

 Chalmers Publication Library

Copyright Notice

©2012 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/),

where it is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec.

8.1.9 (http://www.ieee.org/documents/opsmanual.pdf)

(Article begins on next page)

Architecture-Level Fault-Tolerance for Biomedical
Implants

Robert M. Seepers∗†, Christos Strydis∗†, Georgi N. Gaydadjiev‡
∗Dept. of Neuroscience, Erasmus MC

Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
{r.seepers,c.strydis}@erasmusmc.nl
†Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

‡Department of Computer Science and Engineering
Chalmers University of Technology, Rannvagen 6, Goteburg, Sweden

georgig@chalmers.se

Abstract—In this paper, we describe the design and imple-
mentation of a new fault-tolerant RISC-processor architecture
suitable for a design framework targeting biomedical implants.
The design targets both soft and hard faults and is original in
efficiently combining as well as enhancing classic fault-tolerance
techniques. The proposed architecture allows run-time trade-
offs between performance and fault tolerance by means of
instruction-level configurability. The system design is synthesized
for UMC 90nm CMOS standard-process and is evaluated in
terms of fault coverage, area, average power consumption, total
energy consumption and performance for various duplication
policies and test-sequence schedules. It is shown that area and
power overheads of approximately 25% and 32%, respectively,
are required to implement our techniques on the baseline
processor. The major overheads of the proposed architecture
are performance (up to 107%) and energy consumption (up
to 157%). It is observed that the average power consumption
is often reduced when a higher degree of fault tolerance is
targeted. It is shown that test sequences can effectively be
scheduled during the available program stalls and that nearly
all soft faults are tolerated by using instruction duplication.
The main advantages of the proposed architecture are the high
portability of the introduced architecture-level fault-tolerance
techniques, the flexibility in trading processor overheads for
required fault-tolerance degree as well as affordable area and
power consumption overheads.

I. INTRODUCTION

The first pacemaker, an external motor with electric wires
going to the patient’s heart to keep it beating at a steady
pace, was revolutionary in the 1950’s. Thanks to technologi-
cal advances, pacemakers or, generally, Implantable Medical
Devices (IMDs) these days are not only fully implanted into
the body, but they also gather data for analysis, have a long
lifetime and can even be configured to the patient’s specific
needs during a visit to a cardiologist.

Traditionally, these devices have been designed from scratch
in order to satisfy the tight constraints of power and en-
ergy consumption. We believe technology has now advanced
enough to move away from this approach and implement a de-
sign framework targeting medical implants. Such a framework
consists of a number of basic components such as sensors,

actuators, batteries and processors, which can be tailored
very easily to a particular medical application. Advantages
of using such a framework are numerous, including a lower
development-risk factor, reduced design time and as a result
lower development costs. Creating such a framework is the
main goal of the SiMS project [1] and, in this paper, we focus
on one of the main components: the SiMS processor.

Medical implants are tightly constrained in terms of area,
power consumption and energy consumption, yet, being
safety-critical systems, require a high degree of fault tolerance.
Common examples of fault tolerance include Triple-Modular
Redundancy (TMR) [2], self-checking circuits [3], built-in
self-test [4] and software techniques [5][6][7], among many
others. However, many of these techniques are not suitable for
a design framework targeting biomedical implants. For exam-
ple, the average power consumption is tripled in triple-modular
redundancy, which is not viable for biomedical implants as
high power dissipation is related to various medical conditions,
such as blood vessel dilation. Other techniques, such as built-
in self-test, are not able to detect all soft faults, which are the
main type of faults occurring in digital systems nowadays [2].
Finally, some of the techniques, such as self-checking circuits
[3], are too specific to be part of a design framework. Generic
techniques are much more suitable for a design framework, as
they allow easy design tailoring to a particular application. It
is concluded that a number of commonly used fault-tolerance
techniques are not in tune with the demands of a design
framework targeting biomedical implants. As such, it is our
desire to propose an architecture using techniques which are
well-suited for such a framework.

In order to provide generic yet highly effective fault-
tolerance techniques, we are interested in using architecture-
level techniques. While fault tolerance is widely researched,
not much research has been conducted into fault-tolerance
techniques which optimize specifically for the constraints
set in the biomedical environment. Therefore, the focus of
this work is on the design of an architecture using fault-
tolerance techniques at the architectural level. This design

is then implemented and evaluated, in order to estimate the
viability of the architecture for the intended design framework.

The main contributions of this paper are:
• A new architecture suitable for a range of biomedical

implant-applications, with high soft- and hard-fault cov-
erage yet affordable power and area overheads;

• An efficient implementation and synthesis-based evalua-
tion of existing architectural level fault-tolerance tech-
niques. All employed techniques are portable across
different architectures and are suitable for architectures
targeting (ultra-)low-power consumption;

• Combining and improving known fault-tolerance tech-
niques which, resultingly, allows for a straight-forward,
runtime trade-off between power consumption, perfor-
mance and enhanced fault tolerance.

This paper is structured as follows. First, we present back-
ground information in Section II and related work in Section
III. In Section IV we present the implementation of our
fault-tolerant architecture. Section V contains the experimen-
tal results and reports on fault coverage, performance, area,
power and energy consumption along with various compound
metrics. Finally, overall conclusions are drawn in Section VI.

II. BACKGROUND

In the following Sections, we will briefly present the ar-
chitecture on which our fault-tolerance techniques are imple-
mented, as well as the targeted fault models.

