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Abstract

Space-Time Adaptive Processing (STAP) enables very high performance radar processing
but comes at a high price of computational requirements and can reach up to hundreds
of TFLOPS. This makes it difficult to implement for limited spaces with low power con-
sumption.

This thesis investigates the possibility to implement STAP in an FPGA with focus on
the detection algorithm known as Kelly’s Generalised Likelihood Ratio Test (GLRT). One
of the main goals of the implementation was scalability and parallelism since the technology
of the present time is not power efficient enough. A solution that is scalable and can utilize
parallelization is possible to distribute over a larger device when the technology is present.
Another goal was the comparison of fixed and floating point number representation in
terms of performance and power.

The final design was implemented on a Xilinx Virtex-7 FPGA for both single precision
floating point and 32 bit fixed point number representation. Three different design solu-
tions were implemented. The final design resulted in a performance of 23.2 GFLOPS/W
for the floating point design, 34.3 GFIOPS/W for the fixed point implementation using
IP cores and 39.3 GFIOPS/W for the pipelined solution. Existing performance results
from NVIDIA GTX 260 GPU the performance is 5.1 GFLOPS/W and for the FPGA
co-processor Anemone the number is 19.2 GFLOPS/W.

The solution is scalable and the conclusion is that it is likely that an FPGA solution
would be suitable for STAP when the technology exist. However, the support for floating
point in the tools need further development to be competitive with the fixed point imple-
mentations.
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1. Introduction

This thesis studies parts of the Space-Time Adaptive Processing (STAP) technique for
airborne radar systems. This chapter aims to give an introduction to radar systems and
especially STAP and explain why this thesis is of interest, what has been done, how and
the parts left out.

1.1 Background

Radar systems are used for detecting and tracking objects by using an antenna to send
and receive radio waves. The basic function and design of a radar system is illustrated in
Figure 1.1 where the antenna emits a radio wave generated in the transmitter. Between
two pulses, the receiver listens for the echo of the signal. A small part of the energy in the
transmitted radio wave is reflected off the potential target in the direction of the receiver.
This small part that bounces back is to be detected among clutter, jamming and other
noise and for this, the incoming signal has to be processed to detect the target.

Transmitter

Receiver

Output to signal processing

Emitted wave

Reflected wave

Figure 1.1: Illustration of the basic principle of a radar system.

The history of radar originates in 1886 when Hertz demonstrated the reflection of radio
waves but it was not until the 1930s that the radar development accelerated [1]. After
World War II the development focused on things not present or completely working in the
radar systems during the war, such as the use of the Doppler effect in the moving target
indication (MTI) radar and the electronically steered phased array antenna for rapid beam
steering [2].

Applications for radar are many: Military, traffic control with radar speed meters,
Air Traffic Control (ATC), navigation and ship safety among others [2]. For airborne
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CHAPTER 1. INTRODUCTION

radar systems the interference of clutter, jamming and noise is an even bigger problem
than to the systems on ground, due to that the platform is in motion. To handle this
and suppress clutter while detecting the target, advanced signal processing is used. One
way to perform this advanced signal processing is to use Space-Time Adaptive Processing
(STAP). In STAP the input is sampled in both time and space and correlated to achieve the
desired result. When using STAP, the beamforming block is adaptive and calculate weights
depending on the inputs to suppress the clutter and jamming and improve detection
of targets by steering the main lobe direction. By expanding the radar called Active
Electrically Scanned Array (AESA) with STAP, the radar performance can be improved.

The drawback of the STAP system is the enormous amount of calculations needed to
provide full functionality. Computational demand in a STAP system is in the range of 1
GFLOPS to 50 TFLOPS, but can easily scale up to 100 TFLOPS and above depending
on the system [3]. This makes it hard to implement the radar system using STAP in an
energy efficient way while meeting the constraints of the limited space available for the
system in an aircraft.

While the algorithms used in STAP are extremely computational heavy, they are also
parallelizable making them suitable for implementation on parallel computer systems such
as many-core processors or microprocessor arrays [4].

1.2 Purpose

For airborne applications and especially smaller air crafts, some of the issues with using
STAP is the limited space and power consumption. A radar system using STAP is required
to fit in the same space as the current radar systems and also consume a reasonable amount
of power. For this to be achievable a specialized signal processing solution is required.

The technology available at present time is not able to meet the performance require-
ments for the system. With the evolution of computer systems in mind, it is most likely
that the required technology will exist in the near future.

The purpose of this thesis project was to investigate the possibility to parallelize and
implement STAP algorithms using FPGAs. The goal was to reason about the suitability of
FPGA for implementation of STAP. This was done by suggesting a scalable design by im-
plementing parts of STAP. The design tests the implementation of fixed point and floating
point number representation and for different technologies. In addition, this thesis also ex-
amined how suitable FPGAs are for implementation of a STAP system compared to other
devices such as many-core processors, graphic processor units (GPU) and microprocessor
arrays.

1.3 Scope and Limitations

The thesis limits the implementation to parts of the STAP, focusing on some of the algo-
rithms. The evaluation is based on the suitability to use an FPGA for partial implemen-
tation of the signal processing system. The work of this master thesis project is limited
to look at one particular detection algorithm used in STAP, namely Kelly’s Generalized
Likelihood Ratio Test (GLRT). Other detection algorithms have not been studied and
evaluated for this kind of implementation. All data and input signals are floating or fixed
point numbers represented with a maximum of 32 bits. Double precision floating point
number representation is not handled in this thesis.

The theoretical system was considered a very high performance system intended for a
smaller aircraft, why the assumption was made that computational performance required

2



1.4. METHOD

approximately 100 TFLOPS. Also due to the limited space in the aircraft, power consump-
tion was assumed to be limited. A reasonable assumption was that the power consumption
should not exceed that of a high performance home computer, approximately 400 W.

1.4 Method

To fulfill the goals of this thesis, a thorough literature study was done to provide good basic
knowledge of radar system as well as the relevant theory for the algorithm. The literature
study was followed by an analysis of Kelly’s GLRT detection algorithm to isolate the most
computational parts to evaluate the suitability for parallelization.

After determining which parts of the algorithm that would benefit the most from
parallelization, an implementation in VDHL was designed. The design was implemented
by using a bottom-up approach for the ability to eliminate bottlenecks in an early stage
as well as individual component testing and verification. The solutions were designed for
both fixed point and floating point number representation and implemented for two target
FPGAs, Virtex-5 and Virtex-7, focusing on the Virtex-7 device. This resulted in three
individual designs created from the same structure. Two tools were used for synthesis,
Synplify Pro and Xilinx ISE XST and the design suite Xilinx ISE was used for mapping,
placement and routing of the hardware. Xilinx’s XPower was used to estimate power
consumption. A testbench was built and used to verify the designs.

The results were evaluated and fixed point was compared to floating point to give the
most efficient design. The different technologies were also compared to one another.

The structure of the report follows the work method with some basic radar theory and
signal processing for radar systems, followed by the mathematical theory behind the STAP
algorithms. The algorithms are further analysed in chapter 4 to parallelize the different
parts of the algorithm. The following part of the report is the implementation and design
work and the corresponding result. In the end, the results are compared to other parallel
solutions and discussed even further in the discussion chapter. The report ends with the
conclusion and suggestion for future work.
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2. Radar Fundamentals

This chapter deals with the relevant theory of this thesis. The first part describes basic
radar theory to give a basic knowledge of radar systems used today and also to provide
background information about how the Active Electrically Scanned Array (AESA) anten-
nas operates in a radar system. It is briefly described how to steer the beam by Digital
Adaptive Beamforming (adaptive DBF). The second part of the chapter describes signal
processing for such radar systems, both in the conventional way but also elaborates on
Space-Time Adaptive Processing (STAP).

2.1 Basic Radar Theory

The word radar means, and is originally an acronym for, radio detection and ranging.
Radar systems use radio waves to detect objects and determine distance as well as relative
speed. The radar system antenna emits pulses of radio waves that are reflected by the
object. Some of that energy is reflected back to the radar system. This energy is processed
and used to determine both distance to the object and a potential direction and velocity if
the object is in motion. The radar system can be designed in many different ways, using
different types of antennas that can be controlled and steered in different ways.

2.1.1 Range and Velocity Determination

The amount of energy that is reflected back to the radar system is given by equation (2.1).

Pecho =
PmAeσG

16π2R4
(2.1)

Pm is the power of the transmitted wave, Ae is the effective aperture area of the antenna
in square meters, G is the antenna gain, σ is the radar cross section of the target in square
meters and R is the range [1][2]. This equation is known as the radar equation or the
radar range equation and as seen, the energy received from the echo is attenuated ∼ 1

R4 .
Even though the radar equation is quite complex, the determination of the distance to an
object is following a simple formula. The radio wave in air basically has the same velocity
as light. The range or distance to an object can therefore be calculated from equation
(2.2) below.

R =
ct

2
(2.2)

Where R is the range, c is the velocity (3 ∗ 108m/s) and t is the roundtrip time interval
between a transmitted wave and the reflected wave. The range information stored in the
reflected wave can be illustated according to Figure 2.1.
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CHAPTER 2. RADAR FUNDAMENTALS

Range Information in reflection0

R

Energy

Figure 2.1: Energy and range information from two different moving targets.

However, the number of pulses transmitted per second, called the pulse repetition
frequency (PRF ) might give a misleading range, indicating that an object is closer to the
system that it really is. This happens when an echo from the object arrives after a new
pulse has been transmitted. The PRF gives the system a maximum distance to assure
that the echo does not arrive after a new pulse has been transmitted. This maximum
distance is determined by equation (2.3) [2][5].

