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Abstract
The efficient use of the spectrum in cellular systems has given rise to cell-edge user
equipments (UEs) being prone to intercell interference. In this regard, coordinated
multipoint (CoMP) transmission is a promising technique that aims to improve the
UE data rates. In a centralized network architecture, the users need to feed back
the channel state information (CSI) to its anchor base station (BS). The CSI is
then forwarded to a central coordination node (CCN) for precoder design to jointly
mitigate interference. However, feeding back the CSI consumes over-the-air uplink
resources as well as backhaul resources. To alleviate this burden, the quantity of
CSI being fed back is limited via relative thresholding. That is, the CSI feedback
is limited to those BSs whose signal strength fall above a threshold relative to the
strongest BS. Moreover, with limited CSI, efficient backhauling of the precoding
weights is necessary, as the user data is routed based on the path taken by the
precoding weights from the CCN to the corresponding BSs. The focus of this thesis
is mainly on a physical (PHY) layer and a medium access control (MAC) layer
approach for reducing the backhaul load in a CoMP system, with minimal penalty
on the potential CoMP gains. Furthermore, broadcasting the CSI in a decentralized
network architecture is considered in order to reduce backhaul latency.
In the PHY layer approach, the precoder design is based on stochastic optimiza-

tion such as particle swarm optimization (PSO). This method has no constraints on
the scheduling of the UEs. The PSO based precoder design was also applied to field
measurement data with CSI imperfections due to prediction errors and quantization
errors. It was found to perform the best compared to other robust precoders de-
veloped in the EU FP7 ARTIST4G consortium. With the MAC layer approach, a
simple zero forcing precoder is assumed, which focuses on how to schedule the UEs
in such a way that they achieve the backhaul load reduction. Lastly, the decentral-
ized network architecture is explored, where the UEs broadcast the CSI. The BSs
coordinate by sharing minimal scheduling information, thereby achieving data rates
comparable to the centralized network architecture.
In this thesis, the backhauling is defined to be efficient when the total number of

CSI coefficients aggregated at the CCN is equal to the total number of precoding
weights for a given time-frequency resource, in a centralized architecture with the
PHY layer approach. In the MAC layer approach, the total number of precoding
weights is less than or equal to the total number of CSI coefficients. In the decen-
tralized network architecture, the CCN does not exist. The BSs can coordinate over
a less stringent backhaul, thereby reducing the backhaul load and latency.
Keywords: Coordinated multipoint transmission, centralized, decentralized archi-

tecture, particle swarm optimization, precoding, prediction errors, quantization er-
rors, scheduling, stochastic optimization
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Part I.

Coordinated MultiPoint transmission





1. A Brief Introduction
“For millions of years, mankind lived just like the animals. Then some-
thing happened which unleashed the power of our imagination. We
learned to talk and we learned to listen. Speech has allowed the comm-
unication of ideas, enabling human beings to work together to build the
impossible. Mankind’s greatest achievements have come about by talk-
ing, and its greatest failures by not talking. It doesn’t have to be like
this. Our greatest hopes could become reality in the future. With the
technology at our disposal, the possibilities are unbounded. All we need
to do is make sure we keep talking.”

Stephen W. Hawking

Communications have been the very essence of human interaction. There is an
inherent need to communicate, as individuals have moved farther away exploring
nature. As the invention of the wheel made humans explore places far and wide,
so did communications evolve with tools such as smoke signals, Morse code, the
telephone, etc. In particular, the technology that enables smart phones has created
a different world with unbounded possibilities. In this section, a brief evolution of
cellular communications is presented from an interference point of view, including
how coordinated multipoint transmission comes into play.
In the nineteenth century, telegraph wires were used for long distance comm-

unications. However, they suffered from attenuation. It was a time when speaking
could be regarded as the only form of wireless communication for human interaction.
Maxwell’s equations were merely theoretical until Heinrich Hertz showed how to cap-
ture electromagnetic waves. This can be considered the trigger that started wireless
communications. Transatlantic telegraph cables provided a good communication
link for countries like Sweden and the United States of America. However, with
severed cables, wireline communications is easily hindered. In Sweden, Grimeton
radio station in Varberg was constructed for making wireless telegraphy. This was
the main mode of communication in the early twentieth century. In 2004, Grimeton
radio station was tagged as a world heritage site by UNESCO. In its prime days, the
radio station occupied an entire building consuming 200 kW as shown in Figure 1.1.
It was operating at 17.2 kHz, giving rise to a wavelength of ~17.4 kms. This required
six antenna towers, placed 380 m apart, to accommodate the radiating antenna el-
ements. A brief history of communications from the nineteenth to the twenty-first
century is well captured in [ComSoc]. Henceforth, the focus of this chapter is mainly
on cellular wireless communications.
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Chapter 1 A Brief Introduction

Figure 1.1.: A preelectronic radio transmitter for transatlantic communication at
Grimeton, east of Varberg, Sweden.

In the early 1980s, the first generation (1G) of wireless hand-held cellular phones
were introduced. In different countries, this took different forms. In the United
States, Advanced Mobile Phone Service (AMPS) used frequency modulation to carry
voice (analog) service to a mobile phone or a user equipment (UE). A given UE is
assigned a specific frequency exclusively available in each cell. This assignment
can be called frequency division multiple access (FDMA). In the United Kingdom,
Total Access Control/Communications System (TACS) used frequency shift keying
with FDMA. In the Nordic countries, 1G took the form of Nordic Mobile Telephone
(NMT). Inherent design of this system constituted the UEs to be allocated on diff-
erent frequencies and to have low cochannel interference from neighbouring cells.
This gave rise to the concept of frequency reuse [G05] where the frequencies used
in a particular cell are not reused in adjacent cells, but reused only after some dis-
tance. This also means that the cellular system is spectrally very inefficient in a
given cell, as the entire spectrum available to a network operator is not fully utilized
in every cell.
In 1991, the second generation (2G) of cellular systems, Global System for Mo-

bile (GSM) communications brought forth digital cellular networks. Keeping inter-
operability in mind, GSM triggered a new era for widespread use of mobile comm-
unications. The UEs were scheduled in a given time-slot in a time division multiple
access (TDMA) fashion. In the United States, cdmaOne was introduced, where the
UEs are separated by means of spreading codes, giving rise to code division multiple
access (CDMA). Similar to the 1G system, the spectrum in GSM is inefficiently used
as every cell is assigned a given frequency, and the UEs in a given cell are separated
in time. Typically, a misalignment in time for a voice service gives rise to crosstalk.
In CDMA, both the time and frequency resources are used at the same time, and
the UEs are separated by codes. With nonorthogonal codes, interference between
the UEs within a cell will cause intracell interference, while intercell interference is

12



1.1 Coordinated MultiPoint

due to the codes reused in other cells [G05]. The spreading gain of the code can
be used to lower the intercell and intracell interference. One could view this to be
inefficient as a limited number of orthogonal codes need to be reused.
In 2001, the third generation (3G) cellular networks based on wideband code di-

vision multiple access (WCDMA) was commercially available. All the frequencies
are used in every cell but the UEs are separated by codes, similar to CDMA. In
WCDMA, Gold codes are used as scrambling codes to reduce the intercell inter-
ference, and nonorthogonality of codes leads to intracell interference. In short, the
frequency reuse factor is one. In the spring of 2009 in Sweden, the fourth generation
(4G) cellular systems employed orthogonal frequency division multiplexing (OFDM)
where all the frequency-time resources are utilized in every cell. This means that
the neighboring cells also use the same resource, thereby potentially using the spec-
trum resources efficiently. However, this gives rise to severe intercell interference. In
Long Term Evolution (LTE), intercell interference coordination (ICIC) is proposed
to overcome this problem. With ICIC, the BSs need to avoid scheduling UEs si-
multaneously at the cell-edge. However, this poses some restriction in using all the
resources all the time, resulting in reduced efficiency.
To mitigate intercell interference, [KFV06] introduced coordination of BSs for

spectrally efficient systems where the clustered BSs sent useful signals to the UEs.
This is popularly known as network MIMO. In the 3rd Generation Partnership
Project (3GPP) context, this is more widely known as coordinated multipoint. Cur-
rently, this is a working item as part of the LTE-Advanced [TR36819].
In the following sections, CoMP is introduced as a means to handle intercell inter-

ference as defined in 3GPP. Then, the focus transitions towards why backhauling
aspects in CoMP cellular networks are important and how one can reduce the back-
haul load.

1.1. Coordinated MultiPoint
Coordinated multipoint (CoMP) is a promising technique that aims to improve the
UE data rates, especially at the cell-edge via coordinating BSs. The coordination
of BSs can be used to mitigate intercell interference [GHH+10, MF11].
CoMP is broadly classified as downlink CoMP or uplink CoMP. In this regard, the

downlink or the forward link is referred to as CoMP transmission, while the uplink
or the reverse link is referred to as CoMP reception. CoMP reception is relatively
simple compared to CoMP transmission [IDM+11], as there are no transceiver mod-
ifications required in the UE while the BSs can estimate the channel in the uplink.
Hence, there is no need for the UEs to feed back the channel state information (CSI).
In the case of a typical CoMP transmission, the UEs need to feed back the CSI to
their serving BS(s). An entity in the network collates the CSI of the UEs and jointly
calculates the precoding weights to mitigate interference. The CSI feedback applies
to a frequency division duplex (FDD) system where the uplink and the downlink are
on different carrier frequencies, while in the case of a time division duplex (TDD)
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Chapter 1 A Brief Introduction

system, the uplink and downlink use the same frequency. The reciprocity nature of
the channel can be used here and the feed back of CSI can be avoided, as long as the
channel remains stationary from the time of reception until transmission. It should
be noted that the reciprocity of the channel demands a well calibrated transmitter
and receiver chain.
Some of the CoMP categories based on 3GPP [TR36819] are discussed here.

CoMP transmission for a given time-frequency resource is categorized based on
the availability of UE data at various BSs. When the UE data is available at more
than one BS to jointly serve a given UE, it is referred to as joint processing. If the
UE data is only available at one BS so that the scheduling of the UE is coordinated
with other BSs, it is referred to as coordinated scheduling, or coordinated beamform-
ing when the beamforming decisions are coordinated with other BSs. Alternately,
a hybrid category uses joint processing and coordinated scheduling/beamforming.
Joint processing can be further categorized as joint transmission, dynamic point
selection (muting), and a hybrid of joint transmission and dynamic point selection.
In joint transmission, the UEs are served from multiple BSs, either coherently or
non-coherently to improve their data rates. In the case of dynamic point selection,
the serving BSs dynamically changes over a given time-frequency resource. A very
stringent requirement on synchronization is needed for those UEs that coherently
receive their data. However, non-coherent joint transmission from different BSs
can be viewed as the same signal taking different multipaths to reach the UE. The
Table 1.1 is inspired from [RS10] and it summarizes the downlink CoMP categories.

Table 1.1.: Downlink CoMP categories

Joint Processing Coordinated Beamform-
ing/Scheduling

Joint
Transmission

Dynamic Cell
Selection Beamforming/Scheduling

Data at each BS Data at each BS Data at serving BS only
Transmission
from multiple

BSs
simultaneously

Transmission from
one BS at a time

Transmission from one
BS, but scheduling

decisions are
coordinated

In this thesis, the focus is on joint transmission combined with dynamic point
selection for CoMP transmission in an FDD system.

1.2. The Motivation and the Problem
Recall that spectrally efficient systems are limited by interference. In this regard,
consider a homogenous network as shown in Figure 1.2. The coverage area of each
BS is approximated by the hexagonal cell where the cell-edge is marked with dashed
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1.2 The Motivation and the Problem

lines. The darker shaded hexagonal structure in the middle is defined as the cluster
area where the BSs are allowed to cooperatively serve the UEs in this area. Modern
cellular systems are spectrally efficient, as the same frequency-time resource is used
in a given cluster area. This gives rises to intracluster interference. If one were to
visualize Figure 1.2 being replicated around itself, then the interference from the
other clusters could be seen as intercluster interference. The UEs at the cluster
edge are prone to intercluster interference that can potentially degrade the system
performance. To overcome this problem, the clusters also need to be coordinated.
However, full coordination is practically impossible. In [ZCA+09], limited inter-
cluster coordination is performed for the disjoint clusters, and in [LBS12], frequency
reuse schemes are proposed to mitigate the intercluster interference. The main focus
of this thesis is on the UEs at the cell-edge in an isolated cluster, as illustrated in
Figure 1.2. Hence, the intercluster inference is not considered in this study.

Figure 1.2.: A homogenous hexagonal network layout.

To mitigate interference in a centralized network architecture, the UEs need to
feed back the CSI of those BSs from which they would like to be served. The CSI
is usually fed back to their anchor BS. The anchor BS forwards this information to
the central coordination node (CCN) where the precoding is performed to mitigate
interference. A centralized joint processing network architecture is illustrated in
Figure 1.3. The backhaul constitutes all the connections and network entities used
to interconnect the BSs. In Figure 1.3, this would constitute the CCN and the
connections between the BSs and the CCN. The focus of the thesis is mainly on the
backhaul traffic, consisting of the CSI and the precoding weights.
In a practical scenario, the user data constitutes a major portion of the backhaul
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Figure 1.3.: A centralized joint processing network architecture.

traffic. However, in a centralized network architecture, the user data could be as-
sumed to be routed based on the path taken by the precoding weights. Thus, the
focus is more on the control signaling part of the backhaul traffic. As mentioned
earlier, to coordinate all the BSs in the network would be impractical, and hence,
clusters of BSs are formed [PGH08]. A predefined set of BSs forming a cluster
that does not change with time is referred to as static clustering [ZCA+09]. Like-
wise, dynamic clusters of BSs can be formed depending on the channel conditions
[PGH08]. Moreover, depending on where the clustering decisions are performed, it
can be classified as network centric or UE centric clustering. Various combinations
of the clustering can be performed. In this thesis, a dynamic UE centric cluster-
ing is performed, where the UE dynamically choses the set of BSs from which it
would like to be served [BSX+10]. To alleviate the problems of the CSI feedback
overhead within a cluster area, absolute thresholding and relative thresholding can
be considered [PBG+08, BSX+10]. In the case of absolute thresholding, the UEs
are instructed to feed back the CSI of links that are above a certain value, while in
the case of relative thresholding, the UEs are instructed to feed back links that fall
within a window relative to the best link.
There is an inherent dimensionality limitation in estimating the channel from diff-

erent BSs [CRP10]. Clustering of BSs could alleviate this dimensionality problem
of coordinating the pilots for obtaining the CSI from different BSs. The UEs esti-
mating the channel is one aspect of obtaining the CSI. The inherent delays due to
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the control loop emphasizes the other important aspect of predicting the channel.
Typically, a UE would employ a Kalman filter to estimate and predict the channel
well in advance. The prediction horizon defines the duration of time for which the
channel is predicted. A short prediction horizon will indirectly limit the UE velocity
and it imposes a fast backhauling network with very low latency, in the order of
milliseconds. The predicted CSI is quantized and fed back to the anchor BS. Quan-
tization by itself gives rise to quantization errors and the process of feeding back
the CSI also occupies the uplink resources. These practical aspects are considered
in the precoder design and the results are presented in Appendix B.
To present the main problem being addressed in this thesis, it is assumed that

the CSI obtained at the CCN is error free. Based on relative thresholding, consider
the following channel matrix aggregated at the CCN as shown in Table 1.2, where
UE1 feeds back the CSI of BS1 and BS2 while CSI of BS3 is not fed back as it falls
outside the relative threshold window. Likewise, other UEs also feed back the CSI
that falls above the threshold. Modeling of CSI that is not available at the CCN as
zeros may not be the best way to go about it. However, intuitively it makes sense
to treat them as zeros. These zeros denote the feedback reduction obtained with
relative thresholding. The question that one would like to ask is, if an equivalent
backhaul reduction can be obtained in terms of the precoding weights as shown
in Table 1.3. That is, can the number of CSI feedback coefficients fed back by a
given UE, have an equivalent number of precoding weights in the backhaul? More
importantly, this is a desired property for the precoding matrix. The main reason
for this is that the user data is routed based on the precoding weights designed at
the CCN, in the case of a centralized architecture, as the user data is several orders
of magnitude greater than the control information (precoding weights). This desired
property will alleviate the burden on the backhaul, and the need for the user data
to be present at all the cooperating BSs is reduced. The network architecture is
illustrated in Figure 1.4. In the following subsections, a brief explanation of how
this can be solved is presented.

Table 1.2.: Aggregated Channel Matrix at the CCN

H̃ BS1 BS2 BS3

UE1 h11 h12 0
UE2 0 h22 h23
UE3 0 0 h33

The notion of backhaul savings is partly inspired from [PBG+11] for the open
systems interconnection (OSI) layered approach. Alternate network architecture
is also considered for backhaul savings. To understand the subsequent sections
better, a brief idea of the OSI model is presented. The OSI model is depicted in
Figure 1.5. The layered structure of the communication software makes it easier
to realize complex systems. Every layer of the OSI model performs a dedicated
task. This provides an opportunity to design and test the layers in parallel. The
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Table 1.3.: Desired precoding matrix based on H̃

W̃ UE1 UE2 UE3

BS1 w11 0 0
BS2 w21 w22 0
BS3 0 w32 w33

lowest layer is called the physical (PHY) layer or Layer1. It is mostly concerned
with channel coding and modulation. The second layer is the data link layer. In
the protocol stack of the UE, this corresponds to the radio link control (RLC)
and medium access control (MAC). The RLC performs the segmentation of the
data packets obtained from Layer3 which is the radio resource control (RRC), and
reassembly of data packets obtained from the PHY layer. The MAC layer performs
the scheduling as to when the PHY layer should transmit a given data block. In
this thesis, the focus is mostly on the control plane aspects related to the PHY layer
and MAC layer. More details about the functions of various protocol stack layers
can be found in [TS25301].

Figure 1.4.: An illustration of the equal number of CSI coefficients and the pre-
coding weights. The uneven distribution of the CSI coeefficients and the precoding
weights is also captured in the backhauling links. Moreover, the user data is taking
the path of the precoding weights.
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Figure 1.5.: An illustrative mapping of the OSI model that maps to the protocol
stack of the UE and BS highlighted in rectangluar blocks.

1.2.1. Precoding, a PHY Layer Design

To understand precoding, consider the following simplified communication system as
illustrated in Figure 1.6 (a) where typically the receiver performs channel inversion
to compensate the effects of the channel via equalization. The complexity of the
receiver can be reduced if this is performed at the transmitter as shown in Figure 1.6
(b). However, the receiver needs to feed back the CSI to the transmitter, as shown
by the dashed lines. Finally, in Figure 1.6 (c), the precoding weights are multiplied
just before the symbols are upconverted, amplified and transmitted. In the case of
CoMP systems, the transmitter is distributed at multiple geographically separated
BSs, and in a centralized architecture, the precoder design resides in the CCN.
Now consider an aggregated channel matrix formulated at the CCN as shown in

Table 1.2. Given a dummy scheduler (at the MAC layer) in a network where any
given set of UEs need to be served. The question now is how to remove interference
and achieve backhaul savings equivalent to the feedback savings. One can approach
the problem with a PHY layer design for precoding. With a dummy scheduler, the
complexity is pushed to the precoder for interference mitigation and also to achieve
backhaul savings with limited CSI feedback. In this regard, a stochastic precoder is
proposed in this thesis to achieve this goal. In chapter 2, stochastic optimization is
discussed in general and the particular case of using particle swarm optimization as
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Figure 1.6.: A simplified illustration of precoding. In a centralized CoMP
architecture, the precoder design resides in the CCN, as the transmitters are
distributed.

a tool for designing the precoder is emphasized.
In this precoding approach, the backhaul usage is defined to be efficient when the

total number of CSI coefficients fed back by the UEs is equal to the total number of
precoding weights available at the cooperating BSs. This is a desired property of the
precoder as mentioned in the above section. Moreover, a UE feeding back the CSI
has spent the uplink resources in notifying the preferred BSs, and it is imperative
that the spent resources are made worthwhile for that UE.

1.2.2. Scheduling, a MAC Layer Design
Alternately, for a given frequency-time resource, the goal of interference mitigation
and backhaul savings comparable to the limited CSI feedback can be achieved with
a MAC layer design. In this regard, a simple precoder such as zero forcing (ZF)
is considered. The simplicity of this linear precoding approach is very much pre-
ferred from an implementation point of view. This means that the complexity needs
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to be handled by the scheduler, residing at the CCN. In [SSB+09], it was shown
that a simple user selecting procedure combined with a suboptimal ZF beamformer
performs close to the upper bound obtained with joint multicell dirty paper coding
(DPC). This is achieved asymptotically with the number of UEs per cell under equal
per-cell power constraint.
In this MAC layer approach, the backhaul usage is defined to be efficient when

the total number of precoding weights is less than or equal to the total number of
CSI coefficients. This is primarily due to the scheduling constraint where a given
set of UEs that feed back the CSI coefficients is not guaranteed to be served.

