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Abstract 

The theme of the work described in this thesis is the generation and application of 
liquid microenvironments in chemistry and bioscience using microfluidic devices. 
First, a computer controlled multi-stage dilution system to generate time-dependent 
chemical waves was developed, and its application was demonstrated on model 
biomembranes. Thereafter the focus was shifted towards spatial control of chemistry. 
Using a hydrodynamic flow confinement concept in an open liquid volume, we 
created a device coined “Multifunctional Pipette”. It features localized liquid handling 
at the single-cell size scale together with fast solution exchange. The technology has 
been refined and optimized to provide a feature-rich tool for biologists working with 
cells and tissues in microscopy experiments. Application examples include cell zeiosis, 
single-cell dose-response determination and ion-channel stimulation. Subsequent 
studies cover modifications and applications of this device, such as on-chip electrodes 
and electroporation, as well as uses in cell cultures, on tissue slices, and as an 
optofluidic thermometer. Finally, localized liquid handling has been applied to 
assemble 2-dimensional fluidic networks consisting of directly written supported lipid 
bilayers. This "Lab on a Membrane" toolbox allows rapid prototyping of 2D-fluidic 
circuits, to modify their chemistry and connectivity on-demand and to apply them in 
studies of molecular interactions. 
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1. Introduction 

Squeezing flasks and tubes from chemistry labs 
into small chips filled with networks of channels, 
valves, mixers and reaction chambers is a goal of 
the new and rapidly blooming field of 
Microfluidics. These so called ‘Lab on a Chip’ 
devices may eventually revolutionize medical 
diagnostics as well as chemical and biological 
analysis and research. 

-- In the 23rd century, interplanetary travel has become as common as flights from 
London to Paris a few centuries ago. Of course, mankind hasn’t made progress only 
in rocket science. A traveler has great need for protection, while wandering in the 
vastness of space. That's why Starfleet is equipped with Tricorders [1]– handheld 
devices which can help, while scouting on an alien planet or examining the health of a 
person, to detect  infections by space bugs. -- With this vision of the future depicted in 
the 1960's cult series Star Trek, director Gene Roddenberry was mere decades ahead 
of his time. It was in the 1980s, when a microfabricated gas-chromatography column 
was actually putting forward the first steps towards miniaturization in chemical analysis 
[2]. And it took yet another decade, until in 1991, the Swedish company Pharmacia 
Biosensor AB (later Biacore AB, now part of GE Healthcare) coined the name 
‘Microfluidics’ in one of their scientific papers [3]. Despite of this little known origin, 
the term ‘Microfluidics’ has now become synonymous with an entire field of science 
and technology, which is focusing on liquid manipulation and chemistry inside 
microscale devices. The field has exploded during the last decade, which is indicted 
by a doubling of the number of scientific publications and patent applications in less 
than every three years (Figure 1.1 A). Of course, such intensive research has resulted 
in a multitude of achievements, including deeper understanding of fluid physics at 
small scales, different means of fabrication and control, numerous applications and 
already more than a hundred companies making microfluidics-related products. Still, 
when looking at the typical technology lifecycle model (Figure 1.1 B), microfluidics is 
in its puberty, undergoing rapid development toward maturation [4], which includes 
improvements in manufacturing as well as identification of new applications. This 
shall pave the way for the wide-scale use of the technology, eventually bringing  
benefits for the society in general, such as faster, cheaper and more comprehensive 
diagnostics [5]. While the interplanetary spaceships from the  Star Trek world are still 
a matter of science fiction, the medical Tricorder, helping to tackle "earth bugs", is 
actually almost within our reach. In 2012 Qualcomm was announcing a Tricorder X 
Prize of 10 million USD for the team to successfully build a portable device which is 
able to detect autonomously 15 distinct and common diseases, and does it better or at 
least as good as a trained physician [6]. This device would allow to keep better track of 
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personal health, prevent diseases, and reduce queues in front of doctors’ doors. All of 
these points are of critical importance in the future, since the aging population will 
inevitably increase the social burden of healthcare needs.  

Microfluidics is not only holding promises in diagnostics, but can also extend the 
technical possibilities in our chemical, biological and medical research laboratories, 
for example by increasing efficiency and throughput, or by providing equipment in 
size scales specifically fitted to address single cells or their parts. 

The backbone of this thesis is indeed the development of microfluidics based 
research tools and components, providing biophysicists and biologists with new means 
to control the chemical environment around single-cells. The PhD project started with 
a computer controlled, general purpose microfluidic dilution device, designed to  
generate chemical waves with desired parameters (Paper I). When it turned out to be 
cumbersome to apply this initial device in real biological experiments, it inspired the 
development of the next concept, which we termed a microfluidic pipette (Paper II). 
This device allowed localized delivery of solutions at the size scale of single cells in 
open volumes. The concept was reshaped for improved usability, turning it into a 
multifunctional tool for bioscience research (Paper III). We have explored diverse 
uses of the device for single cell electroporation (Paper IV), delivery of 
neurochemicals to brain slices (Paper V), and temperature measurement (Paper VI), 
and finally made a leap into new application areas and established a general method 
for the printing and manipulation of 2D nanofluidic circuits - a "lab on a membrane" 
(Paper VII). 

The thesis provides background and context for the research described in the 
included papers. First relevant fluid physics and transport processes are discussed, 

 

Figure 1.1. Development of microfluidics technology. (A) Growth of microfluidics during the 
last two decades. Based on scientific (ISI Web of Knowledge) and patent (espacenet) 
databases. (B) Microfluidics in the technology life cycle. Different phases of innovation, 
adaptation and economic impact [7-8]. 
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followed by practical instructions and considerations for designing microfluidic 
systems, and then the methods relevant for the thesis, such as microfabrication, 
imaging with different microscopy tools, and modeling are listed. The final chapter 
provides an in-depth overview, and comparison of the specific technologies studied 
and developed in this thesis, which are dilution, delivery of chemicals to adherent 
cells, and lipid membrane manipulations. 

The author hopes that the thesis will not only earn him an advanced degree, but  also 
provides some inspiration for new students who are starting to explore the field of 
microfluidics, as well as some useful hints and guidance to consider before designing 
chips. Unfortunately, the relevance of the thesis could potentially be short lived, due 
to the rapid development of the field. On the other hand, that is exactly what is 
making it so exciting to work with! 
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2. Fundamentals 

of Microfluidics 

Microfluidics and its big brother 
Microelectronics. Microelectronics has 
provided a plentitude of inspiration, and also 
tools for fabricating Microfluidics. Both have 
similarities even when it comes to physical laws. 
Yet why has Microfluidics not been able to 
repeate the glory of its older sibling? Why it has 
been so difficult to fully mimic electronic 
systems? These questions will be addressed in 
the following chapter, along with a brief 
exploration of the physical principles of 
microfluidics. 

 

2.1 Fluid Physics 

2.1.1 Flow 

Transport of liquid in microscale channels is central for most microfluidic systems, 
including the ones described in this thesis. Therefore it is important to understand the 
basic driving forces, mechanisms and properties of microflows. The mechanical 
aspect of the flow, which is the motion of liquid, is described by classical mechanics 
and hydrodynamics. In order to derive such a flow equation, one can actually start 
from basic principles of mechanics known as Newton’s laws, named after Sir Isaac 
Newton, who formulated them in his work Philosophiae Naturalis Principia 
Mathematica at 1687. Most important are his 2nd and 3rd law (Eq 2.1 and Eq 2.2) 
relating acceleration and force acting on a body, and defining the mutuality of 
interactions. 

Ԧܽ = Ԧ݉ܨ
 

(2.1) 

where ܨԦ is the force acting on a body, m is its mass and Ԧܽ the acceleration caused by 
the force. ܨԦଶ =  Ԧଵ (2.2)ܨ−
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 Which implies, that if one body affects another with force ܨԦଵ, then the second body 

affects the first back with force ܨԦଶ, which has the same magnitude, but acts in opposite 
direction.  

While the original notion of Newton’s 2nd law is well suited for describing falling apples 
and the motion of other solid objects, it is less convenient for handling liquid streams. 
For solid objects their coordinate and velocity is used to describe motion, while for 
fluids the velocity field becomes handier. It means that we are not looking at the 
velocity of one particular "fluid particle", but instead at the velocity of the fluid in a 
certain place in space. The important difference can be understood, if we imagine a 
constant flow rate in a tube, which means that the velocity field should be also 
constant. However, if the tube has a narrower region, the liquid needs to accelerate to 
pass it, since the flow velocity must be higher in the narrower region in order to 
maintain an overall constant flow rate. This means, that a particular fluid particle, 
which would always be a subject to Newton’s 2nd equation, may experience 
acceleration, even if the velocity field is steady. This is illustrated in figure 2.1. 

Lets express the acceleration of fluid particle Ԧܽ′ from the velocity field ݒԦ	during an 

infinitely small time step ݀ݐ. This acceleration would contain then two parts; one due 
to the change in the velocity field, and another due to the changing position of the 
particle in the steady field. 