Rmax =
c

2PRF
(2.3)

Objects that appear in the radar beam within that range are to be detected even when
the object might be in motion. In that case, it is of interest to determine the direction
and velocity of that object. This is done using the Doppler effect. The frequency of the
reflected wave is altered depending on the velocity and direction of the target in motion.
The result from this measurement is the velocity of the object relative to the radar system.
If an object is moving away from the radar system, the reflected signal contains a lower
frequency compared to the signal emitted from the radar and if the object is moving
towards the system the frequency increases. This is briefly illustrated in Figure 2.2.

2.1.2 Active Electronically Scanned Array (AESA)

A radar system can use different antennas depending on it purpose and it can consist
of one antenna element or arrays of many, smaller antenna elements. The latter can
be divided into ones that share a single transmitter and receiver source and the ones
where every single antenna element has an individual source. The radar can control its
beam by mechanically moving parts or by electrically steering the beam by controlling
and shifting the phase and amplitude of the wave. Electrically steering the beam makes
the system more complex, but gives the possibility to change direction of the beam very
fast without moving any parts. AESA is the type of radar that uses a large number
of antenna elements arranged as a planar array and is also known as the active phased
array radar. The antenna elements are steered by adjusting the phase and amplitude of
the waves [6]. This method of steering the antenna elements electronically results in no
mechanical motion, which makes it possible to change the direction of the beam very fast

6



2.1. BASIC RADAR THEORY

Doppler Information in reflection

Energy

0

f

Figure 2.2: Energy and doppler information from two different moving targets.

compared to mechanically scanned arrays (MSA). Each antenna element has an individual
transmitter and receiver and the beam is steered by adjusting the relative phases of the
pulses sent out from different antenna elements. The main lobe direction is where they
interfere constructively with each other. This is illustrated in Figure 2.3. The active part

Figure 2.3: Illustration of AESA beam forming.

of the AESA means that not only does the antenna elements have individual transmitters
and receivers, they also have individual radio frequency (RF) sources [2]. This makes
each element capable of generating and emitting its own independent signal and divide
the beam to a number of sub-beams if desired. With this structure every single antenna
element is basically a miniature radar system.

7



CHAPTER 2. RADAR FUNDAMENTALS

2.2 Signal Processing for Radar

Radar signal processing is a vital part of the radar system. Signals reflected from the
targets are attenuated and the presence of jamming and clutter further distort the signal.
Figure 2.4 describes the signal processing chain in a simplified way, showing the most
important steps from signal reception to detection. This section briefly describes these
signal processing steps.

DBF
Signal 
Clutter

Filtering

Pulse 
Compression

Doppler
processing

FFT

Detection

A
N
T
E
N
N
A

Figure 2.4: The signal processing chain for a radar system in a simplified way.

2.2.1 Digital Adaptive Beamforming

The steering of the radar beam, called beamforming is an other name for spatial filtering
where the antennas can be steered by digital or analog signal processing. The analog
method was both expensive and fragile due to the components used, so modern systems
usually performs beamforming digitally [6].

To steer the beam the beamformer controls phase and amplitude of the antenna el-
ements. This can be done in an adaptive way, where the received signals are used to
calculate so called weights that makes it possible to follow a target and steer the beam in
the desired direction. The digital adaptive beamforming is illustrated in Figure 2.5.

Signal processing

Weight calculation
for each 

antenna element

Steering

Main lobe

Side lobes

Antenna element

Figure 2.5: Adaptive beamforming using AESA and STAP.
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2.2. SIGNAL PROCESSING FOR RADAR

2.2.2 Pulse Compression

Since the radar signal is attenuated ∼ 1
R4 , which can be seen in (2.1), one of the essential

parts of the signal processing chain is pulse compression in order to obtain a pulse with
higher energy density. In the pulse compression step, the received signal is filtered through
a matched filter which achieves the highest response when the received signal matches the
transmitted signal. Figure 2.6 illustrates the received signal before and after the pulse
compression. The main purpose of the pulse compression is to take all energy from a
target and store in a single range bin.

Matched
Filter

Figure 2.6: Pulse compression through matched filter.

2.2.3 Clutter Filter

The clutter filter is used to attenuate clutter caused by reflection against the ground etc.
Figure 2.7 illustrates an implementation of a MTI-filter used for clutter reduction. The

MTI-filter
x(t)

+

- y(t)

Figure 2.7: MTI-filter for clutter reduction.

filter is simply a high-pass filter that removes frequencies at and near the zero-Doppler
frequency.

2.2.4 Doppler Processing

The Doppler processing consist of transforming the pulse-samples (slow time) into Doppler
channels. The reason is to determine the relative speed of a potential target compared
to the platform. The doppler effect changes the frequency of the signal received by the
antennas depending on direction and speed of the target. The doppler effect combined
with a filter bank contaning digital FIR filters results in the desired information [7]. This
is done using the Discrete Fourier Transform (DFT) which can be implemented with
the computational efficient Fast Fourier Transform (FFT). The DFT/FFT tranforms the
pulses into Doppler channels according to Figure 2.8.
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Range Bin (fast time)
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Figure 2.8: Transformation of Pulse to Doppler channel.

As illustrated by Figure 2.8 the Doppler processing improves the signal to noise ratio.
This is due to the fact that the phase shift of the pulses in slow time is added constructively
while the noise is added in random in the Fourier transform.

2.2.5 Detection

Techniques for detection of a target can be done in many ways. A common process is
Constant False Alarm Rate (CFAR) detection. CFAR refers to a detection process that
estimate data placed nearby a cell to calculate a threshold used to determine if a target
is detected in the cell studied [1]. If the cell contains a value greater than the threshold
it might contain a target. Traditional CFAR is not adaptive, but designed with the
assumption of a constant noise and interference level. Especially when the platform is in
motion, the CFAR need to be adaptive to provide useful information.

2.3 Space-Time Adaptive Processing

The principle of STAP is much like the signal processing described in the previous section,
but in STAP the received signals are being processed in a space-time clutter filter. This
filter is adaptive to remove the clutter from the signal in the most suitable way for that
particular signal. The signal continues to a matched space-time filter that uses the adaptive
DBF cascaded with a doppler filter bank that process the signal used in a test algorithm.
The algorithm compares the output to a detection threshold to indicate when a target is
detected [8].

The main difference between the traditional and STAP radar systems is therefore the
algorithms for filtering the input signals and the adaptive feedback for weight calculations
to optimize detection and suppress clutter, jamming and other noise.

Radar systems implemented using AESA radars apply the phase shift of each individual
antenna element and sums the input signals providing one single input signal. The STAP
processing keeps all the signals separated instead to provide statistical data to effectively
filter out clutter and jamming signals.

There are a number of different adaptive detectors that can be used in STAP, each
with its own detection algorithm. In the literature, 4 main detectors are mentioned apart
from CFAR. They are the Adaptive Matched Filter (AMF), Kelly’s Generalized Likelihood
Ratio Test (GLRT), Adaptive Cosine Estimator (ACE) and Adaptive Sidelobe Blanker

10



2.3. SPACE-TIME ADAPTIVE PROCESSING

(ASB) [9]. All 4 uses an estimated space-time covariance matrix in the detection algorithm.
This thesis is limited to study only Kelly’s GLRT.

In a STAP system, the signals are sampled in both space and time domains and
performing the signal processing in this way is powerful. The suppression of jammer,
noise and clutter can be even more effective when using the correlations between the two
domains [10]. The benefits gained in STAP has a drawback in the computational load
that needs a solution before a STAP system can be implemented and used in an airborne
platform.

The following chapter describes the theory for STAP and Kelly’s GLRT further and
focuses on the critical parts of the signal processing chain.

11



CHAPTER 2. RADAR FUNDAMENTALS

12



3. Algorithm introduction for
STAP

This chapter further discusses the mathematical theory used in the computational algo-
rithms of STAP and explains the different steps of Kelly’s GLRT detection algorithm.
First a thorough description of Kelly’s GLRT is presented, followed by a description of
the estimated covariance matrix used in STAP.

3.1 Kelly’s Generalized Likelihood Ratio Test (GLRT)

The GLRT algorithm utilizes statistics to attenuate clutter, jamming and noise signals.
For each new sample x, the algorithm is calculated with the corresponding estimated
covariance matrix R̂−1 in conjunction with all steering vectors s. Due to mathematical
manipulation in combination with the number of spatial channels these calculations result
in high demand of computational performance. The immense amount of data results in
computational needs that are very large in comparison to regular radar processing used
today. Kelly’s GLRT algorithm is defined by (3.1) and is a function of the covariance
matrix R̂−1 described further in chapter 3.2.

tKelly =

∣∣∣sHR̂−1x
∣∣∣2(

sHR̂−1s
)(

K + xHR̂−1x
) (3.1)

Analysing parts of the algorithm, the covariance matrix R̂−1 is a square matrix of the
dimensions M×M , the steering vectors sH is a M×1 vector and s and x a 1×M vector. K
is the number of adjacent range bins used for covariance matrix estimation. The detector
algorithm consists of the three computations below

sHR̂−1s (3.2)

∣∣∣sHR̂−1x
∣∣∣2 (3.3)

K + xHR̂−1x (3.4)

3.2 Covariance Matrix

One of the important steps in STAP signal processing include the calculation of the inverse
covariance matrix, R̂−1

sp , which is used to filter the received signals. The matrix is estimated
using test statistics obtained from the sampled signals.

13
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The covariance matrix is estimated by weighting the matrix product of the input signal
vectors x multiplied with their hermitian conjugate xH , for all so called snapshots r0. The
resulting matrix is the sum of the products for all N snapshots from the input vector and
a number of adjacent input vectors, described in (3.5).