1.2.3. Network Architecture
A decentralized architecture is a centralized architecture without the CCN. The
removal of the CCN relaxes the stringent constraints on the backhaul latency. How-
ever, the CSI needs to be present at the coordinating BSs. Hence, the UEs need
to broadcast the CSI coefficients. This novel approach was proposed in [PHG08]
and it is illustrated in Figure 1.7. This approach could be very useful in designing a
network whose backhaul is limited. In [TPK11], a decentralized beamforming solu-
tion under limited backhauling is proposed, where the CSI is locally available at the
BSs. However the BSs exchange some cross-interference parameters with adjacent
neighbors. Alternatively, sharing the scheduling information between coordinating
BSs can yield a user data rate that is comparable to the centralized architecture.
Any form of sharing between BSs requires some backhaul support. Hence, such
an architecture could be viewed as though every BS has the CCN, which could be
treated as a logical entity.
In this decentralized network architecture with broadcasting of CSI coefficients,

the reduction in the number of hops in the backhaul, complimented with sharing
the scheduling information instead of CSI can be regarded as an improvement in
the reduction in the backhaul latency. However, this approach could be treated as
a step towards efficient usage of the backhaul.
In the next chapter, the precoder design based on particle swarm optimization is

presented.
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Figure 1.7.: An illustration of the UEs broadcasting the CSI over the air in a
decentralized network architecture.
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2. Particle Swarm Optimization
“I wandered lonely as a Cloud
That floats on high o’er Vales and Hills,
When all at once I saw a crowd
A host of dancing Daffodils;
Along the Lake, beneath the trees,
Ten thousand dancing in the breeze.”

William Wordsworth

In this chapter, a brief introduction to stochastic optimization algorithms inspired
from nature is presented. The question of how one can extract the power of stochas-
tic algorithms, is also touched upon. The design of particle swarm optimization
(PSO) as a tool for precoding is presented in particular. Nature provides a lot of
inspiration to gain insights into the working forces around us. An interesting part
is how evolution has brought forth optimization as one of its core elements. Evo-
lutionary algorithms are stochastic algorithms whose driving force is optimization.
There are various evolutionary algorithms, in particular the movement of ants, the
swarming of birds and genetic algorithms are briefly presented in this chapter.
The movement of ants has given rise to the ant colony optimization, where the

ants are involved in laying a scent trail along the path to find food. Most ants
wander in search for food, however the ones that find food return to their colony’s
nest with it, at the same time marking the trail. Other ants tend to follow this trail.
In effect, the path to the food and the nest are optimized towards the best path.
The fascinating thing about ants is that there is apparently no leader and the goal
that they achieve is much bigger than what can be achieved as an individual. For
example, ants making an ant-bridge to get other ants to the food source is indeed
a remarkable feat. The foraging of ants is shown in Figure 2.1, where the ants are
taking the scented path. This is mainly due to the cooperation between ants, helping
in the survival of the species.
A flock of birds or a shoal of fish or a swarm of bees tend to move together as a

group. The fish tend to avoid the shark by moving in a group, thus making it harder
for the predator to catch its prey. The birds move together looking for food, as more
eyes can increase the chances of finding food. Scientists simulating the movement
of the flock of birds discovered that the birds were performing optimization [KE95].
In Figure 2.2, the flock of birds can be seen flying together. This helps in reducing
the drag and the effort needed for flying.
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Figure 2.1.: Foraging of ants at Randers rainforest, Denmark.

Genetic algorithms are evolutionary algorithms derived from the workings of the
genetic material such as the chromosomes. These undergo biological changes that are
favorable to sustain their species. These changes are evolutionary in nature when one
looks at certain characteristics for many generations. The features that are not useful
are degenerated, for example the appendix in humans. Hence, the individual of a
given species tends to introduce changes and those changes that are useful are carried
forward to the next generation. The variables in a given optimization problem need
to be translated into a string of digits called chromosomes. Interested readers are
requested to refer to [W08] for more details on the algorithms discussed above.
On a philosophical note, the notion of evolutionary algorithms can be applied to

the human society where diversity in the population working together can achieve
the global optimum compared to a society that is confined within itself.
Stochastic algorithms are used in designing hardware. For example, PSO is used

for designing chipsets for lowering the heat dissipation or the run length of wires in
a given circuitry. It is also used for designing antennas with a desired side-lobe level
or the antenna element positions in a nonuniform array [JR07]. A comprehensive
analysis of the publications on the applications of PSO is presented in [P08]. PSO
has been proposed to be used in some parts of a communication system. Limiting
ourselves to the scope of this thesis, PSO has been proposed to find the optimal
precoding vector that maximizes the throughput in a MU-MIMO system [FWL09].
It is also used for optimizing the scheduling in the downlink for a MU-MIMO system
[HLY+09]. Apart from [P08], PSO was also recently proposed in a MIMO-OFDM
receiver for the initialization of channel estimation [KHT+11].
One can argue that stochastic optimization may give a solution to a given problem,

however the solution is not easily tractable and may not guarantee a global optimum,
unless special triggers are introduced within the algorithm. In particular, for PSO
to achieve global optimum, triggers such as random PSO or multistart PSO need
to be considered [E05]. In the field of communication engineering, technology such
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Figure 2.2.: Birds flying together to minimize the drag. This picture is taken by
Peter M. Prehn, a Flickr user and it is used here under license.

as convex optimization is preferred over stochastic optimization. This is due to
the simple fact that closed form solutions are preferred with the emphasis on linear
algebra as it is generally easier to implement them on digital signal processors. In the
following section, a counter argument is presented as to why stochastic optimization
should be considered.

2.1. The Power of Stochastic Algorithms
Given a problem, typically one needs to reformulate or relax the problem so that the
problem becomes convex. Then, the optimization variables need to be well formu-
lated for the convex optimization machinery to take over [CVX12]. Reformulating
problems to be convex is an art of its own, as one needs to be careful with the
approximations that make the problem convex. One may end up solving a different
problem than the actual problem at hand, as they are not equivalent. However,
looking at the brighter side, with convex optimization, solving the dual problem
gives access to the bound for the original primal problem. While in the case of
biologically inspired stochastic optimization algorithms, all one needs to do is map
a given problem to a stochastic optimization tool such as PSO. The problem solved
by PSO will be the actual problem solved. However, the solution obtained may not
be optimal or it could be difficult to prove that it is optimal. Nevertheless, one can
safely say that the PSO provides a useful solution.
There are various advantages and disadvantages of these tools. The most im-

portant aspect of a stochastic algorithm is that it provides a solution to any given
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problem. The key aspect that one can learn from using a stochastic algorithm is
that there is room for improving the existing linear techniques as shown in Part II
and the Appendix of this thesis. To illustrate this notion, consider the cumulative
distribution function (CDF) of the user data rate as shown in Figure 2.3. In this
illustration, a simple linear precoding technique such as the ZF or minimum mean
square error (MMSE), a stochastic approach such as the PSO and an “unknown”
upper bound are presented under limited feedback (LFB) of CSI and limited back-
hauling (LBH) of the precoding weights. The rightmost curve denotes the nonlinear
dirty paper coding (DPC) with full feedback (FFB) and full backhauling (FBH).
Recall the aggregated channel matrix considered in Table 1.2 and the desired pre-
coding matrix in Table 1.3. The zeros in the aggregated channel matrix are due to
the LFB and the zeros in the desired precoding matrix are due to the LBH. When
these matrices are full, i.e., without any zeros, the aggregated channel matrix and
the precoding matrix are regarded as FFB and FBH, respectively. For the given
problem at hand, where there is LFB at the CCN and LBH, there is no reasonable
upper bound, i.e., the upper bound is mostly obtained under relaxed conditions.
For example, an upper bound is obtained when there is no interference, thereby
making the upper bound very loose. However, the PSO provides a solution to the
given problem, wherein the linear ZF model could be adapted to perform better or
at least as close as the stochastic algorithm. From an engineering point of view, by
convention, linear techniques are very much preferred for implementation. Hence,
the power of stochastic algorithms should be embraced as they act as inputs to
enhance the design of linear techniques.

CDF 

User data rate (Gigabits per second) 

A simple 

linear  technique: 

ZF (LFB + LBH) 

Stochastic approach: 

PSO (LFB + LBH) 

An “unknown” upper bound 

(LFB + LBH) 

Upper bound  

DPC (FFB + FBH) 

Figure 2.3.: An illustration of the use of stochastic algorithm in the context of a
known linear technique and an “unknown” upper bound.
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2.2. Particle Swarm Optimization as a Tool for
Precoding

In the following section, PSO is presented as a tool for precoder design. In this
regard, the basic PSO is introduced. Recall that with limited CSI feedback, the
aggregated channel matrix at the CCN could be as shown in Table 1.2. The aim
is to use PSO to invert this matrix, H̃ where hmk ∈ C is the CSI of the channel
from the kth BS to the mth UE. The total number of coefficients in the H̃ based on
Table 1.2 is 5 complex coefficients. For efficient backhauling, the precoding matrix
W̃ should be as shown in Table 1.3, where the number of coefficients in W̃ is 5
complex coefficients. Therefore, the total number of nonzero coefficients in the
precoding matrix is 2 · 5 = 10 due to the real and imaginary component of each
weight. Let the total number of particles or birds in the swarm be q. Let the matrix
X(i, j) denote the ith particle carrying the jth real valued precoding weight and
X(i, j + 1) denote the ith particle carrying the jth imaginary part of the precoding
weight, i.e., the mapping of the i particle is

X(i, j)← <{W̃(k,m)} (2.1)
X(i, j + 1)← ={W̃(k,m)}. (2.2)

Initially the non-zero weights of W̃ are treated as place holders and the zeros are
presented to map the backhaul savings equivalent to the feedback savings. The
size of the matrix X is q × 10. The position and the velocity of the particles are
stochastically initialized as

X(i, j) = xmin + r · (xmax − xmin) (2.3)

V(i, j) = 1
∆t

(
−(xmax − xmin)

2 + s · (xmax − xmin)
)

(2.4)

where r and s are drawn from the uniform distribution in the interval [0, 1]. The
maximum starting position of a particle is intuitively chosen as xmax = 1

max|H̃(i,j)|
and xmin = −xmax . The intuition is that it aids the swarm to converge. Now the
particles are allowed to fly through the search space by evaluating the objective
function such as maximizing sum rate or weighted interference minimization. For
each iteration, each particle will keep track of its own best value achieved so far by
saving the corresponding precoding weights as Xpb(i, :). There will be one particle
in the swarm denoted as xsb that has the best value achieved. After every iteration,
each particle needs to update its velocity, and its corresponding position can be
calculated based on the velocity. This is performed based on the belief that each
particle has on the other. The velocity update is calculated as

V(i, j)← w ·V(i, j)+ c1 ·p ·
(

Xpb(i, j)−X(i, j)
∆t

)
+ c2 · q ·

xsb(j)−X(i, j)
∆t , (2.5)
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where w is the inertia weight acting as a bias, as w is initially a value greater than
one, giving the swarm a chance to explore the search space. As the particles begin to
swarm, the w is damped to a value less than one. The c1 is the cognitive component
that weighs its own self belief, while c2 is the social component as to how much a
given particle can believe in the swarm’s best particle. These beliefs are stochastic
in nature, governed by p and q that are drawn from the uniform distribution in the
interval [0, 1].
Finally, when the PSO algorithm has converged, the xsb is demapped to obtain

the precoding matrix W̃. Hence, a backhaul reduction can be obtained that is
equivalent to the feedback reduction, in terms of the number of coefficients. In the
next section, the advantages and disadvantages of using PSO are discussed.

2.3. Advantages and Disadvantages
The PSO has various advantages compared to other stochastic algorithms such as
ant colony optimization or genetic algorithm. The primary reason is that there is
very little bookkeeping that needs to be performed in the algorithm on comparative
scales. In the context of precoding with limited CSI feedback, where any given
set of users needs to be served, the PSO can dynamically adjust to the number of
precoding weights that need to be optimized. More importantly, PSO guarantees a
solution for the given problem.
Based on the analysis of the PSO algorithm for precoding, the complexity is
O (cM2KNT), where M is the number of single antenna UEs and K is the number
of BSs with NT antennas. Furthermore, c is the number of iterations required for
the PSO algorithm to converge. In contrast, the complexity of ZF is O (M2KNT).
Hence, the PSO could take a longer time to reach a solution, due to the iterative
nature of the algorithm. The other disadvantage foreseen is the performance of
the PSO when the size of the problem is increased. Understanding how the PSO
scales is an on-going work. However, in the context of precoder design with PSO, the
algorithm is executed at the CCN whose computational power can be harnessed with
better implementation of PSO. Moreover, the clustering algorithms for grouping BSs
and UEs aim to reduce the feedback and backhaul overhead, resulting in a problem
size that is manageable. In this thesis, the basic PSO whose parameters are not
optimized, is used, i.e., a basic PSO from the field of swarm intelligence is used
as it is. There is scope for improving the basic PSO parameters. Also, there is
scope for the global PSO such as the multistart PSO, where the global solution is
guaranteed [E05].
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3. Organization of this Thesis and
Included Papers

“What day is it,?” asked Pooh.
“It’s today,” squeaked Piglet.
“My favorite day,” said Pooh,

A.A. Milne

The focus of this thesis is to find solutions to efficiently use the backhaul resources
in a CoMP system. The papers presented in this work can be categorized based on
the following: (a) backhaul reduction based on a PHY layer approach, (b) backhaul
reduction based on a MAC layer approach, and finally (c) backhaul reduction based
on a decentralized network architecture. The papers can be summarized as depicted
in Table 3.1.

Table 3.1.: A high level view of the contributions in this thesis

CoMP Backhaul reduction approaches Contributions in
Network Decentralized architecture Paper D
MAC Scheduling Paper C
PHY PSO based Precoding Paper A/B

3.1. Paper A - Partial Joint Processing with Efficient
Backhauling in Coordinated MultiPoint Networks

In this PHY layer approach for backhaul reduction, the state-of-the-art physical
layer block diagonalization solution is compared with PSO. The comparison can only
be performed when the block diagonalization of the aggregated channel matrix is
feasible. The infeasibility is brought about due to the limited CSI feedback achieved
by relative thresholding.
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3.2. Paper B - Partial Joint Processing with Efficient
Backhauling using Particle Swarm Optimization

This is an extension of the above conference paper, where the PSO is analyzed in
greater detail for backhaul load reduction. The PSO is guaranteed to work with-
out any scheduling constraint. The objective function of sum rate maximization is
shown to be biased towards users with good signal to interference plus noise ratio
(SINR) compared to the low SINR users. A new metric called weighted interference
minimization is proposed, where the objective function is to minimize interference
and improve the weak SINR users. In Appendix A, the weighted interference mini-
mization is compared with the maximization of the minimum SINR user, and the
benefits of considering weighted interference minimization is highlighted.
The PSO was used with real field measurement data where the statistical uncer-

tainty of CSI or imperfect CSI were considered. Various algorithms from different
partners of the ARTIST4G consortium [ARTIST4G] were considered. It was found
that the PSO outperformed all the other algorithms in the scenarios considered.
Some of the interesting results are provided in Appendix B, which complement the
work performed on PSO.

3.3. Paper C - Scheduling for Backhaul Load
Reduction in CoMP

In this MAC layer approach, scheduling is explored for backhaul load reduction,
where a subset of UEs and BSs combinations are considered. Constrained and
unconstrained scheduling are proposed. In particular the constrained scheduling
approach outperforms the state of the art block diagonal approach, in terms of the
average sum rate per backhaul use.

3.4. Paper D - On the Potential of Broadcast CSI for
Opportunistic Coordinated MultiPoint
Transmission

A decentralized network architecture is considered for backhaul load reduction. In
this setting, the CSI coefficients broadcasted by the UE undergo a certain probability
of error as they are received at different BSs, hence, giving rise to precoding loss and
scheduling loss. It is shown that with a minimal exchange of scheduling information,
the decentralized architecture can achieve the rates comparable to the centralized
approach that makes use of the central coordination node, thereby reducing the
stringent latency constraints in the backhaul.
In this work, the phase information of the CSI alone is considered to undergo

errors while the amplitude or channel quality indicator (CQI) can be assumed to
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be error free. This assumption is reasonable and goes well with the LTE standards,
where only 4 bits are used for feeding back the CQI. Moreover, one could protect
the CQI with robust channel codes, whose overhead is not significant.

3.5. Visions and Future Work
Broadcasting of CSI coefficients in a decentralized architecture is attractive from the
backhaul latency point of view. The CSI feedback can be envisioned to be of two
levels. Firstly, the quantity of the feedback should be focused upon, i.e., how much
CSI should a given UE feed back, and secondly, what should be the quality of the
CSI that becomes available at the BSs. Should the BSs that decode the broadcasted
CSI be clustered? Reducing the quantity of feedback in any architecture will cause
limited CSI feedback and PSO will be an attractive solution to mitigate interference.
However, one needs to find a trade off with distributing the complexity of mitigating
interference to the PHY layer, MAC layer and the network architecture as well.
Interference mitigation should be considered at various layers in the protocol stack.
As an analogy to the OSI model of the protocol stack in cellular communications,
segmentation and reassembly of packets is performed at various layers.
As part of the future work, the bounds for limited feedback and the equivalent

backhaul reduction beg for some attention. This can provide inputs as to whether,
the complexity should be handled by the precoder or the scheduler or if they should
work together. This is still an open question.
The recent trends in the widespread use of communications has driven the cel-

lular network operators to consider dense deployment of BSs to improve capac-
ity [LFJ+13]. In dense networks, interference could potentially destroy the gains.
Hence, suitable interference mitigation techniques should be considered. Dynamic
clustering could play an important role to decide which BSs should serve a given
UE. Feeding back the CSI could be an overhead, possibly hybrid automatic repeat
request (HARQ) with dynamic cell selection could be considered to reduce the back-
haul dependency.
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4. Partial Joint Processing with
Efficient Backhauling in
Coordinated MultiPoint Networks

Abstract
Joint processing between base stations is a promising technique to improve the qual-
ity of service to users at the cell edge, but this technique poses tremendous require-
ments on the backhaul signaling capabilities. Partial joint processing is a technique
aimed to reduce feedback load, in one approach the users feed back the channel
state information of the best links based on a channel gain threshold mechanism.
However, it has been shown in the literature that the reduction in the feedback load
is not reflected in an equivalent backhaul reduction, unless additional scheduling or
precoding techniques are applied. The reason is that reduced feedback from users
yields sparse channel state information at the Central Coordination Node. Under
these conditions, existing linear precoding techniques fail to remove the interference
and reduce backhaul, simultaneously, unless constraints are imposed on schedul-
ing. In this paper, a partial joint processing scheme with efficient backhauling is
proposed, based on a stochastic optimization algorithm called particle swarm op-
timization. The use of particle swarm optimization in the design of the precoder
promises efficient backhauling with improved sum rate.

Keywords—Joint Processing, Zero Forcing, Backhaul load reduction, Particle
Swarm Optimization, Stochastic Optimization

4.1. Introduction
Future cellular communication systems tend to have a frequency reuse factor of
one, causing intercell interference and reducing user experience close to the cell-
edge. Joint Processing (JP) between Base Stations (BSs) is one of the techniques
that falls in the framework of Coordinated MultiPoint (CoMP) transmission [1]. In
downlink JP, the user receives its data from multiple coordinating BSs.
In a typical Centralized Joint Processing (CJP) approach, the cluster of BSs

jointly coordinates and transmits the data to the intended user, without causing
interference to other users. This poses users to feed back the Channel State Infor-
mation (CSI) of all the BSs in the cluster to their serving BS. Then, the CSI needs
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to be forwarded over the backhaul towards the Central Coordination Node (CCN)
to precancel the interference via BeamForming (BF) and power allocation. This
non-casual availability of CSI at the CCN for interference avoidance can be treated
as casual for a stationary channel, but needs regular updates for non-stationary
channels. Nevertheless, the need for the CSI being available at the CCN and for
sending the precoding weights and user data from the CCN to the corresponding BSs
puts tremendous requirements on backhauling. To alleviate them, clusters of BSs
are usually arranged. The clustering techniques can be divided into network-centric
or user-centric, depending on where the clustering decision is carried out. To this
end, Partial Joint Processing (PJP) has been proposed to reduce the CSI feedback
load [2].
PJP can be viewed as a general framework for feedback and backhaul reduction.

