärden T098 Kullen	Juli-Aug 2007.b	t	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	Skrivbord	📋 Timvärden	T051 Rubinen Feb 20	.07.txt 🔋 T	'imvärden T098 Kullen	Maj-Juni 2007.t	d	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	onnoord	Timvärden	T051 Rubinen Jan 20	07.txt 🖺 T	imvärden T098 Kullen	Mars-April 2007	b	kWh	
T105 Telef	onen PL-A	1000102 EL - 2		Timuārdon	TOE1 Dubinon Juli 20	17 byt 🗐 1	inuärden 1008 Kullen	Neu Dec 2007 h		kWh	
T105 Telef	onen PL-A	1000102 EL - 2			TOST RUDITIET Juli 200			NUV-DEC 2007.0	a	kWh	
T105 Telef	onen PL-A	1000102 EL - 2		I Imvarden	1051 Rubinen Juni 20	J/.txt 📳 I	imvarden 1098 Kullen	Sep-Okt 2007.t:	t	k₩h	
T105 Telef	onen PL-A	1000102 EL - 2	Mina dokument	🗄 Timvärden	T051 Rubinen Maj 20	07.txt				kWh	
T105 Telef	onen PL-A	1000102 EL - 2	Mind dokument	🗐 Timvärden	T051 Rubinen Mars 2	007.txt				kWh	
T105 Telef	onen PL-A	1000102 EL - 2		Timvärden	T051 Rubinen Nov 20	07.txt				kWh	
T105 Telef	onen PL-A	1000102 EL - 2		Timu Judan	TOE1 Dubiner Old 20	07 kuk				k₩h	
T105 Telef	onen PL-A	1000102 EL - 2		E fillivaruen	TOST RUDITIENTOR, 20	37.000				kWh	
T105 Telef	onen PL-A	1000102 EL - 2	Dan här datom	E Timvarden	T051 Rubinen Sep 20	07.txt				kWh	
T105 Telef	onen PL-A	1000102 EL - 2	Dennaruatoin	100						kWh	
T105 Telef	onen PL-A	1000102 EL - 2	100 M	<						kWh	
T105 Telef	onen PL-A	1000102 EL - 2								kWh	
T105 Telef	onen PL-A	1000102 EL - 2		Filnamn:	Timvärden T10	5 Telefonen 2007	.txt 💙	Spara		kWh	
T105 Telef	onen PL-A	1000102 EL - 2								kWh	
T105 Telef	onen PL-A	1000102 EL - 2	mina	Filformat	Textdokument		~	Avbryt		kWh	
T105 Telef	onen PL-A	1000102 EL - 2	rid(veikspid(sei							kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	01 23:00:00	3	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	-02 00:00:00	3	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	02 01:00:00	2	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden 3	302924	El	2007-01-	02 02:00:00	3	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden 3	302924	El	2007-01-	02 03:00:00	2	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	-02 04:00:00	3	k₩h	_
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	02 05:00:00	2	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	02 06:00:00	3	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	-02 07:00:00	2	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	-02 08:00:00	3	kWh	
T105 Telef	onen PL-A	1000102 EL - 2	302924 Ti	mvärden :	302924	El	2007-01-	-02 09:00:00	19	kWh	
T105 Tolof	onen PL-A	1000102 EL - 2	202024 Te	winden	202024	EI	2007-01-	0210:00:00	26	LWA	

Bild 4.1 Användargränssnitt och export från Dataview

Mätvärdena hålls isär av ett ExportId samt datum och klockslag då mätningarna gjordes. Resultatet av utsökningen exporteras till en textfil som sedan läses in med hjälp av ett makro för vidare databehandling i Excel.

Om flera textfiler exporterats för distriktet, till exempel på grund av begränsningen på 500'000 mätvärden per utsökning, kan dessa läsas in i ett svep om så önskas.

5.2 Konvertering av mätvärden i Excel

I Excel-dokumentet finns flera blad som innehåller olika tabeller för att kunna konvertera data från importerade timvärden.

		А	В	С	D	Е	F	G	Н
9225	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 09:00	0,30	kWh
9226	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 10:00	0,70	kWh
9227	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 11:00	0,30	kWh
9228	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 12:00	0,70	kWh
9229	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 13:00	0,40	kWh
9230	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 14:00	0,50	kWh
9231	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 15:00	0,40	kWh
9232	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 16:00	0,70	kWh
9233	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 17:00	2,20	kWh
9234	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 18:00	1,20	kWh
9235	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 19:00	1,40	kWh
9236	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 20:00	1,10	kWh
9237	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 21:00	1,00	kWh
9238	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 22:00	1,00	kWh
9239	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-20 23:00	0,50	kWh
9240	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 00:00	0,50	kWh
9241	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 01:00	0,70	kWh
9242	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 02:00	0,70	kWh
9243	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 03:00	0,60	kWh
9244	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 04:00	0,70	kWh
9245	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 05:00	0,70	kWh
9246	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 06:00	1,00	kWh
9247	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 07:00	1,10	kWh
9248	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 08:00	0,30	kWh
9249	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 09:00	0,80	kWh
9250	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 10:00	0,50	kWh
9251	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 11:00	0,60	kWh
9252	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 12:00	0,60	kWh
9253	T019	Igelkotten PL-A	86023419	306120 Timvärden	306120	EI	2007-02-21 13:00	0,40	kWh
9254	TT19,	Idelkotten PL-A	86023419	306120 Timvärden	306120	FI	2007-02-21 14:00	η 70	kWh
	F 1	🔪 Kontroller 🔏 Ka	analer 🔏 Custom	ier Point Node 🔏 Data λ1	imvarden 1/		<		>

Bild 4.2. Importerade timvärden från textfil till blad i Excel.

På bild 4.2 visas de importerade timmätta värdena. Denna tabell över timmätta värden konverteras sedan rad för rad och placeras i en tabell på blad Data där mätvärdena är inlagda dag för dag istället för timvis.

ExportId't från kolumn D, datum och tid från kolumn F, mätvärdet från kolumn G och enheten från kolumn H sparas i tillfälliga variabler.

ExportId't konverteras till NodId. Datum och tid delas upp och datumets formatering ändras från formatet åååå-mm-dd till dd.mm.åååå (till exempel 2007-02-20 blir 20.02.2007). Mätvärdena från MT2000 har enheten kWh och då Xpower vill ha mätvärdena i Wh görs en konvertering innan de skrivs i tabellen. Tiden tillsammans med enheten för mätvärdet bestämmer sedan var i tabell mätvärdet skall hamna.

Excel-dokumentets första blad innehåller det användargränssnitt som används för konverteringen. Se bild 3.2, kapitel 3.3.

På nästa blad, Kanaler, finns en tabell över alla de datakanaler som finns i mätvärdesinsamlingssystemet. Tabellen används till att konvertera ExportId till NodId. Tabellen är hämtat från programmet MAMonitor som ingår i MActor.

MAMonitors gränssnitt och delar av en lista över kanaler kan ses på bild 4.3. Då det endast är cirka 10'200 kanaler som behandlar timmätta elförbrukningar av totalt ca 40'000 kanaler så finns även ett makro för att ta bort onödiga kanaler i överföringsprogrammet. Onödiga kanaler kan vara sådana som kanal för avbrott, mätarställning eller de olika fjärrvärme kanalerna.

Missade kanaler Klockor Jobbstatistik Hä	indelselogg Meddelande	logg Alla kanaler					
Uppdatera						Totalt a	antal: 38465
Lina Distrikt	NodId	KanalId	ExportId	Exportivo	MätarId	Kategori	Aktiv
Lipa 01 Smediebolme T017 Spickaren PL	-A 0330406 EL	337574 Mätarställping	337574	FL MST	0330406 EL - 1	FI	Aktiv
Lina 01, Smedjeholme T017 Shickaren PL	-A 0330406 EL	337574 Timvärden	337574	EL EBR	0330406 EL - 2	FI	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Epergi (mst)	323565	ETV MST	0320300 EV	Eiärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Előde (mst)	323565	ETV VOLYM	0320300 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Mom Effekt	323565	E IV FEEFKT	0320300 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Mom Előde	323565	E IV ELÖDE	0320300 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Spickaren PL	-A 0320300 EV	323565 Temp in	323565	EIV TEMP IN	0320300 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Temp ut	323565	ETV TEMP LIT	0320300 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 Temp diff	323565	E IV TEMP DIEE	0320300 EV	Ejärrvärme	Aktiv
Lina 01, Smedjebolme T017 Spickaren PL	-A 0320300 EV	323565 Status	323565	E1V LARM	0320300 EV	Ejärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0320300 EV	323565 ELAVBROTT	323565	FL AVBROTT	0320300 EV	Avbrott	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0370501 EV	323594 Epergi (mst)	323594	EIV MST	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0370501 EV	323594 Elöde (mst)	323594	E1V YOLYM	0370501 EV	Ejärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	-A 0370501 EV	323594 Mom Effekt	323594	E IV FEEFKT	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Shickaren PL	-A 0370501 EV	323594 Mom Előde	323594	E IV ELÖDE	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	A 0370501 EV	323594 Temp in	323594	EIV TEMP IN	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Shickaren PL	-A 0370501 EV	323594 Temp ut	323594	ETV TEMP LIT	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	A 0370501 EV	323594 Temp diff	323594	EIV TEMP DIEE	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	A 0370501 EV	323594 Status	323504	FIVLADM	0370501 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	A 0370501 EV	222594 EL AVEDOTT	323594	EL AVEDOTT	0370501 EV	Aubrott	Aktio
Lina 01, Smedjeholme T017 Shickaren PL	A 0291701 EV	323556 Epergi (mct)	323556	ELY MST	0201701 EV	Fiärryärme	Aktiv
Lina 01, Smedjeholme T017 Snickaren PL	A 0291701 EV	222556 Előde (mst)	323556	ENVIOLVM	0201701 EV	Fjärrvärme	Aktiv
Lina 01, Smedjeholme T017 Shickaren PL	A 0201701 EV	222EE6 Mom Effoldt	323330	E 10 EEEEVT	0201701 EV	Fibrrubroo	Alstin
Lina 01, Smedjeholme T017 Shickaren PL	-A 0291701 EV	222556 Mom Előde	323556	EIVELÖDE	0291701 EV	Fjärrvärine	ANUV
Lina 01, Smedjeholme T017 Shickaren PL	A 0201701 EV	222556 Tomp in	323330	EIV TEMD IN	0291701 FV	Fibrrubrine	Abbin
Lina 01, Smedjeholme T017 Snickaren PL	A 0201701 EV	323556 Temp ut	323330	EDV TEMP IN	0291701 FV	Fjarrvarne	Alakin
Lina 01, Smedjeholme T017 Shickaren PL	A 0291701 EV	323556 Temp diff	323550	EIV TEMP OF	0291701 FV	Fjarrvarile	AKUV
Lina 01, Smedjeholme T017 Snickaren PL	A 0201701 EV	323556 Temp din	323330	EDV LODM	0291701 FV	Fjarrvarne	Abb
Lina 01, Smedjeholme T017 Shickaren PL	A 0291701 EV	323550 Status	323330		0291701 FV	Öurian	AKUV
Lina 01, Smedjeholme T017 Snickaren PL	A 0230400 EV	323536 EL AVBROTT	323330	EL AVBROTT	0291701 FV	Girmuia	ANUV
Lina 01, Smedjeholme T017 Shickaren PL	-A 0370400 FV	323593 Elleryi (Ilist)	323593	E10 VOLVM	0370400 FV	Fjarrvarille	AKUV
Lina 01, Smedjeholme T017 Snickaren PL	A 0370400 FV	323593 Flode (Ilist)	323393	FJV VOLTM	0370400 FV	Fjarrvarne	ANUV
Lina 01, Smedjeholme T017 Shickaren PL	-A 0370400 FV	323593 MOIII EITEKL	323593		0370400 FV	Fjarrvarine	AKUV
Lina 01, Sineujenoine T017 Sinckaren PL	A 0370400 FV	323593 Molii Pidde	323393	FJV FLODE	0370400 FV	Fjarrvarne	AKUV
Lina 01, Smedjeholme T017 Shickaren PL	-A 0370400 FV	323593 Temp ut	323593		0370400 FV	Fjarrvarme	AKUV
Lina 01, Sineujenoine T017 Sinckaren PL	A 0370400 FV	323593 Temp dt	323393	FJV TEMP OF	0370400 FV	Fjarrvarne	AKUV
Lina 01, Smedjeholme T017 Snickaren PL	-A 0370400 FV	323593 Temp dir	323593		0370400 FV	Fjarrvarme	AKUV
Lina 01, Smedjenoime 1017 Shickaren PL	-A 0370400 FV	323593 Status	323593		0370400 FV	Fjarrvarme	AKEIV
Lina UI, Smedjenoime 1017 Shickaren PL-	-A 0370400 FV	323593 EL AVBRUTT	323593	EL AVBRUTT	0370400 FV	Ovriga	AKEIV
Lina 01, smedjenoime 1017 Snickaren PL	-A 0320601 FV	323567 Energi (MSE)	323567	FJV INDI	0320601 FV	r-jarrvarme	AKEIV
Lina 01, Smedjenoime T017 Shickaren PL-	-A 0320601 FV	323367 Flode (MSt)	323307		0320601 FV	Fjarrvarme	AKEIV
Lina 01, Smedjenoime 1017 Snickaren PL-	-A 0320601 FV	323567 Mom Effekt	323567	FJV EFFEKT	0320601 FV	Fjarrvarme	AKEIV
Lina 01, Smedjenoime 1017 Snickaren PL-	-A 0320601 FV	323567 Mom Flode	323567	FJV FLODE	0320601 FV	-jarrvarme	AKCIV
Lina UI, Smedjeholme 1017 Snickaren PL-	-A 0320601 FV	323567 Temp in	323567	FJV TEMP IN	0320601 FV	-jarrvarme	AKTIV
Lina 01, Smedjenoime T017 Snickaren PL-	-A 0320601 FV	323567 femplut	323567	FUV TEMP UT	0320601 FV	Fjarrvarme	Aktiv
Lina UI, Smedjeholme 1017 Snickaren PL-	-A 0320601 FV	323567 Temp diff	323567	FJV TEMP DIFF	0320601 FV	-jarrvarme	AKtiv
Lina U1, Smedjeholme TU17 Snickaren PL-	-A 0320601 FV	323567 Status	323567	FJV LARM	U320601 FV	Fjärrvarme	AKtiv

Bild 4.3. Lista över kanaler för MT2000 i MAMonitor.