A. The Baseline architecture: SISC Baseline

The majority of our work consists of adding fault tolerance
to the Baseline Smart-Implant Security Core (SISC) [13]. The
SISC Baseline is designed for low-power consumption and,
thus, has no advanced architectural features such as a dedicated
multiplier, divider or forwarding unit. The main characteristics
of the Baseline architecture are:

• 5-stage RISC processor, with an in-order IF / DE / EX /
MEM / WB pipeline;

• 16-bit ISA with 24 instructions;
• 16 32-bit entry register file;
• Stall-detection unit which inserts stalls in the program

execution at runtime, i.e. no nops are required in the
application binary; and

• Separate 16-kB (16-bit wide) Instruction Memory (IM)
and a 16-kB (32-bit wide) Data Memory (DM).

B. Fault models

Our fault-tolerant architecture consists of one technique
targeting soft (temporary) faults and another targeting hard
(permanent) faults (Section IV) and, as such, two fault models
are assumed: a transient-fault model for soft faults, and a
behavioral-fault model for hard faults. In both fault models
we assume the occurrence of only a single fault in the system
at any given time. The reason for this assumption is that,
statistically, most faults are single in nature and fault-tolerance
mechanisms which target single faults cover roughly 99.6% of
all cases with multiple faults [14].

Soft faults are modeled by a temporary upset of a signal,
which appears and disappears within time ∆T. For the behav-
ior of these faults, we make the following assumptions:

1) Only one signal is faulty at any given time (single-fault
assumption). Note that we do allow multiple faults on a
single signal if the signal consists of multiple bits;

2) The faults are well-behaved, i.e. during execution time
the fault is permanent for one cycle and the signal is free
of faults outside this interval (∆T is one cycle); and

3) The faults are signal independent, i.e. the fault is not
depending on the signal’s current value.

We assume that the result of an operation will not corrupt
between passing our error-detection unit (EDU) and the next
use of this result. For example, the result of the beqz instruc-
tion (taken or not taken) will not corrupt between the EDU
and the control unit. While it is possible this may occur, the
fan-in, fan-out and the size of the circuits which follow the
EDU are small compared to the rest of the architecture and, as
such, we currently neglect their contribution. For hard faults,
we model the faults with a behavioral fault model. In this
model, the component-level design of the processor is used
where components or signals are modeled to either fail or
not. While single stuck-at-fault modeling is more common
and accurate for fault modeling and test-pattern generation,
it requires gate-level details. As we strive to use architecture-
level techniques which are independent of the implementation,
we use a behavioral fault model.

III. RELATED WORK

For our target architecture, there is a sufficient amount of
time slack available [13] to introduce fault-tolerance mecha-
nisms using time redundancy. The key advantage of exploiting
time redundancy is that while the execution time is increased,
the increase in average power consumption is lower compared
to e.g., hardware or information redundancy.

Error detection using duplicated instructions (EDDI) [6] is
a purely software-based technique for adding fault tolerance
using time redundancy. Variables are kept in duplicate registers
and a comparison between these results indicates if an error
has occurred. The technique detects soft faults in arithmetic
and memory operations, but lacks support for control-flow
operations, error correction, hard faults and memory protec-
tion. In this work, we strive to add support for control-flow
operations, error correction and hard faults. In addition, we
strive to have the design configurable in order to make it more
suitable for a design framework.

1) Soft Faults: Control-flow fault tolerance can be added by
signature checking and preemptive checking. Using signatures
to prevent control-flow errors has been used widely [3][7][15].
Static signatures, which summarize the information of e.g.,
the opcodes in a basic block, are added to the program
by the compiler and are compared to a runtime-calculated
signature. Signature-based techniques may [3] or may not [7]
be supported by additional hardware and can also be used
to prevent data-flow errors [15]. A preemptive technique is
proposed in [10]. Control-flow instructions are duplicated and,

before a jump is taken, the target addresses of both operations
are compared by custom hardware. If the target addresses are
not the same, an error flag is raised. Both methods for error
detection have minimal area and performance overheads.

2) Hard Faults: Hard-fault detection can be done by using
structural or functional test sequences1, among others. The
result of a test sequence is compared to a value known at
compile time in order to determine if the runtime value is
different from the static value, i.e. if an error has occurred.
Functional tests have the advantage of being more portable,
while structural tests result in shorter tests with higher fault
coverage [5]. The disadvantage of functional testing is that
not all components may be functionally testable and, in some
cases, the number of functionally untestable components may
be large [16]. Test sequences may replace nops in a program,
lowering the performance penalty [4].

3) Configurability: Offering a configurable trade-off be-
tween the degree of fault tolerance and overheads, which is
highly desirable in an architecture for a design framework,
can be done using instruction-level configurability [9]. A flag
may be set for each instruction, signaling the degree of fault
tolerance required. Alternatively, a custom instruction, which
sets the required degree of fault tolerance for a block of code,
can be used. The former method has the advantage of specifity,
while the second option promises to be more generic.

IV. IMPLEMENTATION

By combining some of the techniques discussed in the
previous Section in an efficient way, a high degree of soft-
and hardware fault tolerance can be achieved while minimizing
overheads due to resource sharing. We have both improved and
extended most of the employed techniques. From an organiza-
tional point of view, the design is split in two techniques: one
to detect and correct soft faults and one to detect hard faults,
both of which will be discussed in the following Sections.

A. Fault-Tolerant Design for Soft Faults

Our method for providing fault tolerance to soft faults builds
on the techniques presented in [6][10][9]. We first describe the
general technique followed by the implementation details.

Instructions for which fault tolerance is required are dupli-
cated at runtime and the original and duplicated instruction are
executed in sequence. The result of the original instruction
is stored in a dedicated register and, if the result of the
original and the duplicated instruction are the same, the result
is committed. If the results differ, the pipeline is flushed and
the error is corrected by refetching the original instruction.
We allow a trade-off to be made between fault-tolerance
and performance by storing the duplication mode, i.e. the
set of instructions which has to be duplicated, in a user-
programmable dedicated register. An example is given in Fig.
1, where all control-flow instructions are made fault-tolerant
and, therefore, instruction A is duplicated. Additionally, we

1In structural testing, the exact specifications of the micro-architecture are
known, whereas the micro-architecture is modeled as a black box in functional
testing.