In the particular approach considered in this paper, a CCN or the serving BS might
instruct the User Equipments (UEs) to report the CSI of the links in the cluster
of BSs whose channel gain fall within an active set threshold or window, relative
to their best link (usually the serving BS). With this PJP scheme, feedback load
is reduced, as CSI of only a subset of BSs is fed back per UE. This subset is also
referred to as an active set. Note that this user-centric clustering technique results
in the formation of overlapping active set of BSs for each user, and the user should
preferably only receive its data from the set of BSs included in its active set. The
CSI being available at the CCN are marked as active links and those that are
not available (or not reported) are marked inactive. The CCN forms an aggregate
channel matrix based on these active and inactive links for interference avoidance.
As a result, the aggregated channel matrix is now sparse, due to the reduced CSI
feedback giving rise to inactive links, which are modeled as zeros.
In JP, linear BF techniques such as Zero Forcing (ZF) can be used for interference

avoidance, as long as the aggregated channel matrix is well conditioned for inversion.
It has been shown in the literature that the reduction in the CSI feedback load is
not necessarily reflected in an equivalent BF backhaul reduction, unless additional
scheduling or precoding techniques are applied [3], or unless the aggregated channel
matrix is diagonal or block-diagonal. In other words, when calculating the ZF BF
based on the sparse aggregated channel matrix, one inactive link may be mapped
into a non-zero BF weight for that link. This causes unnecessary backhauling, since
the UE has reported that link as inactive and that BS is then outside the active
set of that UE, i.e., the resources at this BS can be used to serve other UEs. A
brute force approach would be that the CCN might resort to nulling the BF weights
where the links are inactive, but this might lead to inefficient power allocation and
increased interference, resulting in reduced sum rate of the system in the cluster
area.
To the best of our knowledge, this problem has only been addressed in [3], where

two solutions are proposed, one based on scheduling (MAC layer approach) and the
other based on ZF precoding (PHY layer approach). In the scheduling solution of [3],
a suitable set of UEs are selected for transmission such that the sparse aggregated
channel matrix available at the CCN is block-diagonal and hence, invertible. These
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suitable sets are formed by arranging disjoint active sets in each time slot, i.e.,
each BS involved in serving a UE belongs to only one active set. The drawback
of this approach is that, in each time slot, a given set of disjoint BS active sets
is selected for transmission; if the UEs prefer services from the same set of BSs
they need to wait for their turn to be served in a TDMA fashion. Fairness is
guaranteed but at the cost of UEs needing to wait for a long time. In case of the
ZF precoding solution in [3], no constraints are assumed on scheduling. To reduce
the backhaul load, the zeros in the sparse aggregated channel matrix are mapped
to the aggregated BF matrix. The interference is reduced by formulating this as a
constrained optimization problem. The proposed solution needs a well constructed
aggregated channel matrix and hence, it is heavily dependent on scheduling. On
the other hand, there is no linear technique existing in the literature that can invert
the aggregated channel matrix with zeros (inactive links) and preserve these zeros
in the transposed version of the inverse, when the aggregated channel matrix is not
diagonal or block-diagonal.
In this paper, Particle Swarm Optimization (PSO), a stochastic optimization

method, is proposed as a tool to design a BF that can achieve a backhaul reduction
in terms of zero BF weights equivalent to the CSI feedback reduction. Compared to
the ZF precoding solution in [3], this technique works on sparse aggregated channel
matrices, without any constraint on scheduling. PSO has already been shown to
obtain the optimal multiuser MIMO linear precoding vector, where the objective
function of the PSO was to maximize the system capacity [4]. Whereas, in our
paper, the PSO is used in a multicell scenario performing PJP CoMP with perfect
CSI with the main objective of minimizing interference.
The paper is organized as follows, in section 4.2 the system model is described.

The section 4.3 introduces PSO and discusses how the BF weights are treated as
particles. Simulation results are presented in section 4.4, and section 4.5 concludes
the paper. The notation used in this paper is summarized in the footnote below.

4.2. System Model
Consider a cluster of K single antenna BSs involved in the downlink transmission
to M single antenna UEs located at the cluster center, as shown in Figure 4.1. Any
form of intercluster interference affecting the demodulation of signals at the UE is
assumed to be negligible and is thus neglected. With a frequency reuse factor of
one in this layout, the transmission to a UE will cause interference to other UEs.

Notation: Boldface upper-case letters denote matrices, X, boldface lower-case letters denote
vectors, x, and italics denote scalars, x. The Cm×n is a complex valued matrix of size m× n.
The (·)H is the conjugate transpose of a matrix. The || · ||F is the Frobenius norm, OffDiag (X)
is an operation on the matrix X that sets the elements in the main diagonal to zero. X(i, j) is
the (i, j)th element of matrix X. vec(X) is the vector of stacked columns of matrix X and ⊗
denotes the Kronecker product. <{X(i, j)} and ={X(i, j)} are the real part and the imaginary
parts of X(i, j).
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Assuming CJP, the discrete time signal received at M UEs, y ∈ CM×1 is

y = HWx + n, (4.1)

where H ∈ CM×K is the aggregated channel matrix of the form [hT1 hT2 . . .hTM ]T ,
hm ∈ C1×K is the channel from all the BSs in the cluster to themth UE, W ∈ CK×M

is the aggregated BF matrix of the form W = [w1 w2 . . . wM ], wm ∈ CK×1 is the
BF for the mth UE, x ∈ CM×1 is the transmitted symbols to the M UEs, and
n is the spatially and temporally white receiver noise with variance σ2, and it is
uncorrelated with the transmitted symbols.

Figure 4.1.: The cluster layout, the hexagon in the middle denotes the cluster area
under consideration.

When CJP is used, the CCN has a full channel matrix H. In the literature, a ZF
BF matrix W is obtained by taking the right inverse of H,

W = HH
(
HHH

)−1
. (4.2)

CJP can be seen as a particular case of PJP when the threshold is high, such that all
links are active for a given UE. For convenience, at the CCN, the active and inactive
links can be represented as an active set, a binary matrix of size [M × K], whose
(m, k)th element represents the (m, k)th link between the mth user and the kth BS.
These elements take the value ‘1’ and ‘0’ representing links whose CSI is available
(active) and not available (inactive), respectively [2]. Few links are active in some
scenarios, e.g., small values of the active set threshold result in a sparse aggregated
channel matrix H̃ at the CCN. If H̃ is invertible, the W̃ thus formed may not have
zeros at places where needed, i.e., a UE will receive its data from BSs outside its
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active set, corresponding to its inactive BSs. For example, say UE1 reported CSI
for BS1, BS3 and not for BS2 i.e., BS2 falls outside the active set of UE1, hence,
H̃(1, 2) = 0. The CCN having the CSI of all the UEs in that cluster tries to invert
the aggregated channel matrix to obtain the BF weights. These weights are only
needed at BS1 and BS3 for UE1, but they might show up at BS2 for UE1, due
to the behavior of the pseudo-inverse involved with ZF, i.e., W̃(2, 1) 6= 0. This
is highly undesirable as it results in extra and unnecessary backhaul load on the
cluster. It should be pointed out that BS2 being inactive is not involved in JP
for serving UE1 but BS2 can be involved in serving other UEs. A BS that is not
involved in serving any UE need not be considered in this setup at all. Due to the
overlapping clusters formed with PJP, the subset of BSs reported by the UEs differ
for a given frequency/time resource. Hence, a BS serving only one UE at the cluster
center, should be included in the precoding design as this UE is sharing the same
frequency/time resource and the interference thus generated needs to be accounted.
To realize the gains of the active set based PJP scheme, the problem at the CCN

under a ZF assumption, is two fold: firstly, invert a sparse matrix and secondly,
obtain null BF weights in the correct places. Hence, BF is an important challenge to
be realized, especially without the need to have any special constraints on scheduling.
Every BS involved in JP has a maximum per-BS power constraint of Pmax. The

precoding matrix W is realized such that at least one of the BSs can transmit at
maximum power as defined in

W =
(√

Pmax/
(

max
k=1,...K

||W̃k||2F
))
· W̃, (4.3)

where W̃k stands for the BF weights of the kth BS towards the M users.
The Signal to Interference plus Noise Ratio (SINR) for the mth UE is given as

SINRm = ||hmwm||2
M∑

j=1,j 6=m
||hmwj||2 + σ2

, (4.4)

and the sum rate per cell at the cluster center is given as

Rtot = 1
K

M∑
m=1

log2 (1 + SINRm) [bps/Hz/cell]. (4.5)

4.3. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a stochastic optimization algorithm inspired
from the movement of a flock of birds, a shoal of fish, etc [5]. The birds are modeled
as particles traveling in the search space to find food or the feasible solution of a given
objective function. Their social behavior is modeled as a swarm. In [5], the algorithm
simulating the social behavior was simplified and was observed to be performing
optimization. PSO being metaheuristic does not guarantee a global optimum, but
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when implemented as a stochastic optimization, randomness is injected into the
algorithm to move away from the local solution when searching for a global optimum.
In this paper, a basic PSO capable of finding an equilibrium solution with inertia
weight and without the craziness operator [5], is presented. As per [6], a basic PSO
does not satisfy the convergence condition for global search. PSO is chosen over
classical optimization methods, as the overlapping clusters (dynamic changes in the
aggregated channel matrix in every frequency/time resource) formed with PJP make
the linear ZF BF technique presented in [3] difficult to realize.
The ZF precoding solution proposed in [3] for single antenna systems is simplified

into a classic linear algebra problem Ax = b, where A is formed by block diagonal-
izing the aggregated channel matrix; x and b are the vectorized BF and identity
matrices, respectively. The zeros in the x eliminate the columns of A and the so-
lution reduces to a classic right inverse as in (Equation 4.2). This can be written
compactly as

(
IM ⊗ H̃

)
·vec(W̃e) = vec(IM), where the inactive links or zeros in W̃e

have eliminated the columns of the Kronecker product. This elimination can give
rise to an overdetermined system and the right inverse does not exist. An overde-
termined system is encountered ∼ 83% of the time, when this approach is applied
for PJP with active set threshold of 10 dB in our evaluation setup, see section 4.4.
Hence, we propose PSO to overcome the limitations in the state of the art ZF BF
solution in [3], and we later show that PSO performs better.
The BF weight matrix W̃ is stochastically initialized, and zeros are inserted ac-

cording to the active set matrix. The non-zero BF weights are mapped to the ith
particle as X(i, j) ← <{W̃(m,n)} and X(i, j + 1) ← ={W̃(m,n)}. The search
space of the particles is initially limited to [xmin, xmax], where xmax = 1/max{|H̃(i,j)|}.
This value is chosen as the starting limit of the particles in the search space for
faster convergence. PSO stochastically changes these limits in every iteration. The
aim of the PSO is to optimize the position of the particles of the swarm based on
the objective function. The resulting best particle is chosen as the best BF weights.
In this work, two different cases are considered:

case a) arg min
W̃a

{
||H̃W̃a − I||F

}
(4.6)

case b) arg min
W̃b

{
||OffDiag(H̃W̃b)||F

}
(4.7)

Both objective functions for the PSO are subject to ∀i, j : H̃(i, j) = 0 maps to
W̃x(j, i) = 0, where x represents case a) or case b). In case a), the identity matrix
is subtracted from the product of the sparse aggregated channel matrix and the
aggregated BF matrix. The identity matrix tries to ensure that all the users are
fairly served, i.e., it aims for equal receive power to all the users. This is based on the
ZF philosophy that HW = I. The interference is minimized considering fairness
between users. In case b), only the off diagonal elements of the product of the
sparse aggregated channel matrix and the aggregated BF matrix is considered. The
non-zero off diagonal elements represent the presence of interference in the system
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involved in JP. The aim of this objective function is to minimize the interference
alone.
To evaluate the objective function, the positions of the particles are demapped

to form the complex BF weight, i.e., W̃(m,n) ← {X(i, j)} + i · {X(i, j + 1)},
where ‘i’ is the imaginary unit. The core of the PSO algorithm is described in
(Equation 4.8)-(Equation 4.11). These equations are evaluated in every iteration,
i.e., ∀i = 1, . . . , N ; j = 1, . . . , n, where the time step length is 4t = 1, N is the
number of particles and n is the number of variables. (Equation 4.8) updates the
velocity of the particle, where the term involving c1 is called the cognitive component
(weighs the self confidence of that ith particle) and the term involving c2 is called
the social component (weighs the reliability of other particles for that ith particle).
Xpb(i, :) ← X(i, :) is the best position attained by the ith particle itself carrying
the best BF weights it could find, xsb is the best position attained by any particle
carrying the best BF weights in the entire swarm. p and q are uniform random
numbers in [0, 1]. (Equation 4.9) restricts the maximum velocity of the particle
to vmax, such that the particles do not diverge and (Equation 4.10) updates the
position of the particle. An inertia weight, w, is used to bias the current velocity
based on its previous value in (Equation 4.8), such that when the inertia weight
is initially 1.4, being greater than 1, the particles are biased to explore the search
space. When w decays to 0.4, due to a constant decay factor β in (Equation 4.11),
the cognitive/social components are given more attention [7].

V(i, j)←w ·V(i, j) + c1 · p · (Xpb(i, j)−X(i, j))/∆t
+ c2 · q · (xsb(j)−X(i, j))/∆t (4.8)

|V(i, j)| <vmax (4.9)
X(i, j)←X(i, j) + V(i, j) ·∆t (4.10)

w ←w · β (4.11)

The cognitive factor, c1, and the social factor, c2, are equal to 2 as highlighted in
[5, 6]. These references also indicate that the choice of the nonlinear decreasing
in the inertia weight with an initial value of 1.4 ensures that the particles cover
a large search space and then the particles focus on refining the solutions. The
choice of the decay factor as 0.99 indicates slow decaying in the inertia weight.
The number of particles is also fixed throughout the simulation. The choice of the
number of particles, N = 30, was found to be a reasonable compromise with the
computational complexity and the ability of the PSO to find an equilibrium solution,
see [6] and the references therein. The values of the PSO parameters used in this
initial work are the typical values and are summarized in Table 4.1. The influence
of the PSO parameters chosen for the design of the precoding matrix needs to be
investigated further as part of our future work, and also with the channel data
from field measurements. PSO is preferred over other genetic algorithms, as it has
the least number of parameters to configure and promises better computational
efficiency.
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4.4. Simulation Results
Consider the scenario with K = M = 3 single antenna BSs/UEs involved in JP.
Each BS covers a hexagonal cell of radius, R = 0.5 kms. The UEs are placed at the
cluster center along an ellipse with semi-major and semi-minor axis of length R

16 and
h/2
16 , respectively, where h is the height of the hexagon, as illustrated in Figure 4.1.
The pathloss model in [8] is used,

γPL(dB) = 128.1 + 37.6log10R.

The channel is realized as follows, H = Γ
√
G · γPL · γSF, where Γ ∼ CN (0, 1) are

i.i.d complex Gaussian fading coefficients, γSF ∼ N (0, 8 dB) is the shadow fading
component, and G is the transmit antenna gain of 9 dBi. The system Signal to
Noise Ratio (SNR) or the reference value of one UE located at the cell-edge, is fixed
at 15 dB, giving rise to a maximum BS transmit power of 0.0603 W. It has been
shown that it is difficult to estimate channels with pilot overhead for PJP with active
set threshold greater than 15 dB at the cell-edge [9]. Hence, in this setup, a PJP
threshold of 10 dB is considered.
The PSO with two different objective functions with case a) and b) can be com-

pared with case e) based on [3]. The case c) is a typical ZF BF as in (Equation 4.2)
obtained from limited feedback where backhaul reduction is achieved with explicit
nulling of the BF coefficients, i.e., zeros or nulls are placed in the BF matrix where
needed. Similarly, case d) achieves backhaul reduction with explicit nulling but this
is a genie aided case where full feedback is allowed i.e., complete CSI is available at
the CCN. CJP has the full feedback and full backhauling, without any reduction in
feedback or backhaul.

Table 4.1.: Particle Swarm Parameters

Parameters Values
Number of Particles, N 30

xmax = −xmin 1/max{|H̃(i,j)|}
Max. velocity, vmax (xmax−xmin)/∆t

Cognitive factor, c1 2
Social factor, c2 2
Inertia Weight, w 1.4→ 0.4

Constant decay factor, β 0.99

The convergence of the PSO algorithm is shown in Figure 4.2 for various aggre-
gated channel matrices at CCN. The PSO in case b) converges the fastest within
100 iterations. Once the BFs are obtained from various algorithms, a simple power
allocation per BS as in (Equation 4.3) is performed, where there is at least one BS
transmitting at maximum power. PSO being an iterative procedure, the per-BS
power constraint can be applied in every iteration or after convergence. It should be
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Figure 4.2.: Convergence behavior of PSO for 4 different channel realizations

noted that in case a), as defined in (Equation 4.6), the power constraint is applied
after the PSO algorithm has converged and in case b), as defined in (Equation 4.7),
the power constraint is applied after evaluating the objective function in every iter-
ation. Other combinations were not considered, as the convergence was poor when
the power constraint was applied in every iteration in case a). Applying the power
constraint after convergence in case b) had more residual interference with slower
convergence. Hence, the best combinations were considered. Figure 4.3 shows the
Cumulative Distribution Function (CDF) of the BS transmit power. The values in
the legend show the mean value of a given CDF. It can be observed that the PSO
in case b) uses the BS power constraint, Pmax more effectively compared to others,
as it is the bottom-most curve and it uses 2.85% relatively more power than case
e), in average. All CDFs exhibit maximum power for 33.3% of the time, this is due
to (Equation 4.3), as at least one of the 3 BSs is transmitting at maximum power.
The residual interference power in the system was calculated based on
||OffDiag(HW̃x)||2F , where H is the actual channel and x can be any one of the
cases. It was observed that case a) trying to fairly serve all the users with equal
power leaves 0.69% relatively more interference in the system when compared to
case e). While, case b) reduces the interference by 3.94% relatively compared to
case e). The CDF of the residual interference is not shown here, due to lack of
space.
The CDF of the sum rate is shown in Figure 4.4. Case a) and b) perform the

best compared to the other cases, with a PJP-10 dB threshold on CSI feedback.
Case b) has a relative improvement in the average sum rate by 2.45% compared
to case e), state of the art [3]. It should be noted that in this simulation setup,
for fair comparison, only those cases are considered where the active set does not
produce an overdetermined system, so that the state of the art solution in case e)
works. This also means that PSO can be applied in all the scenarios without any
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Figure 4.3.: CDF of the BS power (PBS) transmitted with various precoding algo-
rithms. The kth BS power is calculated as ||Wk||2F .

restriction regarding scheduling or the need to have a well conditioned aggregated
channel matrix. Hence, PSO not only achieves the reduction in backhaul, there is
also a greater gain compared to the state of the art, as it always finds a solution. The
case b) with PSO performs 2.98% relatively better than the genie aided full feedback
case d) with reduced backhaul. The complexity analysis of the PSO algorithm with
the constraint of backhaul load being equivalent to feedback load is treated as part
of our future work.

4.5. Conclusion
Efficient backhauling techniques are needed to realize the gains of joint processing
with reduced feedback. Existing techniques of achieving efficient backhauling in this
context have constraints on scheduling or need full channel state information to be
fed back. The particle swarm optimization used in this paper, is able to perform
without any such constraints.
When the state of the art technique can find a solution, the average sum rate of

the stochastic optimization algorithm performs 2.45% better than the state of the
art solution, without any restriction on scheduling, such that the backhauling load
is equivalent to that of the feedback load. The proposed algorithm is also capable
of performing even when the state of the art solution fails due to an overdeter-
mined system. The best algorithm proposed in this paper converges in merely 100
iterations, with effective usage of the base station power and lowering interference.
With parallel computing and with more improved flavors of swarm algorithms, this
complexity is feasible. Robustness of the proposed particle swarm algorithm with
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Rtot. CJP can be viewed as the upper bound for ZF.

optimized parameters and imperfect channel state information will be studied as
part of our future work.
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5. Partial Joint Processing with
Efficient Backhauling using
Particle Swarm Optimization

Abstract
In cellular communication systems with frequency reuse factor of one, user terminals
at the cell-edge are prone to intercell interference. Joint processing is one of the co-
ordinated multipoint transmission techniques proposed to mitigate this interference.
In the case of centralized joint processing, the channel state information fed back by
the users need to be available at the central coordination node for precoding. The
precoding weights (with the user data) need to be available at the corresponding
base stations to serve the user terminals. These increase the backhaul traffic. In
this paper, partial joint processing is considered as a general framework that al-
lows reducing the amount of required feedback. However, it is difficult to achieve
a corresponding reduction on the backhaul related to the precoding weights, when
a linear zero forcing beamforming technique is used. In this work, particle swarm
optimization is proposed as a tool to design the precoding weights under feedback
and backhaul constraints related to partial joint processing. The precoder obtained
with the objective of weighted interference minimization allows some multiuser inter-
ference in the system, and it is shown to improve the sum rate by 66% compared
to a conventional zero forcing approach, for those users experiencing low signal to
interference plus noise ratio.

Keywords—Coordinated MultiPoint, Joint Processing, Particle Swarm
Optimization, Precoding, Stochastic Optimization

5.1. Introduction
Future cellular communication systems tend to be spectrally efficient with a fre-
quency reuse factor of one. The aggressive reuse of frequency resources causes inter-
ference between cells, especially at the cell-edge. Therefore, the user experience is
affected and the performance of such systems is interference limited. To overcome
this problem, Coordinated MultiPoint (CoMP) transmission/reception is proposed
[1]. Joint Processing (JP) is one of the techniques that falls into the framework of
CoMP transmission. In the downlink, JP involves the coordination of Base Stations
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(BSs) such that the interfering signals are treated as useful signals when transmit-
ting to a User Terminal (UT). Note that this technique was previously referred to
as network coordination [2].
For JP, UTs need to feed back the Channel State Information (CSI) of their BS-

UT links. In Centralized Joint Processing (CJP), the CSI is collected at a node in
the network called Central Coordination Node (CCN), to form an aggregated chan-
nel matrix [3, 4]. The CCN can be treated as a logical node that can be implemented
at a BS. Based on this aggregated channel matrix, the CCN obtains the precoding
weights, consisting of the beamforming weights after power allocation. These pre-
coding weights need to be available along with the user data at the corresponding
BSs to control interference via JP. In this work, the backhaul traffic mainly com-
prises of transporting the CSI coefficients from the cooperating BSs to the CCN,
the precoding weights from the CCN to the cooperating BSs and the user data.
We restrict the definition of the backhaul load as transporting the precoded weights
from the CCN to the cooperating BSs. The feedback load is the traffic due to the
CSI forwarding from UTs to the BSs. These definitions are illustrated in Figure 5.1.
Along with the user data, this traffic poses tremendous requirements on the network
backhaul [4, 5, 6]. It also imposes delay constraints due to non-stationary channels,
but the delay constraints are beyond the scope of this work.