Ԧܽᇱ = ݐ݀′Ԧݒ݀ = ݐ)Ԧݒ + (ݐ݀ − ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௧௘௠௣௢௥௔௟ݐ݀(ݐ)Ԧݒ + ݐ)Ԧݎ)Ԧݒ + ((ݐ݀ − ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ௦௣௔௧௜௔௟ݐ݀((ݐ)Ԧݎ)Ԧݒ  
(2.3) 

Using the chain rule of differentiation on a spatial component, eq. 2.3 becomes 

Ԧܽᇱ = ݐ݀(ݐ)Ԧݒ݀ + ᇣᇤᇥ௩ሬԦݐ݀(ݐ)Ԧݎ݀ Ԧݎ݀(Ԧݎ)Ԧݒ݀  
(2.4) 

Since ݒԦ = ,ݐ)Ԧݒ  Ԧ), the partial derivative notation shall be used here, givingݎ

 

Figure 2.1. Steady flow in a tube with shrinking diameter. The concept of a velocity field ݒԦ 
(blue) and the velocity of a particular fluid particle ݒԦ′ (red). Even though the velocity field is 
steady, the particular fluid particle can accelerate during its journey. 
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Ԧܽᇱ = ,ݐ)Ԧݒ߲ ݐ߲(Ԧݎ + Ԧݒ Ԧݎ߲(Ԧݎ)Ԧݒ߲ = ݐԦ߲ݒ߲ + Ԧݒ ∙  Ԧ (2.5)ݒ∇

From the acceleration of the fluid particle and its mass ݀݉, we calculate the force ݀ܨԦᇱ ݀ܨԦ௡௘௧ᇱ = ݀݉ Ԧܽᇱ (2.6) 

In contrast to solid objects, the density ߩ would be a more suitable descriptor of a 
fluid than the mass of some arbitrarily chosen particle: 

Ԧ௡௘௧ᇱܨ݀ = ܸ݀ߩ Ԧܽᇱ = ܸ݀ߩ ቆ߲ݒԦ߲ݐ + Ԧݒ ∙  Ԧቇݒ∇
(2.7) 

In most microfluidic systems where water solutions are used, it is safe to assume that 
the fluid is incompressible, which means that the density is a constant ݀݅ݒ(ݒԦ) = 0  and ߩ =  (2.8) ݐݏ݊݋ܿ

As seen from eq. 2.7, even a steady flow of a liquid features acceleration, and 
therefore forces acting between the fluid particles. The most common forces, which 
are always present, are caused by pressure and the viscosity of the fluids. 

Liquid pressure acts on all surfaces and exerts a force in perpendicular direction to 

them. In order to derive the force exerted to a liquid particle with volume ܸ we need 

to integrate the pressure over the surface of this particle, where ݀ܵ denotes a small 

surface element and ሬ݊Ԧ points to its normal direction. 

Ԧ௣௥௘௦.ᇱܨ = −඾ ܲ ∙ ሬ݊Ԧ݀ܵ௦௨௥௙௔௖௘ ௢௙ ௣௔௥௧௜௖௟௘  
(2.9) 

By using Ostrogratsky’s divergence theorem, this integral over the surface can be 
turned into an integral over volume 

Ԧ௣௥௘௦.ᇱܨ = −ම ∇ܸܲ݀௩௢௟௨௠௘ ௢௙ ௣௔௥௧௜௖௟௘  
(2.10) 

If the volume ܸ is infinitely small, we will have a differential form of the equation ݀ܨԦ௣௥௘௦ᇱ = −∇ܸܲ݀ (2.11) 

Where ∇ܲ is the pressure gradient (also denoted grad(P)	) 
Another important force is friction inside fluid flow, which happens when different 
parts of the liquid move at different velocity. This was also studied by Newton, who 

found that the force ܨ required to overcome the friction and move two parallel plates  
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relative to each other, when both are separated by a fluid, is proportional to the 

velocity gradient (also called shear rate) ߲ݕ߲/ݒ and the area of the plates ܵ (Figure 
2.2A) 

ܨ = ܵߟ  ݕ߲ݒ߲
(2.12) 

with a proportionality constant ߟ, called dynamic viscosity, which is a characteristic 
property of the fluid, depending also on the temperature. However, this relation is 
correct only for some simple substances, called Newtonian fluids. In non-Netwonian 

fluids, like polymer solutions, ߟ depends also on shear rate, making the behavior 
much more complex. Fortunately water and most dilute aqueous solutions used in 
microfluidics behave as Newtonian fluids, therefore we focus only on them.   

Starting from Newton’s law of viscosity we can derive how the viscous force inside the 
fluid is related to the velocity field. First lets imagine three close layers of fluid, which 

move with different speeds ݒଵ, ݒଶ and ݒଷ. If the layers are separated by distance ݀ݕ, 
the forces acting between them can be calculated using Newton’s viscosity law (2.12) ܨଶିଷ = ܵߟ ଷݒ − ݕଶ݀ݒ  

ଵିଶܨ = ܵߟ ଶݒ − ݕଵ݀ݒ  

(2.13) 

Taking into account Newton’s 3rd law about the mutuality of interactions (Eq. 2.2) and 
summing forces from both sides, we can calculate the net force acting on the middle 
layer of the fluid ܨ = ଵିଶܨ − ଶିଷܨ = ܵߟ ൬ݒଶ − ݕଵ݀ݒ − ଷݒ − ݕଶ݀ݒ ൰ 

(2.14) 

As seen from this equation the force acting on the fluid layer does not depend on the 

velocity gradient, but on its change, which can in case of infinitely small ݀ݕ be 
described through the derivative of the gradient. 

 

Figure 2.2. Viscosity. (A) Two parallel plates separated by a Newtonian fluid, moving 
relative to each other (also known as Couette flow). (B) Relating viscous forces and velocity 
field.  
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ܨ = ܵߟ ݕ߲߲ ൬߲ݕ߲ݒ൰݀ݕ = ߟ ݕ߲߲ ൬߲ݕ߲ݒ൰ ตௗ௏ݕ݀ܵ  
(2.15) 

where ܸ݀ is the volume of the layer. In order to generalized the equation, we calculate 

the force, considering infinitely small layers (݀ܵ) in three dimensions: ݀ܨԦ௩௜௦௖.ᇱ =  Ԧܸ݀ (2.16)ݒଶ∇ߟ

Now the different forces can be combined, and the net force is proportional to the 
acceleration ݀ܨԦ௡௘௧ᇱ = Ԧ௣௥௘௦.ᇱܨ݀ + Ԧ௩௜௦௖.ᇱܨ݀ ܸ݀ߩ  ቆ߲ݒԦ߲ݐ + Ԧݒ ∙ Ԧቇݒ∇ = −∇ܸܲ݀ +  Ԧܸ݀ݒଶ∇ߟ

(2.17) 

After dividing both sides by ܸ݀ we obtain the following differential equation 

࢚ሬሬԦࣔ࢜ቆࣔ࣋ + ሬሬԦ࢜ ∙ સ࢜ሬሬԦቇ = −સࡼ +  ሬሬԦ (2.18)࢜સ૛ࣁ

This equation, named after 19th century French and British scientists Claude-Louis 
Navier and Sir George Gabriel Stokes (Navier-Stokes’ equation) relates the velocity 
field of the flow with the pressure distribution and viscosity. It is a central concept in 
all flow calculations. Unfortunately, this non-linear partial differential equation is 
almost never analytically solvable. In fact, understanding Navier-Stokes’ equation is 
considered one of the greatest unsolved problems in mathematics, with a million 
dollar price promised to anyone who can elucidate its properties [9]. 

But some qualitative insight into the flow behavior and its dependence on the size 
scales can be obtained by using scaling laws. For that purpose eq. 2.18 can be re-
written in a dimensionless form, using the following replacements 

Ԧݎ = Ԧݎ଴̃ܮ , ∇= ଴ܮ1 ∇෩ , Ԧݒ = ෤Ԧݒ଴ݒ , ݐ = ଴ݒ଴ܮ ݐ̃ ܽ݊݀ ܲ = ଴ܮ଴ݒߟ ෨ܲ  
(2.19) 

Where ~ denotes dimensionless analogues. ܮ଴ and ݒ଴ are characteristic size and 
velocity scales. 

଴ݒ଴ܮ෤Ԧݒ଴߲ݒ൮ߩ ݐ߲̃ + ෤Ԧݒ଴ݒ ∙ ൬ݒ଴ܮ଴൰∇෩ݒ෤Ԧ൲ = −ቆݒߟ଴ܮ଴ଶ ቇ∇෩ ෨ܲ + ߟ ቆݒ଴ܮ଴ଶቇ∇෩ଶݒ෤Ԧ (2.20) 

Re-arrangements lead to (eq. 2.21) 
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ᇣᇤᇥோ௘ߟ଴ܮ଴ݒߩ  ቆ߲ݒ෤Ԧ߲̃ݐ + ෤Ԧݒ ∙ ∇෩ݒ෤Ԧቇ = −∇ ෨ܲ + ∇෩ଶݒ෤Ԧ (2.21) 

demonstrating that the dimensionless Navier-Stoke’ equation depends only on one 

scaling parameter, known as Reynolds number (ܴ݁) 

ܴ݁ = ߟ଴ܮ଴ݒߩ  
(2.22) 

If ܴ݁ is large (ܴ݁ ≫ 1), the equation is dominated by the left side, which describes 

inertia. Due to the non-linear term ݒ෤Ԧ ∙ ∇෩ݒ෤Ԧ the behavior of flow in a "high Reynolds 

number mode" is chaotic (turbulent flow). Alternatively, if ܴ݁ is low (ܴ݁ ≪ 1), the 
inertial side can be neglected and the equation is dominated by pressure and viscosity 
terms.  This linear equation, known as Stokes’ equation (Eq 2.23) has a well defined 
solution, which corresponds to the laminar flow regime. In typical microfluidic 
systems, where the channel sizes are small and the flow is slow, the Reynolds number 
is low and the flow is laminar.  ∇ܲ =  Ԧ (2.23)ݒଶ∇ߟ