Fig. 1. Example of soft-fault tolerance through instruction duplication.

have added additional fault-tolerance mechanisms to prevent
opcode and Program-Counter (PC) corruption. All in all, the
additions we have made to make our architecture soft-fault
tolerant are: 1) Instruction duplication, 2) Error detection, 3)
Error correction, 4) Configurability, 5) Instruction-word parity
bit and 6) a shadow PC. In the following text, we will discuss
the details and contributions of each addition.

1) Instruction Duplication: Instruction duplication is done
by the processor at run-time rather than at compile-time, for
a number of reasons: First and foremost, doing duplication
at runtime allows the degree of fault tolerance to be set
dynamically. This means that the set of instructions which
has to be made fault tolerant may not only be a function of
the application, but also a function of run-time parameters
such as the remaining battery lifetime. Secondly, the timing
overhead of refetching the same instruction in case it needs
to be duplicated is expected to be small or non-existent as
it only requires a comparison between the decoded opcode
and the degree of fault tolerance (explained below). Finally,
as previously stated in Section II-A, a stall-detection unit
is already present in the SISC Baseline processor, which is
crucial when doing duplication at runtime as it prevents data-
dependencies to be violated.

Configuration of the runtime duplication is implemented by
comparing the decoded opcode to the set duplication mode.
This duplication mode is stored in a dedicated register and
can be set by the application using a new instruction ft set
#. Runtime duplication has originally been proposed in [8].
However, our improvement is the flexibility to make the trade-
off between fault tolerance and overheads at runtime.

2) Error Detection: In the target processor a total of six
results are committed. For each of these results and the opcode
of the fetched instruction, we add a register-comparator block.
The result of an original instruction is stored in the register
and is compared to the result of the duplicated instruction in
the next cycle. If the results are identical, it is safe to commit
this result; if not, an error signal is sent to the error-correction
unit. Two adjacent pipeline stages, both of which are executing
an instruction which requires fault tolerance, can never both
execute a duplicated or original instruction at the same time.
As such, these stages can share hardware resources.

The advantages of performing error detection using these
register-comparator blocks over a software-only implementa-

tion are as follows: First, by adding extra hardware for the
storing and comparing of each result, the performance drop of
the additional compare instruction in software-only techniques
is not required. Moreover, hardware additions are required
to preemptively detect errors in control-flow instructions, as
demonstrated in [10]. Secondly, as the register file is not
used for holding the intermediate values, the register pressure
is not increased. Thus, the scheduler puts the same effort
scheduling the instructions and excessive register spilling is
avoided. Thirdly, having registers dedicated to a particular
stage allows the registers to have a custom size in order to hold
the expected result of a given size, reducing the required area.
For example, the branch result is only 1 bit and storing this in
a 32-bit register would, therefore, be a waste of resources.
Furthermore, using additional hardware for error detection
allows us to execute the same instruction twice in a row,
which will be shown to have a positive side-effect of reducing
average power consumption in Section V. Using these register-
comparator structures is similar to what has been done in [10]
for the target-address of control-flow operations. However, we
apply the same technique to all stages which commit results.

3) Error Correction: Error correction is done by refetching
the instruction of which the result has corrupted and flushing
the pipeline. Instruction refetching is facilitated by buffering
the instruction’s address throughout the pipeline. When mul-
tiple results have corrupted, i.e. multiple error signals are set,
priority is given to refetch the instruction which first entered
the pipeline. Error correction by refetching is an improvement
over the works in [10] where only detection is employed.

4) Configurability: As the processor is designed to be part
of a framework, customization is an important factor of the
design, including fault tolerance. By allowing an application
developer to make a trade-off between fault tolerance and
performance, as presented in [9], the processor can easily be
adapted to many applications. It should be noted that such ap-
plications also exist in the biomedical field. For example, more
performance may be required for image or sound processing
(artificial eye or ear) in which temporal error in the processed
data might be acceptable, while other applications (artificial
pancreas, data encryption) may require more fault tolerance
due to the application criticality.

Configuring the degree of fault tolerance can be done using
a new instruction, ft set #, which saves the degree of fault
tolerance in a special register used by the duplication unit.
This is an implementation of one of the two ways of setting the
degree of fault tolerance proposed in [9]. Using this instruc-
tion, we have implemented four duplication policies: “none”,
“CF instr.”, “full CF instr.” and “full instr.”. In “CF instr.”, the
duplication mode is set to duplicate control-flow instructions,
i.e. only the control-flow instructions are duplicated. In “full
CF instr.”, the duplication mode is set to duplicate control-flow
instructions and switches to full duplication when branching
conditions are evaluated. Both these modes are intended to
reduce the performance overhead of “full instr.” or supporting
other (software) fault-tolerance techniques.

5) Parity Bit: One crucial limitation in [10] is the assump-
tion that the original instruction will never corrupt. Indeed, for
our design described so far, this limitation also exists. If the
opcode of an instruction which is intended to be duplicated
corrupts, runtime-duplication would not take place. To tackle
this limitation we add a parity bit in each instruction word that
summarizes the opcode of that instruction. This parity bit is
stored in the instruction memory and is compared to the parity
which is computed at runtime.

6) Shadow PC: While the aforementioned additions guard
against corruption of an instruction or its results (including
control-flow operations), the PC is not covered by this method.
As a fault in the PC will, without a doubt, have a high chance
of causing errors, we add a “shadow” PC to the processor.
This shadow PC mirrors the main PC and both are constantly
compared. If an error occurs, a flag is raised and program
execution is halted. The idea of using a shadow PC is an
implementation of what has been proposed in [10].