UT BS CCN
User Data

CSI = [h1, h2, h3]
CSI = [h1, h2, h3]

w2

Feedback Load

BS

BS

w1

w3

Backhaul Load

h1

h3

h2

Precoding weight = [w1, w2, w3]

Figure 5.1.: This figure illustrates the feedback load comprising of the CSI coeffi-
cients from the UT to the BS. The backhaul load consists of the precoding weights
from the CCN to the BS. The equivalence can be seen in the number of CSI coef-
ficients, h1, h2, h3 and the number of precoding weights w1, w2, w3 for a given UT.
The user data is assumed to be routed based on the non-zero precoding weights
at the CCN.

One of the approaches to alleviate the complexity requirements in JP is to ar-
range the BSs in clusters [3]. The BSs involved in JP within a cluster control the
intracluster interference, while the BSs belonging to neighboring clusters give rise to
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intercluster interference. In a static clustering approach the cooperating set of BSs
does not change with time, but this can create unfairness for UTs on the cluster edge.
Hence, dynamic clustering helps in maintaining fairness among UTs. An example
of dynamic clustering could be a family of clusters operating in round robin fashion
where each cell takes its turn to be at the cluster boundary. Clustering techniques
can also be divided into user-centric or network-centric depending on where the clus-
tering decision is taking into account the UT determined channel conditions. Since
CJP implies full cooperation, it requires extensive feedback and backhaul resources
in the cooperative cluster. In order to bring JP close to realistic scenarios, one can
further reduce the complexity for a given cluster through suboptimal approaches.
Several such approaches have been considered in the literature to reduce the re-

quirements of CJP, such as limited feedback [2, 5] and limited backhauling [5, 6,
3, 10]. Partial Joint Processing (PJP) is a general framework aiming to reduce the
complexity requirements of CJP, basically the feedback and backhaul load. In the
particular PJP approach considered in this paper, a CCN or the serving BS instructs
the UTs to report the CSI of the links in the cluster of BSs whose channel gain fall
within an active set threshold or window, relative to their best link (usually the
serving BS) [7]. This is summarized in Algorithm 5.1. Note that a similar approach
is used in [8]. PJP can be regarded as a user-centric clustering when it is imple-
mented over a static cluster, since overlapping subclusters or active sets of BSs are
dynamically formed. Note that CJP is a particular case of PJP when the threshold
tends to infinity.

Algorithm 5.1 Active set thresholding for limited feedback based on [7]
1: Choose: threshold = 10dB
2: for each UT do
3: Measure the channel gain from all BSs
4: bestLink = max{channel strength from all BSs}
5: if (bestLink − otherLink) ≤ threshold then
6: UT feed backs the CSI of otherLink
7: CCN marks this link as active
8: else
9: Feedback load reduction:

10: UT does not feed back the otherLink
11: CCN marks this link as inactive
12: end if
13: UT feeds back the bestLink
14: CCN marks this link as active
15: end for

In PJP, the CSI of the links reported by the UTs to the CCN are marked as active
links and those not reported are marked as inactive. Based on these, the CCN forms
an aggregated channel matrix for interference control, where the coefficients of the
inactive links are set to zero. In this paper, the CCN identifies the BSs that fall
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outside the threshold window for a given UT based on the links for which the UT
has not reported CSI. It is assumed that the obtained CSI is error free. Protocol
aspects of this communication need to be addressed in more detail in a real system
implementation. As a result, the aggregated channel matrix is now sparse. Linear
techniques such as Zero Forcing (ZF) can invert the aggregated channel matrix to
remove interference, but these techniques fail to invert a sparse aggregated channel
matrix and at the same time reduce the backhaul load, such that only the BSs in
the active set of a UT receive the precoding weights [9].
The question thus arises, in the PJP framework, can the gains achieved with CSI

feedback load reduction translate to an equivalent backhaul load reduction, in the
sense that the number of CSI coefficients constituting the feedback load (assuming a
single tap channel for simplicity) is the same as that of the precoding weights in the
backhaul (Figure 5.1 illustrates this notion). Particle Swarm Optimization (PSO) is
proposed in this paper as a tool to obtain a solution that fits this requirement, since
it can find the precoding weights without actually inverting the sparse aggregated
channel matrix.

5.1.1. State of the art techniques
Precoding design for clustered scenarios under JP is a recent problem. In [11], a
large network is divided into a number of disjoint clusters of BSs. Linear precoding
is carried out within these clusters to suppress intracluster interference as well as in-
tercluster interference. In the case of overlapping clusters, Soft Interference Nulling
(SIN) precoding technique is proposed in [12]. For SIN, the complete CSI is available
at all BSs and the user data is made available only to the BSs in the coordination
cluster. Hence, the BSs can jointly encode the message for transmission. Moreover,
in [12], multiple spatial streams are allowed up to the total number of transmit
antennas in the coordination clusters. As the exhaustive search for the best clus-
tering combination has a very high complexity, two simple clustering algorithms are
proposed in [12]. They are: a) Nearest bases clustering and b) Nearest interferers
clustering. The SIN iterative precoder optimization algorithm does not remove the
interference completely, but performs better than or equal to any linear interference-
free precoding scheme [12, Proposition 1]. SIN precoding relaxes the restriction to
have zero interference, due to that SIN precoding works even when the number of
transmit antennas is less than the total number of receive antennas within a coor-
dination cluster. It should be noted that SIN achieves backhaul reduction in terms
of the precoded weights and user data being available at BS where needed, but it
does not provide feedback load reduction.
For JP, as long as the aggregated channel matrix at the CCN is well conditioned

for inversion, linear ZF beamforming (BF) techniques can be used for interference
control. It has been shown in [9] that when using techniques that achieve CSI
feedback reduction, such as active set thresholding in PJP, this reduction does not
translate to an equivalent backhaul load reduction with the linear ZF BF. When
calculating the ZF BF based on the sparse aggregated channel matrix, a link that
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has been defined as an inactive link may be mapped with a non-zero BF weight for
that link. This causes unnecessary backhauling, since the UT has reported that link
as inactive and that BS is already outside the active set of that UT. Instead, the BS
could use this resource to serve another UT. An intuitive approach could be that the
CCN resorts to nulling the BF weights where the links are expected to be inactive.
This is a suboptimal solution. In [13], a partial ZF precoding design is proposed
based on [14] to remove the interference in a PJP scenario. This solution performs
better than the linear ZF BF with a weight nulling assumption, and works even for a
sparse aggregated channel matrix at the CCN, but it does not achieve an equivalent
backhaul load reduction. On the other hand, there is no linear technique in the
literature that can invert the sparse aggregated channel matrix and preserve the
zeros in the transposed version of the inverse, when the aggregated channel matrix
is not diagonal or block-diagonal.
To the best of our knowledge, the problem of backhaul load reduction equivalent

to feedback load reduction has only been addressed in [9], where two solutions are
proposed. One based on scheduling (Medium Access Control - MAC layer approach)
and a second one based on a ZF precoding PHY layer approach. The limitations of
this approach are discussed in section 2.2.

5.1.2. Contributions
The active set thresholding technique in PJP (limited feedback of CSI) is used to
achieve the feedback load reduction and these gains need to be preserved with an
equivalent backhaul load reduction (limited backhauling of precoding weights). To
achieve this, a stochastic optimization algorithm such as PSO is proposed for pre-
coding design. PSO has been shown to obtain the optimal linear precoding vector,
aimed to maximize the system capacity in a MultiUser-Multiple Input Multiple
Output (MU-MIMO) system [15]. The main distinguishing factor of our paper com-
pared to [15] is that the PSO is used for designing the precoder under a multicell
setting with PJP. PSO has also been proposed as a tool for a scheduling strategy
in a MU-MIMO system [16]. Recently, a multiobjective PSO has been proposed
for accurate initialization of the channel estimates in a MIMO-OFDM iterative re-
ceiver [17]. Drawing inspiration from [4, 16, 17], and combining the state of the art
PSO implementation with expendable parallel computing power at the CCN, a PSO
based precoder should be feasible for the scenario under consideration.
In this paper, two objectives are studied using PSO. They are:

1. Weighted interference minimization: Minimize the interference for the UTs
and improve the UT experiencing the minimum Signal to Interference plus
Noise Ratio (SINR).

2. Sum rate maximization.

In addition, to fairly compare the linear ZF-based precoder and the proposed PSO-
based precoder, the use of perturbation theory and Gershgorin’s discs is introduced.
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These discs can be used to obtain a quick graphical snapshot of the intracluster
interference remaining in the system. The sum rate bounds under a constrained
backhaul and imperfect channel knowledge are important [18] and it is part of our
future work.
The paper is organized as follows. The system model and the limitations in the

state of the art linear solutions are discussed in section 5.2. The PSO as a tool for
precoder design is presented in section 5.3. In this section, the objective function,
the termination criteria, the convergence of PSO and the complexity in terms of the
big O notation are analyzed. An interesting connection is made between the signal
to interference ratio (SIR) and Gershgorin’s discs in section 5.4. The simulation
results are presented in section 5.5 and the conclusions are drawn in section 5.6.

Figure 5.2.: The cluster layout, the hexagon in the middle denotes the cluster area
under consideration where the UTs are located at the cluster center.

Notation: The boldface upper-case letters, boldface lower-case letters and italics
such as X,x and x denote matrices, vectors and scalars, respectively. The Cm×n is
a complex valued matrix of size m × n. The (·)H is the conjugate transpose of a
matrix. || · ||F is the Frobenius Norm, diag(A) and OffDiag (A) are the diagonal
and off-diagonal elements of the matrix A. Block diagonalizing the matrices A and
B is denoted as blockdiag(A,B). The ith row and the jth column of a matrix A
is represented as A(i, j). To access all the elements of the ith row of a matrix A is
A(i, :) and for the jth column is A(:, j). vec(A) is the vector of stacked columns of
matrix A. <{A(i, j)} and ={A(i, j)} are the real part and the imaginary parts of
A(i, j), respectively. H and H̃ denote the aggregated channel matrix at the CCN
due to full CSI feedback and the sparse aggregated channel matrix at the CCN due
to limited CSI feedback, respectively. W and W̃ denote the BF matrix and sparse
BF matrix, respectively. The BF matrix with power allocation forms the precoding
matrix, W.
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5.2. System model
Consider the downlink of a static cluster of K BSs with NT antennas serving M
single antenna UTs [7]. In this model, the intracluster interference caused due to
the transmission to the UTs located at the cluster center is considered, as shown in
Figure 5.2. For simplicity, the intercluster interference is assumed to be negligible.
Assuming CJP between BSs in the cluster, the discrete time signal received at M
UTs, y ∈ CM×1 is

y = HWx + n. (5.1)

The aggregated channel matrix available in the CCN is H ∈ CM×KNT , and it is
of the form H = [hT1 hT2 . . .hTM ]T , where hm ∈ C1×KNT is the channel from all the
BSs to the mth UT in the cluster. The precoding matrix W is obtained from the
aggregated BF matrix W ∈ CKNT×M after power allocation. The BF matrix is
of the form W = [w1 w2 . . . wM ], wm ∈ CKNT×1 is the BF for the mth UT. The
transmitted symbols to the M UTs are x ∈ CM×1. The receiver noise n at the UTs
is spatially and temporally white with variance σ2, and it is uncorrelated with the
transmitted symbols.
In the case of ZF BF, the constraint K ·NT ≥M needs to be satisfied to maintain

orthogonality between UTs [19]. The matrix W is then obtained by taking the
Moore-Penrose pseudoinverse of H as

W = HH
(
HHH

)−1
. (5.2)

Each BS is constrained to a maximum transmit power, Pmax. The suboptimal power
allocation based on [20] is performed for ZF under per-BS power constraints, where
at least one of the BSs is transmitting at maximum power, and it is defined as

W =
√√√√√ Pmax(

max
k=1,...K

||W(kNT , :)||2F
) ·W, (5.3)

where kNT selects the rows of the BF matrix W of the kth BS with its NT antennas
towards the M UTs. The SINR at the mth UT is given as

SINRm = ||hmwm||2
M∑
j=1
j 6=m

||hmwj||2 + σ2
, (5.4)

and the sum rate per cell in terms of bits per second per Hertz per cell (bps/Hz/cell)
is given as

Rtot = 1
K

M∑
m=1

log2 (1 + SINRm) . (5.5)

61



Chapter 5 Partial Joint Processing with Efficient Backhauling using PSO

5.2.1. Linear beamforming

As stated in section 5.1, the link for which the CSI is reported to the CCN is marked
as an active link and the unreported CSI is marked as an inactive link. These active
and inactive links can be represented with a binary matrix of size M × K. The
(m, k)th element in this matrix corresponds to the link between the mth UT and
the kth BS. An active link is represented with ‘1’ and an inactive link is represented
with ‘0’.
In (Equation 5.2), the linear ZF BF completely removes the interference by in-

verting the aggregated channel matrix H. With small active set thresholds, there
are few active links, forming a sparse aggregated channel matrix H̃ at the CCN.
If the sparse aggregated channel matrix H̃ is invertible, then the BF matrix W̃
thus formed may not have zeros at places where needed. If each BS were to have
NT antennas each, then the pseudoinverse could generate BF weights for some of
the NT antennas and not for the BS as a whole. Moreover, a UT might receive
its data from a BS outside of the active set of a given UT. The effects of ZF are
highly undesirable as it results in extra and unnecessary backhaul load on the clus-
ter, as well as unnecessary transmissions on these links. The ZF solution over a
sparse aggregated channel matrix without any scheduling constraint cannot achieve
an equivalent reduction in backhaul load.
In this paper, the following ZF scenarios are considered, where the ZF is performed

using the pseudoinverse as in (Equation 5.2) on the aggregated channel matrix at
the CCN. The main focus is on the ZF with Limited FeedBack (LFB) and Limited
Backhauling (LBH), where the gains of feedback load reduction need to be preserved
in the backhaul load reduction. This is denoted as ZF:LFB+LBH. The LFB is
achieved based on the active set thresholding technique. The LBH with ZF is
achieved with an intuitive approach of nulling of the BF coefficients based on the
inactive links in the binary matrix. When the UT is allowed to feed back all the
CSI (Full FeedBack, FFB) and allowing Full Backhauling (FBH), it is represented
as ZF:FFB+FBH. This scenario is considered to show the upper bound of the ZF
technique, as in the case of CJP. The scenario ZF with FFB and LBH is considered
to have a similar configuration as that of the SIN precoding technique [12]. This is
denoted as ZF:FFB+LBH. Finally, the scenario ZF with LFB and FBH is considered,
similar to that considered in [9], where the ZF is allowed to have the precoded
weights at BSs where it is not desired and allowing FBH. This is represented as
ZF:LFB+FBH. It should be noted that this approach does achieve some backhaul
reduction, but not necessarily equivalent to the feedback load.

5.2.2. Limitations of the state of the art

The following subsections capture the limitations with the state of the art solutions.
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The invertibility of the aggregated channel matrix:

To maintain the orthogonality between the UTs, as highlighted earlier, the condition
K ·NT ≥M needs to be satisfied. Due to this, the number of columns of the matrix
H is always greater or equal to the number of rows, and the only way to invert the
aggregated channel matrix is by using the right inverse as shown in (Equation 5.2).
The invertibility of the linear ZF BF is limited by the ability to invert

(
HHH

)−1

or in other words, the rank of HHH should be equal to the number of UTs, whose
channels are linearly independent.
In the PJP framework, the active set threshold can be increased such that the UTs

can feed back the CSI of any additional BSs that fall within this window, thereby
increasing the chances of inverting the aggregated channel matrix as proposed in [13].
The worst case could be that the UTs would need to feed back the complete CSI from
all the BSs like in the case of CJP. The CCN can now invert the aggregated channel
matrix to obtain the BF weights, but at the expense of increasing the feedback load.

Required nulls in beamformer:

As stated before, to the best of our knowledge, to overcome the invertibility of the
aggregated channel matrix and the required nulls in the BF, the MAC layer and the
PHY layer approaches are proposed in [9]. These approaches are analyzed for the
remaining part of this section.
In the scheduling MAC layer approach, BS subgroups are formed such that the

transmission to the UTs in each time slot is disjoint, where each BS is transmitting
in only one subgroup. These disjoint sets give rise to a sparse aggregated channel
matrix at the CCN, which presents a block-diagonal form. Note that the scheduling
approach can be mapped to a disjoint clustering solution. This approach solves the
problem of equivalent backhaul load reduction, as the inverse of a block diagonal
matrix is block diagonal itself, thereby retaining the zeros or nulls in the BF weights
where needed. In a given time slot, if the collocated UTs prefer services from the
same set of BSs, then the MAC layer approach can only serve the UTs in a time
division multiplexing fashion, as disjoint BS sets need to be selected for transmission.
To guarantee fairness, such UTs will have to wait for a long time to be served.
The proposed PHY layer ZF precoding solution does not require any specific con-

straints on scheduling [9], and it allows the formation of overlapping clusters. The
interference is reduced by formulating a constrained least squares optimization prob-
lem, whose solution is showed to be a pseudoinverse [9]. The closed-form solution
to find the non-zero BF weights as obtained in [9, eq. (29)] is

wel = H̃H
el

(
H̃elH̃H

el

)−1
vec(IK), (5.6)

where H̃el is obtained after processing the sparse aggregated channel matrix H̃ in
the CCN, after eliminating the columns corresponding to the zeros from vec(W̃).
These zeros correspond to the nulls expected in the BF, IK is the identity matrix

63



Chapter 5 Partial Joint Processing with Efficient Backhauling using PSO

of size K ×K, where K = 3. wel contains the vectorized non-zero BF weights that
need to be remapped to form the final BF matrix W̃.
To illustrate the limitations in the PHY layer approach in [9], consider single

antenna BSs serving single antenna UTs with the aggregated channel matrix at the
CCN as shown in Table 5.1. The first step is to build a block diagonal matrix as
H̃d = blockdiag(H̃, H̃, H̃), and then to eliminate the columns of H̃d corresponding
to the predetermined zeros in the vectorized BF matrix, vec(W̃). In this example,
columns 3, 4, 7 and 8 should be eliminated from the matrix H̃d to obtain the
matrix H̃el of size 9 × 5. Due to this, the rows 3 and 7 in H̃el become zeros and
the (Equation 5.6) is badly conditioned for right inverse. Hence, the PHY layer
algorithm should be modified to eliminate all rows that contain only zeros in H̃el

before evaluating the right inverse. Proceeding with this modification for the solution
in (Equation 5.6), the matrix H̃el is now of size 7× 5, but it still has a problem of
having more rows (equations) than columns (variables). There is no solution to
this overdetermined system and the right inverse as shown in the closed-form in
(Equation 5.6) is not feasible. There could only be solutions when the rows are
linearly dependent, i.e., two or more UTs see the same channel, which is a highly
unlikely scenario. More examples can be found, where the closed-form solution as
per (Equation 5.6) breaks down.

Table 5.1.: An example of a sparse aggregated channel matrix giving rise to an
overdetermined system when PHY layer precoding is applied.