R̂sp =
1

N

r=r0+N−1∑
r=r0

xH
r xr (3.5)

After forming of the covariance matrix it is inverted followed by forming a matrix
that is the Kronecker product of the inverted covariance matrix and an identity matrix,
described in (3.6) and (3.7). The Kronecker product forms a matrix R̂−1 that is a square
matrix of dimensions M×M which matches the length M of the steering vectors s and
samples x and is illustrated in Figure 3.1. This is the matrix used in Kelly’s GLRT
described in the previous section.

R̂sp → R̂−1
sp (3.6)

R̂−1 = R̂−1
sp ⊗ IL (3.7)

R-1^

R-1^sp

R-1^sp

R-1^sp

R-1^sp

(MxM)

Figure 3.1: The resulting matrix R̂−1, consisting of smaller matrices placed diagonally in the larger
matrix.
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4. Algorithm Analysis

This chapter examines possible ways to parallelize different parts of the algorithm. The
algorithm is fortunately very parallelizable and uses relatively few input values for output
calculation, which limits memory bandwidth when implementing for an FPGA since most
of the data can be kept on chip. For the implementation to be applicable and functional
it needs to be scalable as well as able to efficiently use most of the available resources on
the chip. The investigations are made to make the most suitable choice of the parts that
are intended for implementation.

4.1 Kelly’s Generalized Likelihood Ratio Test

Looking at the equations in chapter 3.1, it is obvious that Kelly’s GLRT detection algo-
rithm is very parallelizable. However, the calculations need to be done for every combi-
nation of data input samples x and steering vectors s. In addition to this, the covariance
matrix needs to be updated with a certain frequency according to (3.5) in section 3.2.

4.1.1 Matrix Calculations - sHR̂−1

Since the matrix R̂−1 is the Kronecker product of the N×N covariance matrix R̂−1
sp and

the LxL identity matrix IL, the elements of the resulting vector sH ∗ R̂−1 ≡ z are the
vector-matrix products of Nsp long vectors multiplied with with the Nsp×Nsp sized matrix

R̂−1
sp . This is due to the fact that all elements in the R̂−1 are zero outside of the diagonally

spaced covariance matrix R̂−1
sp . Because of this it is possible to divide the vectors z and sH

into L vectors of length Nsp as illustrated by Figure 4.1 and equations (4.1),(4.2), where
each of the vectors zi is calculated according to (4.3).

Nsp

SH

1 2 L

R-1^
sp

NspxNsp

SH

SHR Module

SH

SH

SH

1

2

L

i

i = 1,2,...,L

Figure 4.1: Dividing the steering vector and perform smaller matrix multiplications.

sH =
[

[sH0 ] ... [sHi ] ... [sH(L−1)]
]

(4.1)
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z =
[

[z0] ... [zi] ... [z(L−1)]
]

(4.2)

zi = sHi R̂−1
sp (4.3)

This makes it possible to divide the calculation of (4.2) into a subset of matrix calcula-
tions for the partial vectors sHi , where each of the vectors are multiplied with the covariance
matrix. By dividing the calculation of an entire matrix in this way, it is possible to paral-
lelize and reuse data by performing several calculations using the same covariance matrix
in parallel.

Another way to parallelize the calculations are by performing several of the multiplica-
tions for one single matrix at the same time, either by multiplying one row of the matrix
with the corresponding element in the vector or multiplying one vector column by column
in the matrix.

Using the first approach would be to focus on one row in R̂−1
sp and multiplying with

the corresponding element in sHi at the same time. After M iterations all multiplications
are done and the resulting vector is calculated by adding the product elements from the
same column in R̂−1. The Nsp first elements in z will be presented at the same time, and
a new block of Nsp elements will arrive after Nsp iterations of multiplying and adding the
products together.

If the parallelization instead is designed after the columns in R̂−1
sp , the multiplication

can be performed for all elements of a vector sHi in parallel, performing all multiplications
needed for an element in z. This results in a new element ready each iteration consisting
of the Nsp multiplications followed by accumulation the products. The resulting vector z
needs M iterations using this method. The only thing that differ is that a new element
is calculated each iteration. Figure 4.1 illustrates how this matrix multiplication can be
divided by performing subsets of multiplications.

Using either one of the two methods described above, it is possible to parallelize it even
further. This can be done by performing all multiplications done to the same column or
row, at the same time, which would correspond to the entire vector matrix multiplication
in parallel.

4.1.2 Remaining parts of Kelly’s GLRT

The products of sHR̂−1s and sHR̂−1x result in a scalars. The multiplications are possible
to perform in parallel, but are not performance critical operations for the algorithm since
the computational load for these operations are not that heavy compared to the sHR̂−1

described in section 4.1.1.

The last part of the GLRT algorithm is K + xHR̂−1x. All steering vectors are to be
used for every single input data x, why this step is only to be calculated one time and
then can be kept constant for the rest of the calculations. This is a result from having a
large number of steering vectors that all shall be applied on the input data. The resulting
product of this calculation is also a scalar due to multiplication with the conjugate.

4.2 Covariance Matrix

The covariance matrix R̂sp and the inverted matrix R̂−1
sp is described in section 3.2. Each

matrix product constituting the final matrix R̂sp is simple to parallelize since it is simply
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N×N products of N+N input values according to equation (3.5). In practice, the esti-
mation of the covariance matrix is done in blocks of samples xr. Due to a relatively small
amount of calculations, this implies that the computational load for the covariance matrix
and its inverse is quite small compared to the following steps of STAP and thus, is not
further analyzed in this thesis.

4.3 Fixed and Floating Point Number Representation

The choice of fixed or floating point number representation is also of importance when
working with digital signal processing. When representing the data in a specific number of
bits, this may result in some differences that the designer needs to be aware of. Floating
point arithmetics provide much higher dynamic range and precision, especially for small
numbers, compared to fixed point. Due to the ”fixed” placement of the decimal point in
the use of fixed point, the gaps between two adjacent numbers can be larger compared
to floating point. When performing calculations in the digital signal processing the result
must be rounded to the nearest value in the number representation used. This yields for
larger rounding errors when using the fixed point number representation [11].
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5. Hardware and Tools

Depending on the target hardware and the tools used for implementation, the results from
the same design can differ. Therefore, it is of importance to have knowledge about the
tools and technology used. There are a number of vendors on the FPGA market and
this chapter describes the target hardware for this design as well as the tools used for
synthesizing and mapping the design onto the specific target hardware.

5.1 Target Hardware

The implementations are synthesized against two target hardware platforms, Xilinx’s
Virtex-7 and Virtex-5. The Virtex FPGA is Xilinx’s top-of-the-line FPGA with version 5
beeing 4-5 years older than version 7. The main differences are as follows

Table 5.1: Comparison of Virtex-5 and Virtex-7 hardware characteristics.

Virtex-5 Virtex-7

# DSP slices 1,056 3,600

# logic slices 37,440 153,000

# 36kb block ram 516 1,500

# user I/O 960 880

The increase of 1,056 DSP slices to 3,600 result in 3 times as many multipliers. The
logic slice for Virtex-5 contains 4 Look Up Tables (LUTs) and 4 flip-flops (FFs), while
the Virtex-7 device contains 4 LUTs and 8 FFs. This gives an even bigger boost of the
number of FFs when going from Virtex-5 to Virtex-7. The actual numbers for LUTs and
flip-flops are presented in Table 5.2.

Table 5.2: Comparison of Virtex-5/7 LUTs and flip-flops.

Virtex-5 Virtex-7

# LUTs 149,760 612,000

# FFs 149,760 1,224,000

5.2 Synthesis Tools XST and Synplify Pro

Xilinx provides its own tool for synthesis delivered within ISE, called Xilinx R© Synthesis
Technology (XST). XST is a tool that synthesizes the VHDL code and creates a Xilinx-
specific netlist file. This is done by checking the code for syntax errors, performing a HDL
synthesis where the code is analysed and if possible transformed into building blocks or
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macros (MUXes, RAMs, adders and subtracters)[12]. In this step of the synthesis XST
also performs a resource sharing check to reduce the amount of macros and increase the
clock frequency while reducing the area. When this is done, a low level optimization is
performed. In this step XST transform the design created in the HDL synthesis to a
technology-specific implementation. The tool is to be used for Xilinx platforms, such as
Virtex-5 and Virtex-7. The drawback of this tool is that the design becomes technology
dependent and it is not possible to use this netlist on platforms from other vendors.

If Synopsys Synplify Pro is used for synthesis instead, the result is a design with a multi-
FPGA vendor support. Synplify Pro also checks the code for syntax errors before using
the Behavior Extracting Synthesis Technology (BESTTM) algorithm to find structures
such as RAMs, MUXes and arithmetic operators and turn them into building blocks or
macros, just like XST. The design is optimized and finally mapped to technology-specific
components. When this is done, it generates a netlist used for placement and routing.
The advantage of Synplify Pro is that it it possible to use the same tool for synthesis even
when the design is to be mapped onto another technology.

The two tools use different algorithms when performing the synthesis and optimization,
and even when the same design is synthesised and to be mapped to the same target
platform, the result after synthesis can differ.