Stokes' equation has analytical solutions for a variety of simple geometries like 
cylindrical and rectangular tubes. Due to fabrication constraints, microfluidic channels 
have most commonly rectangular geometry. In a long rectangular channel the flow 
field is [10] 

,ݕ)௫ݒ (ݖ = 4ℎଶ∆ߨ݌ଷܮߟ ෍ 1݊ଷ ቎1 − ℎݏ݋ܿ ቀ݊ߨ ℎݏ݋ℎቁܿݕ ቀ݊ߨ 2ℎቁ቏ݓ
ஶ

௡,௢ௗௗ ݊݅ݏ ቀ݊ߨ ℎቁݖ  

௬ݒ = ௭ݒ = 0 

(2.24) 

Where ܮ is the channel length along the ݔ axis, ℎ is the channel height along the ݖ 

axis, ݓ is the channel width along the ݕ axis and ∆݌ is the pressure difference between 

 

Figure 2.3. Velocity field. (A) Laminar flow. (B) Turbulent flow 
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the channel ends. If the velocity is integrated over the cross section, the total flow rate 
can be found as 

ܳ = න න ,ݕ)௫ݒ ௪ݖ݀ݕ݀(ݖ ଶ⁄
ି௪ ଶ⁄

௛
଴ = ℎଷܮߟ12݌∆ݓ ൥1 − ෍ 1݊ହ ହߨ192 ℎݓ ℎ݊ܽݐ ቀ݊ߨ 2ℎቁஶݓ

௡,௢ௗௗ ൩ 
(2.25) 

For practical purposes, this infinite series is still hard to calculate, therefore an 
approximation can be used 

ܳ = ݌∆ ℎଷܮߟ12ݓ ൤1 − 0.630 ℎݓ൨ 
where ℎ <  ,In worst case, when the channel has a square cross-section .ݓ
the error generated by using this approximation is actually only 13%.  

(2.26) 

 

2.1.2 Mass Transport & Diffusion 

From a chemical point of view, it would be boring to pump just water. Therefore, 
most of the microfluidic systems handle a variety of solutions and regents, are able to 
mix and switch between them, and carry out chemical reactions. This introduces a 
new dimension into the equations – the chemical composition. In case there is no 
reactivity between different fluids and no strong interaction between composition and 
flow, the composition can be split into independent concentrations of molecules and 
each of them can be considered separately. An example for a case where composition 
and flow behavior are not independent would be sugar solution and water, where the 
sugar concentration determines viscosity and therefore flow, which would then again 
influence concentration. This type of coupling makes calculations significantly more 
complex. In contrast, the research presented in this thesis involved only dilute 
solutions, where the chemical composition has no major effect on the flow properties. 
In this case the concentration of a substance can be described by the convection-
diffusion equation (Eq. 2.27) ߲߲ܿݐ = Ԧݒ− ∙ ∇ܿ +  ଶܿ∇ܦ

(2.27) 

where the left-hand side describes the temporal change of the concentration, which 

depends on the convective transport by the flow (−ݒԦ ∙ ∇ܿ), and on diffusion (ܦ∇ଶܿ). 
This equation has a striking similarity to the Navier-Stokes equation, where just ܿ has 

been replaced by ݒԦ. Therefore, the Navier-Stokes equation can be considered as the 
transport equation of momentum, where viscosity acts as diffusivity of momentum.  
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If we convert the convection-diffusion equation into a dimensionless form, as we did 
previously with Navier-Stokes (Eq. 2.21), the resulting equation depends on two 

scaling parameters ܵݐ and ܲ݁ 

ݐܵ ݐ߲߲̃̃ܿ = ෤Ԧݒ− ∙ ∇෩ܿ̃ + 1ܲ݁ ∇෩ଶܿ̃ 
(2.28) 

where ܵݐ stands for the Strouhal number, describing unsteadiness, and ܲ݁ for Peclet 
number, describing the ratio between convective and diffusive mass transport. Pe is 
analogous to the Reynolds number, which describes the same for momentum. 

ݐܵ = ଴ݒ଴߬ܮ ܽ݊݀ ܲ݁ = ܦ଴ܮ଴ݒ  
(2.29) 

where ߬ is the unsteady time.  

In the following we consider two important cases, which are both also relevant for the 
research presented in this thesis. First, a steady flow and concentration patterns, where ܵݐ = 0, and second, transient propagation of concentration pulses in a pressure 
driven flow. 

 

Steady flow 

Our macro-world experience tells us that putting together two miscible liquids, for 
example syrup and water, will eventually result in their complete mixing. 
Microfluidics, on the other hand, offers an easy way to form and even maintain 
spatially constant concentration gradients. This requires that diffusion, which always 
mixes substances until the differences have faded, is compensated by the convective 
flow, which replaces mixed liquids. The dimensionless convection-diffusion equation 
(Eq. 2.28) shows that the stationary equation (St=0) depends on only one parameter, 
which is the Peclet number. Here, a higher Peclet number implies dominance of 
convection over diffusion, therefore less mixing and sharper concentration gradients, 
and vice versa. This is illustrated in figure 2.4, showing a typical T- or Y-channel, 
where two solutions enter a common channel, co-flow, and mix diffusively. The 
further we go from the junction point, the more diffusion has progressed, and the 
smoother is the gradient. A detailed description of the concentration profile is 
complex and requires numerical simulations. However, if we can assume a 2-
dimensional channel with constant velocity, an analytical solution is possible (Eq. 2.30) 

,ݔ)ܿ ,ݓ ݐ ଴ܶ⁄ ) = ܿ଴2 ෍ ቌ݂݁ݎ ቆݔ ⁄ݓ − (2݊ + 1)ඥݐ ଴ܶ⁄ ቇ − ݂ݎ݁ ቆݔ ⁄ݓ − 2݊ඥݐ ଴ܶ⁄ ቇቍ௡∈±ℕ  (2.30) 
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 where ଴ܶ = ଶݓ ⁄ܦ4  is characteristic time-scale of the system, and ݐ = ܮ ⁄௔௩௘௥ݒ  is the 
time, during which diffusion has occurred. In reality this assumption is well suitable 
for high aspect ratio channels.  

This principle has been used in a variety of devices, for example to generate 
concentration gradients for cell migration studies [11]. There is a class of separation 
techniques, based on devices called H-filters, where these two flows are split apart 
again at the end of the common channel [12]. The separation of the substances is 
based on their different diffusion properties. Even more efficient separation is 
achieved when active transport can be included and the selected substance can be 
dragged to one edge of the channel, for example by magnetic force [13], which has 
been used to remove pathogens from blood. The transport mode can be even 
biological. For example, similar filters have been used to separate live and dead 
sperms to improve in vitro fertilization [14]. Besides separation, this kind of 
dispersion in microchannels has to be considered when designing microfluidic mixers, 
to make sure that two fluids have been become well blended at the end of a mixing 
channel. 

The same principle of convection competing with diffusion has found an application 
in hydrodynamic flow confinement (HCF), allowing localized delivery of chemicals. 
HCF is a key element of the multifunctional pipette, studied in this thesis. 

 

 

 

Figure 2.4. Stationary concentration gradients in microchannels. (A) A Y-shaped channel, 
fed by two flows, where one is carrying a solution of a substance with concentration c0, and 
the other one is pure solvent (c=0). Due to the lack of turbulence, these two flows mix only 
due to molecular diffusion, which smoothens the concentration difference between the 
flows. On the other hand this diffusive mixing is compensated by a replenishing supply of 
liquids. The balance between diffusion and convective replacement is establishing a 
stationary concentration distribution (B). The concentration profile in this kind of channel 
depends only on one dimensionless time ratio t/T0. The greater the ratio, the smoother is 
the gradient. 
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Transient flow 

 But how will a fluid stream with unsteady composition be affected when it is 
transported in microfluidic channels?  Or if we switch between different solutions? 
These questions can be answered by analyzing the transient propagation of 
concentration pulses. The convection-diffusion equation (Eq. 2.28) shows  that in this 
case all three terms contribute to the equation, and an exact solution would depend 
on two dimensionless parameters, St and Pe. This makes it more complicated to 
formulate a universal description. However, depending on which phenomena are 

 

Figure 2.5. Dispersion models and their regions of applicability depending on Pe number and 
channel geometries (L/r). (According to Probstein “Physiochemical Hydrodynamics” [15]). 
The colors used to shade the regions have blurry edges to emphasize that the transitions 
between these modes are not sharp. The illustrations show how a short plug of a substance 
is dispersed in different transport modes. 
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dominating it is possible to separate different transport modes, and provide simpler 
models to describe each of them [15]. This depends on two aspects, the Peclet 
number and the ratio of channel length and radius L/r (Figure 2.5). Here the Peclet 
number represents the ratio of convection along the channel axis (axial) and diffusion 

across its cross section (radial). But since the convection (∝ ∝) and diffusion (ݐ  ( ݐ√
are scaling differently, the channel length has to be also considered in order to 
determine the right transport model.  