H̃ BS1 BS2 BS3

UT1 h11 h12 0
UT2 0 h22 h23
UT3 0 0 h33

The PHY layer solution does not comment on the fact that there is no PHY layer
solution without scheduling the UTs, as the invertible part of the pseudoinverse
in
(
H̃elH̃H

el

)−1
may not be feasible. In short, the PHY layer solution needs some

scheduling constraints to obtain the BF weights.
Due to the limitations in this closed-form solution in (Equation 5.6), a proper

comparison of the proposed PSO with this PHY layer solution is not possible. Hence,
the PHY layer solution of [9] is not considered in the simulations. However, an
interested reader can refer to [21] where the comparison is performed when [9] is
feasible. In the subsequent section, PSO is presented as a tool for precoder design
for backhaul load reduction equivalent to the feedback load reduction in the PJP
framework.
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5.3. Particle swarm optimization for precoding in the
PJP framework

The PSO was inspired from the movement of a swarm, such as a shoal of fish, a flock
of birds, etc, to find food or to escape from enemies, by splitting up into groups.
There is no apparent leader of the swarm other than the social interactions between
the bird like objects (or boids). The coherent movement of these boids is modeled
based on their social interactions with their neighbors. The algorithm simulating
these social aspects was simplified in [22] and it was found to perform optimization.
In this paper, a basic PSO algorithm [23] with inertia weight and velocity restriction
is implemented and it is capable of finding a stable solution based on a given objective
function.
Classical optimization methods are especially preferred when the optimization

problem is known to be convex but this is not the case here. Numerical meth-
ods such as Newton’s method are not feasible as the objective function is non-
differentiable. Other classical techniques could fail but PSO would always find an
equilibrium/stable solution. PSO was chosen over other evolutionary algorithms, as
it requires very few parameters to configure, it is easier to understand with com-
putationally lesser bookkeeping and it fits well for reducing the backhaul load. In
[23], PSO is viewed as a paradigm within the field of swarm intelligence and the
performance measures of basic PSO are highlighted. This reference also provides
detailed differences between PSO and other evolutionary algorithms.
In this paper, each bird in a swarm carries the real and imaginary parts of the

non-zero elements of the BF matrix, i.e., the ith member of the swarm is the ith
particle that carries all the (n = 2 ·K ·NT ·M) BF coefficients. The ‘2’ is due to
PSO treating the real and the imaginary part of the complex BF coefficients as
another dimension to the search space. Hence, the particle having the best n values
needs to be found for a given objective function. For example, an infinite threshold
would yield n = 2 ·K ·NT ·M non-zero CSI coefficients in the aggregated channel
matrix of size [M ×K ·NT ]. With an active set threshold of 0 dB then only the
best link (or reference link) would be fed back by each UT yielding n = 2 ·1 ·NT ·M .
The real and the imaginary parts of the non-zero BF matrix, W̃, are mapped to a
particle. This mapping, during initialization, is only for illustrating how the BF is
translated to a particle. These steps can be omitted in the actual implementation.
The position, X(i, j), and the velocity, V(i, j), of the ith particle with the jth
BF coefficient are stochastically initialized as X(i, j) = xmin + r · (xmax − xmin)
and V(i, j) = 1

∆t

(
− (xmax−xmin)

2 + s · (xmax − xmin)
)
, respectively. Here r and s are

random numbers picked from a uniform distribution in the interval [0, 1], and xmax
is the maximum value that a BF coefficient is initialized with. This does not mean
that the position of the particle will not exceed this value, i.e., the particles in the
PSO can actually go beyond these limits. The same holds for the velocity of the
particle, but it is restricted by a maximum velocity, vmax, so that the particle does
not diverge. ∆t is the time step length. The total number of particles is Q. Recall
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that each particle is indexed using the variable i, where each particle is carrying n
BF coefficients. These coefficients are indexed using the variable j.
A given objective function is evaluated for every particle i carrying the BF co-

efficients, and it is demapped to form the BF matrix as W̃(l,m) ← {X(i, j)} + i ·
{X(i, j + 1)}, l ∈ {1, . . . , KNT},m ∈ {1, . . . ,M}. The ith particle keeps a record
of its best BF as Xpb(i, :), and the best BF achieved by any of the particles in the
swarm is stored as xsb. The equations governing the update of the velocity and the
position of a particle are:

V(i, j)←w ·V(i, j) + c1 · p ·
(

Xpb(i, j)−X(i, j)
∆t

)
+ c2 · q ·

xsb(j)−X(i, j)
∆t ,

(5.7)
X(i, j)←X(i, j) + V(i, j) ·∆t. (5.8)

The variables p and q are random numbers drawn from a uniform distribution in
the interval [0, 1]. The terms involving c1 and c2 are called the cognitive component
and the social component, respectively. The cognitive component tells how much
a given particle should rely on itself or believe in its previous memory, while the
social component tells how much a given particle should rely on its neighbors. The
cognitive and social constant factors, c1 and c2, are equal to 2, as highlighted in
[22]. An inertia weight, w, is used to bias the current velocity based on its previous
value, such that when the inertia weight is initially being greater than 1 the particles
are biased to explore the search space. When the inertia weight decays to a value
less than 1, the cognitive and social components are given more attention [24]. The
decaying of the inertia weight is governed by a constant decay factor β, such that
w ← w · β.
The pseudocode of PSO described above is summarized in Algorithm 5.2.

5.3.1. Objective function
The particle with the best BF coefficients is demapped to obtain the BF matrix,
W̃. The maximum transmit power at each BS is constrained to Pmax and power
allocation based on [20] is applied as per (Equation 5.3). This is referred to as power
adjustment on the BF matrix, forming a precoding matrix, W. There are two ways
in which this can be applied, either in every iteration of the PSO (in short, PwrAdj)
or after obtaining the best particle from the PSO (in short, NoPwrAdj). Making sure
that at least one BS is transmitting at maximum power in every iteration consumes
more computational resources, but on the contrary, if this is done after running
the PSO algorithm, then this normalization skews or disfigures the best precoding
weights. Both cases of power normalization are considered in the objective functions
below. It should be noted that for the NoPwrAdj case, the objective function is
evaluated without any restriction on the BS transmit power. This means that it is
possible to exceed the BS power constraint when evaluating the objective function.
Nevertheless, the final precoding weights after applying (Equation 5.3) satisfy the
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BS power constraint. The flexibility of choosing an objective function gives another
degree of freedom for the PSO-based precoder.

Algorithm 5.2 Pseudocode for obtaining the BF via PSO. Steps 3 to 5 are only
mentioned for illustration and can be avoided prior to initialization.
1: Initialization:
2: Determine the number of non-zero coefficients n needed in the BF matrix, W̃
3: Map the BF to the particle:
4: X(i, j)← <{W̃(l,m)}, l ∈ {1, . . . ,KNT},m ∈ {1, . . . ,M}
5: X(i, j + 1)← ={W̃(l,m)}
6: Stochastically initalize particles with BF coefficients:
7: xmax = 1/max|H̃(i,j)|
8: xmin = −xmax
9: Position: X(i, j) = xmin + r · (xmax − xmin)

10: Velocity: V(i, j) = 1
∆t

(
− (xmax−xmin)

2 + s · (xmax − xmin)
)

11: while Termination Criterion do
12: for the ith particle in the swarm do
13: Demap the variables in a particle to form the BF matrix
14: W̃(l,m)← {X(i, j)}+ i · {X(i, j + 1)}
15: Evaluate the objective function f(X(i, :))
16: Store:
17: if f(X(i, :)) < fpb(X(i, :)) then
18: Particles’ Best: Xpb(i, :)← X(i, :)
19: end if
20: if f(X(i, :)) < fsb(X(i, :)) then
21: Swarm’s Best: xsb ← X(i, :)
22: W̃sb(l,m)← {xsb(j)}+ i · {xsb(j + 1)}
23: end if
24: end for
25: for Each particle in the swarm with BF coefficients do
26: Update:
27: Velocity: V(i, j)← w ·V(i, j) + c1 · p ·

(
Xpb(i,j)−X(i,j)

∆t

)
+ c2 · q · xsb(j)−X(i,j)

∆t
28: Restrict velocity: |V(i, j)| < vmax
29: Position: X(i, j)← X(i, j) + V(i, j) ·∆t
30: end for
31: w ← w · β
32: end while
33: return BF Weight Matrix, W̃sb

In this paper, two different objective functions are considered for the PSO to
optimize.

Weighted interference minimization:

Based on our experience, choosing a single direct objective function of minimizing
only the interference skews the PSO algorithm to prefer only the good SINR UTs
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and to leave out the weak SINR UTs. This gives rise to power savings at the BS,
thereby lowering the sum rate of the UTs. One can choose to maximize the weak
SINR UTs but then the total interference is not taken into account. Hence, the
objective function should not only minimize the interference but also improve the
SINR of the weakest UT (minSINRuser). We call this objective function weighted
interference minimization, where the interference is minimized with the weight of
the SINR of the weakest UT in each iteration. Note that the weakest SINR UT
can change in every iteration. Thus, a multiobjective function evaluated for the ith
particle in every iteration is defined as

f(X(i, :)) := ||OffDiag (HW) ||F
minSINRuser

. (5.9)

The goal of every particle is to minimize this multiobjective function iteratively.
Finally, the swarm’s best particle will contain the best BF that has managed to
minimize (Equation 5.9).

Sum rate maximization:

The PSO presented in Algorithm 5.2 involves minimization of the objective function.
Hence, to maximize the sum rate, the objective function is written as f(X(i, :)) :=
−Rtot. This means that prior to evaluating the objective function, the sum rate per
cell as in (Equation 5.5) needs to be calculated for every iteration.

5.3.2. Termination criteria
In [23], various stopping conditions are discussed. A few of them are listed here for
completeness. The algorithms can be terminated when at least one of the following
conditions is triggered:

1. Maximum number of iterations has been exceeded.

2. A solution fulfilling a target value is found.

3. No improvement is observed over a number of iterations.

4. Normalized swarm radius is close to zero.

In practice, any one of the above mentioned criteria can be used for termination. In
this paper, the third criterion is used for termination.

5.3.3. Convergence
With a basic PSO, the notion of convergence means that the swarm has moved
towards an equilibrium state [23]. The lemma 14.2 in [23] shows that the basic
PSO does not satisfy the convergence condition for global search. In our paper, a
basic PSO with basic variations such as velocity restriction and inertia weight has
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been used. Proving the optimality conditions of the PSO is not easy, but what can
be said is that a stable solution can be achieved. Hence, suitable variations of the
PSO algorithm need to be considered in future work, such as Random Particle PSO
or Multistart PSO, since they satisfy the convergence condition for global search and
can be considered for global optimization [23].

5.3.4. Computation complexity analysis
The Big O notation is used to determine the complexity of implementing PSO
as a function of the number of UTs M , based on the pseudocode presented in
Algorithm 5.2. The computational complexity of PSO is

O (Block1 + c (Block2 +Block3)) , (5.10)

where c refers to the number of iterations in the while loop, which depends on the
convergence of the algorithm. In this paper, it was observed that the algorithm
converges within 100 iterations with no further improvements for the case of LFB
and LBH.

• Block1 : The initialization of particles carrying the BF coefficients from step
6 to 10, has a computational complexity of O(Qn), where Q is the number of
particles which is a constant throughout the simulation and n is the number
of BF coefficients.

• Block2 : From steps 12 to 24, the complexity isO(Q·complexity of the objective
function). Demapping from the ith particle to the BF matrix consumes O(n),
which is independent of the objective function. But now we shall represent
the dimension of the BF matrix W in terms of n and M as

[
n

2M ×M
]
.

Objective function: Weighted interference minimization
– The complexity of HW isO(Mn), the Frobenius norm constitutesO(M2)

and the SINR of the mth user is O(2 n
2MM). To find the minimum SINR

user, the SINR for all theM users is calculated as O(Mn). Therefore, the
complexity of weighted interference minimization is O(Mn) +O(M2) +
O(Mn) and can be simplified to O(Mn).

Objective function: Sum rate maximization
– The calculation of SINR and consequently the sum rate per cell yields
O(Mn).

Therefore, considering the worst case objective function, the complexity of
Block2 is O(QMn).

• Block3 : From steps 25 to 30, the time and space complexity can only grow
with the number of BF coefficients. Hence, the computational complexity is
O(Qn).
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Finally, the overall complexity of the PSO is O (Qn+ c(QMn+Qn)) and can be
simplied to O (cMn), ignoring the constants and lower order terms.
In this paper, we consider M single antenna UTs and K BSs with NT antennas

each. As shown in Algorithm 5.2, the number of BF coefficients carried by a particle
is n = 2 · M · K · NT. Therefore, the complexity of the PSO is O (cM2KNT).
Assuming that orthogonality is maintained in the system such that the number of
UTs is M = K · NT, we have O (cM3). The complexity of ZF BF is merely that
of the pseudoinverse which is of the order O(M2KNT) and can be simplified to
O(M3) under orthogonality constraint. Comparison between PSO and ZF in terms
of execution time may not be fair as only a basic PSO with basic variations is being
implemented in MATLAB and ZF is bound to perform better. But, it should be
noted that the PSO always provides an equilibrium solution while the ZF might not.
Hence, it is difficult to perform a completely fair comparison.

5.4. Analysis of interference using Gershgorin’s discs
In the case of ZF BF, the feasibility of the solution is determined by the ability to
invert

(
HHH

)−1
. In [25] and [26], it is shown that any approach to improve the

channel inversion must aim to reduce the effects of the largest eigen value. Another
metric that has been used in the framework of ZF in a single-cell setup is the
Frobenius norm of the channel H, since it is proportionally related to the link level
performance as shown in [25]. Their proposed network coordinated BF algorithm
combines both metrics such that the mean of the largest eigen value of

(
HHH

)−1

should be small and the mean of the Frobenius norm of H should be large, so that
SINR of the UT is large and the bit error rate is improved, respectively.
In the case of PSO, analyzing the properties of the obtained precoder via

(
HHH

)−1

is not meaningful. To evaluate the performance of a PSO-based precoder, HW is
analyzed here. But, ||HW||F does not give an insight into the properties of the
precoder, as the off-diagonal elements are the residual intracluster interference re-
maining in the system. Interference is completely removed when the off-diagonal
elements of HW are zeros. However, note that complete removal of interference is
not maximizing the sum rate and therefore suboptimal in that sense.
In the framework of perturbation theory [27], these off-diagonal elements can

be seen as a perturbation over the diagonal elements of HW. In this context,
Gershgorin circle theorem [27] can be used to analyze the behavior of different
precoding techniques. Gershgorin circle theorem says that for a given square matrix
A, the elements in the main diagonal give an estimate of the eigen values on the
complex plane. For a given element in the diagonal, the sum of the absolute values
of the corresponding row is the length of the radius of the Gershgorin disc around
this estimated eigen value. The circumference of this disc is called the Gershgorin’s
circle. The Gershgorin’s circle theorem tells that all the eigen values of the matrix
A lie within the union of these discs. This theorem was mainly used to describe
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how well the elements in the diagonal of a matrix approximate their eigen values.
Hence, Gershgorin’s discs can be used here to fairly visualize how the intracluster
interference is removed with the PSO-based precoder and the linear ZF BF, as shown
in subsection 5.5.3.
Applying Gershgorin’s circle theorem, the matrix A = HW can be perturbed as

HW = D + F, where D = diag(d1, d2, ..., dM) and F has zero as its diagonal entries
while the off-diagonal elements are the pertubation. The elements in the diagonal
of D form the useful signal strength for the UTs, while the off-diagonal elements of
the matrix F are the multiuser interference in the system. The ith Gershgorin disc,
Di, is computed based on

Di =

z ∈ C : |z − di| ≤
M∑
j=1
|F(i, j)|

 , (5.11)

where the right hand side of the inequality is the radius of the ith disc.

Table 5.2.: Simulation parameters

System Parameters Values
Number of BSs\UTs 3\6

Number of antennas at BS\UT 3\1
Shadow fading, γSF N (0, 8 dB)

Pathloss model, γPL (d in Kms) 128.1 + 37.6 · log10(d)
Rayleigh fast fading, Γ CN (0, 1)
BS antenna gain, G 9 dBi

Correlation between antennas at BS, ρ 0.5
Number of channel realizations 104

Max. BS Tx power with cell-edge SNR=15 dB 0.0603 W (17.8 dBm)
Noise bandwidth 1 MHz

Noise figure 0 dB
Active set threshold for LFB 10 dB

5.5. Simulation results
Consider the cluster layout in Figure 5.2, where K = 3 BSs with NT = 3 antennas
each, are serving M = 6 single antenna UTs. The UTs are uniformly dropped at
the cluster center, along an ellipse with semi-major and semi-minor axis of length
R
16 and h/2

16 , respectively. R = 500m is the radius of the cell and h is the height of
the hexagon of the cluster area. The correlation between the antennas at the BS is
ρ = 0.5. The pathloss, γPL, is modeled based on 3GPP pathloss model [28], with
shadow fading, γSF, of N (0, 8 dB) and a Rayleigh fast fading component, Γ, which is
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simulated as a circularly symmetric complex Gaussian random variable as CN (0, 1).
The channel between the kth BS and the mth UT is calculated as

h = Γ ·C 1
2 ·
√
G · γSF · γPL, (5.12)

where G is the gain of the antenna at the BS and C is the correlation matrix
of size NT × NT. The simulation parameters are summarized in Table 5.2. Note
that in order to compare PSO and ZF, only the cases providing invertibility of the
aggregated channel matrix are considered. As the focus is at the cluster center along
an ellipse as defined earlier, the ZF approach fails to invert only 0.22% of the time.
Nevertheless, the probability for failure to invert increases as the UTs move closer
to a BS as shown in [13] with a realistic WINNER II channel model (scenario B1,
urban micro-cell, non-line of sight). But, PSO would still be able to find a solution
when ZF fails. The parameters governing PSO are summarized in Table 5.3.
Various configurations of the ZF and PSO precoders are considered for compar-

ison. They are summarized in Table 5.4. A simple power allocation is performed
as per (Equation 5.3). In case of ZF, the power constraint is always applied after
the pseudoinverse, and for the scenarios involving PSO, the power constraint is ap-
plied in every iteration or after convergence, (refer to subsection 5.3.1 for a more
detailed explanation). To obtain a better equilibrium, the solution obtained from
PSO with FFB and LBH is fed to one of the particles in the PSO with FFB and
FBH during the stochastic initialization stage, for PwrAdj and NoPwrAdj cases,
respectively. The scenario PSO:FFB+LBH is considered to simulate the same envi-
ronment as that of SIN precoding and to compare the same with the corresponding
ZF scenario. For the cases of LFB or LBH, an active set threshold of 10 dB was
pessimistically considered. This value was decided based on a recent study [29], in
which it was found that it is difficult to jointly estimate the channels for a UT with
an active set threshold greater than 15 dB at the cell-edge. Also in [29, Figure 4.19],
the 10 dB threshold defines a cooperation area that is more focused on the cluster
center, while a 15 dB threshold considers the cluster center and cell-edges as well.

Table 5.3.: PSO parameters

Parameters Values
Number of particles, Q 30
Number of variables, n Number of < & = BF coeffs.

xmax = −xmin 1/max{|H̃(m,l)|}
Time step length, ∆t 1
Max. velocity, vmax (xmax−xmin)/∆t

Cognitive factor, c1 2
Social factor, c2 2
Inertia weight, w 1.4→ 0.4

Constant decay factor, β 0.99
Max. number of iterations 500
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Table 5.4.: Various precoding configurations (Figure legends): Limited Feedback
(LFB) and Limited BackHauling (LBH) refer to an active set threshold of 10dB
while Full FeedBack (FFB) and Full BackHauling (FBH) refer to an active set
threshold of ∞.

Nos. Precoder Feedback Backhaul Power Constraint
1 PSO:FFB+FBH+PwrAdj Full Full Every iteration
2 PSO:FFB+FBH+NoPwrAdj Full Full After convergence
3 PSO:LFB+LBH+PwrAdj Limited Limited Every iteration
4 PSO:FFB+LBH+PwrAdj Full Limited Every iteration
5 PSO:FFB+LBH+NoPwrAdj Full Limited After convergence
6 ZF:LFB+LBH Limited Limited After ZF
7 ZF:FFB+LBH Full Limited After ZF
8 ZF:FFB+FBH Full Full After ZF
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Figure 5.3.: Rate at which the average number of CSI feedback coefficients and the
average number of precoding weights in the backhaul that needs to be transmitted
for various active set thresholds for all the 6 UTs is shown in the above figure.
User data is routed at the CCN based on the non-zero precoding weights which
also translates to the reduction in the user data paths in the backhaul.

Figure 5.3 shows the rate at which the average number of CSI coefficients are
fed back (LFB) and the rate at which the average number of precoding weights are
backhauled (LBH) for various active set thresholds. In particular, for an active set
threshold of 10 dB, the feedback rate, fr due to the CSI coefficients of all theM = 6
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UTs is 587.3 kbps, which is calculated as,

fr = (Average number of coefficients) · (Number of bits)
Scheduling interval , (5.13)

assuming that every complex coefficient takes 16 bits for quantization and a schedul-
ing interval of 1 ms (LTE). Likewise, following a similar approach, the backhauling
rate, br, due to precoding weights with PSO is 587.3 kbps. Hence, the feedback load
reduction is equivalent to the backhaul load reduction. In case of a ZF approach,
precoders that show zeros for nulls in the beamformer have a higher rate of 859.4
kbps, thereby increasing the backhaul load. Relaxing the null constraint for the ZF
approach by treating a threshold of less than 20 dB as a null in the BF, still yields
a higher backhaul rate of 759.3 kbps. The reduction in the backhaul load in terms
of precoding weights also translates to the reduction in the user data distribution
in the backhaul, as the user data can be selectively routed to a given BS based on
the non-zero precoding weights. It should be reiterated here that the ZF approach
could have nulled the weights when the BSs required them and thereby reducing
the sum rate. This is not accounted in this figure. Hence, for a given active set
threshold, PSO achieves the exact bound for the backhaul load being equivalent to
the feedback load. Note that in a wideband system, the CSI would be estimated
and fed back based on the pilot positions. The estimated CSI would be interpolated
for a group of subcarriers, as they are smaller than the coherence bandwidth of the
channel and thus this group of subcarriers would experience flat fading. The pre-
coding weights obtained at the CCN would be based on the estimated CSI and could
be applied over this group of subcarriers. Hence, every CSI coefficient fed back by
the UT still would map to a corresponding precoding weight. However, with a ZF
approach, the user data being routed at the CCN, as shown in Figure 5.1, would
cause a substantial and unnecessary increase in the backhaul. This could be avoided
with the proposed PSO. It should be noted that in Figure 5.3 the backhaul rate, br,
(due to precoding weights) does not include the user data rate. The user data rate
would be several orders of magnitude larger than the feedback rate, and could be
proportionally reduced with selective routing as described above.
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5.5.1. Objective function: Weighted interference minimization
PSO with LFB and LBH performs better than ZF under comparable configurations.
The Cumulative Distribution Function (CDF) of the sum rate per cell is shown in
Figure 5.4. The PSO with LFB and LBH performs better than the ZF with LFB and
LBH by 66.53% on average. PSO with LFB and LBH also performs better than ZF
with FFB and LBH by 43.73% on average. The ZF with FFB and FBH performs
better than PSO with FFB and FBH with PwrAdj in every iteration, but PSO
with NoPwrAdj shows the best average sum rate compared to the other scenarios
considered. This is primarily due to the fact that PSO with NoPwrAdj effectively
uses the BS peak power constraint. The ZF with LFB and FBH (without backhaul
load reduction) performs better than the ZF with FFB and LBH (with backhaul load
reduction). This is similar to the results observed in [9], since the signals received
by the UT from BSs outside the active set are seen as desired signals and thus help
the UTs to accumulate more energy, but it leads to unnecessary backhauling. Due
to this minor gain and the undesired additional backhauling, this scenario, ZF with
LFB and FBH, is not considered in the following plots.
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Figure 5.4.: CDF of the sum rate. PSO with objective function: weighted inter-
ference minimization. The value in the legend denotes the mean value µ in a given
CDF.