Som bild 4.3 visar finns en kolumn för NodId och en för ExportId. Från denna tabell kan alltså de olika id na översättas. I listan på bild 4.3 står det sjusiffriga NodId t tillsammans med ett suffix (EL respektive FV) som tas bort vid konverteringen.

Nästa blad, Customer Point Node, innehåller en tabell över NodId och den anslutningspunkt (Customer Point) som NodId't återfinns under i det digitaliserade elnätet i Xpower. Flera NodId'n kan återfinnas under samma anslutningspunkt. På bild 4.4 visas hur anslutningspunkter ser ut i Xpower.

Bild 4.4. Två stycken anslutningspunkter som matas från kabelskåp 644 i Xpower.

Varje byggnad med elförsörjning har en anslutningspunkt. För till exempel enfamiljshus finns bara ett NodId kopplat per anslutningspunkt men för till exempel hyreshus finns flera.

	A	В	С	
1103	7110208	7110208		
1104	7110201	7110201		
1105	7110202	7110201		
1106	7110203	7110201		
1107	7110204	7110201		
1108	7110206	7110201		
1109	7110207	7110201		
1110	7110101	7110101		
1111	7105501	7105501		
1112	7105401	7105401		
1113	7105301	7105301		
1114	7105201	7105201		
1115	7105101	7105101		
1116	7105001	7105001		
1117	7104901	7104901		
1118	7104801	7104801		
1119	7104701	7104701		
1120	7104601	7104601		
1121	7104501	7104501		
1122	7104401	7104401		
1123	7104301	7104301		
1124	7104201	7104201		
1125	7104101	7104101		
1126	7104001	7104001		
1127	7103901	7103901		
1128	7103801	7103801		
1129	7103701	7103701		
1130	7103601	7103601		
1131	7103501	7103501		
1132	7103401	7103401		
4 4	🕨 🕨 🔪 Kontroller 🔏 k	(analer), Customer Poi	nt Node 🖉 Data 🔏 Timvärd	den 1 /

Bild 4.5. Blad Customer Point Node som innehåller tabell över NodId och anslutning för parning av dessa.

På blad Customer Point Node finns en korskopplingslista som talar om under vilken anslutning ett NodId finns. Som bild 4.5 visar kan flera NodId ligga under samma anslutning. Exempelvis ligger 7110201 till 7110207 under anslutningen 7110201. Som exemplet visar finns ett system för hur anslutningar namnges. Första NodId i intervallet av förbrukare blir anslutningens beteckning.

På blad Data skapas den tabell som senare skall skrivas till en textfil för vidare import till Xpower.

Varje rad på blad Data skall innehålla ett prefix som visar att det är ett timmätt värde, i detta fall står det HM för "hour measurement". Sedan följer anslutningen, NodId samt datum för mätning.

De efterföljande 48 cellerna på varje rad innehåller uppmätta timvärden för den aktuella dagen.

Upplägget är att första cellen innehåller dygnets första timmes uppmätta aktiva effekt P_1 . Nästa cell innehåller dygnets första timmes uppmätta reaktiva effekt Q_1 . Cellen efter det innehåller då dygnets andra timmes uppmätta aktiva effekt P_2 och så vidare fram till den reaktiva effekten för dygnets sista timme Q_{24} .

Exempel på tabellstruktur kan ses i bild 4.6 där även kolumnerna för de olika timmätta effekterna definierats.

	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Ρ	Q	R	S
240	ΗM	3150301	3150301	17.08.2007	6000	4000	6000	3000	5000	4000	6000	4000	5000	3000	4000	2000	9000	4000	12000
241	ΗM	3150301	3150301	18.08.2007	5000	4000	6000	3000	6000	4000	5000	4000	5000	3000	4000	3000	5000	3000	12000
242	ΗM	3150301	3150301	19.08.2007	6000	3000	5000	4000	6000	4000	6000	3000	4000	3000	5000	3000	4000	3000	9000
243	ΗM	3150301	3150301	20.08.2007	6000	4000	6000	3000	5000	4000	6000	4000	5000	3000	4000	3000	7000	3000	10000
244	ΗM	3150301	3150301	21.08.2007	6000	4000	6000	4000	6000	3000	6000	4000	5000	4000	4000	2000	5000	4000	8000
245	ΗM	3150301	3150301	22.08.2007	6000	4000	5000	3000	6000	4000	6000	4000	6000	4000	4000	3000	8000	3000	7000
246	ΗM	3150301	3150301	23.08.2007	6000	3000	6000	4000	6000	4000	6000	4000	5000	3000	4000	3000	5000	3000	7000
247	ΗM	3150301	3150301	24.08.2007	6000	4000	6000	4000	6000	4000	5000	3000	6000	4000	5000	3000	5000	3000	8000
248	ΗM	3150301	3150301	25.08.2007	6000	4000	6000	4000	6000	3000	6000	4000	5000	4000	4000	3000	6000	3000	15000
249	ΗM	3150301	3150301	26.08.2007	5000	4000	6000	3000	6000	4000	5000	4000	5000	3000	4000	3000	5000	3000	7000
250	ΗM	3150301	3150301	27.08.2007	6000	4000	6000	4000	6000	4000	5000	3000	6000	4000	4000	3000	7000	3000	15000
251	ΗM	3150301	3150301	28.08.2007	6000	4000	6000	4000	5000	3000	6000	4000	5000	4000	4000	2000	5000	3000	7000
252	ΗM	3150301	3150301	29.08.2007	6000	4000	6000	4000	5000	4000	6000	3000	5000	4000	4000	3000	6000	3000	14000
253	ΗM	3150301	3150301	30.08.2007	6000	3000	5000	4000	6000	4000	5000	3000	6000	4000	4000	3000	10000	5000	19000
254	ΗM	3150301	3150301	31.08.2007	6000	4000	6000	4000	5000	3000	6000	4000	5000	4000	5000	3000	5000	3000	7000
255	ΗM	3150301	3150302	01.08.2007	80		90		90		80		90		90		70		370
256	ΗM	3150301	3150302	02.08.2007	90		70		100		90		80		90		80		440
257	ΗM	3150301	3150302	03.08.2007	90		70		90		90		70		90		400		140
258	ΗM	3150301	3150302	04.08.2007	80		80		90		90		70		90		90		320
259	ΗM	3150301	3150302	05.08.2007	80		90		90		80		80		70		290		300
260	ΗM	3150301	3150302	06.08.2007	90		80		90		100		160		110		130		130
261	HM	3150301	3150302	07.08.2007	90		90		80		90		80		90		120		330
262	ΗM	3150301	3150302	08.08.2007	100		80		90		90		90		160		390		100
263	HM	3150301	3150302	09.08.2007	70		100		80		120		190		100		200		140
14 4		N Kontr	oller Zika	naler / Custi	omer Pr	hint No	de \D	iata /											

Bild 4.6. Blad Data innehåller en tabell över konverterade timmätta värden. Tabellens utformning baseras på den formatering som textfilen skall ha vid import till Xpower.

Det makro som sköter tabelluppbyggnaden arbetar enligt arbetsgången i bild 9 där man börjar med ett mätvärde som har ett datum, ett ExportId, ett klockslag och en enhet (kWh eller kvarh).

Bild 4.7. Arbetsgången för varje rad i de importerad timmätta förbrukningarna.

Som bild 4.7 visar bestämmer fyra variabler var mätvärdet hamnar i tabellen.

NodId, Anslutning, Datum och Förskjutning. Där NodId, anslutning och datum bestämmer vilken rad och förskjutning i vilken cell mätvärdet skall hamna på. Förskjutningen i sin tur bestäms av klockslaget och enheten.

När sedan alla rader har lästs på bladen för importerade timvärden är tabellen färdig och kan skrivas till en textfil där innehållet från cellerna avgränsas med ett semikolon, se bild 4.8.

-																															_
HM;	315(0301	;31	503(01;	17.	08.	2007	7;60	00;	4000);6	000	;30)00;	500)0;	400(0;0	5000	;41	200;	500	20;	30(00;	40	00;	200)0;	90
HM;	315(0301	;31	503(01;	18.	08.	2007	';50	00;	4000);6	000	;30)00;	600)0;	400(0;5	5000	; 41	000;	500	00;	300	00;	40	00;	300)0;	50
HM:	315(0301	: 31	503(01:	19.	08.	2007	2:60	00:	3000):5	000	:40)00:	600	00:	4000	0:0	5000	:31	200	400	20:	300	00:	50	00:	300	0:	40
нм÷	315(0301	:31	503(01:	20.	08.	2007	?:60	00:	4000):6	000	:30)00:	500)0:	4000	o∶e	5000	÷41	200	500	oo:	300	oo:	40	00:	300	io:	70
HM:	3150	0301	:31	5030	01:	21.	08.	2007	2:60	ōō:	4000	5:6	000	:40	000:	600	bo:	3000	ō:e	5000	4	000	500	bo:	400	ōō:	40	ōō:	200	οē.	50
HM-	3150	1301	31	503	nī.	22.	08	2003	, _{คึก}	ññ:	4000	ŇŠ	000	i sõ	inn.	600	ιō.	400	ñ, e	5000	- A I	ากกั	600	nn:	400	ññ:	40	ññ:	300	ΠŌ-	80
HM-	2150	1201	· 21	5031	nī.	22.	08	2002	, ត័កំ	ŏŏ,	2000	ั ค์	000	i_{AC}	inn:	600	ίñ.	400	ň.,	5000	- 4	100	500	'n.	200	ññ:	40	ññ:	200	ñ.	50
шм.	2150	2201	: 21	502	<u>.</u>	54	NO.	2001	, <u>č</u> č	ŏŏ,	1000	;; č	000	: 40	ñă.	600	Šč:	100		5000	:5	200	600	ñă:	400	ŏŏ:	50	ŏŏ:	200	čč:	50
⊓™,	2111	2201	, 51	2021	<u>.</u>	24.	V0.	2007	, 00	~~;	4000	, o . c	2000	,40	<u></u> .	600	<u>.</u>	200	ŏ.,	2000	, 5		500		400		10		200	<u>.</u>	20
ΠM,	2120	2201 2201	; 51	505	UI.;	23.	00.	2007	; 60	00;	4000		000	;40	200;	600	<u>, , , , , , , , , , , , , , , , , , , </u>	1000	23	5000	;4	2002	500	;	400	20;	40	00;	300	<u>, , , , , , , , , , , , , , , , , , , </u>	50
нм;	3100	1301	;31	5031	υ <u>ι</u> ;	20.	08.	2007	;50	ųυ;	4000	1;6	000	;50	/ <u>u</u> u;	500	<i>.</i> ,	4000	Ų;:	0000	'; <u>4</u> '	JUU;	500	JU;	300	υU;	40	υ υ;	300	<i>i</i> u;	50
нм;	315(0301	;31	503	01;	27.	08.	200,	;60	00;	4000);6	000	;40	00;	600)0;	4000	0;:	0000	; 31	200;	600	00;	400	00;	40	00;	300)0;	70
HM;	315(0301	;31	503(01;	28.	08.	2007	';60	00;	4000);6	000	;40)00;	500)0;	3000	0;0	5000	;41	200;	500	20;	400	00;	40	00;	200)0;	50
HM;	315(0301	;31	503(01;	29.	08.	2007	';60	00;	4000);6	000	;40)00;	500)0;	400(0;0	5000	; 3i	000;	500	00;	40(00;	40	00;	300)0;	60
HM;	315(0301	; 31	503(01;	30.	08.	2007	⁷ ;60	00;	3000);5	000	;40	000;	600)0;	400(0;5	5000	; 31	200	600	00;	400	00;	40	00;	300	00;	10
HM:	3150	0301	31	503(01:	31.	08.	2007	2:60	00:	4000):6	000	:40	000:	500)0:	3000	0:0	5000	: 41	2003	500	:00	400	00:	50	00:	300	00:	50
нм÷	31.50	0301	:31	503(02÷	01.	08.	2007	?÷80	: :	90:	÷9	0:	÷80): :	90:	÷	90:	- 6.7	70:	÷31	70: ¹	:17	70÷	: 9	90÷	. : :	вo÷	: 8	30£	:
HM:	3150	0301	:31	5030	ō2:	02.	08.	2007	2:90	: :	70:	÷1	ōó:	i:q	ò:'	: 80): `	: 90		80:	· .	44Ó:	· • •	iōô	0:	:1	4Ô	: :	90:		19
нм-	3150	1201	· 31	5031	nž:	ñ3.	08	2007	iáň	2 2	70.	÷ā	ň.,	٠åř		20.	΄.	άn.	'.ž	100.		140		an.	• • •	70.		'nn'	·	n'	÷.
ны.	2150	2201	; 21	5021	ñ5:	ŏл.	N8.	2002	, śň	2 2	śň.	¦á	ň.	i an	(: :	źŏ,		áň.	10	λο·,	. 2	20.	· 27	ñĂ.	- 26	άň.	- : -	70°,	. č	ñ.	2
LIMA -	2150	3301 3201	, 21	202		04.	NO.	2007		2 2	<u>~</u> ,	:0	X	:00	(? ?	67.	- 2	70.	1	, 	· · ·	200,				. 1 J	o.'	Υ,	~?°	~ <u>`</u> .	<u>~</u> ?
ПМ,	21.54	2201	;)1 ;)1	5051	22;	05.	vo.	2007	, 00	2 2	90;	.9	<u>,</u>	; OU	(j.)	00;	~!	70;		90;	-2	500	- 22	210	1.5	, <u> </u>		-, y	٧ <u>;</u> 1	30	0,
ΗМ;	31 DI	130T	; 51	5031	υZ;	00.	08.	2007	;90	; ;	80;	;9	ν;	;10	<i>i</i> u;	;10	ou;	_;⊥.	τυ;	_;⊥	.3U		ز0كا		TR	U;	;±.	su;	्;⊥	.20	;
нм;	315(1301	;31	2031	92;	07.	08.	2007	;90	; ;	90;	;8	0;	;90	;;	80;	;	90;	;;	LZQ;	<u>;</u> ;	530;	, ,	rsö	'; ;	;10	10;	;{	υ;	;9	0;
HM;	315(0301	;31	503(02;	08.	08.	2007	7;10	0;	;80;	;	90;	;9	90;	;90);	;160	0;	;39	0;	;1(00;	;9	10;	;9	90;	;8	0;	;2	10
HM;	315(0301	;31	503(02;	09.	08.	2007	7;70	; ;	100;	;	80;	;1	.20;	;1	.90	; ;	100); ;	20); ;	14(D;	;10	60;	;:	140	; ;	15	0;