Let’s look first at the case of a low Pe number, where the flow is slow and the diffusion 
is fast. If the channels are relatively short, the output is primarily dominated by 
diffusion (Pure axial diffusion). However,  when the channel length is increased, the 
convection will eventually catch-up with diffusion, due to their different scaling. In this 
case, the convection dominates the axial transport, but the radial transport is still ruled 
by the diffusion, which means that the concentration over the cross-section of the 
channel is constant. (Axial convection, radial diffusion). the border between these 

modes is approximately at ܲ݁ ≈ 0.4 ݎ ⁄ܮ .  

If we increase the flow and Peclet number, the radial diffusion cannot keep up with 
convection. In case of very fast flow and short channels, the pressure driven fluid 
stream is stretching the substance pulse into a parabolic shape, while diffusion does 
not have time for any significant action. Then the dispersion is only due to Pure 
convection. When the channels are made sufficiently long, both diffusion and 
convection are entering the process. Convection is stretching the concentration pulse 
and diffusion is mixing it in radial direction. This was studied by the British physicist 
Sir G. I. Taylor in the 1950's [16], who found that the interplay between axial 
stretching and radial diffusion causes the injected fluid plug to be smeared in the same 
way as diffusion does, but with a very much higher diffusion coefficient. This 
dispersion mode has been coined after him as Taylor dispersion. The effectively 

increased axial diffusion coefficient ܦ௘௙௙ is called a Taylor dispersion coefficient  

௘௙௙ܦ = ܦ௔௩௘௥ଶ48ݒଶݎ  
(2.31) 

In contrast to the molecular diffusion coefficient ܦ, the Taylor dispersion coefficient 
is not a materials property, but depends on the geometries and flow rates in the tube. 
It is interesting to note that molecular diffusion has an inverse effect on the Taylor 
dispersion (Eq. 2.31). A higher D corresponds to lower dispersion. Pure Taylor 
dispersion neglects the axial diffusion, but when the Pe numbers are lower, both the 
contribution of Taylor dispersion and of molecular diffusion should be considered 
(Taylor-Aris dispersion), with the dispersion coefficient given by eq. 2.32. 

௘௙௙ܦ = ܦ + ܦ௔௩௘௥ଶ48ݒଶݎ  
(2.32) 

When it comes to practical calculations, it is important to notices that the above given 
coefficients (Eq. 2.31, 2.32) and boundaries between the dispersion modes are for 
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circular capillaries. In case of other channel shapes, geometry specific correction 
coefficients have to be used, while the scaling laws still hold universally. For example, 

for high aspect ratio channels with width ݓ, the Taylor-Aris dispersion becomes [17]. 

௘௙௙ܦ = ܦ + ܦ௔௩௘௥ଶ210ݒଶݓ  
(2.33) 

In case of more complex geometries and transition region between the dispersion 
modes, it is often most efficient to use numerical computer simulations (discussed in a 
later chapter). 

In all transport models (Figure 2.5) other than pure convection and the transition 
region neighboring it, the concentration can be considered constant across the channel 
cross-section (radially), and it varies only along the channel axis, i.e., dispersion and 
transport can be described as a one dimensional system.  

This simplifies the mathematical representation. In all these cases, dispersion is 
described as diffusion, whether molecular or Taylor’s.  

If we want to calculate how a solution of variable composition is affected by the 
transport through a channel, the notion of signals and system, where time dependent 
concentration takes the role of a signal, and diffusion in the channel takes the role of a 
system, can become useful. In this notion a system acts on the input signal, turning it 
into an output signal. The diffusion process is a linear-time invariant (LTI) system, 
meaning that i) changing concentration at the input would change the concentration at 
the output proportionally, and ii) the channel behaves exactly the same at different 
times. LTI systems have several useful properties. They can be described entirely by 
their impulse response function, which reflects how the system transforms an infinitely 
narrow input pulse (delta impulse). In case of diffusion, or Taylor dispersion, such a 
pulse would spread and evolve into a Gaussian. 

,ݔ)࢙࢙࢟࡯ (ݐ = ݐܦߨ4√1 ݌ݔ݁ ቆ−  ቇݐܦଶ4ݔ
(2.34) 

where D is the dispersion coefficient and t is time. If we consider a channel with 

length ܮ and average velocity	ݒ௔௩௘௥, the spatial coordinate can be turned into a time 

delay. ݐ = ܮ) − (ݔ ⁄௔௩௘௥ݒ , giving eq. 2.35. 

(ݐ)࢙࢙࢟࡯ = ݐܦߨ4√1 ݌ݔ݁ ቆ− ܮ) − ݐܦ௔௩௘௥)ଶ4ݒݐ ቇ 
(2.35) 

LTI implies that in this case the output signal of the system is a convolution of input 
signal and impulse response of the system. 
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ܿ௢௨௧(ݐ) = ܿ௜௡௣(ݐ)⨂(ݐ)࢙࢙࢟࡯ = න ܿ௜௡௣(߬)ݐ)࢙࢙࢟࡯ − ߬)݀߬ஶ
ିஶ  

(2.36) 

LTI systems can be represented also in a frequency (Fourier) domain, where the 
convolution integral turns into a simple multiplication of the two spectra of the input 
signal and the impulse response. ܿ௢௨௧(߱) = ܿ௜௡௣(߱) ∙  (2.37) (߱)࢙࢙࢟࡯

Each spectrum can be found using the Fourier transform. 

ܿ(߱) = න ܿ(߬)݁ି௜ఠఛ݀߬ஶ
ିஶ  

(2.38) 

If we assume that axial convection is larger than dispersion, as it usually is, the impulse 
response of the channel would become 

(ݐ)࢙࢙࢟࡯ ≈ 1ඥ4ݒ/ܮܦߨ௔௩௘௥ ݌ݔ݁ ቆ− ܮ) − ௔௩௘௥ݒ/ܮܦ௔௩௘௥)ଶ4ݒݐ ቇ 
(2.39) 

which has Fourier transform 

(߱)࢙࢙࢟࡯ ≈ ߨ௔௩௘௥√2ݒ1 ݌ݔ݁ ൬− ௔௩௘௥ଷݒܮܦ ߱ଶ൰ ݌ݔ݁ ൬−݅ ௔௩௘௥ݒܮ ߱൰ 
(2.40) 

The magnitude of this spectrum is 

ห࢙࢙࢟࡯(߱)ห ∝ ݌ݔ݁ ൬− ௔௩௘௥ଷݒܮܦ ߱ଶ൰ = ݌ݔ݁ ቆ−߱ଶ߱௣ଶቇ 
(2.41) 

This function has larger values in case of low frequencies (߱) and low values in case of 
higher, which means also that the channel acts as a chemical low-pass filter for 
concentration signals, letting to pass slow concentration waves, while damping sharp 

changes. Parameter ߱௣ can be referred as a cut-off frequency of the filter [18]. 

߱௣ = ඨݒ௔௩௘௥ଷܮܦ  

(2.42) 

The cut-off frequency is higher with fast flow (no time for dispersion) and is lower with 
a higher dispersion coefficient and longer channels. 

In the context of the research of this thesis, the chemical low-pass filter has been used 
in a microfluidic diluter (Paper I & II), where it smoothens fast pulses to a constant 
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concentration level. Note that if fast solution exchange is desirable (Multifunctional 
pipette (Paper III)), the dispersion effects are a limiting factor. 

2.1.3 Temperature 

Temperature is also affecting chemical and physical processes. It describes the 
motional energy of molecules, which affects their diffusion and reaction rate 
(Arrhenius law), as well as the chemical equilibria. Thermal transport is very similar to 
the convection-diffusion equation (Eq. 2.27) 

ܿ௣ ݐ߲߲ܶ = −ܿ௣ݒԦ ∙ ∇ܶ + ߩ݇ ∇ଶܶ + ܲ 
(2.43) 

where ܿ௣is the specific heat capacity, ݇ is the thermal conductivity, ߩ is the density and ܲ is the spatial heating power. Re-arranging the equation gives ߲߲ܶݐ = Ԧݒ− ∙ ∇ܶ + ௣ܿߩ݇ ∇ଶܶ + ܲܿ௣ 
(2.44) 

where ்ܦ = -௣ is the thermal diffusivity. Even though the thermal convectionܿߩ/݇

diffusion equation is exactly the same as for the concentration case, there is one 
significant dissimilarity, which is especially important in the microfluidics realm: the 
difference of the diffusion constants between different materials. Molecules diffuse 
readily in liquids, but they do not enter into most solids (their diffusion constant is 
close to zero). Therefore we can consider that molecular diffusion occurs only inside 
channels, while , on the other hand, temperature is very similarly conducted by solids 

and liquids. For example, the thermal diffusivities in water and glass are 1.4 ∙10ି଻ ݉ଶ ⁄ݏ  and 3.4 ∙ 10ି଻ ݉ଶ ⁄ݏ , respectively.  This means that both the liquid and 
the device have to be considered when calculating heat transport in microfluidics. For 
practical purposes this is mostly done by using finite-element modeling (FEM). In 
comparison to molecular diffusion, thermal diffusion is much faster. This is favorable 
in case precise temperature control is needed, due to the fast thermal equilibration of 
the liquid to the device temperature. Fast diffusion makes it, on the other hand, 
harder to generate thermal gradients (Figure 2.4). In order to achieve a sufficiently 

high ܲ݁ number, the channels have to be larger and flow faster. Nevertheless,  thermal 
gradients established in microfluidic devices  have been exploited to study, for 
example, developmental control mechanisms in fly embryos [19]. Thermal diffusion 
has been considered in the design of the optofluidic thermometer (Paper VI), where 
the flowrates had to be chosen to ensure confinement of fluorescent dyes, but would 
at the same time allow thermal equilibration. 
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2.2 Microfluidics versus 