5.2.1 Synthesis Attributes

For the ability to control which logic elements are inferred when writing VHDL code,
synthesis attributes can be set to force the synthesis tool to use a specific kind of logic
element. Synthesis attributes set constraints to force the synthesis tool to optimize and
translate a piece of HDL code or a complete design in a specified way. To use the attributes
in an efficient way, the designer needs knowledge of both the hardware target as well as
the synthesis tool. By using attributes, the designer can specify how the synthesis tool
should translate a certain piece of code [13]. If the designer wants to implement a specific
component on a DSP slice instead of logic to increase speed the use dsp48 attribute for
XST can be used [14]. For Synplify Pro the attribute is called syn dspstyle when designing
with Xilinx [15]. As an other example Synplify Pro has difficulties inferring shift registers
and generates slow logic for Xilinx devices. By setting an attribute to infer a Xilinx
SRL primitive this problem can be avoided. Xilinx XST tool can also for instance move
registers across connected DSP units in an unfavorable way, which also can be avoided by
setting synthesis attributes. By using attributes the designer can optimize the design for
a certain purpose and gaining a better result from a tool that usually is not optimal for
this design.

5.3 Design Suite Xilinx ISE

MAP and PAR are programs in the design suite Xilinx ISE. The tool supports the Virtex-7
platform and is able to generate bitfiles to this hardware. These programs map the design
to the hardware and place and route the design. There are a number of options that the
designer need to consider to make the tool map, place and route the design in the most
efficient way. In a design where speed is of importance, some of these options can be set
to make the tool optimize for speed. An example is the overall effort level that can be set
to high when running PAR. The runtime during PAR will then increase, but the quality
of the result will be better in the aspect of timing. The PAR is set to place and route the
design based on timing constraints set in a constraints file. A design with high demands
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on speed might have a very short period time set as a constraint and one risk with the
tool is that it draws the conclusion that it is not possible to meet the constraints. This
might lead to the tool basically giving up. If the timing constraints are set to a slightly
higher period time, the maximum frequency can be higher because the tool does not give
up as easily in that case.

Xilinx’s tool XPower which is also a part of ISE has been used for estimation of power
consumption.

5.4 DSP Slices, the Basic Building Block for Arithmetics

When designing arithmetic functions in VHDL that are to be implemented on an FPGA,
the usual choice of implementation is by using DSP slices. The available DSP slices
of an FPGA provide fast computation of both multiplications, addition/subtraction or
multiply and accumulate operations. The DSP slices consist of fixed size multipliers and
accumulators, so when the number of bits in the operands exceed that of the DSP slice,
multiple slices can be cascaded in order to achieve the same functionality.

Figure 5.1 shows the DSP slice present in Xilinx’s Virtex-5, which consists of a 25×18
bit signed multiplier and a 48 bit accumulator. Newer Virtex devices contain the improved
DSP48E1 slice introducing new features and improved operation frequency.
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Figure 5.1: DSP48E1 slice present in the Virtex-5 FPGAs, figure from [16].

For implementation of 32-bit fixed point multiplication using the DSP48E/DSP48E1
slices, a total amount of four slices are used in order to provide the results. Figure 5.2
illustrates the cascaded setup of a 32-bit signed multiplication where Figure 5.2a repre-
sents the direct implementation and 5.2b represents the pipelined implementation. Since
the direct implementation suffers from a significantly higher path delay, the maximum
frequency of the direct form is only about one sixth of the maximum DSP slice capability,
while the pipelined form is able to run at full speed.

While the multiplications need pipelining to function at full speed the accumulators in
the DSP48E/E1 slices support 48 bit addition/subtraction at full speed, which is sufficient
for the 32 bit fixed point numbers.

1Xilinx (2012) Virtex-5 FPGA XtremeDSP Design Considerations, User Guide.
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(a) Direct implementation. (b) Pipelined implementation.

Figure 5.2: Simplified illustraion of the implementation of a 32x32 bit multiplication using DSP48E
slices.

The first step of design implementation in this thesis resides in the most basic compo-
nents needed for the math operations in the STAP algorithm. All complex operations in
the algorithm consist of additions, subtractions and multiplications so three basic math
operations are the only needed components for designing the complex operators.

Since the purpose of this thesis is to “squeeze as much juice as possible” out of the
FPGA, a pipelined multiplier is necessary. The IEEE libraries contain VHDL operators
for additions and multiplications, both of which are concurrent implementations, resulting
in poor performance when mapped onto the FPGAs DSP-slices. Thus, for higher perfor-
mance, either a pipelined implementation in VHDL, or the use of vendor provided IP cores
are the possible solutions. Xilinx provides a wide variety of IP-cores including multipliers
and also have automatic pipeline generation when providing the multiplier operand with
subsequent registers.

The same is also relevant for floating point operations since support for floating point
operations in VHDL was not added until VHDL-2008 and many tools still have no support
for the libraries. Due to the complexity of the floating point operations the package is not
intended, nor suitable for synthesis, which leaves the options of designing floating point
modules from scratch, or using IP cores as choices for implementation.

5.5 Xilinx CoreGEN IP Cores

Starting with VHDL-2008, floating point operations are included as IEEE standard func-
tions allowing easy implementation and simulation of the operations. The drawback of the
IEEE VHDL implementation of floating point operations is the fact that all operations
are performed in one clock cycle which results in large hardware consumption as well as
low clock frequencies.

The alternatives to the IEEE floating point library is to use either Xilinx Intellectual
Property (IP) Core Generator or writing a floating point library from scratch that utilizes
less hardware.

Xilinx provides the tool CoreGEN which has access to a large set of IP Cores, including
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floating point operations. The hardware can be instantiated with generic input widths and
latency for the output. With higher latency the component uses less hardware between
registers and is able to operate at higher clock frequency. The drawback of using CoreGEN
is that the design becomes technology dependent. By using Xilinx CoreGEN, the design
can only be implemented on a Xilinx FPGA. Also, the core generated for one hardware
platform, for example Virtex-5 is not guaranteed to work for the next generation. This
means that depending on which target hardware platform the design is implemented on,
the generated cores differ from each other. The generated cores for the designs in this
thesis are optimized for speed and have full usage of DSP slices.

5.6 Technology Independence of Arithmetic Operations

FPGA vendors usually complement their hardware with IP cores for various arithmetic
operations utilizing the available DSP-slices, as well as through inference by using VHDL
operators. Both Xilinx’s XST and Altera’s Quartus support automatic pipelining by
adding registers prior to or after the VHDL math operator [14][17]. By reusing the im-
plementations of the math components, the design can be made relatively technology
independent. Only the base components need replacing which is made easy with IP core
components and pipelining support in synthesis tools. Since the more complex math oper-
ations consist of the multiplication and accumulation those are the only two components
necessary to replace when moving between platforms.

When designing components with high requirements on both performance and chip
utilization it becomes harder to implement a solution that is truly technology indepen-
dent. When implementing multipliers and accumulators the demand on high throughput
makes pipe-lining a requirement which can be difficult to implement in an optimal way
for technology independence.
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6. Implementation of Generic
Computation Units

One of the main directives of the hardware based algorithm is the scalability of the solution
so that the implementation can be scaled to problems of different sizes as well as different
hardware platforms. By designing the solution based on generics and with scalability as
a directive the solutions can be designed efficiently. The final implementation consists of
three different solutions with drawbacks and advantages of their own.

6.1 Fixed and Floating Point Implementation

One important parameter of the design is the choice of number representation. As men-
tioned in section 4.3, the floating point number representation provides higher dynamic
range as well as precision compared to fixed point number representation. However, due
to the complex structure of floating point number representation the calculations require
substantially more logic and delays than fixed point. In this thesis work the designs for
both 32 bits fixed point and single precision floating point are considered and compared.

6.1.1 Floating Point Implementation Designed for Specific Hardware

The base components were also designed for a floating point number representation of
24 bits in total. Out of those 24 bits, 17 are used for the mantissa and 7 for the expo-
nent. This is of interest due to the reduced amount of hardware used. The DSP slice
described in section 5.4 consists of one 25×18 bit signed multiplier so when using this
number representation only one DSP slice is needed for the 17 bit mantissa multiplication
instead of two when implementing single precision number representation. Depending on
requirements for signal to noise ratio and the dynamic range of the system, a scaled down
implementation can reduce the needed amount of hardware significantly.

6.2 Design Techniques

As mentioned in section 5.5, Xilinx provides designers with IP cores designed for specific
purposes. Using Xilinx CoreGEN IP cores is effective and it does not take many man hours
to implement a design using the cores. In this thesis work the floating point implementation
uses IP cores from Xilinx CoreGEN, while the fixed point designs are implemented in two
different ways. The first one uses IP cores in the design while the other one is designed to
suit the hardware in a pipelined structure and written from scratch. The latter is further
on called fixed point Non-Technology Dependent (NTD).
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6.3 Complex Multiplier

Since the inputs to the algorithm consists of complex numbers the operations use more
hardware, especially for multiplication. Addition and subtraction of complex numbers are
only addition or subtraction of the real and imaginary part. Table 6.1 shows the total
number of operations used for one complex multiplication and addition/subtraction.

Table 6.1: Computation blocks required for complex operations.

Operation # multipliers # adders total

Multiply 4 2 6

Add/Subtract 0 2 2

The component implemented to solve a complex multiplication, thus, consists of 4
multipliers, one adder and one subtractor.

Figure 6.1 describes the final design in a simple block diagram. This single component
performs the complex multiplication between the two inputs.
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B.Q

SUBTRACTOR

I+jQ Y
Y.I

Y.Q
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B.I

MULTIPLIER

MULTIPLIER

MULTIPLIER

MULTIPLIER

ADDER

Figure 6.1: Block diagram of a complex multiplier.

6.4 Parallel Multiplier

The parallel multiplier is designed to solve the matrix multiplication between sH and R̂−1,
although not the entire operation in parallel but column by column of R̂−1. It utilizes the
complex multiplier described in section 6.3 along with complex adders. Nsp multipliers are
implemented in parallel and use an adder tree structure after the multipliers to calculate
the sum of the multiplier products. This is illustrated in Figure 6.2. The resulting output
is an element in the vector sHR̂−1. Every iteration, k is increased until k = Nsp. The

parameter k is controlling what column of R̂sp the parallel multiplier is processing. When
the last column is done, it starts over with k = 0 and i is incremented to use the next part
of the steering vector.