Bild 4.8. Exporterad textfil från Excel för import i Xpower.

När filen är skapad lokalt kan den föras över till servern där den blir indata till databasskriptet.

5.3 Överföring till Xpower

Den skapade textfilen kopieras till den server där Xpower är installerat med hjälp av en batchfil. Vid överföringen öppnas även en inloggningsruta för en fjärrsession till fjärrskrivbordet på servern. Allt för att automatisera överföringen så långt det är möjligt. Batchfilen arkiverar även textfilerna lokalt i en mapp kallad arkiv under den mapp som överföringsprogrammet i Excel ligger under. Exempel på en överföring och meddelandeåterkoppling till användaren kan ses i bild 4.9.

Bild 4.9. Körning av batchfil för kopiering av textfiler till Xpower-server.

När filerna är kopierade till servern kan ett skript köras som för över de timmätta värdena till databasen och mätvärdena är sedan tillgängliga för beräkning.

Skriptet anropar ConsumptionGen som skapar förbrukarrader för kunderna i textfilen. Förbrukningsdatan i textfilen kontrolleras och överförs sedan till databasen med hjälp av Oracle SQLPlus. Resultatet av överföringen kan sedan ses i de loggfiler som skapas.

Om något skulle vara fel i textfilen som skapats kan detta upptäckas här och en fil med de felaktiga raderna skapas.

6 Beräkningar

Detta examensarbete bestod i två delar. Den första som beskrivits hittills var att skapa en länk mellan mätvärdesinsamlingen och beräkningsprogrammet. Den andra var att jämföra beräkningsresultaten då beräkningarna utförs dels enligt den nu rådande metoden med typkurvor för olika kategorier av förbrukare och deras årsenergier och dels utförda med uppmätta timvärden.

På förhand kan man tänka sig att skillnaden i resultaten skulle kunna vara markant under besvärliga yttre förhållanden så som en längre tid av låga temperaturer. Här spelar även hur förbrukarna kategoriserats in.

Grundutförandet av Xpower erbjuder beräkningsmöjligheter för effektfördelning, effekt och spänningskurvor för de ingående kablarna samt kortslutningsberäkningar, samtliga beräkningar med hjälp av typkurvor. Med en modul utvecklad för timvärden finns även möjlighet att göra effektfördelningsberäkningar och rita kurvor för de uppmätta timvärden.

Den parameter som är enklast att jämföra i beräkningarna är belastningen på transformatorn. Är transformatorn överbelastad påverkar det hela nätstationsområdet.

Belastningen på kablarna i nätet kan variera beroende på beräkningssätt då förbrukningen kan vara olika förskjuten mellan förbrukarna beroende på beräkningstyp. Den ström som flyter genom transformatorn beror direkt på förbrukningen ute i ändpunkterna

En hög förbrukning ger en högre ström som i sin tur ger ett större spänningsfall över ledningselementen och förlusteffekten i systemet gör att mycket värme kan utvecklas i systemet då den aktiva förlusteffekten blir till värme i transformatorer och ledningar. Att ha så låga förluster i nätet som möjligt är ur ekonomiskt synvinkel och för driftsäkerheten ett måste.

Effektförlusterna i systemet styrs av kablarnas impedans. Dessa i sin tur påverkas av kabelns tvärsnittsarea som även begränsar strömmen som kan flyta.

En högt belastad kabel ger mycket förluster, så att byta ut denna till en kabel med större diameter kan i längden vara en lönsam affär och påverkar också spänningsfallet över ledningen på ett positivt sätt och medverkar till en bättre spänningsgodhet hos förbrukaren i ledningsänden.

När beräkningar görs på nätet går det att hitta överbelastade transformatorer men också lågt belastade transformatorer. Detta kan ligga till grund för en omfördelning av befintliga transformatorer mellan nätstationerna vilket ger en kostnadseffektivisering av nätet då tillgänglig materiel används mer effektivt.

6.1 Beräkningar med typkurvor

Vid beräkningar med typkurvor i Xpower används BETTY-kurvor framtagna av Svenska Elverksföreningen under tidigt 1990-tal. Detta medför att beräkningar av effektfördelning kan göras på intervaller från en timme upp till ett år. Grupperingen av förbrukare för val av lastkurvor är gjord i kundinformationssystemet, KIS, där även kundernas årsförbrukningen är definierad och som sedan förts över till Xpower tillsammans med all annan kundinformation som återfinns i programmet.

6.1.1 Betty kurvor

Typkurvor togs fram för cirka 50 olika kategorier av förbrukare. Dessa typkurvor, så kallade BETTY-kurvor, tar i beaktning vilken årstid det är, om det är vardag eller helgdag, vilken medeltemperatur som råder utomhus och var i landet byggnaden är belägen ^[3]. Dessa togs fram för att ersätta Velanderkonstanten som användes tidigare men som enbart såg till dagsmedelvärdet av förbrukad effekt medan typkurvorna även ser till variationer av förbrukningen under en hel dag. Bild 5.1 ger en enkel illustration av skillnaden mellan Velanderkonstanter och typkurvor för en typisk dag under året. Beräkningar med typkurvor är fram tills i dag det sätt som används för att göra datorberäkningar med relativt hög noggrannhet på befintliga och planerade elkraftnät.

Bild 5.1. Jämförelse av Velanderkonstant och exempel på typkurva för en dag.

6.2 Beräkningar med timvärden

Vid beräkning med uppmätta timvärden tas mätvärdet som lastens förbrukning. Detta ger teoretiskt sett den exakta förbrukningen i nätets ändpunkter per timme. Tyvärr var mätarna i Tranås Energis nät olika kalibrerade och gav därför olika antal decimaler av uppmät effekt. Detta påverkar slutresultatet genom att noggrannheten på beräkningarna inte blir högre än på heltalsnivå (räknat på kWh).

Störst behållning och fördel bör man få om beräkning görs för ett tillfälle då belastningen på kraftnätet kan anses som störst. Ett sådant tillfälle kan uppstå på vintern då en period med mycket låg utomhustemperatur har fått råda under en längre period. Det är vid sådana tillfällen till exempel många hushåll behöver gå över till alternativa uppvärmingssätt, så som eluppvärmning, då primära uppvärmningssättet inte klarar av att på egen hand hålla inomhustemperaturen uppe på önskad nivå.

6.2.1 Timvärden

I och med den nya förordningen får energibolagen en möjlighet att göra en ny grundlig analys av sitt kraftnät när lasternas verkliga egenskaper i nätet blir mera kända. Timmätningarna ger en möjlighet till en god överblick av nätets belastning timme för timme.

Kopplar man till exempel ett övervakningssystem till mätningarna skulle till exempel högsta nätbelastningen kunna plockas ut för perioder om till exempel dagar, veckor, månader eller år.

6.3 Beräkningar med Xpower

Programvaran Xpower kan beräkna effektfördelningar (tidsperiod, dimensionering samt kurva) samt kortslutningsströmmar för radial- och masknät. Effektfördelningar dimensionering gör en beräkning då lasterna är som högst.

Utskrift på nätkartan kan göras där t.ex. beräkningsresultat för kundanslutningspunkter eller transformatorer redovisas. Effekt och spänningskurvor kan fås för varje enskild kabel/ledning. En mängd beräkningsinställningar går att justera för bl.a. Betty-kurvorna.

Belastningsgraden på kablarna går även att få grafiskt där kablarna kan färgas efter de gränsvärden som kan sättas efter behov.

När ett radialnät beräknas med radialnätsalgoritmen görs en förenkling i och med att spänningens vinkel inte tas med i beräkningen. Detta gör att beräkningen utförs snabbare men med mindre noggrannhet jämfört med masknätsalgoritmerna som tar hänsyn till vinkeln och dessutom gör flera itereringar per ledning.

Tio nätområden har valts ut baserat på antalet förbrukare under nätstationen, beroende på vilken typ av område det är för att få med dels bostadsområden men även industriområden samt dess geografiska läge.

I nedanstående beräkningsresultat är beräkningarna gjorda med radialnätsalgoritmen, en statistisk säkerhet på 99,9%, $\cos\varphi$ =0,95 och utomhustemperaturer för typår i Betty1.2 biblioteket. Beräkningarna med typkurvor är gjorda för alla timmar under dygnet inte bara topptimmarna.

När man som i mitt fall använder temperaturkurvor för typår finns till exempel klara köldperioder med. Detta gör att toppeffekterna blir något högre än för kurvorna för medelår. Jämförande beräkningar mellan temperaturkurvorna visar dock inte på någon markant skillnad.

I de jämförande tabellerna under varje enskild nätstation står förkortningarna för:

I _{max}	Maximal ström under beräkningsperioden.
P _{max}	Maximal aktiv effektförbrukning
U_{min}	Lästa spänningsnivå under beräkningsperioden
TT	Spänningssänkning, jämfört med beräkningsspänningen 231V, i procent.
O_{f}	Bör inte vara högre än 5%
P _f	Effektförlust i kW

Under varje nätstation finns tre olika textstycken. Ett för hur förbrukarna är kategoriserade i de kategorier som Svenska Elverksföreningen tagit fram under tidigt 1990-tal. Nästa stycke är en översiktsbild av områdets struktur och geografi. I sista stycket presenteras resultatet av den jämförande beräkning som gjorts.

En sammanfattning av beräkningsresultaten finns under kapitel 5.4.

6.3.1 Nätstation T001

T001 är en station i centrala delarna av Tranås med 420 förbrukare vilket gör den till den nätstation i elnätområdets med flest förbrukare. Hur dessa förbrukare är fördelade i förbrukningskategorier kan ses i tabell 5.1. Stationen har en transformator med märkeffekten 500 kVA. Kunderna under nätstationen beräknas förbruka cirka 1700MWh om året och fem av kunderna har timmätt reaktiv effekt. Kategorin med flest förbrukare enligt tabell 5.1 är Lägenhet utan elvärme med 92% av förbrukarna.

		Antal
Kategori	Beskrivning	förbrukare
100	Småhus / Ren hushållsel	1
200	Lägenhet utan elvärme	386
400	Blandad produktion	1
605	Kontorslokaler/insprängda	23
622	Specialbutiker	9
	Summa förbrukare:	420

Tabell 5.1. Tabell över hur förbrukarna under T001 kategoriserats.

Området har övervägande fjärrvärmeuppvärmda lägenheter men även många kontorslokaler. Den geografiska utformning ses i bild 5.2 där beräkningssträckor visas istället för den riktiga kabelsträckningen. Strömmen fördelas ut till förbrukarna via tio kabelskåp.

Bild 5.2. Översiktsbild över nätområdet T001

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	Uf	P _f
Timmätta värden	71%	524A	334kW	226,4V	2,0%	3,8kW
Belastningskurvor	86%	632A	407kW	226,2V	2,0%	4,0kW
Underliggande Nät:	Belastningsgrad			U _{min}	U _f	P _f
Timmätta värden	52%	-	-	219,2V	5,1%	4,2kW
Belastningskurvor	72%	-	-	218,0V	5,6%	4,3kW

Tabell 5.2. Jämförelse av beräkningsresultat för T001.