Microelectronics 

2.2.1 Analogies 

Microfluidic and microelectronic device are not only fabricated in a similar way, they 
also hold similarities in the circuit theories used to describe them. With slight 
modifications, this analogy provides a variety of useful tools for designing and 
analyzing microfluidic circuits. Equation 2.26 describes the flow rate dependence in a 
microfluidic channel, where the flow rate is proportional to the pressure difference at 
the channel ends and to a parameter depending on channel geometry and viscosity. 
This is corresponding to Ohm’s law in electronics, which describes the proportionality 
between current and a voltage difference. Fluidic analogies for voltage, current, 
current density and charge would be pressure, flow rate, flow velocity and fluid 
volume, respectively. The channel geometry and viscosity dependent proportionality 
parameter is called "hydrodynamic resistance". Similar analogies exist also for other  
passive circuit elements capacitor and inductor (Figure 2.6). Hydrodynamic 
capacitance describes which volume of a liquid can be placed into a "liquid capacitor" 
per unit of pressure increase. In physical terms, the "liquid capacitor"  can correspond 
to an elastic tube, which is enlarged in volume when pressurized, or to air-bubbles in a 
channel, which can be compressed. Inductance corresponds to mechanical inertia of 
the flow. 

 

Table 2.1. Most common channel and tube geometries for microfluidics and their respective 
hydrodynamic resistances [10].  

Geometry Channel resistance Figure 

Circular ܴ = ߨ8 ܮߟ  ସݎ1

 

Rectangular ܴ ≈ 121 − 0.63(ℎ ⁄ݓ ) ܮߟ 1ℎଷݓ 

 

Square ܴ = ܮߟ28.4  ସݓ1

 

Parabolic ܴ = 1054 ܮߟ 1ℎଷݓ 
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Figure 2.6. (On previous page) Analogies between electronics and fluidics. 

Besides passive components, active components, like valves, are also commonly 
found in microfluidic systems, allowing modulation of the fluid flow. Pneumatic 
analogs for digital logics, latches and even fluidic processors have been reported [20-
22]. 

2.2.2 Circuits 

Similarly to electronics, these microfluidic elements can be combined to circuits with 

different properties.  The most common of such circuits is a simple network of 

channels, which corresponds to a network of flow resistors, where pressures are 

applied to the inlets. In order to find the flow rates in such a system, Kirchoff’s rule, 

stating that the sum of flows to every circuit node has to be zero (incompressible fluid 

and channel), can be applied. For practical calculations we can first redraw the system 

in the way shown in figure 2.7, by grouping inlets/outlets and internal nodes of the 

circuits. The resistances of each flow resistor, and the pressures at the inlets, are 

known, thus the complete flow pattern can be calculated after the pressures at the 

internal nodes have also been found. This requires solving a linear equation system. 

To compose such an equation we consider linearity, which means that the flow in 

every resistor can be expressed as a superposition of two flows, each starting from a 

different end of the resistor. For mathematical simplicity we can replace the 

resistances by conductivities ܩ = 1 ܴ⁄ , then ܳ = ܩ ∙  Now we can write the .݌

equation for an internal node ݅, using Kirchoff’s current rule: the sum of the outflows 

from the node to every other node, and the inflows from every other node to the 

node has to be zero. For the node ݅ this can be written as eq. 2.45. 

−ቌ෍݃௝௜௠
௝ୀଵ +෍ܩ௝௜௡

௝ୀଵ ቍ݌௜ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ௢௨௧௙௟௢௪	௙௥௢௠	௧௛௘	௡௢ௗ௘	௜
+ ෍݃௝௜݌௝௠

௝ୀଵᇣᇧᇤᇧᇥ௜௡௙௟௢௪	௙௥௢௠௢௧௛௘௥	௜௡௧௘௥௡௔௟௡௢ௗ௘௦ ௧௢ ௡௢ௗ௘ ௜
+ ෍ܩ௝௜ ௝ܲ௡

௝ୀଵᇣᇧᇤᇧᇥ௜௡௙௟௢௪	௙௥௢௠	௜௡௣௨௧	௡௢ௗ௘௦	௧௢௡௢ௗ௘ ௜
= 0 

(2.45) 

This system of ݉ linear equations can be re-arranged into a matrix form,  

ۈۉ
෍−ۇۈۈ ௜݃ଵ௠

௜ୀଵ −෍ܩ௝ଵ௡
௝ୀଵ ⋯ ଵ݃௠⋮ ⋱ ⋮݃௠ଵ ⋯ −෍ ௜݃௠௠

௜ୀଵ −෍ܩ௝௠௡
௝ୀଵ ۋی

ࢍ௠൱ᇣᇤᇥ௣Ԧᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ݌⋮ଵ݌൭ۊۋۋ
= −൭ܩଵଵ ⋯ ⋮௡ଵܩ ⋱ ଵ௠ܩ⋮ ⋯ ࡳ௡௠൱ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥܩ

൭ ଵܲ⋮ܲ௡൱ᇣᇤᇥ௉ሬԦ  

(2.46) 

which makes it convenient to solve 
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Ԧ݌  = ࡳ૚ିࢍ− ሬܲԦ (2.47) 

Other circuit elements, such as fluidic capacitors and inductors can be also 

incorporated in the calculation by replacing resistances by impedances with complex 

values. 

In the following we consider a few important circuits for microfluidics design, where 

multiple different types of elements have been combined (Figure 2.8). Since these are 

not just resistor networks, their response has also a temporal component, which shall 

be considered while designing the fluidic switching systems. The first example is a 

tube or a channel, with elastic walls, or with a compressible fluid in it. Such a tube acts 

as a series of resistors and capacitors (Figure 2.8A), known also as a RC-line, which 

slows and delays any pressure signal applied through it. Pressure propagation in such a 

tube is described by the differential equation (Eq. 2.48) ܮଶܴܥ ݀ଶݔ݀݌ଶ = ݐ݀݌݀  
(2.48) 

If we turn it into a dimensionless form, we can see that the equation depends only on 

one dimensionless parameter ߬ =  constant the longer and ܥܴ The higher the .ܥܴ

slower is the response. This is an important consideration in fluidic switching systems, 

such as the multifunctional pipette presented in paper III . Similar RC circuits are 

involved in pneumatic valves (Figure 2.8B), since deflecting the valve will require a 

certain volume of fluid (capacitance), which is transported through the channel 

(resistance).  

 

Figure 2.7. Calculating flows in arbitrary channel networks. The network has ݊ inlets and 
outlets, with defined pressures ௜ܲ, and ݉ internal nodes with pressures ݌௝which shall be 
found. Each internal node ݅ can be connected with another internal node ݆ through a 
resistor with conductance ݃௜௝, or with inlet ݇ through a resistor with conductance ܩ௜௞. 
Nodes that are not connected have zero conductances between them. Also ݃௜௜ = 0. 
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௢௨௧݌  = ௜௡௣݌ ൬1 − ݁ି௧ఛ൰ 
(2.49) 

RC constant (߬ =   .determines how fast these valves can be actuated (ܥܴ

Here, faster valve closure can be achieved by using higher control pressure, since the 

necessary pressure level would be reached sooner. The RC constant itself, however, is 

independent of pressure. This has been a consideration in the design of the 

microfluidic diluter (Paper I). The third example involves pressure driven flow from a 

test tube (Figure 2.8C). In order to establish a flow, the test tube has to be pressurized, 

which involves a gas flow from the supply. In case of small pressures, ܥ ≈ ଴ܸ ⁄଴݌ . The 

last example shows a microfluidic analogue to an RL circuit, which is describing the 

inertia of the flow (Figure 2.8D). The hydraulic inductance can be expressed as ܮ = ௞௜௡ܧ2 ܳଶ⁄ , which in case of a circular tube would be ܮ = ݈ߩ4 ⁄ଶݎߨ3 . The time 

 

Figure 2.8. Circuit elements in a microfluidic design. (A) Pressure propagation in an elastic 
tube. (B) Control of microvalves. (C) Controlling pressures in a supply tube. (D) 
Hydrodynamic inductance. 
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constant of such a circuit is ߬ = ܮ ܴ⁄ , and it scales with the channel size as ∝  ,ଶݎ

meaning that the significance of inertia is dropping rapidly with shrinking dimensions. 

2.2.3 Differences 

 Even though there are many analogies, fluidics is so far having difficulties to fully 

mimic highly integrated electronic circuits. This is due to a few, essential differences 

between these two domains of technology (Figure 2.9). The most important one is the 

way how information is carried and processed. In electronics, it is electric potential 

and current, carried by a single particle: the electron. In fluidics it is the pressure and 

the fluid flow, but with the exception of some micropneumatic control systems [22], 

interesting information is usually carried neither by the flow nor by the pressure, but 

by the chemical composition. In contrast to the electron, there are nearly infinite 

numbers of molecules and mixtures possible. This has an implication: in fluidics it is 

not enough to convey information by waves of potential, but liquid has to actually 

travel through the system, which is much more time consuming and makes it hard to 

efficiently connect different chips with macroscopic tubing. The ease of 

interconnectivity  has been the foundation for applicability of microelectronics. 