B. Fault-Tolerant Design for Hard Faults

While soft faults are by far the most common faults [2]
and are expected to become worse in the coming years [17],
covering hard faults is also required due to the safety-critical
nature of biomedical implants. To guard against hard faults, an
approach is taken using a combination of the methodologies
presented in [5], [4] and [12]. We run a sequence of instruc-
tions native to the ISA in order to generate an expected value
in a register. By comparing this result to a value known at
compile-time, we can determine if part of the processor has
succumbed to any hard faults.

In our implementation, these test sequences replace nops in
the original program, as proposed in [4]. This is very effective
for programs compiled for our architecture, as many nops
exist in the program static binary due to the inherent data-
dependencies in these programs (e.g. 5,219 out of 14,606
instructions in one of our benchmarks) and the dependencies
occurring due to our simplistic, low-power architecture. Note
that while this is a high percentage (35.7%) in the static code,
most nops appear outside the computationally intensive parts
of the program at run-time; for example, loading variables
or retrieving arguments from the stack after a function call.
As such, the processor is not truly stalling for 35.7% of
the execution time. As hard faults occur much less frequent
than soft faults [2], it is not required to test for hard faults
continuously. Therefore, it is acceptable if a sequence is only
executed at e.g., the start of a function.

We run a sequence of instructions, native to the architecture,
and have the result of this sequence be compared to a known
value. Consider, for example, the following code:

mov r1, r0
bneqz r1, #trap

In this code, the program will be redirected to the trap address
in case r1 is not 0. This can be due to a number of reasons,
e.g. a stuck-at 1 fault on r1, on r0, etc.

Since we are interested in architecture-level techniques for
fault tolerance, we model our processor as a gray box using

component-level detail, and apply functional testing. More
structured tests could be employed by using gate-level details,
resulting in smaller test sizes with a higher coverage [12]. The
method we have devised to design the test sequences is the
same as in [5] and is as follows:

1) The activated datapath is determined for each instruction;
2) For each of the instructions, the controllability and ob-

servability of the signals in the processor is determined;
3) Out of all combinations, a test sequence is generated

containing the fewest possible instructions to observe an
expected stuck-at fault, and determine its fault coverage;

4) Step (3) is repeated until all testable paths in the RTL-
schematics of the processor are covered.

In general, the instruction memory is larger than required by
the target application and, therefore, scheduling test sequences
can be done without increasing the size of the instruction
memory, i.e. no hardware overhead is required. If the instruc-
tion memory is not large enough, i.e. the fault coverage of
the scheduled test sequences is not sufficient, increasing the
memory size is always possible for additional cost.

A major disadvantage of using functional testing is, among
others, that, while most (simple) units can be tested quite well,
it is simply not feasible to test more complex units, e.g., ALU
and shifter units, as every input pattern has to be applied in
order to guarantee functional correctness. We have created
functional test sequences which, if lower-level details become
available, can easily be converted to structural test sequences.
By inspecting our processor we have found that all paths, with
the exception of the branch target and branch-result paths,
are functionally testable. In order to test these functionally
untestable paths, we have added custom hardware and one
custom instruction. This custom instruction (br tst #) allows
us to directly operate on the untestable paths.

V. EXPERIMENTAL RESULTS

In this Section, we first present our experimental setup
for evaluating the architecture, after which we present our
experimental results and evaluate our architecture accordingly.

A. Experimental Setup

The experimental setup consists of measuring the fault
coverage, performance, processor area, average power con-
sumption and energy consumption. First, we will present our
processor designs, after which we present our method to
determine these metrics.

1) Processor Designs: We evaluate three designs with
increasing levels of fault coverage as shown in Table I. The
following acronyms are used: I) BL: BaseLine, II) DUP:
instruction DUPlication, III) PCBR: shadow PC and BR tst
instruction and IV) TS: Test Sequences. In the “BL/DUP”
design, most soft faults are tolerated by the instruction du-
plication technique. Complete soft-fault coverage is achieved
in the “BL/DUP/PCBR” design, wherein the shadow PC and
the br tst instruction are added. Note that in this design
the br tst instruction has no purpose, as the instruction is
never scheduled. Finally, hard-fault detection is added by

TABLE I
PROCESSOR DESIGNS

Name Coverage Resources
Soft Soft Hard Instr. Shadow PC, Mem. Size

(no PC) (PC) Dup br tst +100%
Baseline - - - - - -
BL/DUP x - - x - -

BL/DUP/PCBR x x - x x -
BL/DUP/PCBR/TS x x x x x x

test-sequence scheduling in the “BL/DUP/PCBR/TS” design.
Since we cannot accurately measure the fault coverage of
our test sequences (Section V-A3), we choose to double the
instruction memory size for this case. This allows us to replace
all nops in the program and provide insight in the worst-
case performance, area, power and energy consumption. We
choose to only replace nop instructions with test sequences
to demonstrate that hard-fault coverage can be added at a 0%
performance overhead.

2) Soft Faults: To measure the soft-fault tolerance we have
taken the “BL/DUP” design and added a Linear-Feedback-
Shift-Register (LFSR) to generate (pseudo-)random numbers
in the processor (simulation only). For the soft-fault tolerance
it does not matter which soft-fault-tolerant processor design
we evaluate, as each design uses the same fault-tolerance
mechanism. The LFSR is fed by random initial value at test
program beginning. The LFSR is connected to a number of
test sets: I) Instruction Corruption (IC), II) Corruption of data
after the Register File (RF), III) Control Signals (CS), IV) Our
fault-tolerance additions and V) Other Faults, which includes,
among others, the ALU and branch signals. We run 4,000
simulations for each duplication mode and test set in order
to get an accurate estimation of the fault tolerance. Soft-
fault coverage of the shadow PC is evaluated using similar
methodology. However, as the fault-coverage added by the
shadow PC is currently independent of the duplication mode,
we only profile for one duplication mode.