Beräkningsresultatet för området presenteras i tabell 5.2. Beräkningarna med belastningskurvor visar för området en högre belastning än för de timmätta värdena. Detta beror på att strömmen för belastningskurvorna är cirka 110A större.

En maximal belastningsgrad på 71% för transformatorn kan anses som en bra nivå för att använda en transformator på 500kVA i området.

Spänningen ute i nätet har under enligt beräkningarna året blivit något låg då 219,2V ger en spänningssänkning på 5,1% jämfört med beräkningsspännigen 231V som anses som det ideala. En spänningssänkning på max 5% råder i allmänhet som riktlinje för god spänningskvalité. Lägre spänning kan ge upphov till blinkande lampor och att elektroniska apparater slutar fungera. En spänningssänkning på 5% eller mer har beräknats fram för två områden under nätstationen.

6.3.2 Nätstation T008

Belägen vid sjön Sommens strand med 38 förbrukare uppdelade i förbrukningskategorierna enligt tabell 5.3.

Transformatorn i nätstationen är på 200 kVA och har en tomgångseffekt på 0,4kW. På ett år förbrukar kunderna cirka 750kWh. Endast en kund har timmätt reaktiv förbrukning.

		Antal
Kategori	Beskrivning	förbrukare
100	Småhus / Ren hushållsel	1
110	Småhus / Direktel - äldre än ELAK	1
122	Småhus Kombi olja/el	1
132	Småhus Värmepump uteluft med eltillsats	13
200	Lägenhet utan elvärme	17
299	Sommarhus	1
605	Kontorslokaler/insprängda	1
630	Restauranger	2
	Totalt:	38

Tabell 5.3. Tabellen visar hur förbrukarna under T008 kategoriserats.

Ur tabell 5.3 kan utläsas att förbrukare av typerna Småhus med värmepump och Lägenhet utan elvärme representeras av flest förbrukare 34% respektive 45% av totala antalet. Kunderna ligger i ett band av tomter längs sjön som visas i bild 5.3 och består av villor och ett hotell.

Bild 5.3. Översiktsbild över område T008.

Beräkningsresultatet för T008 för timmätta värden och belastningskurvor återfinns i tabell 5.4.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	U _f	P _f
Timmätta värden	94 %	276A	178W	226,4 V	2,0%	2,0 kW
Belastningskurvor	114 %	338A	217W	225,4 V	2,4%	2,3 kW
Underliggande Nät:	Belastningsgrad			\mathbf{U}_{\min}	$\mathbf{U_f}$	P _f
Timmätta värden	38 %	-	-	219,6 V	4,9 %	1,9 kW
Belastningskurvor	39 %	-	-	217,2 V	6,0%	2,9 kW

Tabell 5.4. Beräkningsresultat för T008.

Beräkningsresultaten visar på en något överbelastad transformator och även spänningskvalitén är något låg. För denna station kan det vara läge att byta transformatorn till en med högre märk effekt än 200kVA.

För typkurvorna visar resultatet en sänkning på 6,0% vilket är för mycket enligt rådande praxis. En låg spänningskvalité beror ofta på att långa kablar ut till kunden ger ett för högt spänningsfall i kabeln. Beräkningen visar på ett spänningsfall på 3V från matande kabelskåp fram till kunden med lägst spänningsnivå.

Den timmätta beräkningen visar dock att situationen i området inte är fullt så dåligt som typkurvorna ger sken av trots att transformatorn har en maximal belastning på 94% för de timmätta värdena. En nybyggnation är planerad i området vilket kommer kräva en ny transformator med en märk effekt en bit över nuvarande 200kVA.

6.3.3 Nätstation T018

Belägen i centrala delarna av staden med en transformator på 500 kVA som har en tomgångseffekt på 0,8kW. Nätstationen distribuerar ström till 318 kunder via 18 kabelskåp. Huvuddelen av förbrukarna är lägenheter utan elvärme, 84% av förbrukarna, som kan ses i tabell 5.5. Fyra förbrukare har timmätt reaktiv förbrukning. Kunderna i området förbrukar cirka 1500MWh per år.

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	6
110	Småhus / Direktel - äldre än ELAK	8
122	Småhus Kombi olja/el	3
123	Småhus / Ackumulerande elvärme	3
131	Småhus Värmepump uteluft utan eltillsats	2
132	Småhus Värmepump uteluft med eltillsats	3
200	Lägenhet utan elvärme	267
400	Blandad produktion	1
600	Kontorsbyggnader	1
605	Kontorslokaler/insprängda	17
610	Postkontor	1
622	Specialbutiker	5
700	Lager – Grossister	1
	Summa	318

Tabell 5.5. Kategorier av förbrukare under T018.

Bild 5.4. Översiktsbild över Nätstationsmråde T018.

Många hyreshus finns i området vilket kan skönjas i bild 5.4 men även en del villor och kontorslokaler. En liten del har även fjärrvärme installerat.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	72%	531A	343kW	227,0V	1,7%	3,1kW
Belastningskurvor	71%	523A	338kW	227,1V	1,6%	2,7kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	53%	-	-	219,5V	5,0%	4,9kW
Belastningskurvor	53%	-	-	219,3V	5,1%	3,6kW

Tabell 5.6. Jämförelse beräkningsresultat för T018.

Beräkningsresultaten i tabell 5.6 för T018 visar väldigt liten skillnad mellan beräkningssätten. Den högst belastade kabeln går mellan nätstationen och kabelskåp 340 där en ström på 137A flyter.

Spänningskvalitén ligger av resultaten att döma på gränsen till godkänt. Båda

beräkningsresultaten pekar ut ett och samma hyreshus med sämst spänningskvalité.

Skillnaden i effektförlust i nätet uppkommer av att förbrukningen hos visa mindre kunder är högre för de timmätta värden än för typkurvorna. Detta gör att förlusterna i de kablar med mindre area fram till förbrukarna blir avgörande för skillnaden i resultat.

Belastningen på transformator ligger på lagom nivå med tanke på det milda väder som rådde under året 2007. För T018 visar typkurvorna ett mycket bra resultat som, av resultatet från de timmätta beräkningarna, på ett korrekt sätt speglar den verkliga förbrukning i området.

6.3.4 Nätstation T028

Transformatorn i stationen har en märk effekt på 800kVA. Summan av årsförbrukningen för de 222 kunderna i området ligger på 2100MWh. En förbrukare har timmätt reaktiv förbrukning.

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	27
110	Småhus / Direktel - äldre än ELAK	2
122	Småhus Kombinerad olja/el	15
123	Småhus / Ackumulerande elvärme	5
131	Småhus Värmepump, uteluft utan eltillsats	9
132	Småhus Värmepump, uteluft med eltillsats	29
200	Lägenhet utan elvärme	114
210	Flerbostadshus/lgh Direktel	1
400	Blandad produktion	1
605	Kontorslokaler/insprängda	15
610	Postkontor	1
622	Specialbutiker	3
	Summa	222

Tabell 5.7. Förbrukningskategorier för T028 och antalet förbrukare under varje.

I tabell 5.7 kan utläsas att största förbrukarkategorin i området är Lägenhet utan elvärme som utgör 51% av förbrukarna.

Bild 5.5. Översikts bild T028.

T028 är ett nätområde med största delen hyreshus och villor. Många hushåll har även fjärrvärme installerat. Som kan ses i bild 5.5 delas nätstationsområdet upp av järnvägen som går genom staden.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	70%	821A	531kW	227,3V	1,6%	4,0kW
Belastningskurvor	80%	943A	609kW	226,7V	1,8%	4,2kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	$\mathbf{P_{f}}$
Timmätta värden	68%	-	-	218,5V	5,4%	7,5kW
Belastningskurvor	79%	-	-	216,7V	6,2%	8,7kW

Tabell 5.8. Beräkningsresultat för nätstation T028.

Förbrukningen mätt från årsenergin ger en ström genom transformatorn som är cirka 120A större än för de timmätta värdena. Denna skillnad gör att spänningsfallet över transformatorn blir 0,6V högre. Det gör även att belastningsgraden för transformatorn ökar med 10%. T028 har den största effektförlusten i nätet av de tio stationer som beräknats men stationen har också den längsta totala ledningslängden på 5,8km. Även spänningskvalitén blir lidande av de lång ledningarna

6.3.5 Nätstation T051

Transformatorn i nätstationen har en märk effekt på 800kVA. Sex kunder har timmätt reaktiv effekt. Förbrukningen per år ligger på 1300MWh fördelat på de 375 förbrukarna. Tabell 5.9 visar hur förbrukarna har fördelats över förbrukningskategorierna.

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	12
122	Småhus Kombinerad olja/el	1
123	Småhus / Ackumulerande elvärme	1
200	Lägenhet utan elvärme	340
520	Grundskolor - utan elvärme	1
605	Kontorslokaler/insprängda	18
622	Specialbutiker	2
	Summa	375

Tabell 5.9. Förbrukargrupper under nätstationen. T051

Området består till största del av hyreshus med uppvärmning via fjärrvärme. På bild 5.6 ses en översiktsbild av området och hur fastigheterna matas. Flest förbrukare tillhör kategorin Lägenhet utan elvärme som utgör 91% av förbrukarna.

Bild 5.6. Översikt över nätstationsområdet T051.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	39%	451A	294kW	228,7V	0,9%	2,2kW
Belastningskurvor	39%	454A	296kW	228,8V	0,9%	2,0kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_f}$	$\mathbf{P_{f}}$
Timmätta värden	38%	-	-	223,3V	3,3%	2,6kW
Belastningskurvor	45%	-	-	223,1V	3,4%	1,8kW

Tabell 5.10. Jämförelse beräkningsresultat T051.

Beräkningsresultaten är väldigt lika. Högsta belastningen i nätet inträffar på samma ställe för båda beräkningarna.

Bild 5.7 visar den högst belastade kabeln i nätet med en röd färg. Bilden visar

beräkningsresultatet för timmätta värden och hur kablarna enligt beräkningen belastas. Denna information får man även i text format i beräkningensresultatet. Att kunna få resultatet visuellt i Xpower kan underlätta mycket vid projektering och analys av nätet.

Bild 5.7. Beräkningsresultatet för belastningsgrad på ledningssträckor redovisade grafiskt i nätet.

6.3.6 Nätstation T056

T056 är en nätstation placerad på ett industriområde med nio förbrukare. Transformatorn har en märk effekt på 200kVA. Ingen av förbrukarna har uppmätt reaktiv förbrukning. Förbrukningen per år ligger på 270MWh och förbrukningskategorierna återfinns i tabell 5.11 för T056.

		Antal
Kategori	Beskrivning	Förbrukare
110	Småhus / Direktel - äldre än ELAK	1
400	Blandad produktion	3
600	Kontorsbyggnader	1
605	Kontorslokaler/insprängda	1
610	Postkontor	1
622	Specialbutiker	1
700	Lager – Grossister	1
	Summa förbrukare:	9

Tabell 5.11. Förbrukarkategorier under T056.

Geografiskt sett är området avlångt som bild 5.8 visar. Från ände till ände är det cirka en kilometer. Flera av industrierna har fjärrvärme installerat.

Bild 5.8 Översiktskarta över T056 och de kabelsträckor som knyter ihop förbrukarna

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	44%	129A	84kW	228,8V	0,9%	0,8kW
Belastningskurvor	37%	108A	70kW	229,3V	0,7%	0,5kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	Pf
Timmätta värden	44%	-	-	223,3V	3,3%	1,8kW
Belastningskurvor	29%	-	-	225,7V	2,3%	0,6kW

Tabell 5.12. Jämförelse beräkningsresultat T056.

En jämförelse mellan beräkning med timmätta värden och typkurvor i tabell 5.12 visar att förbrukningen i området varit högre än vad typkurvorna visar. Effektförlusterna för nätet är dessutom tre gånger högre för den timmätta beräkningen. Den lägsta spänningskvalitén, som ligger på en bra nivå, återfinns naturligt nog i en av ändpunkterna.

I övrigt visar beräkningsresultaten på ett väl fungerande nät som skulle kunna ha en transformator med lägre märk effekt om belastningen fortsätter att vara i nivå med värdena från år 2007.

6.3.7 Nätstation T064

Transformatorn i nätstationen har en märk effekt på 800 kVA och en tomgångseffekt på 1,46kW. Två förbrukare har uppmätt reaktiv förbrukning. Förbrukningen per år ligger runt 650MWh.

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	2
110	Småhus / Direktel - äldre än ELAK	4
122	Småhus Kombinerad olja/el	5
123	Småhus / Ackumulerande elvärme	4
132	Småhus Värmepump uteluft med eltillsats	8
400	Blandad produktion	1
622	Specialbutiker	1
	Summa:	25

Tabell 5.13. Förbrukarkategorier T064.

Stationen matar tre bostadsoråden samt två företag allt enligt bild 5.9. Nätets ändpunkterna återfinns cirka en kilometer ifrån varandra.