Microchips, which contain many microscopic transistors and require complex and 

expensive manufacturing are universal building blocks that are easily connected by 

macroscopic wires and circuit boards to create a particular functionality. Therefore 

great applications emerged (literally) from garage projects, for example the personal 

 

Figure 2.9. Differences between microelectronics and microfluidics 
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computer. Modular microfluidic constructors have been also developed, but 

comprised circuits with significantly larger channels (several 100s of μm) [23-24].  

Another important difference is that the function of electronic circuits usually does 

not depend on the length of the interconnections (except very high frequency 

electronics), while in fluidics, the interconnections are also entangled with the 

properties of the circuit - their length, volume and fluidic resistance has to be 

considered. This restricts the flexibility of the assembly. It is typically needed that all 

functions of the system are incorporated into one chip, specifically created for a 

desired purpose. Therefore facile and low-cost methods to prototype and fabricate 

chips are needed to promote the development of new devices for various applications. 

Closest to this ideal is PDMS microfluidics, which has gained huge popularity among 

developers [25]. PDMS microfluidics is more thoroughly described in the third 

chapter. Hopefully, currently emerging rapid prototyping techniques (e.g. 3D printing) 

will lead to even simpler methods for designing and createing microfluidic systems. 
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3. Methods 

Dust particles, common in our ambient 
atmosphere, can be significantly larger than 
microstructures, therefore microfabrication 
has to be performed in a highly clean 
environment - a  cleanroom. Special overalls 
are required for operators to protect the 
samples from the biggest source of 
contamination – us. The photo shows the 
author in the MC2 cleanroom at Chalmers, 
holding a silicon master used to manufacture 
PDMS multifunctional pipettes.  

 

3.1 Fabrication of Microfluidic 

Devices  

Most typical microfluidic devices are containing features that vary in size over 3-to-7 
orders of magnitude: a cm scale chip, mm scale solution reservoirs and interface 
ports, and 100-10 μm scale channels. However, microfluidics can also bridge with 
nanofluidics, bringing the channel size down to the nanometer scale. It is hard to 
fabricate all of them with a single technique. Therefore, combinations of various 
tooling technologies are required [26]. For example, the main device in this work, the 
multifunctional pipette, has been fabricated using a mold which consists of two parts - 
a microfabricated master to define the microchannels, and a milled cavity to give the 
device its shape and define the solution reservoirs (Figure 3.1). The following section 
gives an brief overview of fabrication technologies for microfluidic devices. 

 

Figure 3.1. Size scales of a microfluidic device, visualized on the example of the 
Multifunctional Pipette. 

Key element of most current microfluidic devices is a network of small channels, 
where liquid handling occurs. Notable exceptions are droplets on surfaces, paper and 
thread microfluidics. Apart from rare techniques, which allow for generation of 
channels directly [27], most approaches to form close channels involve two common 
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steps - fabrication of a channel groove and subsequent sealing of its opened side with 
another layer of material (Figure 3.2). This procedure can be repeated to build 
multilayered channel structures. A large variety of techniques has been developed to 
fabricate channels and seal them in numerous different materials.  

 In general, fabrication techniques can be divided into three groups: additive, where 
materials are selectively added and gaps between them form channels; subtractive, 
where materials are selectively removed, and forming, where materials are shaped 
with the help of a template ("master"). 

 

 

Figure 3.2. Fabrication of microfluidics devices. 
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3.1.1 Additive Techniques 

The most common and well established way to define microstructures is through a 
photolithographic process (described in detail later), where a thin film of a light 
sensitive polymer (photoresist) is applied on a flat surface. A pattern is created by 
illuminating the photoresist through a photomask, followed by selective removal 
(development) of either exposed or unexposed parts of the resist. In most 
photolithographic applications, the forming resist pattern is used as a physical mask 
for further processing, such as deposition or etching. In microfluidics, the resist layers 
can be used directly as building material to define the device. Especially popular is the 
negative epoxy photoresist SU-8. Multiple SU-8 layers can be fabricated on top of 
each other, and also bonded thermally [28]. This method allows fabrication of high 
precision, chemically resistant devices. Shortcomings are the expensive materials and 
instrumentation required. While typical lithography is limited to thin solid coatings of 
photoresists, stereolithography, a related technique, (patented 1984 by C.W. Hull) 
[29], works in a liquid bath of photopolymer. This allows the sample to be moved 
vertically, while the strong optical absorption of the polymer ensures that the 
photoreaction occurs only in a very thin layer on the surface, which is scanned by a 
laser. By this layer by layer approach it is possible to build large 3D structures. This 
technology was expensive, and accessible only for  industrial prototyping, until 
recently, when affordable 3D printers have become available [30]. Stereolithography 

has been also used to make high precision (about ~40μm) objects composed of 
multiple materials [31]. Similarly, multiphoton lithography is a technique to build 3D 
structures optically, but with significantly smaller feature size (< 1 μm) [32]. This very 
sharp point is achieved by non-linear absorption of a focused femptosecond laser. 
Other, inkjet-like 3D printing techniques, have found applications to build hydrogels 
for tissue scaffolds [33] and even assemble multiple cell types, which can be used in 
the future for regeneration of tissue [34]. Lately, customized low-cost 3D printed 
reactionware has been used for chemical synthesis [35]. It is a visionary example, 
showing the transition of 3D printing technology from model making to low-cost 
prototyping and manufacturing of functional scientific instrumentation. Similar 
developments would be highly desirable also for microfluidics. So far, low-cost 
methods lack the resolution, while high resolution multiphoton lithography is 
expensive, slow and restricted to small structures. However, affordable 3D printing is 
already available to make somewhat larger 'millifluidics', which can be applied to 
create interfaces to microfluidic devices [36]. It can be expected that 3D printing and 
related techniques will also revolutionize the fabrication of microfluidic devices, as it 
anticipated in other areas of manufacturing. In some people's opinion, the third 
industrial revolution will be based on 3D printing and mass customization [37]. 

3.1.2 Subtractive Techniques 

The most commonly used subtractive technique in microfabrication is etching - a 
chemical removal of material. In order to define features, the substrate is typically 
patterned, using a photoresist. Development creates openings in the resist layer, which 



Alar Ainla, The Multifunctional Pipette  | 3. Methods  
 

 

32 

define where the etching takes place. Depending on the chemical environment, 
etching procedures are divided into wet etching in solutions and dry etching using 
gases and plasmas [38]. The materials most commonly etched are inorganic, such as 
oxides, silicon and glass, the latter two being the most significant for practical 
microfluidic applications [39].  

Glass is usually wet etched, using concentrated hydrofluoric acid (HF). With 48% HF, 
the isotropic etch rate at room temperature is about 8 μm/min [40]. Since glass is an 
attractive material for microfluidics, and there is a lack of alternative fabrication 
processes, HF etching is used widely. It has serious disadvantages, though, such as 
health risks, but also the isotropic etching profile, which can only produce shallow, 
wide channels with round edges. Since photoresists do not withstand HF, an 
evaporated sacrificial metal layer (e.g. Cr/Au) must be used as etching masks. This is 
an additional expensive process step. 

Silicon has long been a standard material for the electronics industry. Its numerous 
processing techniques are well established for microelectronics fabrication. From the 
microfluidics and MEMS prospective, the most interesting technique is deep reactive-
ion etching (DRIE). This process was patented by Robert Bosch GmbH 1992 [41]. It 
allows etching of very high aspect ratio structures with nearly vertical side walls. This 

dry plasma etching process uses two steps, nearly isotropic chemical etching with SF6, 
followed by surface passivation with an inert plasma deposited fluoropolymer. This 
cycle is repeated, until the desired depth is reached [42]. In order to introduce 
directionality, the substrate is biased, which causes vertical bombardment of the 
passivation layer by ions. This removes the  polymer layer selectively from the bottom 
of the structure, while having less effect on the side walls. In this way etching proceeds 
only from the bottom. Number and length of cycles are determining overall etch 
speed and smoothness of the side walls. DRIE can produce deep (100s of μm), high 

aspect ratio (>25), uniform (~5%) structures at moderate speed (~6 μm/min) and with 
good selectivity on silicon over the photoresist etch mask (>50:1) [42]. If higher 
uniformity is needed, DRIE can be performed on silicon on insulator (SOI) wafers 
(<1%). In this case the etching proceeds until it reaches a buried oxide layer, which 
defines the final etch depth. Disadvantage of SOI wafers is their very high cost (almost 
10x as high as regular Si wafers [43]), but it can be an option to fabricate precision 
masters used for replica molding [44]. The DRIE process has been adopted also for 

glass, using CHF3 as etching gas, but it suffers from poor selectivity, and requires an 
anodically bonded silicon wafer as an etching mask [45]. The aspect ratio is also much 
lower compared to silicon (wall angle of about 85°). Therefore, efforts to perform 
DRIE on glass are only justified in specific cases. 