At arbitrary time, a random signal in the fault set gets
replaced by bits from the LFSR. Note that this does not
guarantee an error manifests, i.e. the fault may be masked. We
account for these masked faults by normalizing the determined
fault coverage over the fault coverage (masking) of the Base-
line design. The soft-fault coverage is reported in control-flow
and total errors. Control-flow errors are determined by com-
paring the execution time of the program to the known correct
execution time, while non-control-flow errors are determined
by comparing the result of the program to the known, correct
result. We do not check every resource in the architecture for
correctness, as this would considerably increase the testing
time. The total number of errors is the accumulation of control-
flow and other errors.

3) Hard Faults: Due to timing limitations, we have not yet
been able to create a fault injector for the faults in the design.
As such, testing the hard-fault coverage is done by having a
case study for a variety of faults by manually injecting a hard
fault in the processor design and, after program execution,
determining if the program has reached a #trap address.

4) Overheads: The performance overhead is determined by
calculating the number of cycles required to execute a bench-
mark. For profiling, we have used the MISTY1 encryption
benchmark which is a symmetrical encryption method suitable
for biomedical implants [18].

Due to availability reasons, the design is synthesized for a
UMC 90nm CMOS technology in Synopsys Design Compiler
(DC) using Faraday SP libraries, giving the critical-path delay
and area cost. The design is required to run under 20 MHz
and, therefore, we need to guarantee that critical-path delay
does not violate this constraint. The power and, accordingly,
the energy consumption figures are not accurate in DC as
switching activity of 50% is assumed. In order to obtain
more accurate results, we extract the switching activity of
the processor from running the benchmarks in Modelsim and
this is, along with the synthesized VHDL netlist, passed to
Synopsys PrimeTime (PT). As the libraries are not optimized
for low-power applications, we expect that the power and
energy consumption can further be reduced. To evaluate the
effect of increasing the instruction-word size to add the parity
bit, we have generated and synthesized SRAM memory com-
ponents for the same technology as the processor designs. We
only discuss the area overhead and a first-order approximation
of the power consumption, as we currently do not have an
accurate estimation of the memory-power consumption. Future
work includes a case study on various memory sizes, along
with the system power and energy consumption.

Finally, we introduce a number of compound metrics:
I) Power-Area product, II) Energy-Area product, III) Fault-
Tolerance/Power-Area and IV) Fault-Tolerance/Energy-Area.
Metric I) summarizes the hard constraints of area and power.
Area is important due to the finite size an implant is allowed
to take, while the power consumption (dissipation) is related
to medical conditions such as tissue burns and vessel dilation.
Metric II) summarizes the total overhead of our system, taking
energy and thus battery lifetime into account. Metric III) and
IV) normalize the added soft-fault tolerance to the compound
metrics I) and II) and, thus, show the gain/cost ratio of the
design. In the future we will extend these metrics by also
including hard-fault tolerance and increased memory sizes.

B. Experimental Results

In this Section, we present the results of our experiments
and, due to space limitations, draw general conclusions. Each
result which is expressed in percentages is taken relative to
the Baseline design unless stated otherwise.

1) Soft-Fault Tolerance: Fig. 2 shows the soft-error man-
ifestation for the various duplication policies. Each column
corresponds to the number of soft faults manifesting into
errors, out of which the control-flow errors are depicted as
the solid fill. The various columns correspond to the different
fault sets as introduced in Section V-A2. We have measured
that our fault-tolerance additions are inherently fault tolerant
regardless of the duplication policy and, therefore, they are
not depicted in Fig. 2. First, we will discuss the total amount

0

200

400

600

800

1000

1200

1400

1600

no duplication CF instr.
duplication

full CF instr.
duplication

full instr.
duplication

so

ft
 e

rr
o

rs

Duplication policy

Instruction (CF) Instruction (all) Control signals (CF) Control signals (all)

Register File (CF) Register File (all) Other (CF) Other (all)

Fig. 2. Manifested soft errors.

of soft errors, after which we will take a closer look at the
control-flow errors.

When no duplication is employed, it is observed that only
1,524 out of 4,000 faults result in an error when the fetched
instruction is corrupted. However, as the instruction is read
and used 100% of the execution time, it would be expected
that all faults will manifest into errors. The reason for this
observed behavior is two-fold:

i. The corrupted instruction depends on data currently used
in the pipeline, injecting a stall instead of the instruction
and, hence, no error is manifested;

ii. The result of corrupted instruction is not used, e.g. it
corrupts a register which is never used. Since only the
result of the function is considered, it is possible that
faulty register contents may have slipped past our error
measurement method.

Note that in the last case an error has occurred, but this is
not detected by our testing method. It is expected that more
errors will have occurred, but since we compare our results
to the Baseline design, which is tested by the same method,
we consider this a good approximation of the actual fault
tolerance.

It is obvious from Fig. 2 that the number of manifested
errors decreases with a more fault-tolerant duplication policy.
Here, we describe the most crucial conclusions:

i. The parity bit covers 50% of all instruction corruption, as
intended;

ii. As expected, no control-flow errors occur in the “full CF.
instr.” and “full instr.” duplication policies;

iii. The only errors occurring in “full instr.” are a result
of control-signal faults. While not implemented, control-
signal errors can be prevented by e.g. increasing the
Hamming distance of the control signals; and

iv. From an experiment with “BL/DUP/PCBR”, we have
found that adding the shadow PC adds a fault coverage
of roughly 7.5%.