The number of adders used to sum the output from the multipliers adds up to Nsp− 1
and the latency through the adder tree, which results from registers between inputs and
outputs of the adders, can be calculated by log2(Nsp) multiplied with the latency of an
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Figure 6.2: Block diagram of the parallel multiplier with adder tree.

adder. The parallel multiplication unit calculates the resulting vector sHR̂−1 one element
each clock cycle in the order from first to last. The output can then be pipelined to
another complex multiplier that calculates the final scalar sHR̂−1s or performing the
multiplication of sHR̂−1x.

6.5 Calculations of sHR̂−1s and sHR̂−1x

To perform the last matrix multiplications the resulting vector from the sHR̂−1 multipli-
cation is multiplied with the input vector x and the steering vector s in parallel. This
results in two multiply and accumulate (MAC) functions as described in section 4.1.2.
The component utilizes the parallel multiplier described in section 6.4, one MAC for x,
one MAC for s, ROM storage for the steering vectors and some additional logic to create
a pipeline. By introducing a delay between the parallel multiplier pipeline and the MAC
units the same input can be used for the MAC unit as for the parallel multiplier. The
MAC operations are performed for both s and x.

Before calculations can be performed, the parallel input from the ROM storage needs
to be filled, which is done by an initialization sequence that is triggered by a reset. After
initialization the inputs are automatically updated for each new input of R̂−1

sp and x.

6.5.1 Multiply and Accumulate for Floating Point

For fixed point a MAC function is quite simple to implement, but it is a challenge to
implement it for floating point data. When using floating point number representation,
the bits are divided into sign bit, exponent bits and mantissa. To be able to accumulate
two floating point numbers, the mantissa with the lowest exponent has to be right shifted
before the sum of the mantissas can be calculated. The alignment of mantissas needs
pipelining with a few cycles delay to allow for high frequency operation.
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Figure 6.3: Parallel complex multiplier with Read-Only-Memory for storing the steering vectors.

The MAC component is connected to the output of the parallel multiplier which calcu-
lates a new value every clock cycle. This requires the performance of the MAC component
to match the parallel multiplier. When adding a value to the accumulated sum every clock
cycle, the previous sum need to be fed back in a single-cycle feedback loop. The latency
needed for mantissa alignment results in difficulties to implement floating point MAC.

Possible methods to solve this problem include writing the input values for the accu-
mulators to a buffer and reorder calculations to allow for the delay cycles in the additions.
Restructuring of the algorithm to alter the data flow to allow for the delay cycles is also
a possible solution.

For this thesis project the floating point MAC was implemented using floating point
to fixed point conversion. The floating point data is converted to a fixed point value with
a very high precision and connected to a fixed point accumulator of the same size allowing
single-cycle feedback.

6.6 Remaining Parts of Kelly’s GLRT

This design focuses on the computational heavy parts of Kelly’s GLRT, namely the func-
tions described previously in this chapter. The remaining parts of the algorithm consist of
one addition, two multiplications and one division. They only need to be calculated when
a new value is produced from sHR̂−1s and sHR̂−1x. This means that they occur less
frequently and thus, these calculations are not included in the design to be implemented
in the FPGA. The result produced by the design needs processing outside the FPGA to
perform the last calculations.

The complete design to be implemented consist of a wrapper mapping up a number of
sHR̂−1s and sHR̂−1x blocks, as the one in Figure 6.3, in parallel. The number of blocks
is set by a generic in the wrapper entity. The wrapper also contains RAM storage units
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for R̂−1
sp and x, described further in section 6.7.

The design is generic and controlled from this wrapper. The ports and generics for the
final component are found in Table 6.2 and 6.3. The signal type called complex is a record
formed of two 32-bit data words of type std logic vector. The generics make it possible
for the user to adjust the design according to case specific parameters or depending on
the amount of hardware available.

Table 6.2: The ports for the entire design.

Name I/O Type Details

clk Input std logic System clock

reset Input std logic Synchronous reset

Rsp in Input complex Complex input for R̂sp

x in Input complex Complex input for x

write en Rsp Input std logic High when a new Rsp value is written

write en x Input std logic High when a new x value is written

sHRs s Output complex Outputs the result for sHR̂−1s

sHRx s Output complex Outputs the result for sHR̂−1x

ready x Output std logic Signal to indicate when the x buffer is ready to
receive data

ready rsp Output std logic Signal to indicate when the R̂−1
sp buffer is ready

to receive data

finished Output std logic Finished flag that is set high when new, valid
results are on the outputs

Table 6.3: The generics used to control the entire design.

Name Type Details

g Nsp Natural Generic for the spatial channels

g kronecker Natural Generic for the Kronecker multiplicand. The
number of R̂−1

sp in the R̂−1.

g fifo size Natural Generic to control the R̂sp buffer

g data width Natutal Generic that sets the number of bits for data

g rows per unit Natural Generic for the number of rows from the steering
vectors each instance shall use

g parallel rows Natural Generic that sets the number of instances
mapped in parallel

g type String Generic that sets the data type and which de-
sign to use. Shall be “fixed ntd”, “float” or
“fixed”
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CHAPTER 6. IMPLEMENTATION OF GENERIC COMPUTATION UNITS

The final wrapper containing the designs is built up from several files and components
written in VHDL. Figure 6.4 represents the top module which utilizes the components
described in this chapter. As seen in the figure the design contains a Parallel-In, Serial-
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Figure 6.4: Block diagram of design top module, utilizing the sub-design units.

Out shift register to reduce the number of output pins on the device. The final design
structure is described further in appendix A, where an illustration over the files used for
the different designs is presented.

6.7 Memory Management

To provide the arithmetic units with data and ensure a high utilization, memory manage-
ment is needed alongside with buffering and control logic. For the sHR̂−1s and sHR̂−1x
implementation, there are three variables that need to be stored in memories, the static
steering vectors, the dynamic covariance matrix and samples x.

The most simple and implementation friendly solution is using block ram to imple-
ment the memory elements due to on-chip accessibility with no need for complex memory
controllers for off chip memory.

Since the sH vectors are static they can be implemented with single port block RAM
with only read access and during synthesis the ROM memory elements can be prepro-
grammed with the memory contents so nothing more than reading access is needed for
the implementation. Because each of the sHR̂−1s and sHR̂−1x units use independent
vectors the ROM memory components are implemented alongside the parallel complex
multipliers. This is also illustrated in Figure 6.3.

As for the x vector and R̂−1
sp matrix, a fifo buffer is needed so that computations can

be performed while writing new input data to the buffer. Depending on the number of
rows to be processed the same vector is required to be fetched from the buffer several
times, as well as the covariance matrix that is reused several time for each row.

The covariance matrix buffer consists of Nsp parallel block ram components with in-
dividual read ports but share the same write port with individual write signals to allow
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Figure 6.5: Parallel block rams with shared addresses, input data and parallel output.

writing to the individual blocks which is illustrated in Figure 6.5. With this approach the
required input pins are significantly reduced and together with the re-utilization of data
in the buffer the arithmetic pipeline can be run without any waiting states.

The buffer is implemented by reading and writing each row of the R̂−1
sp to an individual

RAM memory, this way, one element from each row can be read simultaneously, and one
column of R̂−1

sp can be clocked into the pipe each clock cycle. For the buffer part, the

RAM cell is divided into banks, Figure 6.6, where each bank can fit one row of R̂−1
sp , so

that when the first set of banks have been written, the next set of rows can be written to
the next bank while the arithmetic operations are still processing data from the previous
bank.

RAM
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Figure 6.6: Illustrates the structure of the RAM, where different banks are used for storing rows of R̂−1
sp .

The addressing of the RAM modules are done by concatenating the bank address with
the relative address in each bank providing an absolute address in the block ram memory.
The same principle applies to the x-buffer, with the difference that there is no need to
read more than one value each clock cycles so only one memory component is needed.

Since x and R̂−1
sp are the only input data, the control logic uses the buffers’ status flags

to control the arithmetic operations. As long as both buffers are not empty, data are read
and fed to the pipe together with a start signal to trigger the next calculation.
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CHAPTER 6. IMPLEMENTATION OF GENERIC COMPUTATION UNITS

6.8 Functional Verification using MATLAB and Testbench

All components are tested to verify their functional behaviour. For smaller components
and functions, simulations in ModelSim are done. For the larger components, such as the
parallel multiplier and the final wrapper, a generic testbench was written in VHDL. The
stimuli data is generated by running a matlab script before running the testbench the
first time. All stimuli data and results are saved in text files and read by the testbench.
The testbench feeds the components with stimuli data and checks the result. For a more
specific description of the testbench see appendix B.
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7. Implementation Results

This chapter presents the results from the implementation described in chapter 6. The
results are basen on Virtex-7 as target hardware using XST as synthesis tool. The complete
results for Virtex-5 and Synplify Pro can be found in appendix C.1 and C.2.

The components without the memory management are not possible to place and route
due to the large amount of I/O pins. Thus, only the result after synthesis is presented for
the smaller components. For the final design the results from both synthesis and place
and route are presented.

Example parameter sizes are used to achieve results that reflect reality. The parameter
g Nsp in this example is 16 and the Kronecker parameter is set to 30. The two parameters
set the length of vectors s and x to 480 elements and R̂−1 the size of 480×480. These
parameters are used to obtain the results presented in this chapter.