Alternately, PSO with the objective of maximizing the minimum SINR of the UT
was simulated. In the case of LFB and LBH, a 2.1% relative increase in the average
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sum rate per cell was observed when compared to weighted interference minimization
but at the cost of 7.7% relative increase in BSs power consumption and 45% relative
increase in interference. As expected interference is greatly affected, hence, weighted
interference minimization is preferred.
PSO utilizes the available transmit power constraint of Pmax per BS more ef-

fectively, and at the same time, it improves the weakest SINR UT. The CDF of
the SINR of any UT for various precoding algorithms in any channel realization is
shown in Figure 5.5 with reasonable improvement in the SINR of the weakest UT
(the lower part of the CDF). There is an improvement of 2.97% in the average SINR
of PSO compared to ZF, under the same conditions of LFB and LBH. We define the
SINR difference as [4SINR]dB = [SINRm]dB−[SINRm′ ]dB, where UTm, m 6= m′,
experiences the best SINR while UT m′ experiences the worst SINR in a given chan-
nel realization. The CDF of this SINR difference is shown in Figure 5.6. With this
objective function, where the worst SINR UT is taken care explicitly, the PSO has a
much lower variance compared to the ZF approach. As expected, the ZF approach
with FFB and FBH has all the UTs with equal SINR, hence the difference is zero.
It is interesting to note that PSO with FFB and LBH with PwrAdj and NoPwrAdj
are nearly 15 dB apart in the SINR difference between the best and the worst UT.
This is because in the case of NoPwrAdj, applying (Equation 5.3) disfigures the BF
weights obtained from the PSO after convergence.
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Figure 5.5.: CDF of the SINR of any UT for various precoders in any channel
realization. PSO with objective function: weighted interference minimization.
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SINR difference between the best and worst users [dB]
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Figure 5.6.: CDF of the SINR difference,[4SINR]dB = [SINRm]dB− [SINRm′ ]dB
between the best and the worst UTs in a given channel realization. PSO with
objective function: weighted interference minimization.
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Figure 5.7.: CDFs of the average BS Transmit Power, max = 0.0603 W(17.8 dBm),
with cell-edge SNR of 15 dB. PSO with objective function: weighted interference
minimization. The value in the legend denotes the mean value µ in a given CDF.

The CDF of the average transmitted power at the BS is shown in Figure 5.7.
The maximum BS transmit power is 0.0603 W, corresponding to a cell-edge SNR of
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15 dB. In fact, the PSO keeps the BS power amplifiers on at a higher power, most of
the time, which is a desired property for amplifier efficiency. The power consumption
is reduced beforehand with the limited feedback and limited backhauling. PSO uses
BS transmit power more effectively when there is a null constraint on the BF (LBH).
It can be seen in Figure 5.8 that the PSO allows interference compared to the

ZF scenarios. The sum rate is improved even when some interference is remaining
in the system. This is similar to the SIN technique in [12], but the SIN technique
requires full CSI at the CCN. It is also observed that ZF with FFB and FBH
completely removes the interference, but this scheme does not use the available BS
transmit power effectively as shown in Figure 5.7. In the case of PSO, as observed
in Figure 5.8, if LBH is preferred then LFB should also be preferred, as PSO with
LFB and FFB under PwrAdj shows the same residual interference in the system.
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Figure 5.8.: The plot shows the cropped CDF of the actual interference due to the
various precoders. ZF with FFB and FBH completely removes the interference,
hence the yellow curve is on the y-axis. PSO with objective function: weighted
interference minimization.

The convergence of the PSO algorithm when evaluating the objective function
of weighted interference minization for four randomly chosen aggregated channel
matrix realizations is shown in Figure 5.9 for various precoder configurations. This
objective function converges in less than 100 iterations when PSO is applied with
LFB and LBH. It can be observed that the number of iterations to find a stable
solution is comparatively fast when the number of BF coefficients is small. The
convergence pattern of FBH is not examined here. This is because the PSO with
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FFB and FBH has one of the particles fed with the corresponding solution of PSO
with FFB and LBH, during the stochastic initialization phase. This was done to
show that the PSO implemented in this paper only finds a stable equilibrium solution
and not the global optimum, as increasing the dimensionality of the problem makes
it harder for the PSO, i.e., PSO with unconstrained backhauling, FBH, yielded a
slightly poor solution compared to the PSO with constrained backhauling (LBH),
when the objective function was sum rate maximization. To unify our PSO proposal,
both objective functions followed the same procedure. This is one of the main reasons
why the convergence curves of PSO with FBH remain relatively flat.
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Figure 5.9.: Convergence of PSO for various configurations. PSO with objective
function: weighted interference minization.

Based on the analysis in subsection 5.3.4 and on the prior experience, the number
of BF coefficients carried by a particle decreases with the sparsity of the aggregated
channel matrix. With LBH, the PSO converges faster than the case when there is
FBH. Reference to Figure 5.9 could be unfair, due to the reason cited earlier that
the solution of PSO with LBH is fed to one of the particles in the case of FBH.
If this is not performed, then the faster convergence of the PSO is observed (not
shown here).
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5.5.2. Objective function: Sum rate maximization
When the objective of the PSO is to maximize the sum rate, the maximization
is indirectly related to the particles in the PSO carrying the BF weights via the
logarithm. This objective is very sensitive to the power adjustment performed after
the PSO algorithm has converged. The CDF of the SINR of any UT is shown in
Figure 5.10. It can be observed that the ambition of improving only the sum rate
of the system penalizes the weak SINR UTs.
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Figure 5.10.: CDF of the SINR of any UTfor various precoders in any channel
realization. PSO with objective function: sum rate maximization.

5.5.3. Gershgorin’s circles
In the complex plane, Figure 5.11 shows the circumference of the Gershgorin’s discs
for various precoders, with the objective of the PSO being weighted interference
minimization. This figure is plotted for a given reference SINR value of the PSO
with FFB and FBH. The receiver noise is assumed to be uniform across all the UTs,
and SINR is plotted instead of SIR. The green ‘+’ refers to the elements in the
diagonal of the matrix D = diag(HW), representing the Gershgorin’s estimate of
the eigen value. The absolute sum of the off diagonal elements forms the radius of
the blue Gershgorin’s circles for that eigen value and it is plotted with the green ‘+’
as its center. The blue bigger circles show the multiuser interference remaining in
the system for a given precoder. The actual eigen values are plotted in red squares
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as ‘�’. It can be seen that the PSO gives more freedom for the eigen values to
move around in the complex plane, thereby increasing the power transmitted to the
UTs. ZF with FFB and FBH completely removes the interference and hence the
blue multiuser interference circles are not visible. The ZF approach aims to serve
all the UTs equally and hence their actual eigen values are closer together.
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Figure 5.11.: Gershgorin discs of HW. The green “+” is the Gershgorin’s estimate
of the eigen values. Bigger blue circles denote the multiuser interference remaining
in the system. This plot is mapped to the SINR of PSO with FFB and FBH
with PwrAdj equal to 26 dB. PSO with objective function: weighted interference
minization.

It is interesting to note that for the PSO with LFB and LBH, the actual eigen
values map closely to the estimated Gershgorin’s eigen values, unlike the ZF with
LFB and LBH. From an interference point of view, having concentric circles helps
containing the interference within the largest circle. ZF with LFB and LBH shows
this attribute.
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5.6. Conclusions
In this work, a particle swarm stochastic optimization algorithm has been proposed
in a partial joint processing framework to design the precoding weights for efficient
backhauling, achieving a backhaul reduction proportional to the reduction in the
channel state information feedback. In this context, two objective functions have
been considered, a weighted interference minimization and a sum rate maximization.
In the proposed weighted interference minimization, the SINR of the weakest user
terminal is iteratively improved, in addition to the interference minimization. With
the limited feedback and limited backhaul constraints, and the weighted interference
minimization as the objective function, the average sum rate per cell of the user
terminals is improved by 66.53% with respect to a zero forcing precoder. The particle
swarm based precoder allows some multiuser interference to remain in the system,
still improving the sum rate, and it uses the BS transmit power more effectively.
With recent developments in swarm intelligence, the complexity and the feasibility

can be improved to achieve a faster and a more robust particle swarm algorithm.
There is potential for improving the particle swarm optimization algorithm with
capabilities to perform global search, such as random particle swarm optimization,
which should improve the already promising results presented in this paper.

List of abbreviations
BF Beamformer (-ing)

bps bits per second

BS(s) Base Station(s)

CCN Central Coordination Node

CDF Cumulative Distribution Function

CJP Centralized Joint Processing

CoMP Coordinate MultiPoint (transmission)

CSI Channel State Information

FBH Full BackHauling

FFB Full FeedBack

JP Joint Processing

LBH Limited BackHauling

LFB Limited FeedBack
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MAC Medium Access Control

MUMIMO MultiUser Multiple Input Multiple Output

NoPwrAdj No Power Adjustment

PJP Partial Joint Processing

PHY Physical

PwrAdj Power Adjustment

PSO Particle Swarm Optimization

SIR Signal to Interference Ratio

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

SIN Soft Interference Nulling

UT(s) User Terminal(s)

ZF Zero Forcing
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6. Scheduling for Backhaul Load
Reduction in CoMP

Abstract
Coordinated multi-point (CoMP) transmission has received a lot of attention, as a
way to improve the system throughput in an interference limited cellular system.
For joint processing in CoMP, the user equipments (UEs) need to feed back the
channel state information (CSI), typically to their serving base stations (BSs). The
BS forwards the CSI to a central coordination node (CCN) for precoding. These
precoding weights need to be forwarded from the CCN to the corresponding BSs to
serve the UEs. In this work, a feedback load reduction technique is employed via
partial joint processing to alleviate the CSI feedback overhead. Similarly, to achieve
backhaul load reduction due to the precoding weights, scheduling approaches are
proposed. The state of the art block diagonalization solution is compared with our
proposed constrained and unconstrained scheduling. Our main contribution is the
method of choosing the best subset of the BSs and UEs at the CCN that yields
the best sum rate under the constraint of efficient backhaul use. In particular,
with constrained scheduling, the choice of a smaller subset proportionally reduces
the backhaul load. Simulation results based on a frequency selective WINNER
II channel model, show that our proposed constrained scheduling outperforms the
block diagonalization approach in terms of the average sum rate per backhaul use.

Keywords—Backhaul Load Reduction, Scheduling, CoMP, Partial Joint
Processing, Zero Forcing

6.1. Introduction
In future cellular communication systems, coordinated multi-point (CoMP) trans-
mission is a promising technique proposed to improve the throughput of the user
equipments (UEs) at the cell edge, being limited by interference [1]-[2]. To realize
these gains, the UEs need to feed back the channel state information (CSI) typically
to their serving base station (BS). The CSI is forwarded to the central coordination
node (CCN) to form the aggregated channel matrix that is used to create the pre-
coding matrix to jointly mitigate interference. To reduce the overhead of feeding
back the CSI, clusters of BSs are formed [2]. In particular, partial joint process-
ing (PJP) was proposed in [3] for feedback load reduction, in which dynamically
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overlapping clusters of BSs are formed.
PJP can be seen as a framework that attempts to categorize the trade off be-

tween how much load can be reduced for a given perceivable loss in the system
performance. In this regard, the CSI feedback load reduction can be achieved by
limiting the quantity of feedback by the UEs. To this end, a relative thresholding
is proposed in [3], where the UE only feeds back the CSI for a set of BSs links
that fall within a threshold relative to its strongest BS. The CSI of the BSs that
fall outside this threshold are modeled as zeros in the aggregated channel matrix.
Likewise, in this context, the signaling in the backhaul (BSs-CCN) is primarily due
to the distribution of the precoding weights from the CCN to the cooperating BSs.
Limiting the feedback causes the aggregated channel matrix to be sparse and poses
problems in the case of precoders such as zero forcing (ZF). Under these circum-
stances, achieving an efficient use of the backhaul is difficult. Hence, the structure
in the aggregated channel matrix formed at the CCN needs to be exploited, such
that the zeros are correspondingly preserved in the precoder matrix for reducing the
backhaul load. To achieve this, backhaul load reduction can be carried out at the
medium access control (MAC) layer or physical (PHY) layer, as proposed in [4].
The MAC layer approach is a scheduling based scheme, where disjoint BS sub-

groups are formed, such that the aggregated channel matrix is block diagonal. The
main benefit of this approach is that the inverse of a block diagonal matrix is still
block diagonal and that the zeros are preserved. The PHY layer approach is a ZF
precoding approach, where the aggregated channel matrix is repeated such that a
block diagonal structure is created, and the precoding matrix is created with zeros
where needed. The limitations of the PHY layer approach are discussed in [5].
In this paper, we propose a constrained scheduling (CS) and an unconstrained

scheduling (US) for backhaul load reduction. In the CS approach, an exhaustive
search is carried out to find the best subset of the aggregated channel matrix, such
that zeros are avoided in the aggregated channel matrix. This approach directly
aims at reducing the backhaul load as the zeros are disallowed. The US approach
is similar to the CS approach except that the zeros are allowed to be present in
the aggregated channel matrix, and the backhaul load reduction is achieved by ex-
plicit nulling of the precoding weights corresponding to the zeros in the aggregated
channel matrix. We compare our techniques with the MAC layer scheduling based
block diagonalization (BD) technique proposed in [4]. The BD approach achieves
the backhaul load reduction by forming a block diagonal structure of the aggre-
gated channel matrix. All the above techniques are evaluated with the PJP based
CSI feedback load reduction as proposed in [3]. To summarize our contribution,
our proposed CS and US algorithms (i) reduce the backhaul load, (ii) significantly
increase the performance, as a larger feasible subset is considered compared to the
BD approach, which poses a stricter constraint of being block diagonal, and (iii) the

Part of this work has been performed in the framework of the FP7 project ICT-317669 METIS,
which is partly funded by the European Union. This work is also supported by the Swedish
Research Council VR under the project 621-2009-4555 Dynamic Multipoint Wireless Transmis-
sion. The computations were performed on C3SE.
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6.2 System Model

best subset of BSs and UEs are clustered.
The paper is organized as follows, in section 6.2 the system model is introduced

with the focus on how the feedback and backhaul load reduction are achieved in a
frequency selective channel. Discussions on the scheduling strategies for backhaul
load reduction are presented in section 6.3. The performance of these scheduling
strategies are discussed in section 6.4 and finally the main results are concluded in
section 6.5. The notation used in this paper is summarized in the footnote.

6.2. System Model
Consider the cluster layout as shown in Figure 6.1, where K = |K| single antenna
BSs need to serve M = |M| single antenna UEs. hm = [hm,1, hm,2, ..., hm,K ] is the
CSI of the links from the K BSs to the mth UE. In this work, we study block-
fading channels where the CSI available at the CCN is considered to be error free,
i.e., the quantization loss and the backhaul delays are assumed to be negligible [6].
In a wideband system, consisting of a number of subcarriers, each UE feeds back
the CSI for a given frequency resource. The CSI being fed back can be applied
to a group of subcarriers. The CSI feedback process is performed under the PJP
framework proposed in [3], using a relative active set thresholding as summarized in
[5, Algo.1]. The CSI feedback from the mth UE based on the channel from K BSs
can be represented as

h̃m = hm � tx,m, (6.1)

where tx,m (k) ∈ {0, 1} ,∀k = 1, . . . , K. The operation is independently performed
over a collection of subcarriers (frequency adaptive thresholding) [7], where all the
M UEs report the CSI for all the subcarriers. When the mth UE feeds back the CSI
of kth BS, it is denoted “1” while a “0” denotes that the CSI was not fed back. The
feedback load reduction can be seen as a masking operation by a binary threshold
vector tx,m via element wise multiplication with the CSI measured by the mth UE.
The subscript x denotes the threshold value in dB. When x = 0 dB, it represents
a scenario where only the strongest BS is serving the UE, while the threshold of
x =∞ dB represents that all the links are fed back. If K = 3 then the mth UE will
feed back in one of the following ways: tx,m = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0},
{0, 1, 1}, {1, 0, 1}, and {1, 1, 1}}. However, with relative thresholding [3], tx,m =
{0, 0, 0} will never occur, as it enables the UE to feedback at least its strongest BS.
For backhaul load reduction, consider a subset of the cluster formed at the CCN,

with N = |N | UEs and L = |L| BSs, where N ⊆ M and L ⊆ K. The maximum
Boldface upper-case letters represent matrices, X, boldface lower-case letters represent vectors,
x, and italics represent scalars, x. The Cm×n is a complex valued matrix of size m × n. The
(·)T and (·)H is the transpose and conjugate transpose, respectively. Ex {·} is the expectation
with respect to x. The || · ||F is the Frobenius norm. X(i, j) is the (i, j)th element of matrix X
and x (i) is the ith element of the vector x. The ith row of a matrix X is X(i, :) and the jth
column of a matrix X is X(:, j). The sets are indicated in calligraphic letters and |X | denotes
the cardinality of the set X . The operator � is the element wise multiplication.
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number of BSs that can be chosen is Lmax = K and the maximum number of UEs
that can be scheduled in a given subcarrier group/resource is Nmax = Lmax. The
discrete time signal received at the N selected UEs, y ∈ CN×1 is

y = HW̃x + n, (6.2)

where H ∈ CN×L is the channel matrix for the subset of the cluster. W̃ ∈ CL×N

is the precoding matrix and n is the receiver noise at the UEs, which are spatially
and temporally white with variance σ2.

Figure 6.1.: The cluster layout

A linear ZF precoding is considered in this work. The precoding matrix is firstly
calculated as the Moore-Penrose pseudoinverse of the aggregated channel matrix H̃

W̃ = H̃H(H̃H̃H)−1, (6.3)

where H̃ = H � Tx and Tx =
[
tTx,1, tTx,2, . . . , tTx,N

]T
. Then, the columns of W̃

are normalized to have a unit norm [4]. Finally, based on equal user rate power
allocation [8], the precoding matrix can be obtained as

W̃ =
√√√√√ Pmax(

max
l=1,...L

||W̃(l, :)||2F
) · W̃, (6.4)
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where Pmax is the maximum power at which a BS can transmit on a given resource,
i.e., we are not considering optimal power allocation over the parallel resources. The
signal to interference plus noise ratio (SINR) for the nth UE is given as

SINRn = ||hnW̃ (:, n) ||2∑
j∈N ,j 6=n

||hnW̃ (:, j) ||2 + σ2
. (6.5)

The sum rate in bps/Hz for scheduling the N different UEs on the same fre-
quency/time resource is

Rtot =
∑
n∈N

log2 (1 + SINRn) . (6.6)

Due to feedback load reduction, the channel matrix H̃ might have zero elements
depending on the threshold x dB. Hence, a sparse channel matrix is used to obtain
the precoding matrix, W̃. The zeros in H̃ pose problems for the ZF precoder for
backhaul load reduction. For example, if the nth UE does not feed back the CSI
for the lth BS, then H̃ (n, l) = 0. Applying the pseudoinverse in (Equation 6.3), the
sparse aggregated channel matrix H̃ of size N × L, will create W̃ of size L × N ,
however, it could lead to W̃ (l, n) 6= 0. This will lead to unnecessary backhaul,
given that the UE has not fed back the CSI while the ZF solution still tries to serve
the nth UE from the lth BS. Also, consider the situation where the nth UE has fed
back the CSI for the (l + 1)th BS such that H̃ (n, l + 1) 6= 0, however (Equation 6.3)
might lead to a situation where W̃ (l + 1, n) = 0. This is poor backhauling as the
uplink resources are already being spent for the nth UE to feed back the CSI.
Hence, suitable scheduling strategies need to be developed in achieving an efficient

use of the backhaul. These are discussed in the subsequent section.