The total soft-fault tolerance is also reported in Table II,
where column 2 and 3 from the left represent the fault
coverage of the “BL/DUP/PCBR” design, i.e. with a shadow

TABLE II
AMOUNT OF SOFT-FAULT TOLERANCE

Dup. mode All (PCBR) CF (PCBR) All (DUP) CF (DUP)
CF instr. 22.23 % 56.63 % 14.70 % 50.82 %

full CF instr. 41.02 % 99.84 % 33.49 % 94.03 %
full instr. 99.97 % 99.87 % 92.44 % 94.06 %

0

5

10

15

20

25

30

35

40

emptMain
(*10)

keys crc decr / encr total encr.
(thousands)

Ex
e

cu
ti

o
n

 t
im

e
 (

#c
yc

le
s

*1
0

5
)

Benchmark

no duplication (SF) no duplication (SF&HF)

CF instr. duplication (SF) CF instr. duplication (SF&HF)

full CF instr. duplication (SF) full CF instr. duplication (SF&HF)

full instr. duplication (SF) full instr. duplication (SF&HF)

Fig. 3. The number of cycles required to execute the benchmarks for Soft
Faults (SF) and Hard Faults (HF).

PC, and column 4 and 5 represent the fault coverage of the
“BL/DUP” design. As an afterthought, we are able to both
detect and correct a soft fault in the PC with a negligible
overhead by handling it as if a fault has occurred in the decode
stage, i.e. the pipeline is flushed and the PC is reset to the
buffered PC-value as discussed in Section IV-A3. This will be
included in the next version of our design.

2) Hard-Fault Detection: As discussed in Section V-A3,
we have run a number of experiments where a hard fault
is manually injected in the processor. Our experiments have
shown that the sequences cover the paths they are designed
for. A first-order estimation has shown that less than 400
instructions are required to test the processor for hard faults
in case gate-level details are available. Currently, we cannot
determine the fault coverage as we are unable to test the design
exhaustively: We cannot show that I) the test sequences will be
executed in case a control-flow error occurs and II) all hard
faults in more complex arithmetic units, e.g. the ALU, are
covered using functional testing. Future work includes building
a fault injector to accurately measure the fault coverage.

3) Performance: Synthesis results have shown that the
critical path is, roughly, the same in all the processor designs,
i.e. the performance overhead is solely determined by the
number of cycles. Fig. 3 depicts the execution time for the
various functions in our benchmark. The bottom part of each
bar depicts the execution time when no test sequences are
scheduled, while the overall bar represents the execution time
with scheduled test sequences. From this plot, we draw the
following general conclusions:

TABLE III
PROCESSOR AND SYSTEM AREA

Processor Processor Area (#l. cells) System Area (#l. cells)
Baseline (BL) 50292 413966

BL/DUP 61950 (+23.20%) 436196 (+5.37%)
BL/DUP/PCBR 62161 (+23.60%) 439063 (+6.06%)

BL/DUP/PCBR/TS 64817 (+28.88%) 723678 (+74.82%)

i. When no test sequences are scheduled the performance
drop is, at worst, 42%, in “full instr.”. This is unexpected,
as by executing every instruction twice, a performance
overhead of 100% is expected. However, as the duplicated
instructions can be executed when the processor would
normally stall, the performance drop is considerably lower
than the expected 100%;

ii. Without test sequences, the execution time is increased
when a more soft-fault-tolerant duplication policy is fol-
lowed, i.e. more instructions are duplicated;

iii. With test sequences scheduled, the execution time is not
increased when no instructions are duplicated. This is
expected, as we only schedule our test sequences by
replacing nop instructions. This shows that we can achieve
hard-fault coverage at a zero-performance overhead;

iv. When test sequences are scheduled, the performance
overhead of “full instr.” is close to 100%. As the nops
are replaced with test instructions, we can not execute the
duplicated instruction in the timeslot of a nop, causing the
earlier expected performance drop of 100%; and

v. The performance drop of “full CF instr.” is 107% when
test sequences are scheduled. This shows that, while the
policy was intended to have better performance than “full
instr.” at the cost of fault tolerance, the constant switching
between FT modes is not always the most optimal solution
with respect to performance.

The critical-path delay of the parity-instruction memory is
the same as the Baseline-instruction memory and, as such, the
increased memory size will not cause an additional perfor-
mance overhead.

4) Area: Table III shows the processor-area overheads in
number of logic cells for the various processor designs in
column 2 and the processor/memory-area overheads in column
3. It is shown that implementing soft-fault tolerance using
our technique adds a 23.20% area overhead. The highest area
overhead is, as expected, in the most complex design (28.88%
in “BL/DUP/PCBR/TS”).

The second column of Table IV reports the area of the
memories. As the logic for selecting the correct word remains
the same when the word size is increased to 17-bits, the area
overhead is less than 1/17th (+5.12%). Note that both the
instruction and data memory are substantially larger than the
processor area. As such, the increase of the processor areas
in column 2 of Table III has a marginal impact on the system
area in column 3 of Table III. This is most obvious in the
“BL/DUP/PCBR/TS” design, where the instruction memory
size is doubled (“IMEM 17 (x2)” in Table IV).

TABLE IV
MEMORY AREA AND POWER CONSUMPTION

Memory name Area Dynamic power Leakage power
(#l. cells) (µW) (µW)

IMEM 16bit 194353 176.91 346.60
IMEM 17bit 204312 (+5.12%) 185.96 (+5.12%) 371.94 (+7.31%)

IMEM 17bit (x2) 501629 (+131.2%) 429.95 (+131.2%) 873.10 (+139.63%)
DMEM 32bit 157232 106.80 236.02