Results for single precision floating point and fixed point of 32 bits are presented for all
relevant components designed in this thesis followed by the result from a comparison be-
tween Virtex-5 and Virtex-7 as well as XST and Synplify Pro. Finally the result regarding
the scalability of the design is presented.

7.1 Complex Multiplier

The results presented in Table 7.1 is from when synthesizeing the complex multiplier
against the Xilinx Virtex-7 device XC7VX980T using XST.

Table 7.1: Resource utilization for complex multiplication after synthesis with ISE XST.

Design DSP-slices LUTs FFs Maximum frequency

Floating
point

12 1123 1338 526.6 MHz

Fixed point
Core

16 261 365 634.9 MHz

Fixed point
NTD

16 165 323 623.3 MHz

7.2 Parallel Multiplier

The parallel multiplier is Nsp complex multipliers in parallel. Their resulting products is
added up in a tree of adders as described in chapter 6.4. Using the example parameters
the design required 16 complex multipliers to perform the calculations as intended. When
synthesizeing the parallel complex multiplier against the Virtex-7 device XC7VX980T
using XST the result presented in Table 7.2 was gained.
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CHAPTER 7. IMPLEMENTATION RESULTS

Table 7.2: Resource utilization for parallel complex multiplication after synthesis with XST.

Design DSP-slices LUTs FFs Maximum frequency

Floating
point

252 26878 31458 526.6 MHz

Fixed point
Core

256 6156 7344 634.9 MHz

Fixed point
NTD

256 9649 6175 629.3 MHz

7.3 Calculations of sHR̂−1s and sHR̂−1x

The component performing sHR̂−1s and sHR̂−1x uses the previously described compo-
nents as well as a ROM for storing the steering vectors. The resulting number of operations
in this component is 138. Table 7.3 shows the result from synthesis with XST against the
Virtex-7 device XC7VX980T.

Table 7.3: Resource utilization for the sHR̂−1
sp s and sHR̂−1

sp x component after synthesis with XST.

Design DSP-slices LUTs FFs Maximum frequency

Floating
point

276 44812 78558 212.8 MHz

Fixed point
Core

288 8848 1332 629.3 MHz

Fixed point
NTD

288 5349 14116 629.3 MHz

7.4 Final Design - Kelly’s GLRT

The final design, containing RAM storages for x and R̂−1
sp was synthesised, placed and

routed against the Virtex-7 device XC7VX980T for all three implementations. The timing
constraints used was a period time on 4 ns. The results from the synthesis are presented
in Table 7.4.

Table 7.4: Resource utilization for the final design after synthesis with XST.

Design # Units DSP-slices LUTs FFs Maximum
frequency

Floating
point

3 828 (23%) 129036 (21%) 206331 (17%) 159.9 MHz

Fixed point
Core

12 3456 (96%) 84051 (13%) 187261 (15%) 421.4 MHz

Fixed point
NTD

12 3456 (96%) 42075 (6%) 195926 (16%) 421.4 MHz

After place and route of the design on the hardware device the results presented in
Table 7.5 was obtained. The table shows resource utilization as well as maximum frequency
and the number of units that are mapped in parallel.
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Table 7.5: Resource utilization for the final design after place and route.

Design # Units DSP-slices LUTs FFs Maximum
frequency

Floating
point

3 828 (23%) 117011 (19%) 167219 (13%) 140.1 MHz

Fixed point
Core

12 3456 (96%) 79220 (12%) 162416 (13%) 168.9 MHz

Fixed point
NTD

12 3456 (96%) 60777 (9%) 195798 (15%) 189.3 MHz

7.5 System Performance

The following section present the result for the entire design according to performance
measured in the amount of operations performed by one device with the specific design
implemented. Table 7.6 displays the results consisting on the system frequency, number
of sHR̂−1s and sHR̂−1x units mapped in parallel and the total amount of operations for
the implementation. As mentioned in section 7.3, the number of operations per unit is
138.

Table 7.7 presents the performance in a more general way. The power consumption for
the design is presented and the performance is measured in operations per second (OPS)
for either floating point (FL) or fixed point (FI). The OPS gained for the design is then
divided with the power consumed by the device to give a general result that can easily be
compared to other implementations.

Table 7.6: Performance of final system implemented on Virtex-7.

Design Maximum
frequency

# Units Tot. Operations

Floating
point

140.1 MHz 3 58 GFLOPS

Fixed point
Core

168.9 MHz 12 280 GFIOPS

Fixed point
NTD

189.3 MHz 12 313 GFIOPS

Table 7.7: Power efficiency of final system implemented on Virtex-7.

Design Power Consumption Performance Ops/W

Floating point 2.500 W 58 GFLOPS 23.2 GFLOPS/W

Fixed point Core 8.171 W 280 GFIOPS 34.3 GFIOPS/W

Fixed point NTD 7.981 W 313 GFIOPS 39.3 GFIOPS/W

Figure 7.1 shows the performance in OPS and OPS/W for the different designs.
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Figure 7.1: System perfomance for the three designs presented in GOPS and GOPS/W.

7.6 Synthesis tools

The final design is built from the components described in sections 7.1, 7.2 and 7.3. When
using Synplify Pro as the tool for synthesis for those components and comparing the result
to the one after synthesis with XST indicates an overall higher performance using XST.
The resource utilization did not differ too much, but the estimated maximum frequency
differed according to Table 7.8.

Table 7.8: Comparison of XST and Synplify Pro for the base components of the design.

Frequency XST Frequency Synplify Pro

Complex Multiplier Floating Point 526.6 MHz 507.5 MHz

Complex Multiplier Fixed Point Core 634.9 MHz 529.4 MHz

Complex Multiplier Fixed Point NTD 623.3 MHz 250.3 MHz

Parallel Multiplier Floating Point 526.6 MHz 507.5 MHz

Parallel Multiplier Fixed Point Core 634.9 MHz 381.1 MHz

Parallel Multiplier Fixed Point NTD 629.3 MHz 250.3 MHz

The result presented in the Table is from when synthesizing against the Virtex-7 device
XC7VX980T. As seen in the Table, the biggest difference is when using the NTD design
for fixed point implementation.

7.7 Scalability

The design is intended to be scalable when considering migrating from one technology
generation to the next. The design is generic and scalable so that the same design is
functional for different sizes of the data parameters specific for the application. To change
the data parameters, the generics of the design are used.

When migrating from one technology to the next it is possible to map more parallel
sHR̂−1s and sHR̂−1x modules according to the available resources. The NTD design
is completely scalable between different devices. However, the design using IP cores is
not scalable between different generations. In this thesis the designs was implemented
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7.8. FLOATING POINT IMPLEMENTATION DESIGNED FOR SPECIFIC
HARDWARE

on the Virtex-7 device, but an implementation on the Virtex-5 device also was done.
Due to the smaller amount of hardware available in the Virtex-5 device, the number of
units mapped in parallel was decreased. Table 7.9 shows the maximum frequency for the
different designs when utilizing the available chip resources as much as possible on the two
devices. Table 7.10 present the performance for the different designs implemented on the
Virtex-5 device and Figure 7.2 displays the OPS and OPS/W for the fixed point NTD for
the implementation on Virtex-5 compared to the Virtex-7 device.

Table 7.9: Maximum frequency for the different designs on Virtex-5 and Virtex-7.

Design Virtex-5 Virtex-7

Floating point 66.3 MHz 140.1 MHz

Fixed point Core 102.6 MHz 168.9 MHz

Fixed point NTD 167.5 MHz 189.3 MHz

Table 7.10: Performance of final system implemented on Virtex-5.

Design # Units Power Consumption Tot. Operations OPS/W

Floating point 3 4.5 W 27.4 GOPS 6.0 GOPS/W

Fixed point Core 3 4.6 W 42.5 GOPS 9.2 GOPS/W

Fixed point NTD 3 5.5 W 69.3 GOPS 12.7 GOPS/W
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Figure 7.2: GFIOPS and GFIOPS/W for entire fixed point NTD design for Virtex-7 and Virtex-5.

7.8 Floating Point Implementation Designed for Specific
Hardware

For the base components, a solution using number representation of 24 bits floating point
was designed. Out of those 24 bits 17 was used for the mantissa, as described in sec-
tion 6.1.1. For the complex multiplier and the parallel complex multiplier the results
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Table 7.11: Synthesis results for complex multiplier and parallel multiplier using 24 bits floating point
number representation.

Design DSP-slices LUTs FFs Maximum frequency

Complex Multiplier 4 1127 1240 561.0 MHz

Parallel Complex Multiplier 64 28442 31840 561.0 MHz

presented in Table 7.11 was obtained. The same example parameters were used and the
Virtex-7 device was the target hardware platform. XST was used for synthesis.
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8. Results from other Parallel
Solutions

The theory behind STAP has been discussed frequently over the past, but the computa-
tional demand requires high performance processors or hardware to create an implemen-
tation that operates in real-time. This chapter present some existing result from solutions
in Graphic Processor Units (GPU) and multi-core processors to put the result presented
in chapter 7 in perspective. All of the results presented in this chapter are gathered from
articles and reports on the subject. For more information about the implementations
described see the references for this chapter.

8.1 Graphic Processor Units (GPU)

The parallel structure of GPUs make them suitable for implementing scientific computing
and other parallel computations with high performance requirements, this is referred to as
General Purpose Computation on Graphics Hardware. In 2010 a performance evaluation
was performed as a master thesis evaluating the suitability for using GPUs for Radar Signal
Processing. By utilizing CUDA1 and OpenCL programming framework STAP among
other algorithms were implemented on a NVIDIA GTX 260 GPU with the specifications
in Table 8.1.