6.3. Scheduling
Let a set of N ⊆ M UEs be chosen to be served from a set of L ⊆ K BSs. To
maintain orthogonality with a linear ZF precoder, the number of UEs chosen are
N = |N | and the BSs chosen are L = |L|, such that N ≤ L. The particular choice
of the set of UEs and BSs are driven by the combination that maximizes the sum
rate as

{L∗,N ∗} = arg max
{L,N :|N |≤|L|}

∑
n∈N

log2

(
1 + ŜINRn

)
, (6.7)

ŜINRn =

∑
l∈L

H̃ (n, l) W (l, n)∑
j 6=n
j∈N

∑
l∈L

H̃ (n, l) W (l, j) + σ2
, (6.8)

where H̃ is the channel sub-matrix of size N × L related to the set {N ,L} of
UEs and BSs. Applying (Equation 6.3) and (Equation 6.4) to this H̃ results in

93



Chapter 6 Scheduling for Backhaul Load Reduction in CoMP

the precoding matrix W. In the following subsections, we evaluate the scheduling
strategies considered in this work.

6.3.1. Block Diagonalization (BD)
In [4], a MAC-layer approach is proposed where disjoint subgroups of BSs are formed
to preserve the block diagonal structure of the aggregated channel matrix. An
important property of a block diagonal structure is that it is preserved even under
matrix inversion. This property is key to backhaul load reduction which conserves an
equivalent feedback load reduction for the scheduled UEs belonging to the setN , i.e.,
if H̃(n, l) = 0 then W̃(l, n) = 0. However, it should be noted that this BD approach
based on [4] always requires Nmax UEs to be scheduled. Therefore, with feedback
load reduction, M UEs feeding back the CSI results in Nmax = Lmax = K UEs being
scheduled. The choice of Nmax corresponds to an exhaustive search for the best
combination of UEs that maximizes the sum rate given that the aggregated channel
matrix is block diagonal. The BD approach can be summarized as choosing the
combination of the UEs as in Algorithm 6.1. The block diagonal channel matrix H̃BD
is extracted based on Tx and correspondingly W̃BD is obtained from (Equation 6.3).
Due to the BD structure, the positions of zeros in H̃BD and W̃BD are identical, and

the aggregated channel matrix needs to be a square matrix such that Nmax = Lmax.
This gives rise to some ill-effects. Consider N < Nmax and L < Lmax then N < L
is not considered which could potentially produce a better sum rate translating to
a better system performance. This is due to the stringent constraint of the BD
approach that Nmax = Lmax = K, where the feasible set is considerably reduced.
Also, the feedback can be significantly reduced at the cluster center, via small relative
thresholds [7].

Algorithm 6.1 BD approach: Note that the BD algorithm [4] always considers
L = Lmax = K.
1: M UEs feed back the CSI as defined in section 6.2
2: for every N fromM such that Nmax = |N | = Lmax do
3: Form Tx (n, l) ∈ {0, 1} , ∀n = 1, . . . , Nmax;∀l = 1, . . . , Lmax
4: if permuted Tx is block diagonal then
5: Found Tx to have a block diagonal structure, evaluate (Equation 6.7)
6: Save Tx based on the best {L∗,N ∗} achieved so far
7: else
8: Failed to find a block diagonal structure
9: end if
10: end for
11: return Schedule the subset formed with {L∗,N ∗} using Tx

For example, a threshold of 5 dB creates a sparse aggregated channel matrix which
is difficult to block diagonalize. One of the ways to overcome this limitation of the
BD approach is to increase the threshold towards infinity. However, this increases
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the feedback load. On the contrary, a full aggregated channel matrix with few
zeros also renders the BD approach difficult to realize. As a generalization, the BD
approach proposed in [4] can be extended to consider the cases when N = L < K.
However, in this work, we confine our study to the original algorithm proposed in [4].

6.3.2. Unconstrained Scheduling (US)
With feedback load reduction, the aggregated channel matrix is sparse depending
on the threshold. The choice of a feasible subset of BSs and UEs, {L∗,N ∗}, that
produces the best sum rate is summarized in Algorithm 6.2.

Algorithm 6.2 US approach
1: M UEs feed back the CSI as defined in section 6.2
2: Assign L = K
3: while L ≥ 1 do
4: for L : L ⊆ K; |L| = L do
5: for every N fromM such that N = |N | ≤ L do
6: Form Tx (n, l) ∈ {0, 1} , ∀n = 1, .., N ; ∀l = 1, .., L
7: Evaluate (Equation 6.7)
8: Save Tx based on the best {L∗,N ∗} achieved so far
9: end for

10: end for
11: L = L− 1
12: end while
13: return Schedule the subset formed with {L∗,N ∗} using Tx

The scheduled BSs and UEs in matrix form can be written as Tx (n, l) ∈ {0, 1} ,∀n =
1, . . . , N and ∀l = 1, . . . , L. Hence, the sparse aggregated channel matrix can be
written as H̃US = H � Tx. Compared to the BD approach, the US approach
has a flexibility in considering N ≤ L, and W̃ is obtained from H̃US by applying
(Equation 6.3) and (Equation 6.4). This is followed by explicit nulling of the pre-
coded weights as W̃US = W̃ � (Tx)T , to achieve backhaul load reduction based
on the nulls due to feedback load reduction. However, explicit nulling gives rise to
multi-user interference to remain in the system. It should be noted that the ex-
plicit nulling is automatically taken care of in the BD approach in subsection 6.3.1.
Explicit nulling seems like an intuitive approach but the ZF precoder has its own
limitations when there are zeros in the aggregated channel matrix (see section 6.2).

6.3.3. Constrained Scheduling (CS)
The CS approach is similar to the US approach with an important constraint that
the aggregated channel matrix H̃CS is full due to the proper selection of UEs and
BSs, i.e., H̃CS = H�Tx, where H̃CS ∈ CN×L and H̃CS (i, j) 6= 0,∀i, j as Tx (n, l) ∈
{1} ,∀n = 1, . . . , N and ∀l = 1, . . . , L. This simplifies the ZF in (Equation 6.3). The
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CS approach is summarized in Algorithm 6.3. The main advantage of this approach
is that the backhaul load reduction is automatically achieved by this constrained
scheduling approach as smaller subset of a matrix, H̃CS, is formed from H. Also,
multi-user interference is removed from the system.

Algorithm 6.3 CS approach
1: M UEs feed back the CSI as defined in section 6.2
2: Assign L = K
3: while L ≥ 1 do
4: for L : L ⊆ K; |L| = L do
5: for every N fromM such that N = |N | ≤ L do
6: Form Tx (n, l) ∈ {1} ,∀n = 1, . . . , N ;∀l = 1, . . . , L
7: Evaluate (Equation 6.7)
8: Save Tx based on the best {L∗,N ∗} achieved so far
9: end for
10: end for
11: L = L− 1
12: end while
13: return Schedule the subset formed with {L∗,N ∗} using Tx

Illustrative Example

To illustrate the above algorithms with an example, consider Tx =

 1 1 0
1 1 0
0 0 1

.
This subset is feasible with the BD approach, while the CS approach requires
the zeros to be removed. Hence, a feasible subset Tx after removing the zeros

can be any of these
{[

1 1
1 1

]
,
[

1 1
]
, [1]

}
⇒ SCS = {2× 2, 1× 2, 1× 1} while

{3× 3, 2× 3, 1× 3} /∈ SCS for this particular case of Tx. As for the US approach,
all possible combinations are feasible. From our proposed algorithms, what clearly
falls out is that they offer an inherent seamless mode switching capability between
CoMP and single cell 1× 1 scenario. When N users are selected to be served from
L BSs, they are expressed as N × L. Table 6.1 summarizes the possible combina-
tions of the various user scheduling strategies described above. In all the scheduling
strategies, it should be noted that the UEs that are not currently being served can
be expected to be served in another resource, thereby achieving user fairness.

6.4. Performance Evaluation
Consider the cluster center where M single antenna UEs moving at 3 kmph are
dropped as shown in Figure 6.1. The radius of the cell is R = 500 m. These
UEs are uniformly dropped in an ellipsoid in R2, whose center is the cluster center.
The major and minor axis of the ellipsoid are (2∆x, 2∆y) where 0 ≤ ∆x ≤ R

16 ,
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Table 6.1.: Summary of the scheduling approaches with K = 3

BD US CS
Feasible

{3× 3}
{3× 3, 2× 3, {3× 3, 2× 3,

Set†, 2× 2, 1× 3, 2× 2, 1× 3,
Salgo 1× 2, 1× 1} 1× 2, 1× 1}
Search Exhaustive Exhaustive Exhaustive

Cardinality |SBD| < |SCS| |SUS| |SCS| ≤ |SUS|
Zeros‡ Allowed Allowed Not Allowed

Interference Removed Partially Removed
† The subscript “algo” refers to BD or US or CS.
‡ The zeros in the aggregated channel matrix, H̃, formed at the CCN.

0 ≤ ∆y ≤ h/2
16 and h is the height of the hexagon or cluster. K = 3 single antenna

BSs are positioned as shown in Figure 6.1. A realistic WINNER II channel model
[9] corresponding to scenario B1: urban micro-cell, non-line of sight with pathloss
and shadow fading is considered with 500 independent channel realizations at 2
GHz center frequency. The signal to noise ratio at the cell-edge (reference value
for one user located at the cell-edge) is fixed at 15 dB. For the B1 scenario, the
channel provided by the WINNER II model is converted to the frequency domain
with a 256-fast Fourier transform, where 32 consecutive subcarriers correspond to
one resource for simplicity. The feedback load reduction is performed for one such
resource, Tx, where x takes the values 0, 5 and 40 dB. The results presented are
averaged over the Monte Carlo simulations over all the resources.
Figure 6.2 shows the average sum rate of the various scheduling algorithms con-

sidered in this work. As expected for lower thresholds, the unconstrained scheduler,
US, performs better than the constrained scheduler, CS. However, this is achieved
at the expense of the backhaul. This is due to the smaller sets of L and N being
formed with CS unlike US. For CS and US, the sum rate increases with the increase
in the feedback threshold. However in the case of BD, for lower number of UEs,
the 0 dB threshold outperforms the 5 dB. This is related to Figure 6.3 where the
original BD algorithm is unable to find a block diagonal structure. The BD 0 dB
case has a better chance of finding an identity matrix that results in block diagonal
struture than the BD 5 dB, as the 0 dB thresholding maps to the UEs feeding back
atleast the strongest BSs, while the 5 dB allows the UE to feed back more BSs,
thereby making it hard to find a block diagonal structure. However, the situation
improves when the number of UEs increase and the scheduler is able to find a block
diagonal structure. Theoretically, an ∞ dB threshold is the case when CS, US and
the generalized BD scheduling algorithm converge to the same solution.
The BD algorithm performs reasonably well in terms of sum rate, however, it is

not feasible when the number of UEs are small with lower threshold. Figure 6.3
captures this in terms of the probability of failure to find a block diagonal subset
of UEs, Pf , such that Nmax = Lmax = K = 3, for a given threshold for feedback
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Figure 6.2.: Average sum rate versus the increase in the number of UEs.

load reduction. This failure maps to Algorithm 6.1, step 8. Pf goes to zero when
the number of UEs exceeds 25 for all the thresholds considered in this work. With
small number of UEs, the failure is due to the relative thresholding. The ratio
of the number of unsuccessful attempts to the total number of attempts to find a
block diagonal structure when performing the exhaustive search is 77.8%, 94.9%,
and 0.6% for 0 dB, 5 dB, and 40 dB, respectively. These values do not change with
the increase in the number of UEs. Let us consider the number of UEs to be 30.
This translates to the total number of attempts being

(
30
3

)
= 30!

3!27! = 4060. With a
feedback load reduction threshold of 5 dB, corresponding to the cluster center [10,
Fig. 4.19], the BD approach cannot be evaluated for potentially 94.9% of the time.
With a threshold of 40 dB, the failure to find a block diagonal structure is as low
as 0.6%, this is due to the fact that a bigger threshold allows the UE to feed back
the CSI from more BSs, causing H̃ to be a full matrix more often than not. Hence,
the BD procedure can easily be applied to a 40 dB threshold. However, it should
be noted that this failure can be avoided if the BD approach in [4] is generalized,
such that the subsets {2× 2, 1× 1} are also included. This is treated as part of our
future work.
We define the average feedback load reduction, fLR as the average of the number

of zeros in a sparse aggregated channel matrix H̃ ∈ CM×K i.e., the cardinality
of set SFB =

{
H̃ (i, j) = 0,∀i, j ∈ N+, i ≤M, j ≤ K

}
. The average feedback load
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Figure 6.3.: Probability of failure to find a block diagonal subset, Pf

reduction is calculated as

fLR = EH̃ {|SFB|} . (6.9)

Figure 6.4 shows the fLR due to various thresholds that were applied to all the
scheduling algorithms considered in this work. As more number of UEs feed back
the CSI, the same needs to be available at the CCN. The savings in the feedback
load is linear whose slope decreases with increasing threshold. As expected, the
feedback load reduction with threshold of 40 dB and ∞ dB has poor savings.
Now we discuss the impact on the backhaul due to the precoding weights. We

define the normalized average backhaul load reduction as the relative difference in
the total number of UEs and BSs to the cardinality of the set, SBH consisting of
non-zeros in the precoded matrix, W̃algo ∈ CL×N , i.e.,
SBH =

{
W̃algo (j, i) 6= 0, ∀i, j ∈ N+, i ≤ N, j ≤ L

}
. The normalized average back-

haul load reduction is calculated as

bLR =
(LmaxNmax)− EH̃ {|SBH|}

LmaxNmax
, (6.10)

where Lmax = K = 3 and Nmax = Lmax as the maximum number of UEs served is
limited by the maximum number of BSs selected. This is captured in Figure 6.5 for
the various scheduling algorithms considered in this work. The CS approach has
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Figure 6.4.: Average feedback load reduction, fLR, achieved via PJP

nearly 90% backhaul savings with the smallest feedback load reduction threshold,
and the savings diminish as the threshold increases. As the number of UEs grows,
it is interesting to note that with CS 40 dB and US 40 dB, the savings are nearly
similar, with both undergoing an exponential decay. An∞ dB threshold also shows
this decay, resulting in savings in the backhaul. This is due to the fact that the
scheduler is capable of finding a smaller set of BSs and UEs that can achieve a
better sum rate. With smaller thresholds, the CS and US both tend to have higher
savings in the backhaul. There is no backhaul savings when the feedback threshold
is 40 dB in the case of BD, as the aggregated channel matrix is full. The BD 5 dB
has better savings in the backhaul compared to BD 0 dB when M is small. This
is due to the failure to find a block diagonal structure that results in the savings in
the backhaul as observed in Figure 6.3.
The metric average sum rate per backhaul use is considered, as the user data will

be routed at the CCN based on the non-zero precoding weight. This will dominate
the backhaul compared to the CSI feedback [5, Fig. 1]. Hence, the average sum rate
per backhaul use is calculated as

Rtot
per backhaul use

= Rtot(
1− bLR

)
LmaxNmax

= Rtot

EH̃ {|SBH|}
, (6.11)

and Figure 6.6 captures this metric. It can be observed that our proposed CS
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Figure 6.5.: Average normalized backhaul load reduction, bLR

algorithm performs the best compared to all the other algorithms, providing the
best sum rate per backhaul use.
The limitation of the proposed approaches is that they need to perform an ex-

haustive search to find the best possible set of BSs and UEs that gives the best sum
rate. However, a greedy based user selection can be easily implemented based on the
proposed algorithm in order to reduce the complexity [11]. It should be noted that
the algorithms presented in this paper are independent of the scheduling criteria (7).

6.5. Conclusion
In this work, we explore scheduling techniques that can efficiently use the backhaul
for distributing the precoding weights (from CCN to corresponding BSs) under feed-
back load reduction achieved via partial joint processing for coordinated multipoint
transmission. We proposed the constrained and unconstrained scheduling schemes,
comparing them to the state of the art MAC layer block diagonalization technique
for backhaul load reduction. The constrained scheduling achieves the best tradeoff
in terms of the sum rate per backhaul use. The block diagonalization technique
performs well in terms of the sum rate when the number of users is large, however,
they fail to find a block diagonal structure when the number of users are small.
As part of our future work, combining the constrained scheduling and the block

diagonalization technique can harness the gains of both these approaches and over-
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Figure 6.6.: The average sum rate per backhaul use

come their limitations simultaneously. This combined technique can achieve a better
tradeoff between the sum rate and backhaul use. Also, generalizing the block diag-
onalization technique, such that N = L ≤ K can improve these preliminary results.
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7. On the Potential of Broadcast
CSI for Opportunistic Coordinated
Multi-Point Transmission

Abstract
Coordinated Multi-Point transmission is a promising technique to improve the per-
formance of the users at the cell-edge. To achieve this, in case of a centralized
approach, users need to unicast the quantized channel state information (CSI), typ-
ically to the anchor base station (BS), and then each BS forwards this information
to a central coordination node for precoding and scheduling. In the case of a decen-
tralized approach, users broadcast the quantized CSI such that the coordinating BSs
could simultaneously receive the CSI. The advantage of a decentralized approach is
that it does not require a central coordination node, thereby not imposing stringent
latency constraints on the backhaul. The CSI transmission over the erroneous feed-
back channel in the uplink gives rise to precoding loss and scheduling loss. In the
decentralized framework, the feedback errors could result in BSs receiving a different
version of the CSI. In this work, we propose a decentralized opportunistic scheduling
approach, which only requires a minimal sharing of scheduling information between
BSs. The results show that the sum rate achieved with the proposed method is
comparable to that of the centralized approach even when there is a high bit error
probability introduced by the feedback channel. We also show that when the bit
error probabilities in the feedback channel are less than 10^{-4} , the decentralized
approach achieves the sum rate of the centralized approach.

Keywords—Broadcast CSI, CoMP, Decentralized Architecture, Scheduling

7.1. Introduction
In cellular systems, Coordinated Multi-Point (CoMP) transmission is a promising
technique to improve the user experience, especially at the cell-edge as the user
throughput is limited primarily due to intercell interference [1]-[3]. To harvest these
gains in a frequency division duplex system, the User Equipments (UEs) need to
feedback the Channel State Information (CSI) to their anchor Base Stations (BSs).

We define anchor BS for a specific UE as the BS that provides the best average channel gain.
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This information is then forwarded to a Central Coordination Node (CCN) where
user scheduling and data transmission are designed. This approach is called Central-
ized Joint Processing (CJP) with unicast CSI [2, 4]. Figure 7.1 shows the centralized
architecture. The main drawback of the centralized architecture is the backhaul la-
tency introduced due to the forwarding of CSI and precoding weights, to and from
the CCN.
To avoid the stringent latency constraints in the backhaul, a novel feedback ap-

proach is proposed in [4, 5] where the CSI is broadcasted by the UE to the coordi-
nated BSs. We define this approach as Decentralized Joint Processing (DJP) with
broadcast CSI [4]. Figure 7.2 captures the decentralized architecture (without any
information exchange between BSs). In [6], it is shown that the CSI distribution
over the air (without backhaul) outperforms the CSI distribution over the backhaul
in terms of the user rate even with backhaul latency of 4 ms. One of the main bene-
fits of a DJP approach is that it does not need the backhaul for CSI exchange. In a
real system, the performance of Joint Processing (JP) is severely affected by errors
in the CSI feedback due to quantization and delays in the backhaul. With CJP, the
CSI needs to undergo two hops to reach the CCN via its anchor BS, for every UE
involved in JP. Similarly, the precoding weights need to traverse the path of CSI in
the backhaul, taking one hop from the CCN to the corresponding BS. With DJP,
the backhaul is not used, and hence, it reduces the total latency related to the CSI
and the precoding weights per scheduled UE by two hops.
The CSI that needs to be fed back always suffers from quantization loss [7]. The er-

rors in the CSI due to the feedback channel gives rise to precoding loss and scheduling
loss. Quantization, precoding and scheduling play an important role in harnessing
the gains of CoMP. Building on the ideas based on [5, 6] as described above; in this
work, we propose an opportunistic scheduling (UEs that result in the best sum rate
are served) and sharing minimal scheduling information between BSs for a decen-
tralized architecture where the UEs broadcast the CSI. This is shown in Figure 7.2.
We show that minimal exchange of scheduling information between the coordinating
BSs following DJP with a broadcast CSI approach can realize the gains of CJP with
unicast CSI. These gains are valid for a range of bit error probabilities experienced
by the collaborating BSs. Unlike [8], where the CSI delay is considered based on
the feedback rate, and each BS broadcasts the selected user index and the CSI to
other BSs, under equal power allocation. To position our work in comparison to
[8], we consider the quantization loss in the CSI feedback and a BS shares only the
scheduled user index to the BSs involved in JP under optimal power allocation. The
iterative broadcasting of CSI from each BS to other BSs are avoided in our proposal.
The paper is organized as follows: section 7.2 discusses the signal and system

model. The proposed decentralized opportunistic CoMP and various network archi-
tectures are presented in section 7.3. In section 7.4, the potential gains and open
issues of the network architectures are discussed. Finally, the main conclusions of
this work are summarized in section 7.5.

Here unicasting refers to the transmission of the CSI from a UE to an anchor (single) BS.