5) Power and Energy Consumption: The average power
and energy consumption are reported in the leftmost columns
3 and 4 of Table V, respectively, for each processor design
and duplication mode. In general, the following observations
apply:

i. The soft-fault tolerance additions increase power con-
sumption by 18.82% and energy consumption by 14.58%
even when the degree of fault tolerance is zero, i.e. no
instructions are duplicated. This can be explained by the
fact that we have not implemented clock or power gating;

ii. Adding the shadow PC and br tst instruction increases the
power consumption (by around 5%) when no instructions
are duplicated. We expect the shadow PC to be the main
contributor due to the high switching activity of the PC;

iii. Without instruction duplication, the power and energy
consumption of the “BL/DUP/PCBR/TS” design is in-
creased by roughly 15%;

iv. An interesting observation, which is most apparent in the
BL/DUP/PCBR and BL/DUP/PCBR/TS designs, is that
the power consumption is reduced when instructions are
duplicated. By keeping every instruction in the pipeline
for an additional cycle dynamic switching activity is
reduced leading to reduced power consumption. This is
in line with the findings in [11], where a 10% power
reduction is achieved by replacing nops with the previous
instruction, yet not allowing it to commit any result.
We have shown that we can achieve a similar effect
and combine a reduction in power consumption with an
increase in fault tolerance; and

v. While the power consumption varies between duplication
policies, the maximum variation, which occurs between
the “none” and “full instr.” duplication policies, is 10%.
Therefore, the energy consumption increases almost lin-
early with the execution time up to a maximum of
156.55% in the “BL/DUP/PCBR/TS” design.

Columns 3 and 4 of Table IV report the dynamic and
leakage power consumption of the various memories. The
dynamic power consumption of the memories is larger than
that of the processor. We did not expect this since – while
the memories are considerably larger than the processor de-
signs – they should be much less active than the processor.
This can be explained by the fact that DC assumes a 50%
switching ratio and, as such, the approximation is far from
accurate. The leakage power is considerably higher (almost
twice as high) than the dynamic power and, as such, is the
main contributor of the memory-power consumption. As the
reported power consumption is a first-order approximation we
currently do not draw any major conclusions on the system-

power consumption, as the power-consumption figures can
change dramatically in Synopsys PT.

6) Power-Area and Energy-Area: Columns 5 and 6 of Table
V depict the PA and EA compound metrics, respectively, of
our design. It is obvious that as the area for a particular
processor is fixed, the metrics are a linear function of power
and energy consumption. It is shown that the minimum and
maximum PA overhead are 39.16% and 74.33%, respectively.
The EA overhead varies between 35.69% for the simplest
design without any fault-tolerance additions and 217.10% for
the “BL/DUP/PCBR/TS” design in full duplication mode.

7) FT/PA and FT/EA: Columns 7 and 8 show the fault
tolerance, as originally shown in Table II, normalized to the PA
and EA metrics. For comparison, we estimate TMR adds 200%
area and 200% power consumption overhead, i.e. the relative
increase in PA and EA are 800% and, as TMR adds 100% fault
tolerance to our fault model, the FT/PA and FT/EA metrics are
1/8 = 0.13. Self-checking circuits add roughly 100% area [3]
and we assume the power increases similarly, i.e. the FT/PA
and FT/EA metrics are 1/3 = 0.33. We draw the following
conclusions for these metrics:

i. As the fault tolerance is low for the “CF instr.” and “full
CF. instr.” policies, the FT/PA and FT/EA metrics are low
for these duplication modes. The maximum is 0.14, which
is comparable to TMR. While the overheads are much
lower, the added fault coverage is as well, resulting in a
poor gain/cost ratio;

ii. Adding a shadow PC, as is done in the “BL/DUP/PCBR”
design, does not significantly differ from the FT/PA and
FT/EA metrics with respect to the “BL/DUP” design and,
as such, we conclude that adding a shadow PC is an
addition of similar cost as our other low-power additions;

iii. The maximum FT/PA, 0.66, is measured for the simplest
fault-tolerance design (“BL/DUP”). This means that in
terms of area and power overheads, we perform twice as
well than self-checking circuits; and

iv. The best FT/EA ratio is found in the same processor
design / duplication mode and is 0.48, which is better
than both TMR and self-checking circuits.

As such, we conclude that we perform better than both
TMR and self-checking circuits in terms of soft-fault tolerance.
Even when all nops are replaced by test sequences in the
“BL/DUP/PCBR/TS” design, we outperform both TMR and
are on-par with self-checking circuits in terms of FT/PA and
FT/EA. However, self-checking circuits and TMR can also
detect and tolerate hard faults, respectively. Our analysis will
be more conclusive when measurements are done on the hard-
fault coverage, memory overheads and, furthermore, a hard-
fault-recovery mechanism is added to our architecture.

VI. CONCLUSIONS

In this work we have presented a fault-tolerant architecture
for a design framework targeting biomedical applications [1].
Soft faults are tolerated by an instruction duplication tech-
nique, in which all instructions or a subset of instructions
are duplicated. The set of instructions which needs to be

TABLE V
POWER CONSUMPTION, ENERGY CONSUMPTION AND COMPOUND METRICS

Processor Dup. mode Power Energy PA EA FT/PA FT/EA
Baseline none 212.6 (µW) 132.0 (µJ) 10.7 (W*#l.cells) 6.6 (J*#l.cells) - -
BL/DUP none +18.82% +14.58% +40.71% +35.69% - -
BL/DUP CF. instr. +17.50% +35.85% +39.16% +60.88% 0.03 0.08
BL/DUP full CF. instr. +18.80% +49.01% +40.69% +76.47% 0.11 0.14
BL/DUP full instr. +17.56% +77.03% +39.23% +109.65% 0.66 0.48

BL/DUP/PCBR none +23.68% +33.76% +59.40% +81.82% - -
BL/DUP/PCBR CF instr. +22.41% +53.23% +57.76% +97.60% 0.08 0.06
BL/DUP/PCBR full CF instr. +24.17% +60.19% +60.03% +106.46% 0.15 0.10
BL/DUP/PCBR full instr. dup. +16.58% +91.17% +50.25% +146.38% 0.66 0.41