Table 8.1: Specifics for NVIDIA GeForce GTX 260.

Performance (FLOPS) 875 GFLOPS

Power (Watt) 171W

FLOPS/W 5.1 GFLOPS/W

In Table 8.2 the results from the implementation can be observed. Only the nominal
power was studied in the thesis report so no actual power consumption of the GPU during
the execution of the algorithm was mentioned.

Table 8.2: Implementation results of STAP on NVIDIA GPU.

Maximum performance Actual performance Ratio

Without memory transfers 875 GFLOPS 240 GFLOPS 28%

With memory transfers 875 GFLOPS 130 GFLOPS 15%

As a comparison to newer GPU’s, NVIDIA’s Tesla GPU which implements their new
Kepler GPU core has a peak performance of 4.58 TFLOPS single precision at 225W
according to NVIDIA’s specifications [18][19].

1CUDATMis a parallel platform and programming model/framework developed by NVIDIA.
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8.2 Multi-core Processors

The company BittWare has a multi-core co-processor for FPGAs in their product range
that in their case work together with an Altera Stratix FPGA. The co-processor is named
Anemone and creates a hybrid solution for floating point operations. Anemone is a low
power multi-core processor consisting of 16 floating point cores and is scalable for up to
a maximum of 4096 cores providing a peak of 4.9 TFLOPS [20]. According to BittWare
the Anemone is able to provide 19.2 GFLOPS/W in computational performance.

The multi-core processor has been used for implementation of a matrix multiplication
algorithm called xGEMM, which suggests that the processor has been capable of up to
90% of the theoretical performance peak for that specific algorithm using 16 cores [21].
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9. Discussion

The intention of this chapter is to discuss the results and the advantages and disadvantages
of the different designs compared to one another. The focus is on what have impact on
the results, why and how the bottlenecks might be solved. The hardware, tools and
performance are discussed and analysed. In addition to discussing the design this chapter
also intends to analyse and reason about the suitability for implementing STAP on an
FPGA in the near future.

9.1 Hardware platform

The target platform in this thesis work is a Xilinx Virtex-7 device and it is of importance
that this is not the only suitable platform on the market. There are a number of vendors
on the market and the designs of the different FPGAs are not identical. When the device
Stratix V from Altera was studied it was found that the DSP blocks used in this device are
slightly different. The datasheet for the device says that the device supports up to 3,926
18×18 or 1,963 27×27 multipliers [22]. Even though this thesis work focused on hardware
platforms from Xilinx, it might be interesting to investigate other vendors further to reach
the best result.

Focusing on the Xilinx Virtex-7 and Virtex-5 devices, one aspect is that the slices
change over time. Just by studying the two devices in this thesis work some differences
are found. It is therefore likely that the development of future generations include more
DSP slices and might contain even larger, more advanced DSP slices, with a possibility of
improving the design even further.

9.2 Tools

During this thesis work the impact of the tools have been obvious, especially for the
pipelined, non-technology dependent solution. In Table 7.8 one could clearly see results
that differed depending on whether XST or Synplify Pro was used as synthesis tool.
The designer needs knowledge about the tool to understand the result and to be able to
optimize the design. The pipelined NTD design presented in this thesis is, as mentioned,
non-technology dependent but still designed to be implemented as a tailored solution for
this kind of DSP slice. The problem when using Synplify Pro for synthesis is that the
tool is too general and can not handle the internal register in the DSP slices in the most
efficient way. For this design solution to work and be fast enough, the internal registers
in the DSP slices should be used for creating parts of the pipeline. Synplify Pro does not
use those registers as intended, resulting in a very slow design. XST is a Xilinx tool for
synthesis, and more aware of the DSP slice registers and how to pipeline those for a faster
design.
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Recently Xilinx provided the designers with a design suite called Vivado [23]. Vivado
is a new design environment provided to accelerate designs on the Xilinx 7 series. If this
design suite was used instead of ISE it could, according to the Vivado overview, improve
frequency, power consumption, build-time and other parameters even further. Vivado was
not in focus in this thesis work, but some minor tests were performed for the final design.
Using Vivado, it was possible to implement the floating point design while utilizing the
resources in the FPGA to a higher extent compared to when using ISE. However, the result
from the tests with Vivado are not presented in this thesis due to the fact that the results
were not verified. This had to do with lack of time and experience regarding the tool. But
the tests did imply that Vivado might be of interest for implementing the floating point
design and could possibly achieve better results for the design, both regarding speed and
number of units possible to implement.

9.3 Number Representation

During the first phases of the design, results showed that the components for floating
point could compete with the ones for fixed point. The estimated maximum frequency
was slightly lower for the floating point design. However, the floating point design utilizes
significantly more logic. During the development of the design it was not clear if it was
the logic or the DSP slices that would be the limiting factor. In the final synthesis result
it was found that for the floating point implementation it was in fact also the DSP slices
that was the limiting factor. The intention was to use as much of the FPGA as possible
and for the fixed point designs, with less logic, that logic is not used for anything else.
It might be possible to implement other parts of the algorithm or the signal processing
chain by using this logic, giving these solutions an even greater advantage compared to
the floating point implementation.

One problem with the floating point design occurred when including the MAC func-
tions. As described in section 6.5.1, the latency of the accumulation results in a rather
slow solution. To solve this, the data is transformed to fixed point before performing the
accumulation. The transformation is not optimal and might lead to loss of precision. It
is possible to minimize the loss of precision, but it would most definitely require more
resources. Also, this implementation requires additional hardware that could be used for
other parts of the algorithm.

Finally, when trying to utilize the Virtex-7 resources as much as possible, ISE could
not implement the floating point design. Hence, we only got synthesis results for that
implementation. However, the design was possible to implement on the Virtex-5 device
with high utilization, but the smaller FPGA resulted in fewer parallel modules. Using the
same, lower number of modules in the Virtex-7 device implementation succeeded, utilizing
the device to a smaller extent than intended. The reason for the problems with the Virtex-
7 device were not solved, but it probably has to do with different optimization algorithms
used depending on the device. When using the new tool Vivado, the synhtesized netlist
for the high utilization could be implemented on the Virtex-7 device.

The use of floating point number representation is quite new for the vendors and it
is not unlikely to believe that support will increase and as an example a better solution
for floating point MAC will exist in a near future. It might also be possible to design the
solution in a different way so that a single-cycle feedback loop no longer is needed.

When using only 24 bits for floating point number representation the solution only need
one DSP slice to perform the multiplication. Compared to the single precision number
representation, this resulted in 4 DSP slices instead of 12 for a complex multiplier. A
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design using fewer bits for number representation should also result in fewer wires to route.
However, this solution utilizes almost the same amount of logic so it would require more
optimization before the benefits of the reduced number of DSP slices can be used. If the
system can tolerate a small loss of precision and dynamic range, it would be interesting
to optimize this design and obtain a final result in terms of power consumption and
performance.

9.4 Performance

Evaluating the design results from this thesis with the other parallel solutions and com-
paring both peak performance and power efficiency there is no obvious winner in the
competition. The FPGA approach is able to utilize logic efficiently and also provides a
dense operations/power ratio, this is also true for the GPU. However, when only utiliz-
ing the approximately 18-25% of the peak performance it is not known what the power
consumption at that point is, hence, the actual operations/power ratio is not known. A
limiting factor for the FPGA approach considering performance is the slow clock frequency,
this is however due to a couple of bottlenecks in the design which should be possible to
improve for increased performance.

In comparison to the multi-core Anemone processor, it seems that a multi-core pro-
cessor approach could be beneficial for floating point operations. The performance of up
to 90% of the theoretical maximum for matrix and vector operations indicates that the
multi-core processor architecture is suitable for matrix type computation. The Anemone
is a co-processor for FPGAs, a hybrid solution that is designed to use the FPGA for some
parts of the signal processing but perform calculations that benefit more when run on the
co-processor on the Anemone. This implies that if more work in these two areas are made,
both the multi-core solution as well as the FPGA approach might have the capacity of
being more energy efficient and have an overall higher performance.

The usual way of limiting power consumption in CPU and GPU architectures is done
by switching off unused sections of the chips while computational load is low, but this can
not be performed perfectly, and because of this, the operations/power ratio is probably
significantly lower than the ratio of peak performance over peak power since the utilization
of the STAP algorithm on CUDA cores reached 25% at most.

To be able to determine which solution would be most energy efficient, an analysis is
needed to determine power consumption and not only performance evaluation for imple-
mentation of the STAP algorithm. More work in both the FPGA design as well as for
the GPU and multi-core processor solutions is required to be able to make more relevant
conclusions.

9.5 Implementation of STAP on an FPGA

Results from the fixed point implementation in this thesis implies that FPGA’s are suitable
for this type of complex multiplications and parallelism. The limiting factor is not the
operations to be performed, but more the routing and transfer of data to and from the
memory blocks. It is possible that a design with better routing would lead to a more
energy efficient design. The design in this thesis work would require a huge amount of
FPGAs to implement a complete STAP system of this magnitude and the intention is to
use this in a airborne radar with a limited space for the hardware.

Computational demands of approximately 100 TOPS would result in over 300 FPGA
chips. It would be possible to divide the algorithm and spread it out on a number of
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FPGAs but a number of that size is not appropriate. The power consumption of this
system is slightly above 2400W which exceeds the theoretical maximum of 400W by far.

9.5.1 Bottlenecks of the Design

One of the major bottlenecks in the design is the memory management and buffering of
data. Due to large fanout and long paths the path delay limits the switching frequency of
the design while all components are fast enough for significantly higher clock frequencies.