Laser ablation is a technique, where high power laser radiation is used to remove 
material [46-47]. The exact ablation mechanism depends on the laser and the 
substrate material, but in general it can be photochemical (UV lasers) or thermal (IR 
laser). Depending on the instrument, ablation can occur as a parallel process, where 
the entire structure is illuminated through a mask, or as a serial process, where the 
beam is scanned over the pattern to be written. Typical substrates are polymers, but 
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also glass has been laser ablated, even though it requires more care, to avoid thermal 
stress and cracking [48]. Laser processing can be combined with post processing, such 
as wet etching. Laser ablation has been used for both fabrication of channel networks 
as well as for additional process steps, such as creation of interconnects in 

multilayered PDMS devices [49]. Low-cost commercial cutters are based on CO2 

lasers. They can produce ~100 μm channels with a surface roughness of a few μm in 
PMMA. Higher resolutions can be obtained with pulsed excimer, Nd:YAG or 
Ti:sapphire lasers, which can ablate in sub-μm steps [50]. Disadvantages of laser 
processing are channel roughness, and uncontrollable surface properties due to 
radiation damage and debris, which is deposited around the ablation site. Main 
advantage is the single-step fabrication of channel structures from design to finished 
chip, without the need for photolithography. This makes laser ablation a good 
candidate for rapid prototyping of microfluidic devices. 

Mechanical machining is mostly associated with manufacturing of macroscopic  goods, 
but micromilling can be equally competitive for microfluidic purposes [51-52].  For 
example, a high performance milling machine with 1 μm movement precision and 50-
400 μm diameter carbide milling bits has been used to machine a brass molding 
master, featuring 20 μm wide and 400 μm high channel structures (aspect ratio 20), 
with vertical side walls having an average roughness of <100 nm. PMMA CE chips 
produced from this master had a similar separation performance compare to the ones 
fabricated with a LIGA-made master. If needed, the machined metal structures can be 
further smoothened, for example, by electrochemical polishing [53]. For engraving of 
channels, milling bits with a diameter down to 5 μm exists, even though for 
economical reasons their high price (>1'000kr/pcs) and wear rate should be 
considered [54]. Examples of milled microfluidic devices in aluminum with channel 
sizes ranging from 100 to 700 μm, have found use in, for example, chemical synthesis 
of polymers [55] and fluorescent microparticles [56]. Like with laser ablation, the 
advantage of milling is that the structures can be created from the design in a single 
process. Furthermore, one machine can produce features with greatly different 
heights, which is rarely possible with other techniques. Disadvantages are the low 
throughput, high cost of machinery, and rapid wear of tools. 

3.1.3 Forming Techniques 

The world of low cost disposable microfluidic devices is ruled by the different forming 
techniques for polymers. All of them share a common feature: a template, also called 
master or mold, is used to define the shape of a soft, or softened polymeric material, 
which is thereafter hardened, and released from the template. The molds themselves 
have to be manufactured using other techniques. 

Casting (also reactive injection molding, or replica molding) is the simplest method, 
with minimal capital investment required to start. This is the reason why it has 
become popular for microfluidic chip fabrication in academic laboratories. Casting is 
used to create devices in thermosetting and elastomeric materials, starting with a liquid 
pre-polymer, which is poured onto the master or injected into the mould cavity, 
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followed by curing. Heat or UV-light cross-links the pre-polymer, turning it into hard 
plastics or rubber, which is then removed from the mold. A great advantage of casting 
is that it requires no special equipment other than the mold, which can be easily 
fabricated with high precision using lithographic patterning of photoresists (e.g. SU-8). 
Since the pre-polymer mixture is of low viscosity, it usually fills the mold without 
problems. The relatively long setting time makes the process robust and easy to 
reproduce manually. However, this last aspect turns into a major disadvantage when 
trying to use the technique for high throughput production, since the curing time can 
be on the order of  hours, compared to injection molding, which can complete a cycle 
in seconds. All devices in the present work have been made using casting or reactive 
injection molding of PDMS. 

Injection molding is a well established industrial method to manufacture macroscopic 
parts in thermoplastic materials. Similar to casting, a soft polymer mass is injected into 
a mold where it solidifies, adopting the shape of the mold. Instead of chemical 
reaction, the liquid/solid state of a thermoplastic is controlled by heating and cooling it 

around its glass transition temperature ( ௚ܶ). Since the required temperature change is 

relatively small, injection molding can have very short production cycles, limited only 
by thermal diffusion. Due to the viscosity of molten polymers, high injection pressures 

(~1000 bars) are required [57]. Many other aspects have to be considered when 
adopting injection molding for a new design, such as the temperatures of plastic and 
mold, injection rate and pressure, cooling times and holding pressures [58-59]. The 
design has to also consider the release of the final solid part. Thermal and flow 
"memory" of high molecular weight polymers can cause uneven shrinkage, stress and 
bending. In order to cope with this multi-dimensional optimization problem, specific 
softwares exist to model the injection molding process. Compared to "classical" 
injection molding on the macro scale, microinjection molding has its own additional 
requirements, like the use of an evacuated mold, cycling of the mold temperature (the 
VarioTherm process), used to avoid cooling of the polymer before it has managed to 
fill the small features. On one hand, very high costs for capital equipment,  the 
fabrication of the mold cavity, and the required process optimization have rendered 
injection molding essentially inaccessible to academic researchers. On the other hand, 
low maintenance and material costs, high throughput and automated manufacturing, 
as well as a wide variety of different material, has made injection molding the method 
of choice for larger-scale industrial production of microfluidic devices. 

Embossing (also nanoimprint) is, like injection molding, used to shape thermoplastic 
materials, but the extent of geometrical transformation of the material is less [60]. The 
process starts with the insertion of a plastics piece between two mold plates, where it is 

heated until softening (around ௚ܶ). Thereafter the plates are pressed together, shaping 

the softened material, which is then cooled to solidify. Microstructure imprinting can 
be performed in vacuum to avoid defects by trapped air. The material flow is in this 
case much smaller compared to injection molding, therefore it causes less stress. In 
general, hot embossing is significantly simpler than injection molding, but also with 
lower throughput and a more restricted range of  usable geometries. Since high stress 
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is involved due to pressing, the masters have to be stronger (typically DRIE etched 
silicon or electroplated metal), than the photoresist patterns used for PDMS casting. 
This additional difficulty makes embossing less common for prototyping. 
Nevertheless, hot-embossing is an excellent choice for relatively easy reproduction of 
fine (sub μm) and high aspect ratio structures in thermoplastics. 

In conclusion, which choice to make from the above mentioned techniques, depends 
on geometrical and material requirements. It is also an economic decision determined 
by the scale of production. Casting is suited for small series (up to 100s of pieces), 
followed by embossing and injection molding for large scale (in the >10'000 pcs range) 
[50]. From the materials perspective, casting is limited to curable polymers, while 
embossing and injection molding can be used with a wider variety of thermoplastics. 
From the aspect of geometry, casting and injection molding have high flexibility to 
replicate 3D structures at different size scales in a single process step, being only 
limited by release-related restrictions. Embossing is suited only for 2D layouts. 

3.1.4 Channel Sealing 

All of above-mentioned methods can only produce channel grooves. In order to form 
closed channels, they have to be sealed. Some techniques are reviewed below.  

A Conformal seal is formed when two flat and smooth surfaces  are pressed against 
each other [61]. This method is very simple, but the resulting devices have generally 
lower pressure resistance and mechanical integrity. Advantages are the reversibility, 
which allows the device to be reused, or the ability to chemically or biologically 
pattern a surface with material from the channels [62-63]. Also, since no pre-bonding 
treatment is needed, it is easier to integrate microfluidics with a surface which is 
already covered with a (potentially sensitive) pattern. 

Gluing is another well known way to bind surfaces together. In microfluidics, gluing 
requires precautions to avoid that the channels are contaminated, or even filled, by the 
glue. An efficient way to transfer liquid glue is stamping from a thin spin-coated layer. 
For example, UV-curable adhesive and PDMS has been used for sealing [64]. 

Plasma bonding is a technique to achieve chemical bonding between surfaces after 
activation with plasma, an ionized gas, which due to its high energy state is extremely 
reactive. Plasma bonding is a "clean" technique, without the risk of clogging. However, 
for bond formation to occur between two solid surfaces, smoothness is required to 
allow molecular level contact. Typically, plasma bonding is used with soft materials. 
The most widely applied example is oxygen plasma bonding of PDMS to PDMS and 
PDMS to glass [25], which has also been used to fabricate all devices in the current 
work. However, plasma treatment is sometimes not sufficient, and the activated 
surfaces have to be treated further to form a molecular monolayer with suitable 
bonding chemistry. For example, 3-aminopropyl triethoxy silane (APTES) can be 
used to assist the bonding of PDMS and PMMA [65] or PDMS and various metals, 
PP, PE and even Teflon [66]. Tetraethyl orthosilicate (TEOS) has been used for 
plasma bonding of PMMA-PMMA at low-temperatures [67]. 
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Thermal bonding is used to bond thermoplastic polymers, which are heated slightly 

above ௚ܶ, and pressed together [50, 68]. Care must be taken to avoid deformation of 

the channel structures. The relatively narrow process window (combination of 
temperature, pressure, time) is the main disadvantage of this bonding technique, 
which is otherwise  clean, i.e., it neither introduces additional material, such as glue,  
nor causes surface damage like the plasma bonding technique. 

Solvent bonding is similar to thermal bonding, but instead of high temperature, a 
small amount of a suitable solvent is used to soften polymer surfaces, which are then 
pressed together. The solvent then diffuses into the bulk material and the  bonded 
polymer hardens again [69-70]. One of the most common examples is ethanol or 
DMSO/water bonding of PMMA. As with thermal bonding, attention must be paid to 
avoid excessive softening of the surface, which would deform the channels. 

Anodic bonding is used to bond silicon and glass surfaces, which are pressed together 
under vacuum at elevated temperature (200-450 °C). High voltages (200-1200 V) are 
applied over the assembly [71], and bonding takes place in about 10-30 min. An 

alternative way to bond glass without adhesive involves the use of Ca2+ ions [72]. 