Bild 5.9. Översiktskarta över T064.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	26%	304A	189kW	229,2V	0,8%	1,9kW
Belastningskurvor	31%	363A	237kW	229,3V	0,7%	1,8kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	$\mathbf{P_{f}}$
Timmätta värden	56%	-	-	225,0V	2,6%	2,6kW
Belastningskurvor	48%	-	-	224,5V	2,8%	1,5kW

Tabell 5.14. Jämförelse beräkningsresultat.

För denna jämförelse ses i tabell 5.14 att de timmätta värdena ger en lägre belastning på transformatorn. Båda beräkningarna visar att utrymme finns för ökad belastning utan att transformatorn skulle bli överbelastad.

Den maximala belastningen sker på olika matarkablar i nätet för de olika beräkningssätten. För de timmätta värdena är strömmen i kabeln med högst belastning 183A medans kabeln endast har en ström på 98A i fallet för typkurvorna. Det är alltså en faktor 2 mellan strömmarna. Det samma gäller för den kabel som har högst belastning i fallet med typkurvor. I det fallet är strömmen 159A för typkurvorna men bara 76A när beräkning görs med timmätta värden. Då beräkningsresultaten var snarlika men belastade nätet olika visar det på att beräkningarna var väldigt olika i hur förbrukningen var fördelad i nätet. Detta återspeglas även i skillnaderna för effektförlusterna i nätet.

6.3.8 Nätstation T089

Transformatorn i nätstationen har en märk effekt på 500 kVA och en tomgångseffekt på 0,52kW. Sex av kunderna har timmätt reaktiv förbrukning. Området förbrukar 850MWh per år.

		Antal
Kategori	Beskrivning	Förbrukare
400	Blandad produktion	5
605	Kontorslokaler/insprängda	3
622	Specialbutiker	4
630	Restauranger	1
	Summa:	13

Tabell 5.15. Kundkategorier under T089.

Tabell 5.15 visar att stationen matar ett industriområde med förbrukare i kategorier av kunder som ofta har en hög effektförbrukning.

Bild 5.10. Översiktsbild över nätstationsområdet T089.

Översiktsbilden 5.10 visar att nätstationen placerats centralt i det område den matar. Med hjälp av fyra kabelskåp når den ut till förbrukarna. Även här är utsträckningen av området cirka en kilometer från ändpunkt till ändpunkt.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	58%	428A	263kW	226,4V	2,0%	2,4kW
Belastningskurvor	51%	377A	244kW	227,8V	1,4%	1,5kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	$\mathbf{P_{f}}$
Timmätta värden	58%	-	-	222,0V	3,9%	2,5kW
Belastningskurvor	51%	-	-	223,3V	3,3%	1,2kW

Tabell 5.16. Jämförelse beräkningsresultat T089.

Beräkningsresultaten visar på två saker för nätet. Högsta belastning sker i en kabel mellan nätstationen och kabelskåpet med beteckningen 990. Samt lägsta spänningen fås hos en och samma kund.

Spänningssänkningen håller sig dock under gränsvärdet på 5% vilket visar på god spänningskvalité. Beräkningarna visar, precis som i fallet med T018, i stort sett samma resultat vilket gör att detta område lika väl kan beräknas med enbart typkurvor och ändå erhålla ett fullgott resultat.

6.3.9 Nätstation T098

Transformatorn i nätstationen har en märk effekt på 500 kVA och en tomgångseffekt på 0,53kW. Sex av kunderna har timmätt reaktiv effekt och förbrukningen per år ligger på 990MWh

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	24
110	Småhus / Direktel - äldre än ELAK	18
122	Småhus Kombi olja/el	3
123	Småhus / Ackumulerande elvärme	2
131	Småhus Värmepanna, uteluft utan eltillsats	2
132	Småhus Värmepanna, uteluft med eltillsats	5
200	Lägenhet utan elvärme	55
400	Blandad produktion	1
605	Kontorslokaler/insprängda	9
622	Specialbutiker	6
720	Mindre industrier - utan elvärme	1
	Summa:	126

Tabell 5.17. Förbrukargrupper under nätstationen T098

Enligt tabell 5.17 finns flest förbrukare i kategorin Lägenhet utan elvärme. Förbrukarna där utgör 44% av totala antalet förbrukare i området.

Bild 5.11. Översiktsbild över närstationsområdet T098.

Kunderna på nätet i bild 5.11 matas via nio kabelskåp. Mittenstråket har en längd på 330m. Området består av lägenheter och villor som till viss del är anslutna till fjärrvärmenätet.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	49%	358A	232kW	227,7V	1,4%	1,4kW
Belastningskurvor	53%	390A	253kW	227,4V	1,5%	1,4kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	73%	-	-	215,2V	6,8%	4,6kW
Belastningskurvor	73%	-	-	214,9V	6,9%	3,8kW

Tabell 5.18. Jämförelse beräkningsresultat för T098.

I tabell 5.18 ses en skillnad i maximal ström på cirka 30A vilket ger en skillnad på 4% i belastning men ingen skillnad i effektförluster för transformatorn.

Högst belastning enligt beräkningarna blir det för en och samma ledningssträcka. Där är även spänningskvalitén som sämst med ett värde kring 6,8% för båda beräkningarna vilket ger en allt för låg spänning hos kunden.

Skillnaderna i effektförlust i nätet visar än en gång att övrig belastning är fördelad olika för de båda beräkningssätten.

6.3.10 Nätstation T387

Nätstationen är belägen i Hestra, ett mindre samhälle cirka tio kilometer sydost om Tranås. Transformatorn i nätstationen har en märk effekt på 500 kVA och en tomgångseffekt på 0,81kW. Ingen kund i området har timmätt reaktiv effekt. Kunderna under nätstationen förbrukar cirka 890MWh per år.

		Antal
Kategori	Beskrivning	Förbrukare
100	Småhus / Ren hushållsel	10
110	Småhus / Direktel - äldre än ELAK	19
122	Småhus Kombi olja/el	8
131	Småhus Värmepump uteluft utan elstillsats	2
132	Småhus Värmepump uteluft med elstillsats	22
200	Lägenhet utan elvärme	5
299	Sommarhus	2
	Summa:	68

Tabell 5.19. Förbrukargrupper under nätstation T387.

Bild 5.12. Översikt över nätstationsområdet.

Bild 5.12 visar ett nätstationsområde i utkanten av samhället där stationen även matar fram till två kunder placerade en kilometer från stationen ute i skogen. 13 kabelskåp förbinder förbrukarna med nätstationen.

Transformator:	Belastningsgrad	I _{max}	P _{max}	U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	49%	357A	232kW	228,7V	1,0%	1,8kW
Belastningskurvor	61%	448A	291kW	228,1V	1,2%	2,3kW
Underliggande Nät:	Belastningsgrad			U _{min}	$\mathbf{U_{f}}$	P _f
Timmätta värden	48%	-	-	217,4V	5,9%	3,8kW
Belastningskurvor	61%	-	-	218,2V	5,5%	5,9kW

Tabell 5.20. Jämförelse beräkningsresultat.

Den högst belastning för nätet i tabell 5.20 blir mellan nätstationen och kabelskåp 2501. En mindre kabeldimension gör att belastningen blir högre trots att strömmen inte är lika stor som till andra kabelskåp i området. Den långa ledningssträckan ut till de två kunderna längst ut gör att spänningen i deras ände blir låg. En spänning på 217V ger en spänningssänkning på 5,9%. Beräkningsresultatet för typkurvorna visar även att det skulle vara en allt för stor spänningssänkning i det allra västligaste villakvarteret av nätstationsområdet vilket inte blir resultatet i beräkningen med timmätta värden.

Generellt i tabell 5.20 ger typkurvorna ett högre belastat nät trots det blir sämsta spänningsgodheten bättre än för de timmätta värdena.

6.4 Sammanfattning av resultat

Beräkningsresultaten för de olika nätstationsområdena kan sammanfattas i en serie diagram.

Antalet förbrukare under varje nätstation är en variabel som kan påverka resultaten mycket om till exempel en liten avvikelse mellan beräkningsmetoderna sker för många förbrukare av samma typ. Ett diagram över antalet förbrukare för de olika nätstationerna kan ses i diagram 5.1.

Diagram 5.1. Antalet förbrukare under varje nätstation.

Transformatorn i T008 är den ända som är riktigt högt belastad och skulle på sikt behöva ersättas. 2007 var ett milt år vilket gjorde att temperaturerna var gynnsamma och belastningen på nätet därför inte blev så hög under vintermånaderna som annars brukligt är. Transformatorerna i stationerna T056 och T064 är lågt belastade och skulle då kunna ersättas av transformatorer med lägre märk effekt. Vad gäller jämförelse av beräkningsresultat är resultaten från de båda beräkningssätten allt som oftast snarlika. Det tyder på att Tranås Energis nät är väl definierat och kunderna noggrant kategoriserade. Beräkningar med belastningskurvor och årsenergi ger ett fullgott resultat för belastningsgraden på nätets olika delar.

Diagram 5.3. Belastningen nät.

Belastningen på nätet, d.v.s. den högst belastade kabeln i nätet, följer i stort sett samma mönster som belastningen för transformatorn vid en jämförelse mellan beräkningssätten. T064 skiljer sig något från mönstret och beräkningsresultaten visar en skillnad i vilken kund som är nätets största förbrukare.

Diagram 5.4. Effektförluster i näten.

Förlusterna i nätet beror på hur näten är uppbyggda. Förlusterna beror på vilka kabeldimensioner och kabelsorter som används. De beror också på hur gammalt nätet är och hur mycket underhåll som gjorts genom åren. T028 som har störst förluster har en hög nätbelastning och relativt många förbrukare. Som diagram 5.5 visar har T028 även den längsta totala ledningslängden vilket får betydelse för förlusterna i nätet men även spänningskvalitén hos kunderna.

Diagram 5.5. Totala ledningslängderna i de olika näten.

En slutsats som kan dras av de jämförande beräkningarna i kapitel 5.3 är att har man ett väl definierat nät med väl definierade förbrukare (kategori och årsförbrukning) blir beräkningarna så pass bra att man inte har någon större nytta av att även beräkna med timmätta värden. Vill man däremot dra nytta av sin databas med insamlade mätvärden kan man nu på ett relativt enkelt sett göra beräkningar med dem i Xpower.

6.5 Faktorer som påverkar beräkningsresultatet

Då flera program används finns möjlighet till mycket fel i slutvärdena som används vid beräkningarna.

MT2000 lagrar till exempel ofta mätvärden som inte är rätt och som måste justeras manuellt. För det mesta fungerar det inbyggda varningssystemet med sannolikhetskontroll, så att fel kan upptäckas och ändringar göras, men inte alltid.

Tranås Energis nät i Xpower är tillräckligt stort för att det skall vara svårt att upptäcka brister i nätet som påverkar beräkningarna. En genomgång av konstruktionsfel i nätet är på gång att genomföras men är ett stort jobb.

Då Xpower behöver mätvärden från ett helt år för att kunna beräkna med hjälp av timmätta värden har jag riktat in mig på mätvärden för året 2007. I början av 2007 var inte hela mätvärdesinsamlingen igång och ej heller helt intrimmad varför små fel och saknade mätvärden gör att beräkningarna med timmätta värden inte blir helt korrekt. När timvärden saknas använder Xpower belastningskurvor för de dagar det gäller.

När mätvärdesinsamlingen blivit intrimmad och samtliga förbrukare mätts ett helt år kan säkrare beräkningar göras.

Att lägga in ett helt års förbrukning för samtliga distrikt i lågspänningsnätet är ett stort jobb och för detta examensarbete därför inte pratiskt möjligt utan beräkningar får göras på ett distrikt i taget. Då jag även bevittnat prestanda problem då databasen haft mycket mätvärden har jag fått tömma databasen efterhand. Prestanda problemen uppstod med största sannolikhet av att jag formaterat mätvärdena fel.

Möjliga förbättringar av beräkningsresultaten:

- Mäta även reaktiv effekt
- Revidera ledningsparametrar
- Effektfaktorn för de olika kategorierna kan justeras för bättre resultat.

7 Statistikmätare

En stor fördel med de nya fjärravlästa mätarna är att de även kan placeras ute i nätstationer och på så vis ge en referenspunkt över hur mycket nätstationens underliggande nät förbrukar. Om man dessutom summerar förbrukningen för underliggande nätets, delnätets, laster så kan en bild skönjas av hur stora förlusterna i ledningar och kopplingar är.

Om alla förbrukning mäts i alla ändpunkter i nätet så är differensen ΔP mellan statistikmätaren i nätstationen $P_{Statistik}$ och summan av mätarna i ändpunkterna $P_{Summerad}$ den totala förlusten av effekt i delnätet, allt enligt ekvation 6.1. Där P står för aktiv effekt.

$$\Delta P = \frac{P_{Summerad}}{P_{Statistik}}$$
 Ekvation 6.1

Det är för det mesta lättast att få en bild av de aktiva effektförlusterna då det oftast är enbart de som mäts hos kunderna i nätets ändpunkter.

Detta ger en möjlighet till bra överblick över kraftnätet då till exempel obehörig förbrukning av effekt kan spåras men även felkopplade mätare. Detta gäller så klart vid stora avvikelser mellan uppmätt och summerad effekt i ett distrikt.