BL/DUP/PCBR/TS none +34.86% +39.72% +74.33% +66.75% - -
BL/DUP/PCBR/TS CF instr. +33.07% +55.33% +71.90% +92.09% 0.02 0.06
BL/DUP/PCBR/TS full CF instr. +26.63% +89.40% +63.27% +134.10% 0.10 0.10
BL/DUP/PCBR/TS full instr. dup. +26.66% +156.55% +63.44% +217.10% 0.61 0.32

duplicated can be set at runtime, allowing a dynamic trade-
off to be made between performance and fault tolerance.
Hard faults are tolerated by running test sequences when the
processor stalls and by hardware additions for functionally
untestable paths. Our techniques have been applied to the
SISC Baseline processor [13] and have been analyzed in terms
of fault tolerance, area, performance, power consumption and
energy consumption as well as a number of compound metrics.

We have shown that up to 99.97% of all soft faults can
be tolerated with affordable processor area and average power
consumption overheads (23.2% and 17.6%, respectively) under
our fault model. The energy overhead is directly related to the
performance and is therefore directly related to the required
degree of fault tolerance. In a setting where both soft faults
and hard faults are assumed to be well-covered (full instruction
duplication with test sequences scheduled in the program),
the energy overhead can be as high as 157%. On the other
hand, the energy overhead can be as low as 40-60%. when
no fault-tolerance is required. The overheads in power and
energy consumption could be reduced if e.g., clock gating is
employed. In short, the area and power consumption overheads
are acceptable, in particular when compared to the amount of
faults covered. As such, we conclude that our techniques are
suitable for (ultra-)low-power architectures.

It has been shown that the performance and energy con-
sumption are the major overheads in our architecture. How-
ever, a trade-off can be made between performance and fault
tolerance, both at processor-design time, compile time and at
runtime (through instruction level configurability). We believe
that due to the high portability of our techniques, the low-
power-consumption overhead and the easy and dynamic con-
figuration make our architecture viable for a design framework
targeting future biomedical applications.

REFERENCES

[1] Smart implantable Medical Systems, http://sims.et.tudelft.nl/, Consulted
on 25/09/2011.

[2] Johnson, B.W. The Electrical Engineering Handbook. CRC Press LLC,
2000, ch. 93.1-93.4, ISBN: 978-0849385742.

[3] A.P. Kakarotmta, V. Spiliotopoulos, S. Nikolaidis, C.E. Goutis. COSAFE:
efficient safety-critical portable system design approach. IEEE Interna-
tional Workshop on Biomedical Circuits & Systems, 2004, pp. 13 - 16.

[4] Saeed Shamshiri, Hadi Esmaeilzadeh and Zainalabdein Navabi.
Instruction-Level Test Methodology for CPU Core Self-Testing. ACM
Transactions on Design Automation of Electronic Systems, vol. 10, pp.
673 - 689, 2005.

[5] Nektarios Kranitis, Antonis Paschalis, Dimitris Gizopoulos and George
Xenoulis. Software-Based Self-Testing of Embedded Processors. IEEE
Transactions on Computers, vol. 54, pp. 461 - 475, 2005.

[6] N. Oh, P.P. Shirvani and E.J. McCluskey. Error Detection by Duplicated
Instructions in Super-Scalar Processors. IEEE Trans. Reliability, vol. 51,
no. 1, pp. 63 - 74, Mar. 2002.

[7] Reis, G.A.; Chang, J.; Vachharajani, N.; Rangan, R.; August, D.I. SWIFT:
software implemented fault tolerance. Code Generation and Optimization,
pp. 243 - 254, 2005.

[8] M. Franklin. A Study of Time Redundant Fault Tolerance Techniques
for Superscalar Processors. IEEE Int. Workshop on Defect and Fault
Tolerance in VLSI Systems, pp. 207 - 215, 1995

[9] Demid Borodin, B.H.H. (Ben) Juurlink and Stamatis Vassiliadis.
Instruction-Level Fault Tolerance Configurability. ICSAMOS, pages 110
- 117, 2007.

[10] Roshan G. Ragel and Sri Parameswaran. Hardware Assisted Pre-emptive
Control Flow Checking for Embedded Processors to improve Reliability.
Proceedings of the 4th international conference on Hardware/software
codesign and system synthesis, pp. 100 - 105, 2006.

[11] Pejman Lotfi-Kamran e.a. Dynamic Power Reduction of Stalls in
Pipelined Architecture Processors. International Journal of Design, Anal-
ysis and Tools for Circuits and Systems, vol. 1, pp. 9 - 15, June 2011.

[12] Wei-Cheng Lai and Kwang-Ting (Tim) Cheng. Instruction-level DFT
for testing processor and IP cores in system-on-a-chip. Proceedings of
Design Automation Conference, pp. 59 - 64, 2001.

[13] D. Siskos. A Co-processor for a Secure Implantable Medical Device.
MSc Thesis, March 2011.

[14] M.L. Bushnell and V.D. Agrawal. Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits, 2000.

[15] Albert Meixner, Michael E. Bauer and Daniel Sorin. Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores. Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture , pp.
210 - 222, 2007.

[16] Wei-Cheng Lai, Angela Krstic and Kwang-Ting (Tim) Cheng. Test
Program Synthesis for Path Delay Faults in Microprocessor Cores. ITC
International Test Conference, pp. 1080 - 1089, 2000.

[17] Shekhar Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro, pp.
10-16, Nov.-Dec. 2005.

[18] C. Strydis and D. Zhu and G.N. Gaydadjiev. Profiling of symmetric
encryption algorithms for a novel biomedical-implant architecture. ACM
International Conference on Computing Frontiers (CF’08), pp. 231 - 240,
5-7 May 2008.

	försättsblad IEEE2012
	174074