108



7.2 Signal and System Model

The following notation is used in this paper: boldface upper-case letters denote
matrices, X, boldface lower-case letters denote vectors, x, and italics denote scalars,
x. The absolute value of the elements in a vector x is denoted as |x|. The Cm×n is
a complex valued matrix of size m× n. The (·)T and (·)H is the transpose and the
conjugate transpose, respectively. Ex {·} is the expectation with respect to x. The
||x||2 is the 2-norm of x. X(i, j) is the (i, j)th element of matrix X. The ith row of
a matrix X is X(i, :). The sets are indicated in calligraphic letters and |X | denotes
the cardinality of the set X . The < x,y > represents the inner product between x
and y. The operator ⊗ is the modulo-2 addition.

7.2. Signal and System Model
Consider K single antenna BSs that need to serve M = |M| single antenna UEs,
where M is the set of all the active UEs requiring service. In this regard, two
different architectures are considered. They are centralized and decentralized archi-
tectures. U is the set of UEs selected for JP such that U ⊆M and |U| ≤ K, so that
orthogonality can be maintained under a linear precoding assumption [9]. These
UEs need to feed back the quantized CSI. For simplicity, the channel norm, gm, is
assumed not to be corrupted by errors and it is available at the BS from the mth
UE as

gm = ||hm||2, (7.1)

where hm = [hm,1, hm,2, ..., hm,K ] is the CSI of the links from the K BSs to the mth
UE. In other words, gm is well protected with suitable channel coding, and being a
scalar the overhead of feeding back gm can be considered negligible compared to the
CSI. The discrete time signal received at |U| UEs, y ∈ C|U|×1 is

y = HWx + n. (7.2)

In a centralized approach, the channel matrix serving |U| UEs is H ∈ C|U|×K ,
W ∈ CK×|U| is the precoding matrix and n is the receiver noise at the UEs, which
are spatially and temporally white with variance σ2. Random vector quantization
[10]-[12] is used to quantize the direction of the CSI after normalizing it with the
channel norm such that the generated codebook vectors are on a unit sphere and is
represented as h̃m for the normalized CSI from themth UE. This approach simplifies
the codebook, B ∈ C2N×K , required at the UEs and the BSs, where N is the num-
ber of bits required to represented the quantized CSI. Random vector quantization
mainly aligns the channel vector to that of the codebook and can be summarized as
follows:

h̃m = hm/gm (7.3)
b′ = argmax

b
| < B(b, :), h̃m > |, (7.4)
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where B(b, :) ∈ C1×K such that the elements of B(b, :) are iid circularly symmetric
complex Gaussian distributed as CN (0, 1), b′ is the codebook index which can be
represented as a vector, v, of lengthN bits and is fed back by themth UE. These bits
are independently flipped with a probability depending on the bit error probability,
Pe, of the feedback channel. An error is declared on the nth bit of v as

e =

1, ifPe > r,

0, otherwise no error
(7.5)

v̂(n) = v(n)⊗ e, (7.6)

where r is a random number chosen from a uniform distribution in the interval [0, 1].
The BSs perform the reverse processing in extracting the CSI of the mth UE as ĥm.
The errors in feedback channel affect the CSI feedback vector hm to have a different
value from what was transmitted. This is due to the decoding of the codebook
vector based on an incorrect codebook index. If the decoded codebook index is b̂′,
then the decoded CSI for the mth UE can be written as

ĥm = gmB(b̂′, :) (7.7)

When the feedback channel is error free, the quantization error is the difference
between ĥm and hm. It should be noted that in this work, we do not aim to
optimize quantization.
As the main focus of this study is on the network architecture, a linear zero forcing

beamformer (BF) is considered in this work. The BF is calculated as

W = ĤH(ĤĤH)−1, (7.8)

which is the Moore-Penrose pseudoinverse and Ĥ ∈ C|U|×K is the estimated CSI
available for beamforming. The optimization problem that jointly optimizes the
user scheduling and power allocation is formulated as

maximize
{ ∑
m∈U

log2

(
1 + pm

σ2

)}
(7.9)

subject to

|W (k, :) |2p � Pmax1|U|×1

p � 0|U|×1

where p =
[
p1, . . . , p|U|

]T
∈ R|U|×1 is the power transmitted to the selected |U| UEs.

Note that for each fixed user set, the optimization problem is a convex problem and
the optimal solution can be obtained in a water filling fashion [13]. Finally, the
power allocated to each UE is absorbed into the BF giving a precoding vector to
the mth UE as

W (:,m) = W (:,m)√pm (7.10)
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The Signal to Interference plus Noise Ratio (SINR) for the mth UE is given as

SINRm = ||hmW (:,m) ||2
|U|∑

j=1,j 6=m
j,m∈U

||hmW (:, j) ||2 + σ2
, (7.11)

The average sum rate per cell in bps/Hz/cell for scheduling |U| different UEs on the
same frequency/time resource is

Rtot = 1
K

Eh

{∑
m∈U

log2 (1 + SINRm)
}
. (7.12)

Scheduling

There are two types of scheduling approaches considered in this paper,i.e., random
scheduling and opportunistic scheduling. Random scheduling involves arbitrarily
choosing U UEs for JP while the opportunistic scheduling picks U UEs based on the
combination of UEs that produces the best sum rate, i.e.,

U∗ = arg max
U

∑
m∈U

log2(1 + ŜINRm) (7.13)

ŜINRm = ||ĥmW (:,m) ||2
|U|∑

j=1,j 6=m
j,m∈U

||ĥmW (:, j) ||2 + σ2
. (7.14)

7.3. Decentralized Opportunistic CoMP
In this section, different network architectures are discussed. The potential of using
a decentralized opportunistic CoMP transmission is investigated.

7.3.1. Centralized joint processing with Unicast CSI
Each UE feed back or unicasts the CSI to its anchor BS. The UEs quantize the CSI
and feed it back to their anchor BS with a bit error probability of Pe1. The BSs
decode the CSI based on the codebook mapping and then forward this CSI to the
CCN. In this setup, the backhaul is assumed to be error free. The CCN performs
precoding and sends back the precoding weights to the BSs. This is illustrated in
Figure 7.1.

7.3.2. Decentralized Opportunistic CoMP with Broadcast CSI
A decentralized approach aims to avoid the stringent latency constraints on the
backhaul unlike the centralized approach. In the decentralized architecture, the UEs
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Figure 7.1.: Joint processing Architecture: Centralized. Here g1 and g2 are as-
sumed not to be corrupted by errors.

broadcast the CSI such that the BSs receive a version of the CSI that undergoes
a different probability of error. For simplicity, considering two BSs, the anchor BS
to the UE undergoes Pe1 and the other BS experiences Pe2. This is as shown in
Figure 7.2. Each BS could potentially have a different version of the CSI estimated
by the UE. This implies that each BS will potentially generate different precoding
vectors depending on the UEs being scheduled. In our proposed method, the BS1
losslessly shares the scheduling information with BS2, such that joint transmission
is made possible. This implies an extra hop but the amount of this information
required to be shared is negligible compared to sharing the CSI. This is illustrated in
Figure 7.2. It should be noted that in the CJP approach, the scheduling information
is also needed to be passed on from the CCN to the BSs. The scheduling information
is merely an index consisting of the UEs being scheduled. BS1 may decide this based
on the scheduling algorithm, e.g., opportunistic scheduling. Then, BS2 selects the
same UEs as those selected by BS1. The index values are integers, thus lossless
compression can be applied when sharing this information between BSs. It should
be noted that the best UEs selected by BS1 via opportunistic scheduling may not
be the best UEs to be served by BS2.
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Figure 7.2.: Joint processing Architecture: Decentralized with minimal exchange
of scheduling information. Here g1 and g2 are assumed not to be corrupted by
errors.

7.3.3. Decentralized Joint Processing with Broadcast CSI
exploiting diversity

A potential alternative architecture would be a hybrid architecture where the system
is decentralized as shown in Figure 7.2 and the CCN is introduced. The broadcasted
CSI undergoing different feedback errors are received by different BSs and forwarded
to the CCN where the CSI can be coherently combined to exploit diversity. This
architecture could be useful when there is high uncertainty in the CSI obtained at
the BSs. But, these potential diversity gains could diminish due to the latency
involved in the two hops required for the CSI to be available at the CCN. This hy-
brid architecture combines the CJP and DJP approaches but this causes additional
increase in the backhaul traffic as different variations of the same CSI reaches the
CCN. Hence, this hybrid architecture is more of an overhead and this architecture
does not motivate further study. However, if the backhaul is unconstrained and
there is a need for a better quality of the CSI then this hybrid architecture could be
considered.

7.4. Performance Evaluation
Consider K = 2 single antenna BSs located at the center of two hexagonal cells, as
shown in Figure 7.3. The distance separating the BSs is the height of the hexagon,
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1 2

Figure 7.3.: Serving area where the M UEs are dropped.

h. The length of any side of the hexagon is the same as the cell radius, R = 1
km. Hence, the rectangular area of concern is h by R, where M UEs are dropped.
This is illustrated as the shaded region in Figure 7.3. In every instance U UEs are
scheduled, where |U| = 2. The scheduling is based on the CSI fed back from the M
UEs, based on which random or opportunistic scheduling is performed. Initially, the
codebook is generated and shared between the UEs and the BSs. The number of
bits (or size), N = 16, required for the feedback is chosen for a given set of K BSs.
This was chosen based on the simulations and [5]. In a real system, the CSI feedback
data would be encapsulated as a packet and suitably protected. In these simulations,
the size of the packet can be considered to be N and the packet is never discarded
even if they contain errors. It is assumed that the CSI feedback is not protected
for any error correction. Instead, the UEs are still served based on the erroneous
CSI feedback. Also, as the errors are introduced at the bit level, the results are
presented in terms of the bit error probabilities instead of block errors. This gives
an intuitive feel for the potential benefits with the decentralized architecture when
there are errors in the CSI feedback.
The maximum power, Pmax, at which the BS can transmit is determined based

on cell-edge signal to noise ratio of 15 dB. Water filling based power allocation as
formulated in (Equation 7.9) is implemented using CVX [14]. A Rayleigh fading
component, Γ, is simulated as a circularly symmetric complex Gaussian random
variable as CN (0, 1). The channel between the kth BS and the mth UE is calculated
as

h = Γ√γSF · γPL, (7.15)
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where shadow fading is γSF ∼ CN (0, 8 dB) and γPL is based on the 3GPP pathloss
model [15] as

γPL(dB) = 128.1 + 37.6log10R. (7.16)

In Figure 7.6, the average sum rate as determined by (Equation 7.12) is evaluated
for various centralized and decentralized architectures with equal error probabilities.
In the legend of Figure 7.6, 1) C: Pe = 0; Opport. represents that it is a central-
ized architecture without any errors in the feedback and opportunistic scheduling
is applied. Similarly, 7) involves random scheduling and 5) is the single cell system
which does not perform any precoding but only considers the unicast of the channel
strength and is affected by interference due to the transmission to the other UE. It
should be noted that quantization is not considered for the curves that appear flat
in Figure 7.6. This is to provide an upper bound for the corresponding scenarios
undergoing bit errors. Scenarios 2) and 8) are the centralized approaches with oppor-
tunistic and random scheduling. Their counterparts in the decentralized approach
are 3) and 9), where the scheduling information is shared by BS1 to BS2. It can be
observed that the centralized and the decentralized curves nearly overlap. The de-
centralized approach performs marginally below the centralized approach due to the
broadcasted CSI undergoing different errors. More importantly, the UEs selected
at BS1 with opportunistic approach might not be appropriate to be opportunisti-
cally scheduled at BS2. This loss is more at high bit error probabilities. Hence,
diversity could be exploited to overcome this loss, as explained in subsection 7.3.3.
Finally, scenario 4) shows the typical DJP approach without sharing any schedul-
ing information. In this case, the UEs are scheduled by each BS running the same
opportunistic scheduler. For a given bit error rate of 0.01, the DJP (scenario 4)
has a loss of 2.94 bps/Hz/cell compared to the CJP approach (scenario 2) while
the DJP with sharing the scheduling information (scenario 3) only loses out by 0.56
bps/Hz/cell. Also, when the feedback bit errors are less than 10−4, even sharing
the scheduling information can be avoided. The single cell system with perfect CSI
is shown in scenario 5) and those with errors are shown in scenario 6). A random
scheduler being a dummy approach performs the worst.
Figure 7.5 captures the average sum rate for different bit errors experienced at

different BSs, for scenarios 3) and 4), where BSs share and not share the scheduling
information, respectively. It captures the scenarios for values of Pe1 and Pe2. It
can be observed that if the feedback channel has low bit error probabilities then
one can even avoid sharing the scheduling information between BSs. This implies
that the performance of the decentralized approach in terms of sum rate would be
comparable to the centralized approach. Figure 7.6 shows the effect of the number
of UEs on the average sum rate, for a given bit error probability Pe1 = Pe2 = 0.001.
The increase in the average sum rate with the increase in the number of users is
due to the multiuser diversity gains, as opportunistic scheduling comes into play.
The average sum rate with the decentralized approach without cooperation of BSs is
much smaller compared to CJP. While the decentralized approach with sharing the
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scheduling information, i.e., 3)D : Pe1, Pe2; Opport., BS1 → BS2, always catches
up CJP, i.e., 2) C: Pe; Opport. It should be noted that if errors are considered in
the backhaul links, then the gains with CJP would reduce. Hence, the decentralized
approach is an attractive alternative. It is interesting to note that the single cell
system with no feedback errors performs better than the CJP with feedback errors.
This performance loss can be attributed to the precoding loss due to the ZF approach
while given a large set of UEs, the single cell system favors those UEs close to the
BS.
Table 7.1 summarizes the differences with the architectures considered in this

work. The CSI is unicast in case of the centralized approach while it is broadcast in
the case of the decentralized approach. The CCN is required in the centralized while
this logical entity can be omitted with the decentralized approach. A high capacity
backhauling link is needed with the centralized architecture while none is required
for signaling the CSI or precoding weights in case of the decentralized architecture.
However, the decentralized architecture where minimal scheduling information needs
to be shared only requires a low capacity link. The backhaul latency in case of the
centralized architecture is two hops, as every UE needs to feedback the CSI to its
anchor BS and the same needs to be forwarded to the CCN. These hops are avoided
in case of a decentralized architecture. However, sharing scheduling information
requires one hop per JP UEs. Scheduling the UEs is decided at the CCN in case
of the centralized architecture while in the case of the decentralized architecture
sharing the scheduling information can be treated as semi-decentralized due to the
extra hop required for sharing. Some performance loss in terms of the average
sum rate can be expected with completely decentralized scheduling, as observed in
scenario 4) where the BSs do not share the scheduling informatoin. The quantization
loss when feeding back the CSI can be expected in the architectures discussed here.
However, the centralized architecture has an additional quantization loss due to the
BF weights that need to be transported from the CCN to the corresponding BSs.

Table 7.1.: Comparison of centralized and decentralized architectures, with mini-
mal scheduling information exchange

Parameters Centralized Decent. w/ Sched.† Decent.‡
CSI Unicast Broadcast Broadcast
CCN Req. Not req. Not req.

Backhaul (BH) High Low None
BH Latency 2 hops/UE 1 hop/JP UEs None
Scheduling Centralized Semi-decent. Decent.

Quantization Loss CSI & BF* CSI only CSI only
† Corresponds to scenario 3) D: Pe1,Pe2; Opport., BS1 → BS2
‡ Corresponds to scenario 4) D: Pe1,Pe2; Opport. (same user by chance)
* The BF weights with quantization loss is not studied here.

Sharing the scheduling information between BSs can happen harmoniously within
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the cooperating BSs, i.e., without the need of a master-slave relationship between the
cooperating BSs. As the UEs about to be scheduled can be losslessly exchanged,
and each BS is at liberty to choose what the other BS has planned to schedule.
Alternatively, the BSs receiving the scheduling information can choose the best UEs
that should be scheduled given this new information.

7.5. Conclusion
Scheduling is an important function that should be exercised to harness the gains in
CoMP. In this work, we proposed a decentralized approach with broadcasting chan-
nel state information with opportunistic scheduling and sharing minimal scheduling
information between cooperating base stations. The proposed approach yields a sum
rate comparable to the centralized joint processing. A purely decentralized approach
yields poorer performance when the bit errors in the feedback channel occur with
high probability. The main advantage of using a decentralized approach is that the
stringent latency constraints on the backhaul imposed by the centralized approach
can be circumvented. The decentralized approach should be preferred when the bit
error probability in the feedback channel are less than 10−4, otherwise the precoding
loss would diminish these gains. Without sharing the scheduling information, the de-
centralized approach still performs well when the bit error probability is low but the
scheduling loss kicks in when the BSs do not cooperate and the bit errors are high.
However, when both BSs apply the same opportunistic algorithm, the performance
is reasonable under low bit error conditions.
The results in this paper were obtained using single-antenna nodes, and a rele-

vant question is how they generalize for multi-antenna BSs and UEs. The minimal
scheduling exchange could potentially be avoided if a given BS can predict what
other BSs are about to schedule, based on the location information of the UEs.
Then there would be no need to exchange the scheduling information between BSs.
Also, a joint opportunistic scheduling could further improve the sum rate. These
research items are considered as part of our future work.
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Part III.

Appendix



A. Max-min SINR Comparison with
Weighted Interference
Minimization

In this section, PSO is evaluated under another objective function of maximizing the
minimum SINR (max-min SINR). This is compared with the weighted interference
minimization (WIM) as proposed in Paper B. Recall the objective function of WIM
for the ith particle of the PSO can be expressed as

f(X(i, :)) := ||OffDiag (HW) ||F
minSINRuser

, (A.1)

where H is the aggregated channel matrix that is available at the CCN, W is the
precoding matrix obtained with PSO and minSINRuser is the user with the least
SINR. The minimizing objective function for max-min SINR for the ith particle of
the PSO can be formulated as

f(X(i, :)) := −minSINRuser. (A.2)

In particular, the case of limited CSI feedback being equivalent to the limited
backhaul is considered. Figure A.1 shows that max-min SINR has a 2.1% relative
increase in average sum rate compared to WIM. However, this is achieved at the
expense of 7.7% relative increase in average BSs power consumption as shown in
Figure A.2, and also, at the expense of nearly doubling the interference, i.e., a 45%
relative increase in actual interference is observed. This is captured in Figure A.3.
To summarize, the WIM objective proposed in Paper B performs nearly as good

as the max-min SINR in terms of the sum-rate achieved. However, there are greater
benefits with using WIM in terms of the relatively lesser power consumption and
lowered interference remaining in the system.
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B. Performance of PSO based on
Field Measurements Data

In this section, the results from a collaborative evaluation of the precoder design with
Uppsala University based on field measurements are presented. The performance of
the PSO with perfect and imperfect CSI is also covered.
The channel measurement data was collected by Ericsson Research at Kista a

suburb in Stockholm, Sweden. The specific details of these LTE based channel
measurements can be found in [ARTD12, Sec. 4.4.1] and the references therein.
The results presented here are confined to the most interesting cases compiled from
[ARTD14]. In this regard, the robust linear precoder (RLP) based on automatic
control robust feed-forward (RLP-ACFF) filter is considered [ASA12]. The RLP-
ACFF iteratively minimizes a given objective function and is comparable to PSO
with the iterative nature of the algorithm. When UEs are moving fast, obtaining
reliable CSI at the transmitter can be very difficult. Hence, as a fallback mecha-
nism, simpler techniques such as coordinated scheduling (CS) and FDMA can be
adopted. In the CS, the UE with the strongest instantaneous channel gets the whole
bandwidth such that one eNodeB is transmitting while the other is not. Whereas
in the case of FDMA, the bandwidth is equally divided between the UEs.
The setup consists of two single antenna eNodeB with two single antenna UEs

at a distance of 500m. The UEs are moving at 5 kmph. The evaluation consists
of three different scenarios. They are (i) UEs are at the cell-edge, (ii) UEs are at
a distance 125 m from their serving eNodeB or the master eNodeB, and (iii) one
UE is located at a distance of 125 m from the eNodeB while the other is at the
cell-edge. A Wiener filter is used for estimating the channel 8 ms in the future from
outdated CSI. The predicted channel is quantized with 5 bits for the phase of the
channel and is fed back. The imperfections in CSI are primarily due to prediction
errors and quantization errors. A cell-edge signal to noise ratio (SNR) of 15 dB is
chosen. A per-eNodeB power constraint is applied in every iteration of the PSO.
Numerical results based on the above three scenarios show that the PSO performs

the best. This is captured in Figure B.1-Figure B.3. More importantly, PSO is
robust against imperfect CSI. The errors in the channel are dominated by channel
prediction errors in the low SNR region while the quantization errors dominate at
high SNR region.
This is an important result. The prediction horizon of 8 ms is reasonable consid-

ering the feedback loop and the delays especially in the backhaul. PSO is robust
against prediction errors based on the Wiener filter, although a Kalman filter would
do a better job. One may argue that PSO is computing intensive. However, the
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precoder is computed at the CCN in a centralized network architecture or at the
eNodeB in a decentralized network architecture. The properties of the PSO are very
desirable for precoder design.
A RLP based MMSE solution was also evaluated. However, RLP-MMSE per-

formed poorly and therefore these results are not shown here. More detailed results
are presented in the ARTIST4G project in deliverable D1.4 [ARTD14].
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