Med enkla medel kan man nu till exempel få en känsla av hur mycket förluster det finns i olika delar av elnätet. När detta skrivs finns tio mätare utplacerade i Tranås Energis elnät. Dessa visar på en förlust för de olika områdena på mellan 0- 6% i snitt under en dag. Ligger förlusterna under 10 % är det ett resultat som får betraktas som rimligt för en hållbar eldistribution rent ekonomiskt.

Statistikmätarna ger också en möjlighet att på ett enkelt sett ta fram effektfaktorn $\cos \phi$ för delnätet. Effektfaktorn anger delen reaktiv effekt i delnätet enligt ekvation 6.2.

7.1 Beräkningar med statistikmätare

När man mäter effektflödet genom nätstationen kan man göra flera typer av enklare beräkningar som ger en större insikt i hur nätet fungerar och dess status.

7.1.1 Förluster

Summerar man samtliga underliggande förbrukares effektförbrukning och beräknar differensen mellan effektflödet och den summerade förbrukningen får man en bild av förlusterna i ledningar och kopplingar som finns efter en nätstation.

7.1.2 Effektfaktor

Då både aktiv och reaktiv effekt mäts kan effektfaktorn $\cos \phi$ beräknas med hjälp av ekvation 6.2. Formeln bygger på geometrin från triangeln där relationen mellan skenbar- S, aktiv- P och reaktiveffekt Q visualiseras, figur 6.1. Där ϕ är en vinkel som mäts i grader.

$$\cos \varphi = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}}$$
 ekvation 6.2

Figur 6.1. Relationen mellan skenbar, aktiv och reaktiv effekt.

7.1.3 Belastningsgrad

Effektfaktorn kan sedan användas till att beräkna den skenbara effekten S_T som flyter genom transformatorn. Detta görs med ekvation 6.3. Formeln baseras ännu en gång på geometrin i figur 6.1. Vid en jämförelse med märkeffekten S_n för transformatorn i nätstationen kan belastningsgraden B fås i procent med hjälp av ekvation 6.4.

$S_T = P * \cos \varphi$	Ekvation 6.3
$B = \frac{S_T}{S_n} * 100$	Ekvation 6.4

7.1.4 Beräkningsresultat för statistikmätare

Nedan följer beräkningsresultat för åtta stycken nätstationer. De representerar åtta stationer av blandad storlek och med blandade förbrukargrupper. De värden som visas i figurerna är förbrukningen och dygnsmedelvärdet för förlusterna i procent för den 26 februari 2008. Bild 6.1 visar uppmätt och summerad aktiv effektförbrukning för de åtta nätstationerna.

Bild 6.1. Uppmätt aktiv och summerad aktiv effekt för ett dygn.

Differensen mellan uppmätt och summerad tillskrivs förluster i nätet. De procentuella förlusterna för de olika nätstationerna detta dygn visas i bild 6.2

Procentuella förluster 2008-02-26

Bild 6.2. Procentuella förluster för den 26 februari 2008.

Bilderna ovan visar enbart den aktiva effekten som flyter genom nätstationerna. Effektfaktorn som beror både på aktiva och reaktiva effekten enligt ekvation 6.2 visas för de åtta nätstationerna i bild 6.3. Då mätarställningar från första och sista timmen på dygnet använts vid framtagning av dessa data blir resultatet ett dygnsmedelvärde för effektfaktorn. För station T004 finns ingen reaktiv effektmätare, $Q_{T004} = 0$, så därför blir effektfaktorn cos φ =1 för den nätstationen.

Effektfaktor, cosφ, 2008-02-26

Bild 6.2. Effektfaktorns dygnsmedelvärde, $\cos\varphi$, för de åtta nätstationerna, den 26 februari 2008.

Station T105 har nästan lika hög förbrukning av reaktiv effekt som aktiv effekt vilket också visar sig på effekt faktorn som har ett värde på 0,73.

8 Slutsatser

Skillnaderna mellan beräkning med timmätta värden kontra typkurvor för de beräknade distrikten i Tranås Energis nät är liten.

En slutsats som kan dras av de jämförande beräkningarna i kapitel 5.3 är att har man ett väl definierat nät med väl definierade förbrukare (kategori och årsförbrukning) blir resultatet från beräkningarna med effektkurvor mycket lik det resultat som blir för timmätta förbrukare. Vill man däremot dra nytta av sin databas med insamlade mätvärden kan man nu på ett relativt enkelt sett göra beräkningar med dem i exempelvis Xpower.

För prognosberäkningar kan jag se att typkurvor fortfarande kommer spela en stor roll på grund av dess enkelhet och dess breda implementering.

I framtiden kan jag se att prognosberäkningar med hjälp av tidigare års timmätta värden skulle kunna bli verklighet och vara ett alternativ. Tillvägagångssättet skulle då vara snarlikt det som gäller för typkurvor som är baserade på mätningar men varje förbrukare skulle då kunna ha sitt eget förbrukningsmönster definierat av timmätningarna.

Att använda Excel för konverteringen visade sig vara resurskrävande. Alternativ metod måste tas fram för en kommersiell produkt.

I och med den nya förordningen med krav på månatliga mätvärden kommer med största sannolikhet beräkningar med månadsförbrukningar istället för årsförbrukningar komma att ta över. Även beräkningar med timförbrukningar kommer att bli allt vanligare.

Om även reaktiv förbrukning skulle mätas för fler laster anser jag att beräkningarna skulle bli mer exakta och skillnaderna större mellan beräkningar med typkurvor och beräkningar med timvärden. Beräkningsresultaten för distrikt T089 visar indikationer på detta med högre beräknad förbrukning för de timmätta värdena och mer förluster i nätet som då kan härledas till den reaktiva effekten.

Mätvärdena från mätvärdesinsamlingssytemet kan även användas vid enklare beräkningar i till exempel Excel. Exempel på detta ges i kapitel 6.

Beräkningarna kan till exempel ge belastningsgraden för transformatorn vid en specifik timme.

Effektfaktorn kan beräknas för laster där både aktiv och reaktiv effekt mäts.

Förlusterna i nätet mellan nätstationen och lasterna kan även beräknas vid summering av lasternas förbrukning kontra effektflödet genom transformatorn

9 Referenser

1. Näringsdepartementet (mars 2003), *Månadsvis avläsning av elmätare och sänkt gräns för timvis mätning*, www.regeringen.se/sb/d/108/a/2331 (2008-02-19)

2. Tranås Energi AB, *Fakta – Elnätet i Tranås*, www.tranasenergi.se/templates/03.asp?sida=398 (2008-02-06)

3. Svenska Elverksföreningen (1991) *Belastningsberäkning med typkurvor*, Stockholm, Nordstedts Tryckeri AB

Appendix

Funktioner och kod för överföringsprogrammet från MT2000 till Xpower ------ Modul: Allmänna funktioner ------

Function antalrader() As Long

'- Uppgift: Beräknar antalet rader på ett blad.
'- Skapad: 2008-01-10
Dim row_amount As Long
row_amount = 1
Do While Not IsEmpty(ActiveSheet.Cells(row_amount, 1))
row_amount = row_amount + 1
If row_amount = 65536 Then Exit Do
Loop
antalrader = row_amount - 1
End Function

Function statusbar_msg(jobb As String, rad As Long, antal_rader As Long)

'- Uppgift: Skriver till statuslisten i underkant på Excelfönstret. '- Skapad 2008-01-22 Dim MyMsg As String 'If Right(CStr(rad), 2) <> "00" Then MsgBox rad MyMsg = jobb & CStr(rad) _ & " / " + CStr(antal_rader) & " - [" _ & CInt((rad / antal_rader) * 100) & "%]" Application.StatusBar = MyMsg If rad Mod 10000 = 0 Then uppdatera_skarm End If

End Function

Function uppdatera_skarm() Dim blad As String blad = ActiveSheet.Name Worksheets(1).Activate Application.ScreenUpdating = True Application.ScreenUpdating = False Worksheets(blad).Activate End Function

----- Modul: Kanaler -----

Function rensa_bort_kanaler()

'- Uppgift: Tar bort kanaler vars exporttyp inte är "EL FBR" eller "EL REAKTIV FBR"
'- Skapad: 2008-02-05
Worksheets(2).Activate
Dim resultat As String
Dim antal_rader_ws2 As Long
Dim i As Long
Dim rad As Long
antal_rader_ws2 = antalrader
Application.StatusBar = ""

```
'- Rensa bort allt som inte har exporttyp "EL FBR" eller "EL REAKTIV FBR"
With Worksheets(2)
rad = 1
For i = 1 To antal_rader_ws2
If rad Mod 500 = 0 Then statusbar_msg "Går igenom kanaler: ", rad, antal_rader_ws2
resultat = Switch(.Cells(i, 6) = "EL FBR", "EL FBR", .Cells(i, 6) = "EL REAKTIV FBR", "EL REAKTIV
FBR", True, "RADERA")
Select Case resultat
```

```
Case "EL FBR"
```

Case "EL REAKTIV FBR"

Case "RADERA" If IsEmpty(Worksheets(2).Cells(i, 1)) Then Exit For Else .Cells(i, 6).EntireRow.Delete i = i - 1 End If End Select rad = rad + 1 Next i End With rensa_bort_dubbletter Application.StatusBar = "" End Function

Private Function rensa_bort_dubbletter()

'- Uppgift: Rensar bort ena raden för kanaler som har både exporttyp "EL FBR" och "EL REAKTIV FBR" '- Skapad: 2008-02-05 Dim D As Excel.Range Dim C As Excel.Range Dim antal_rader_ws2 As Long Dim resultat As String Dim exportid As String With Worksheets(2) .Activate antal_rader_ws2 = antalrader .Range("F1").Activate Set C = .Range("F:F").Find("EL REAKTIV FBR") Do While Not C Is Nothing statusbar_msg "Tar bort dubbletter: ", C.Row, antal_rader_ws2 exportid = C.Offset(0, -1).ValueSet D = .Range("E:E").Find(exportid) NewD: If Not D Is Nothing Then resultat = Switch(D.Offset(0, 1).Address = C.Address, "sök ny", D.Value = exportid, "ta bort") Select Case resultat Case "sök ny" Set D = .Range(D.Offset(1, 0).Address, Cells(antal_rader_ws2 + 2, 5).Address).Find(exportid) GoTo NewD Case "ta bort" D.Activate ActiveCell.EntireRow.Select Selection.Delete ActiveCell.Offset(0, 4).Activate $antal_rader_ws2 = antal_rader_ws2 - 1$ '-Kan bli fel i sökningarna om 'inte anta_rader_ws2 hålls uppdaterad Set D = .Range(ActiveCell.Offset(1, 0).Address, Cells(antal_rader_ws2, 5).Address).Find(exportid) GoTo NewD End Select End If Set C = .Range(.Cells(C.Row + 1, 6).Address, .Cells(antal_rader_ws2 + 1, 6).Address).Find("EL REAKTIV FBR") Loop End With

Application.StatusBar = "" End Function ----- Modul: Las_in_textfil ------

Function tabort_timblad()

'- Uppgift: Tar bort blad med importerade timvärden
'- Skapad:2008-03-17
Dim i As Integer
Application.DisplayAlerts = False
For i = 5 To Worksheets.Count
Worksheets(5).Activate
ActiveSheet.Delete
Next i
Application.DisplayAlerts = True
Worksheets(1).Activate
End Function

Function las_in_textfil() As Integer

Dim longFilNamn As Long **Dim FilNamn** Dim raknare As Double Dim bladnummer As Integer Dim Wholeline As String Dim sep As String Dim pos Dim nextpos Dim colNdx Dim RowNdx Dim TempVal As Variant Dim rad_filnamn As Integer Dim p As Integer Dim strFilNamn As String $rad_filnamn = 1$ Application.ScreenUpdating = False

On Error GoTo Errorhandler

```
FilNamn = Application.GetOpenFilename("Textfiler (*.txt),*.txt,Alla filer (*.*),*.*", 1, "Importera timvärden
från textfil", , True)
If FilNamn(1) = "" Then
    las in textfil = 0
    Exit Function
End If
tabort_timblad
Worksheets(3).Range("M:M") = ""
bladnummer = 1
ActiveWorkbook.Sheets.Add After:=Worksheets(Worksheets.Count)
ActiveSheet.Name = "Timvärden " & bladnummer
bladnummer = bladnummer + 1
raknare = 1
sep = Chr(9)
RowNdx = 1
longFilNamn = FreeFile()
```