For the floating point implementation the MAC unit is also a major bottleneck, since
the multiply and accumulate operation with the accumulated sum in a single-cycle feed-
back loop is difficult to implement. This is described previously in section 6.5.1 and
section 9.3.

The bottlenecks in the design should be possible to solve by inserting buffer registers to
limit fanout in conjunction with a MAC solution that is pipelined even further. Another
possible solution would be to re-design the matrix calculations so that MAC operations
with feedback are avoided and can be implemented using multipliers and adders without
the feedback.
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10. Conclusion

This chapter summarizes the conclusions made in this thesis work. The work is divided
in the development of the design, performance and scaling. For specific results from the
designs, see chapter 7.

10.1 Design and Number Representation

The final design was implemented on a Xilinx Virtex-7 device using ISE. Both the fixed
point NTD solution as well as the fixed point solution using IP cores was implemented
with as high utilization of the chip as possible. The final floating point design was not
possible to place and route on the Virtex-7 with resource utilization higher than 25%.
However, the floating point design was successfully implemented on the Virtex-5 device
with as high utilization as possible but could not compare to the results for the fixed point
designs.

It was found that the support for floating point arithmetics in the tools need further
development to be able to provide high performance operations which is required for
implementation of STAP and Kelly’s GLRT.

10.2 Performance and Power Efficiency

The designs for fixed point had a performance in the interval 35-40 GOPS/W while the
floating point implementation resulted in a slightly lower performance. The results are
quite positive, but considering the computational demands and limited space for the radar
system in an airborne platform they are not good enough. To achieve performance of
100 TOPS, this design would require over 300 Virtex-7 devices and result in a power
consumption of over 2400 W. A system like that is not a realistic solution, why both
performance and power efficiency needs improvement.

Compared to the GPU approach there is no clear benefit of using FPGAs in favor of
GPUs when considering floating point implementation. However, considering the power
efficiency the FPGAs are superior. The Anemone hybrid solution could compete with
the FPGA approach but also requires an FPGA. Due to the lack of available results
from actual STAP implementations, both considering power efficiency and performance
no concrete conclusion can be drawn.

10.3 Scaling

The final design uses generics to control sizes of memory blocks, input vectors and number
of multipliers in parallel. This makes it possible to adjust the design for a specific case
and making it suitable for different sizes and parameters.
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Due to the generic design, it is possible to change a few generics when a new, larger
FPGA is on the market. Instead of a large number of FPGAs working together, the
calculations can be divided on fewer devices of the new FPGA generation where one
device handles more units in parallel and reducing the total number of FPGAs.
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11. Future Work

All base components were designed to have a maximum frequency that are as high as
possible. When inserting the RAMs for storing R̂−1

sp and x, the estimated maximum
frequency decreased significantly. Therefore, one continuation of this work could be to
increase performance by inserting buffer registers to decrease the fan out from the RAMs.
This would create a pipelined structure between the RAMs and the components performing
the calculations and probably remove the largest bottleneck of this design.

A recommendation after this thesis work is to implement a floating point library instead
of using the generated IP cores. This would remove some of the technology dependence.
Also, it would give the designer the possibility to remove parts that are included in the
cores, like different rounding choices not considered in this design. It should not be that
hard to implement this library when having some knowledge of the floating point struc-
ture. The floating point library would also simplify the design into an even more generic
design, where a generic easier could set the data type and not requiring different designs
depending on the number representation used. With this thesis in mind it is also likely
that the designer will gain more control over the synthesis and tools performing the syn-
thesis when avoiding the core components, especially for the floating point design. When
running the synthesis and place and route, the designs using core components took signif-
icantly longer time compared to the pipelined design. The problem with not being able to
implement a similar design for floating point in an efficient way could maybe be solved by
this floating point library. Also, to increase the possibilities of a successful floating point
implementation even more, a suggestion is that the designer becomes more familiar with
the new tool Vivado. This is simply because the minor tests performed during this thesis
work indicated that Vivado could result in a better floating point implementation.

It could also be of interest to investigate other vendors further. It is a possibility that
the DSP slices used in other vendors devices might suit this design so that more modules
in parallel can be mapped in a single FPGA. Other vendors also claim their support for
floating point implementations is very good compared to their competitors, and this could
boost the floating point design discussed in this thesis work.

Finally, other parallel solutions should be investigated further. Information and result
for this kind of implementation is hard to find and to make a fair comparison, more
knowledge is needed. One suggestion for a future thesis work could focus on implementing
the same algorithm on a GPU or multi-core processor and compare the results to the ones
achieved in this thesis work for a more genuine evaluation.
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A. Final Design Structure -
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Figure A.1: Final design structure

Figure A.1 illustrates the structure of the final design. Internal signals, ports and nets
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are not shown. The figure aims to illustrate the structure of source files and components
written in VHDL or generated by ISE CoreGEN. The generic g type controls which of the
three instances that are generated. The MAC units consist of smaller components. The
structure of the two different MAC units are described in Figure A.2 and A.3.

complex_multiplier_ntd_str

includes:

pipe_accumulator_sequencer_rtl
includes:
pipe_accumulator_rtl

mac_32_fixed_str

Figure A.2: Final design structure
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includes:
float32_to_fixed96_rtl

accumulator_sequencer_rtl
fixed96_to_float32_rtl

includes:
pipe_accumulator_rtl

mac_32_float_str

Figure A.3: Final design structure
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B. Testbench

The matlab script generating stimuli and reference data is written to calculate the results
from the different parts of the algorithm, starting with a single complex multiplication to
continue with the parallel complex multiplication with an adder tree and then adding the
final steps of the algorithm. This make it possible to test every part of the algorithm by
using the corresponding result from the matlab script as a reference for the components
result.

For the fixed point calculations the fixed point toolbox that is included in matlab is
used. This gives the designer the possibility to set where the fixed point is placed, how
many bits used to represent the number as well as additional settings like rounding mode.
For the floting point calculations, the single precision format is used.

Due to rounding settings, the result from the testbench and the value in the text file
might differ slightly. This is considered in the testbench and a small rounding error is
allowed. The rounding error allowed has to be small so that the actual data used in the
real system is accurate enough. The testbench is designed to be able to verify all different
instances of a design at the same time, that means all fixed point components at the same
time as the floating point implementations. Figure B.1 roughly describes the testbench,
where the different designs under test (DUT) are the different component designs.

TB top

DUT 1

DUT 2

DUT i

Data stimuli
Floating point 32

Stimuli file

Float32_
to_float17

Data stimuli
Fixed point 32Stimuli file

Verify data
Floating point 32

reference file

Float32_
to_float17

Verify data
Fixed point 32 reference file

Figure B.1: Block schedule of the testbench structure.
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C. Additional Results

C.1 Synplify Pro against Virtex-7

When using Synplify Pro for synthesis, the result did not get as good as when XST was
used instead. However, the synthesis was performed with Synplify Pro for almost all
components of the design and the result are presented in this section.

In table C.1, the result from synthesis with Synplify Pro against the Virtex-7 device
is presented.

Table C.1: Resource utilization for complex multiplication after synthesis with Synplify Pro against
Virtex-7.

Design DSP-slices LUTs FFs max freq. (MHz)

Floating point 12 1078 1296 507.5

Fixed point Core 16 261 364 529.4

Fixed point NTD 16 194 388 250.3

Table C.2 presents the corresponding results for the parallel multiplier.

Table C.2: Resource utilization for parallel complex multiplication after synthesis with Synplify Pro
against Virtex-7.

Design DSP-slices LUTs FFs max freq. (MHz)

Floating point 252 26044 30576 507.5

Fixed point Core 256 6141 5284 381.1

Fixed point NTD 256 4049 7939 250.3
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C.2 Results for Virtex-5

The following results presented in the tables below is from synthesis and place and route
against the Virtex-5 device XC5VSX240T. The designs tested are both fixed point imple-
mentations, the 32-bit floating point implementation and the design with 24-bit floating
point data. Table C.3 shows the result after synthesis with both XST and Synplify Pro
for the complex multiplier component.

Table C.3: Resource utilization for complex multiplication, Virtex-5.

Design Synthesis Tool DSP-slices LUTs FFs max freq. (MHz)

Floating point Synplify Pro 12 908 1412 376.8

Fixed point Core Synplify Pro 16 194 296 384.2

Fixed point NTD Synplify Pro 16 66 550 306.6

Floating point XST 12 920 1412 403.7

Fixed point Core XST 16 194 299 427.8

Fixed point NTD XST 16 165 323 443.2

The parallel multiplier has too many I/O pins to place and route, but table C.4 presents
the result after synthesis. Both Synplify Pro and XST are used.

Table C.4: Resource utilization for parallel complex multiplication against Virtex-5.

Design Synthesis Tool DSP-slices LUTs FFs max freq. (MHz)

Floating point Synplify Pro 252 22298 32432 343.9

Fixed point Core Synplify Bro1 256 4994 6212 354.1

Fixed point NTD Synplify Pro 256 4049 9261 212.4

Floating point XST 252 22490 32432 403.7

Fixed point Core XST 256 5024 6243 427.8

Fixed point NTD XST 256 3645 7979 443.2

When synthesising the sHR̂−1
sp s and sHR̂−1

sp x component, Synplify Pro did not manage
to perform the synthesis due to problems with reading the files containing the steering
vectors for this design. The result after synthesis with XST is presented in table C.5.

Table C.5: Resource utilization for shrsx-top after synthesis with XST against Virtex-5.

Design Target Platform DSP-slices LUTs FFs max freq. (MHz)

Floating point XST 276 36597 60188 142.6

Fixed point Core XST 288 5669 12262 427.8

Fixed point NTD XST 288 5290 12073 371.3

1Barney Stinson
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