For p = LBound(FilNamn) To UBound(FilNamn) uppdatera_skarm Worksheets(3).Cells(rad_filnamn, 13) = FilNamn(p) rad_filnamn = rad_filnamn + 1 Open FilNamn(p) For Input As #longFilNamn

```
strFilNamn = FilNamn(p)
  While Not EOF(longFilNamn)
    If raknare Mod 500 = 0 Then Application.StatusBar = "[Fil " & p & "/" & UBound(FilNamn) & " " &
strFilNamn & "] " & "Antal importerade rader: " & raknare
     colNdx = 1
    Line Input #longFilNamn, Wholeline
    If Right(Wholeline, 1) <> sep Then
       Wholeline = Wholeline & sep
    End If
    pos = 1
    nextpos = InStr(pos, Wholeline, sep)
     While nextpos >= 1
         TempVal = Mid(Wholeline, pos, nextpos - pos)
         Cells(RowNdx, colNdx).Value = TempVal
         pos = nextpos + 1
         colNdx = colNdx + 1
         nextpos = InStr(pos, Wholeline, sep)
     Wend
    RowNdx = RowNdx + 1
    If RowNdx = 65536 Then
       ActiveWorkbook.Sheets.Add After:=Worksheets(Worksheets.Count)
       ActiveSheet.Name = "Timvärden " & bladnummer
       bladnummer = bladnummer + 1
       RowNdx = 1
       uppdatera_skarm
     End If
    raknare = raknare + 1
    If raknare Mod 20000 = 0 Then uppdatera_skarm
  Wend
  Close
  uppdatera_skarm
Next p
Application.StatusBar = ""
Application.ScreenUpdating = True
las in textfil = 1
Exit Function
Errorhandler:
Select Case Err.Number
  Case "53"
    Exit Function
  Case "13"
    Exit Function
  Case Else
     MsgBox "Ett fel har inträffat:" & Chr(10) & _
         Err.Number & Chr(10) & _
         Err.Description
    las_in_textfil = 0
End Select
End Function
Function las_in_fil_utdata() As Integer
Dim longFilNamn As Long
Dim FilNamn
Dim raknare As Double
```

Dim bladnummer As Integer Dim Wholeline As String Dim sep As String Dim pos Dim nextpos Dim colNdx Dim RowNdx Dim TempVal As Variant Dim rad_filnamn As Integer Dim p As Integer Dim strFilNamn As String rad filnamn = 1Application.ScreenUpdating = False On Error GoTo Errorhandler FilNamn = Application.GetOpenFilename("Textfiler (*.txt),*.txt,Alla filer (*.*),*.*", 1, "Importera timvärden från textfil", , True) If FilNamn(1) = "" Then $las_in_textfil = 0$ Exit Function End If 'tabort timblad Worksheets(3).Range("M:M") = "" bladnummer = 1'ActiveWorkbook.Sheets.Add After:=Worksheets(Worksheets.Count) 'ActiveSheet.Name = "Timvärden " & bladnummer bladnummer = bladnummer + 1Worksheets(4).Activate raknare = 1sep = ":" RowNdx = 1longFilNamn = FreeFile() For p = LBound(FilNamn) To UBound(FilNamn) uppdatera_skarm Worksheets(3).Cells(rad_filnamn, 13) = FilNamn(p) $rad_filnamn = rad_filnamn + 1$ Open FilNamn(p) For Input As #longFilNamn strFilNamn = FilNamn(p) While Not EOF(longFilNamn) If raknare Mod 500 = 0 Then Application.StatusBar = "[Fil " & p & "/" & UBound(FilNamn) & " " & strFilNamn & "] " & "Antal importerade rader: " & raknare colNdx = 1Line Input #longFilNamn, Wholeline If Right(Wholeline, 1) <> sep Then Wholeline = Wholeline & sep End If pos = 1nextpos = InStr(pos, Wholeline, sep) While nextpos >= 1 TempVal = Mid(Wholeline, pos, nextpos - pos) Cells(RowNdx, colNdx).Value = TempVal pos = nextpos + 1colNdx = colNdx + 1nextpos = InStr(pos, Wholeline, sep) Wend RowNdx = RowNdx + 1If RowNdx = 65536 Then ActiveWorkbook.Sheets.Add After:=Worksheets(Worksheets.Count) ActiveSheet.Name = "Data " & bladnummer bladnummer = bladnummer + 1

RowNdx = 1uppdatera_skarm End If raknare = raknare + 1If raknare Mod 20000 = 0 Then uppdatera_skarm Wend Close uppdatera_skarm Next p Application.StatusBar = "" Application.ScreenUpdating = True $las_in_textfil = 1$ Exit Function Errorhandler: Select Case Err.Number Case "53" Exit Function Case "13" Exit Function Case Else MsgBox "Ett fel har inträffat:" & Chr(10) & _ Err.Number & Chr(10) & _ Err.Description $las_in_textfil = 0$ End Select **End Function**

----- Modul: Skriv_till_textfil ------

Function Skriv_till_Fil()

'- Uppgift: Skriver ut tabell på blad 4 till en .dat-fil (textfil)
'- Skapad: 2008-02-14
Dim antal_rader_ws4 As Long
Dim textrad_kund As String, textrad_effekt As String
Dim fso, textfil
Dim Kategori As String, Typ As String
Dim rad As Excel.Range, i As Excel.Range
Dim p As Integer
Dim svar As String, beskrivning As String
Dim antal As Integer
Dim kommapos As Integer

On Error GoTo Errorhandler

'-** Hämtar namn på importerade filer **Worksheets(3).Activate
Range("M1").Activate
importeradefiler = ""
Do While Not IsEmpty(ActiveCell)
importeradefiler = importeradefiler & ActiveCell & Chr(10)
ActiveCell.Offset(1, 0).Activate
Loop

'-** Skapar koppling till filer. **beskrivning = Left(Worksheets(5).Cells(1, 1), 4) & "_" & Mid(Worksheets(5).Cells(1, 6), 6, 2) & "_" & Left(Worksheets(5).Cells(1, 6), 4)

skapafil:

Set fso = CreateObject("Scripting.FileSystemObject") Application.StatusBar = "Ange önskat filnamn." svar = InputBox("Ange önskad beskrivning:" & Chr(10) & Chr(10) & "Resulterande filnamn: " & Chr(10) & Chr(149) & "'hourmeasurments_BESKRIVNING.txt'" & Chr(10) & Chr(10) & "Senaste importerade fil/er: " & importeradefiler & Chr(10) & Chr(10) & "BESKRIVNING:" & Chr(10) & "Tillåtna tecken i beskrivningen: _ 0-9 a-z A-Z", "Skapa fil", beskrivning) If svar = "" Then Application.StatusBar = "" **Exit Function** End If If Right(svar, 4) <> ".txt" Then svar = svar & ".txt" strFilNamn = "\hourmeasurements_" & svar Set textfil = fso.CreateTextFile(ThisWorkbook.Path & strFilNamn) '-** Läser av tabell och skriver till filer **-Worksheets(4). Activate antal rader ws4 = antalraderActiveSheet.Range("A1").Activate antal = 0statusbar msg "Skriver till fil.", 0, antal rader ws4 Do While Not IsEmpty(ActiveCell) textrad kund = "" textrad_effekt = "" If ActiveCell.Offset(0, 2).Text Like "*Statistik" Then GoTo Nasta If ActiveCell.Row Mod 500 = 0 Then statusbar_msg "Skriver till fil: ", ActiveCell.Row, antal_rader_ws4 Set rad = ActiveSheet.Range(ActiveCell.Address, ActiveSheet.Cells(ActiveCell.Row, 52).Address) For Each i In rad Kategori = Switch(i.Column > 4, "Value", True, "Text") Select Case Kategori Case "Text" textrad_kund = textrad_kund & i.Text & ";" Case "Value" Typ = Switch(i.Text = "", "Empty", i.Text = " ", "Empty", True, "power") Select Case Typ Case "power" textrad_effekt = textrad_effekt & i.Value & ";" Case "Empty" textrad effekt = textrad effekt & " " & ";" Case "Mismatch" textrad effekt = textrad effekt & " " & ";" antal = antal + 1End Select End Select Next i '-** Tar bort extra tecken på slutet**textrad_effekt = Left(textrad_effekt, Len(textrad_effekt) - 1) kommapos = InStr(1, textrad_effekt, ",") Do While kommapos <> 0 textrad_effekt = Left(textrad_effekt, kommapos - 1) & "." & Right(textrad_effekt, Len(textrad_effekt) kommapos) kommapos = InStr(kommapos, textrad_effekt, ",") Loop '-** Skriver till fil **textfil.writeline (textrad_kund & textrad_effekt) Nasta: ActiveCell.Offset(1, 0).Activate Loop '-** Stänger koppling till fil **-

textfil.Close 'MsgBox "Antalet filer som hade för stor förbrukning (>100'000 Wh): " & antal Application.StatusBar = "Filen: " & Mid(strFilNamn, 2, Len(strFilNamn) - 5) & ".txt skapade i katalogen: " & ThisWorkbook.Path Exit Function

Errorhandler: Select Case Err.Number Case 9 beskrivning = "" GoTo skapafil Case Else MsgBox "Ett oväntat fel har inträffat i modulen 'Skriv_till_fil'" End Select End Function

Function run_batchfile()

Dim shellref '-** Kör batchfil för uppdatering av databas mha "StartHourMeasurementInput.vbs" shellref = Shell("C:\windows\system32\mstsc.exe /v:172.16.16.35 /f", 1) shellref = Shell(ThisWorkbook.Path & "\databasuppdatering.bat " & ThisWorkbook.Path, 1) End Function

----- Modul: Tabell------

Option Explicit

Dim sista_raden_ws3 As Long Dim sista_raden_ws4 As Long Dim sista_raden_ws3_ejfunnen As Integer Dim sista_raden_ws3_ej_funna_exportid As Integer Dim PreviousEId As Long Dim nodidlong As Long Dim customerpointnode As String Dim C As Excel.Range Dim tim_offset_kWh As Integer Dim tim_offset_kVar As Integer Dim tid_Skapa_tabell As Date Dim tid_skriv_till_tabell As Date Dim tid_skapa_ny_rad As Date Dim tid_find_customer_point_node As Date Dim tid_find_nodidlong As Date

Function Skapa_tabell() As Integer

'- Uppgift: Gå igenom bladen med timvärden och anropa skriv_till_tabell
'- Skapad: 2008-03-11
Dim antal_rader_wsi As Long, antal_rader As Long
Dim exportid As String
Dim datum As String, datumtemp As Date
Dim timme As Integer
Dim sista_bladet As Integer, senaste_blad As Integer
Dim rad As Long
Dim tid1_skapa As Date
Dim resume_pre As Integer
Dim antal_rader_ws4 As Long
Dim resume_sheet As Integer, resume_row As Long
Dim svar, i

tid1_skapa = Time antal_rader = 0

```
sista_raden_ws3 = 0
  sista_raden_ws4 = 0
  sista_raden_ws3_ejfunnen = 1
  sista_raden_ws3_ej_funna_exportid = 1
  rad = 0
  '-Möjlighet till återupptagning av tidigare "skapa tabell" session.
  resume pre = resume previous
  If resume_pre = 1 Then svar = MsgBox("Vill du forsätta på den påbörjade tabellen på blad 'Data'?", vbYesNo)
  If svar = vbYes Then
    Worksheets(4).Activate
    antal_rader_ws4 = antalrader
    Worksheets(4).Cells(antal rader ws4, 1).EntireRow.Delete
    antal_rader_ws4 = antal_rader_ws4 - 1
     sista_raden_ws4 = antal_rader_ws4
     With Worksheets(4)
       nodidlong = .Cells(antal rader ws4, 3)
       Set C = Worksheets(2).Range("C:C").Find(Format(nodidlong, "0000000"))
       If Not C Is Nothing Then exportid = C.Offset(0, 2)
       datum = .Cells(antal_rader_ws4, 4)
    End With
       sista_bladet = Application.Worksheets.Count
       senaste_blad = 4
       For i = 5 To sista_bladet
         If i <> senaste_blad Then
            Application.StatusBar = "Söker fram rätt blad att börja från! Söker på timvärdesblad: " & i - 4 & "
av " & sista_bladet - 4
            senaste blad = i
         End If
         Set C = Worksheets(i).Range("D:D").Find(exportid)
         Do While Not C Is Nothing
            If C.Value = exportid And datum = Mid(C.Offset(0, 2), 9, 2) & "." _
            & Mid(C.Offset(0, 2), 6, 2) & "." _
            & Left(C.Offset(0, 2), 4) Then
              resume_sheet = i
              resume_row = C.Row
              Exit For
            End If
            With Worksheets(i)
              Set C = .Range(.Cells(C.Row, 4).Address, .Cells(65535, 4).Address).Find(exportid)
            End With
         Loop
       Next i
    rad = (i - 5) * 65535
  Else
    resume_sheet = 5
    resume_row = 1
     Worksheets(4).Range("A:BA") = ""
  End If
  '-Rensa bort föregående lista över ExportID, Nodid och Customer Point Node
  Worksheets(3).Range("E:J") = ""
  '- Beräknar antalet rader med timvärden på blad "Timvärden #"
  For i = 5 To Application.Worksheets.Count
     statusbar_msg "Tar fram antalet mätvärden: ", CLng(i) - 4, Application.Worksheets.Count - 4
     Worksheets(i).Activate
    If Not IsEmpty(ActiveSheet.Range("A65535")) Then
```

```
antal_rader_wsi = 65535
```

Else antal_rader_wsi = antalrader End If If antal_rader_wsi = 0 Then MsgBox "Inga timvärden verkar finnas på blad 'Timvärden'." $Skapa_tabell = 0$ Exit Function End If antal_rader = antal_rader + antal_rader_wsi Next i uppdatera_skarm '-Går igenom samtliga timvärden på blad för "Timvärden #" For i = resume_sheet To Application.Worksheets.Count Worksheets(i).Activate ActiveSheet.Cells(resume row, 4).Activate Do While Not IsEmpty(ActiveCell) If (rad + ActiveCell.Row) Mod 100 = 0 Then statusbar_msg "Skapar tabell över förbrukning: ", rad + ActiveCell.Row, antal rader exportid = ActiveCell.Text datum = Mid(ActiveCell.Offset(0, 2), 9, 2) & "." _ & Mid(ActiveCell.Offset(0, 2), 6, 2) & "." _ & Left(ActiveCell.Offset(0, 2), 4) If Mid(ActiveCell.Offset(0, 2), 12, 2) = "" Then timme = 24datumtemp = Left(ActiveCell.Offset(0, 2), 10) datumtemp = CStr(datumtemp - 1)datum = Right(datumtemp, 2) & "." & Mid(datumtemp, 6, 2) & "." & Left(datumtemp, 4) Else timme = CInt(Mid(ActiveCell.Offset(0, 2), 12, 2)) End If tid_Skapa_tabell = tid_Skapa_tabell + Time - tid1_skapa skriv_till_tabell exportid, datum, timme tid1 skapa = Time If ActiveCell.Row = 65536 Then Exit Do ActiveCell.Offset(1, 0).Activate Loop rad = rad + ActiveCell.Row - 1tid_Skapa_tabell = tid_Skapa_tabell + Time - tid1_skapa Next i Debug.Print "" Debug.Print Date & " " & Time Debug.Print "Distrikt: " & Worksheets(5).Range("A1").Value Debug.Print tid_find_customer_point_node & " find_customer_point_nod" Debug.Print tid_find_nodidlong & " find_nodidlong" Debug.Print tid_skapa_ny_rad & " skapa_ny_rad" Debug.Print tid_Skapa_tabell & "skapa_tabell" Debug.Print tid_skriv_till_tabell & " skriv_till_tabell" tid_find_customer_point_node = 0 $tid_find_nodidlong = 0$ $tid_skapa_ny_rad = 0$ $tid_Skapa_tabell = 0$ $tid_skriv_till_tabell = 0$ Skapa_tabell = 1**End Function**

Private Function skriv_till_tabell(exportid As String, datum As String, timme As Integer)

'- Uppgift: Skapar en tabell som sedan kan skrivas till fil för indata till databas

'- Skapad: 2008-02-21

```
Dim F As Excel.Range
  Dim resultat As String
  Dim resultat2 As String
  Dim tid1_skriv As Date
  On Error GoTo Errorhandler
  find_nodidlong exportid
  If Not nodidlong = 0 Then
     find_customer_point_node
  End If
  tid1_skriv = Time
  '-** Hitta rätt rad på bladet "data" och skriv in värde **-
  With Worksheets(4)
    If Not nodidlong = 0 Then
    If C.Value = nodidlong And C.Offset(0, 1).Value = datum Then
       resultat = "Korrekt nodid"
       If ActiveCell.Offset(0, 4) = "kWh" Then
         tim offset kWh = 5 + 2 * timme - 2
          .Cells(C.Row, tim offset kWh) = ActiveCell.Offset(0, 3) * 1000
       Else
         tim_offset_kvar = 5 + 2 * timme - 1
          .Cells(C.Row, tim_offset_kvar) = ActiveCell.Offset(0, 3) * 1000
       End If
    Else
       Set C = .Range("C:C").Find(nodidlong)
         resultat = Switch(C Is Nothing, "Nothing", _
result:
                 C.Value = nodidlong, "Korrekt nodid"
                 C.Value <> nodidlong, "Felaktigt nodid")
selectres: Select Case resultat
       Case "Nothing"
         skapa_ny_rad customerpointnode, nodidlong, datum, timme
         Set C = .Range("C:C").Find(nodidlong) '-för att kunna utnyttja föregående ExportId till nästa.
       Case "Korrekt nodid"
         If C.Offset(0, 1).Value = datum Then
            If ActiveCell.Offset(0, 4) = "kWh" Then
              tim offset kWh = 5 + 2 * timme - 2
              .Cells(C.Row, tim_offset_kWh) = ActiveCell.Offset(0, 3) * 1000
            Else
              tim_offset_kvar = 5 + 2 * timme - 1
              .Cells(C.Row, tim_offset_kvar) = ActiveCell.Offset(0, 3) * 1000
            End If
         Else
            resultat = "Felaktigt nodid"
            GoTo selectres
         End If
       Case "Felaktigt nodid"
         Set F = .Range(.Cells(C.Row + 1, 4).Address, .Cells(sista_raden_ws4 + 1, 4).Address).Find(datum)
           resultat2 = Switch(F.Offset(0, -1).Value = nodidlong, "Korrekt nodid", True, "sök vidare")
res2:
         Select Case resultat2
         Case "Korrekt nodid"
            resultat = "Korrekt nodid"
            Set C = F.Offset(0, -1)
            GoTo selectres
         Case "sök vidare"
            Set F = .Range(.Cells(F.Row + 1, 4).Address, .Cells(sista raden ws4 + 1, 4).Address).Find(datum)
            GoTo res2
```

Case Else MsgBox "Inget alternativ stämde, går vidare med nästa värde." **Exit Function** End Select End Select End If End If End With tid_skriv_till_tabell = tid_skriv_till_tabell + Time - tid1_skriv Exit Function Errorhandler: Select Case Err.Number Case 91 resultat = "Nothing" GoTo selectres Case Else MsgBox Err.Number & Chr(10) & Err.Description Resume End Select **End Function**

Private Function skapa_ny_rad(customerpointnode As String, nodidlong As Long, datum As String,

timme As Integer) Dim tid1_ny_rad tid1_ny_rad = Time $sista_raden_ws4 = sista_raden_ws4 + 1$ With Worksheets(4) .Cells(sista_raden_ws4, 1) = "HM" .Cells(sista_raden_ws4, 2) = customerpointnode .Cells(sista_raden_ws4, 2).NumberFormat = "0000000" .Cells(sista_raden_ws4, 3) = nodidlong $.Cells(sista_raden_ws4, 4) = datum$ If ActiveCell.Offset(0, 4) = "kWh" Then $tim_offset_kWh = 5 + 2 * timme - 2$.Cells(sista_raden_ws4, tim_offset_kWh) = ActiveCell.Offset(0, 3) * 1000 Else $tim_offset_kvar = 5 + 2 * timme - 1$.Cells(sista raden ws4, tim offset kvar) = ActiveCell.Offset(0, 3) * 1000 End If End With tid_skapa_ny_rad = tid_skapa_ny_rad + Time - tid1_ny_rad End Function Function fyll_ut_med_nollor_och_reaktiv_berakning() '- Uppgift: Fyller i nollor där det finns tomma celler (saknas mätvärde). '- Skapad: 2008-02-21 '- Ändrad: 2008-03-11 Dim i Dim antal_rader_ws4 As Long Worksheets(4).Activate antal_rader_ws4 = antalrader With ActiveSheet For Each i In .Range(.Cells(1, 5).Address, .Cells(antal_rader_ws4, 52).Address) Application.StatusBar = "Fyller ut tomma celler med nollor / " & _ "beräknar reaktiv effektförbrukning " & _ "cos(fi)=0,95! " & i.Row & "/" & antal_rader_ws4 If i.Text = "" Then If i.Column Mod 2 = 0 Then $i.Value = CSng(i.Offset(0, -1) * Sqr((1 / (0.95 ^ 2)) - 1))$ i.NumberFormat = "0.0"

```
Else
i.Value = 0
End If
End If
Next i
Application.StatusBar = ""
End With
End Function
```

Function format_nod()

```
'- Uppgift: NodId (Load Post Id) formateras så rätt antal siffror visas.
'- Skapad: 2008-03-10
Worksheets(4).Activate
Range("C1").Activate
Application.StatusBar = "Formaterar NodId."
Do While Not IsEmpty(ActiveCell)
  ActiveCell.NumberFormat = "0000000"
  ActiveCell.Offset(1, 0).Activate
Loop
Application.StatusBar = ""
End Function
Private Function find_nodidlong(exportid As String)
  Dim B As Excel.Range
  Dim tid1_nodid As Date
  tid1_nodid = Time
  '-** Hitta NodId från lista på blad 3 eller blad 2 **-
  Set B = Worksheets(3).Range("E:E").Find(exportid)
  If Not B Is Nothing Then
     nodidlong = B.Offset(0, 1)
     customerpointnode = B.Offset(0, 2)
  Else
     Set B = Worksheets(2).Range("E:E").Find(exportid)
Loop1: If Not B Is Nothing Then
      If B.Value Like "*Statistik" Then
         nodidlong = 0
       ElseIf B.Value = exportid Then
         nodidlong = Left(B.Offset(0, -2), 7)
         sista raden ws3 = sista raden ws3 + 1
          Worksheets(3).Cells(sista raden ws3, 5) = exportid
         Worksheets(3).Cells(sista_raden_ws3, 6) = nodidlong
       Else
          With Worksheets(2)
            Set B = .Range(.Cells(B.Row, 5), "E65500").Find(exportid)
         End With
         GoTo Loop1
       End If
     Else
       If exportid Like "*Statistik" Then
         nodidlong = 0
         Exit Function
       End If
       If Not exportid = PreviousEId Then
         If sista_raden_ws3_ej_funna_exportid = 1 Then
            Worksheets(3).Cells(sista_raden_ws3_ej_funna_exportid, 9) = "Ej funna ExportId"
            Worksheets(3).Cells(sista_raden_ws3_ej_funna_exportid, 9).Font.Bold = True
         End If
       End If
       sista_raden_ws3_ej_funna_exportid = sista_raden_ws3_ej_funna_exportid + 1
       Worksheets(3).Cells(sista raden ws3 ej funna exportid, 9) = exportid
       PreviousEId = exportid
```

```
nodidlong = 0
    End If
  End If
  tid_find_nodidlong = tid_find_nodidlong + Time - tid1_nodid
End Function
Function find customer point node()
'-** Hitta CustomerPointNode från lista på blad 4 om inte redan hämtad från lista på blad 4 **-
  Dim B As Excel.Range
  Dim E As Excel.Range
  Dim tid1_customer As Date
  tid1_customer = Time
  Set B = Worksheets(3).Range("F:F").Find(nodidlong)
  If B.Offset(0, 1) = "" Then
    Set B = Worksheets(3).Range("A:A").Find(nodidlong)
check: If B Is Nothing Then
       Set E = Worksheets(3).Range("J:J").Find(nodidlong)
       If E Is Nothing Then
         If sista raden ws3 ejfunnen = 1 Then
           Worksheets(3).Range(Cells(sista raden ws3 ejfunnen, 10).Address) = "Customer point node EJ
funna för Nodid"
           Worksheets(3).Range(Cells(sista_raden_ws3_ejfunnen, 10).Address).Font.Bold = True
         End If
         sista_raden_ws3_ejfunnen = sista_raden_ws3_ejfunnen + 1
         Worksheets(3).Range(Cells(sista_raden_ws3_ejfunnen, 10).Address) = nodidlong
       Else
         Exit Function
       End If
       Do
         Set E = Worksheets(4).Range("C:C").Find(nodidlong)
         If Not E Is Nothing Then
           If E.Value = nodidlong Then E.EntireRow.Delete
         End If
       Loop While Not E Is Nothing
       Exit Function
    ElseIf nodidlong = B.Value Then
       customerpointnode = B.Offset(0, 1).Text
       Worksheets(3).Cells(sista raden ws3, 7) = customerpointnode
    ElseIf nodidlong <> B.Value Then
       Set B = Worksheets(3).Range(Cells(B.Row + 1, 1).Address, "A20000").Find(nodidlong)
       GoTo check
    End If
  Else
    customerpointnode = B.Offset(0, 1)
  End If
  tid_find_customer_point_node = tid_find_customer_point_node + Time - tid1_customer
End Function
Private Function resume_previous() As Integer
```

Dim exportid As String Dim datum As String Dim timme As Integer On Error GoTo Errorhandler Worksheets(5).Activate ActiveSheet.Range("D1").Activate exportid = ActiveCell.Text datum = Mid(ActiveCell.Offset(0, 2), 9, 2) & "." _ & Mid(ActiveCell.Offset(0, 2), 6, 2) & "." _ & Left(ActiveCell.Offset(0, 2), 4) If Mid(ActiveCell.Offset(0, 2), 12, 2) = "" Then

```
timme = 24
  Else
    timme = CInt(Mid(ActiveCell.Offset(0, 2), 12, 2))
  End If
  find_nodidlong (exportid)
  Set C = Worksheets(4).Range("C1")
  If C.Value = nodidlong And C.Offset(0, 1).Value = datum Then
    resume_previous = 1
    Exit Function
  Else
    Do
       With Worksheets(4)
         Set C = .Range(.Cells(C.Row + 1, 3).Address, .Cells(65535, 3).Address).Find(nodidlong)
       End With
    Loop While C.Offset(0, 1) <> datum
  End If
  If ActiveCell.Offset(0, 4) = "kWh" Then
    tim offset kWh = 5 + 2 * timme - 2
    If ActiveCell.Offset(0, 3).Value = Worksheets(4).Cells(C.Row, tim_offset_kWh).Value Then
       resume_previous = 1
    Else
       resume_previous = 0
    End If
  Else
    tim_offset_kvar = 5 + 2 * timme - 1
    If ActiveCell.Offset(0, 3).Value = Worksheets(4).Cells(C.Row, tim_offset_kWh).Value Then
       resume_previous = 1
    Else
       resume_previous = 0
    End If
  End If
Exit Function
Errorhandler:
  Select Case Err.Number
  Case "91"
    resume_previous = 0
  End Select
End Function
```