3.1.5 Other Methods 

In addition to previously described common routes to make microfluidic chips, other 
method exists, mostly developed for particular purposes. A few examples are 
mentioned here. 

Exciting for rapid prototyping is the direct laser writing into mesoporous glass, using 

focused pulses of a femtosecond laser [27]. ~40% of the volume of this material 
consists of pores. Since the method is based on non-linear absorption of light, which 
locally destroys the material structure, changing the focus height allows to create truly 
three-dimensional channel networks inside the substrate. The diameter of the circular 
channels, which is in the range between 10-50 μm, can be controlled by the NA of the 
objective and the laser power. After writing, the channels are consolidated by high 
temperature annealing (>1000 °C). This is a rare method by which closed channels are 
created in a single process step, without need for sealing. 

In contrast to all those methods requiring complex machines and materials, some 
microfluidic devices can be fabricated even at home, using materials as common as 
paper [73] and yarn [74-75]. Both are functioning based on capillary driven transport 
in a porous hydrophilic matrix, where circuits can be defined by introducing (printing) 
hydrophobic wax barriers, or by making knots. These devices do not have high 
enough precision for most modern laboratory uses, but their almost negligible cost 
makes them attractive for disposable diagnostics, especially for those whose resources 
are limited. 

3.1.6 Materials 

Silicon has well established, but expensive, manufacturing schemes, which involve  
mainly photolithography and wet and dry etching (DRIE). Since Si is also a substrate 
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for semiconductor electronics, it is attractive for hybrid electronic-fluidic devices, 
sensors and MEMS. The advantages of silicon are its high thermal and chemical 
stability; disadvantages are opaqueness and the planar device geometry, which often 
requires additional interfacing components. 

Glass and quartz are in a many ways similar to silicon, but feature optical transparency 
without auto-fluorescence. Typical fabrication methods are wet etching, which is 
isotropic compared to the anisotropic DRIE used for silicon. Direct photo-patterning 
is also possible [76], using pulsed laser treatment, which changes 
amorphouse/crystalline structure of the material and increases the subsequent etch 
rate. This, in combination with very stable surface chemistry, has made glass 
prominent for electrically driven (electrokinetic) microfluidics [77-78], in particular for 
capillary electrophoresis (CE) chips with optical readout.  

Thermoplastics are molten by heat and can be then reshaped by injection molding or 
hot embossing. They are favorable over many other materials, as they are really cheap, 
optically transparent and easily moldable with minimal geometry restrictions. As 
biological lab-ware is typically made of thermoplastics, their use and chemical 
compatibility in biology is well established. All of them are fine in aqueous solutions, 
but have generally low organic solvent compatibility, different plastics being dissolved 
by different solvents, especially by hydrocarbons [50]. Most commonly used for 
microfluidics are PMMA, PC, COP and COC. 

Thermoset polymers are solidified by cross-linking, which can be induced by heat or 
UV-radiation. Once cross-linked these materials will not melt. Therefore channels 
have to be molded either before curing [79], or by using photo-patterning (e.g. SU-8) 
or can be etched later using photolithography (e.g. polyimide/Kapton®) [80]. An 
advantage of thermoset polymers is their high chemical stability (e.g. SU-8, Kapton). 

Elastomers, as is evident from the name, are elastic and easily deformable materials. 

Since elastomers are composed of polymer chains above ௚ܶ, they can reflow, but 

cross-linking limits their overall fluidity. In general, elastomers are favorable, since 
they are easy to interface, due to their "build in gaskets". They also provide an easy 
route to fabricate miniature pneumatic valves, invented by Unger & Quake 2001 [81]. 
The most famous elastomer for microfluidics is PDMS, to which a separate chapter is 
devoted. Another interesting type of related materials are thermoplastic elastomers 
(TPEs) [82], which are block-co-polymers (e.g. styrene and butadiene), where one is 

amorphous and above  ௚ܶ, and another crystalline acting as a physical cross-linker. 

Once heated above the melting temperature of crystalline polymer, the entire material 
melts and acts as thermoplastic, allowing it be processed as such. After melting, TPEs 
can have significantly lower viscosity than typical thermoplastics, making their forming 
easier [82].  
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Table 3.1. Examples of material costs (Polymer chips are assumed to be 5 mm thick) 

Material Approximate cost Cost of cm2 

Si 200 sek/4" wafer [83] 2.5 sek 

PDMS 500 sek/kg 0.25 sek 

Polypropylen 130 sek/kg [36] 0.06 sek 

Versaflex TPE 36 sek/kg [82] 0.02 sek 

 

 

3.1.7 Photolithography 

Photolithography is the main patterning technique in the top-down microelectronics 
industry. This important application has driven research in optics and photo-
chemicals. Its main results, integrated circuits with more and more transistors (most 
notably reflected in Moore's law) have been defined by a photolithographic technique. 
The procedure of photolithography is depicted in figure 3.3. First, a substrate is 
covered with photoresist. This is typically performed by spin-coating, where 
photoresist is dispensed onto the substrate, and then thinned by spinning. The final 
thickness depends on viscosity, spin speed & time, and the rate of evaporation. 
Alternatives to spin-coating are spray-coating and lamination. After this coating step, 
the substrate is heated and the solvent evaporated, forming a flat polymer layer, which 
can be patterned optically, either through a photomask (a parallel process) or by direct 
writing with a laser scanner [63] (a serial process). Laser scanning is most suitable for 
rapid prototyping, and masks are superior when multiple substrates need to be 
processed. For mask-based photolithography there are also several options, 
depending on quality and feature size required: quartz and deep UV exposure for 

finest (~ 500 nm feature size), soda lime for intermediate ( >1 μm) and polyester films 
for larger structures (features: >10 μm). The latter is often sufficient for microfluidics, 
where the channels are several tens of micrometers in size. For comparison,  the cost 
per area of quartz and soda lime masks is about 30, and 20 times higher, respectively, 
than the polyester film mask [84]. After exposure, the photoresists are developed, 
meaning that the polymer is selectively removed either from the exposed areas 
(positive resist) or unexposed areas (negative resist). In the following, the negative SU-
8 and positive AZ4562 photoresists, which were used in this work, are more 
thoroughly discussed. 
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Figure 3.3. Typical photolithographic process 

 

Chemistry of phororesists 

SU-8 is a negative, chemically amplified photoresist, originally invented by IBM in the 
1980's [85], which is now developed and produced mostly by MicroChem Inc. The 
key components of the resist are epoxy resin, a photo catalyst and solvent (Figure 3.4). 
During exposure, the photocatalysts fragments, forming a Lewis acid, which during the 
post baking step catalyzes epoxy group opening and cross-linking reactions, which 
eventually renders the exposed part of polymer insoluble in developer (an organic 
solvent). In fact, hard baked SU-8 becomes completely insoluble in all organic 
solvents, and can be only slowly removed by oxidation in a plasma or piranha 
solution. Therefore, SU-8 is primarily a permanent resist, which due to its mechanical 
strength, optical transparency and excellent adhesion has become widely used as 
photo-patternable construction material for MEMS and microfluidic devices, as well 
as for the fabrication of masters for soft-lithography. All microfluidic devices in this 
work have been made with SU-8 masters. Different resist film thicknesses can be 
achieved with different formulations of SU-8 in combination with spin speed 
variations. Film thicknesses in the range of 0.5 to >200 μm are thus obtained in a 
single-coating cycle [86]. Optimized formulations also exist for improved adhesion 
(SU-8 3000 series) and highest aspect ratios (SU-8 2000 series). 
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Figure 3.4. Chemistry of photolithography. Examples of negative (SU-8) and positive 
(AZ4562) photoresists used in the presented research work. 
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AZ4562 is a positive resist by AZ Electronic Materials GmbH. It is based on a 
phenolic novolak resin and diazoquinone (DQN resists), where the latter is forming a 
complex with phenolic OH groups. This hydrophobic complex renders photoresist 
insoluble in the aqueous developer. Exposure to UV cleaves the diazo group, and in a  
rearrangement reaction the compound is transformed into a carboxylic acid, which 
dissociates from the resin and allows it to be removed with alkaline aqueous 
developer. It must be noted that UV-induced re-arrangement reactions require water 
to complete. Therefore rehydration, which allows water to diffuse back into the resist 
after pre-baking is a critical processes step. It happens on negligible time scales in case 
of thin resists (few μm), but requires up to several hours for thick coatings (tens of 
μm). DQN resists are suitable for near UV, but not suitable for deep UV exposure, 
due to strong absorption, which would not allow uniform exposure. This resist is 
favorable, due to the aqueous development, which pose less health hazards compared 
to organic solvents (e.g. SU-8 developer). However, it is mechanically much weaker 
than cross-linked SU-8 and could not be used as constructional material. In 
microfluidics, positive resists are used for rounded surface elements. since they are 
not cross-linked. The rectangular structures melt above glass transition temperature, 
and the liquid resist curves due to surface tension. Rounded channels are the key 
components in pneumatically actuated microvalves [81], also used in this work (Paper 
I). 

3.1.8 PDMS Microfluidics 

Polydimethylsiloxane (PDMS) is a polymer with a silicon based backbone (-Si-O-) 

decorated with organic side groups (-CH3). It has a wide range of uses as a surfactant 
and anti-foaming agent in food processing, cosmetics and herbicides [87], as structural 
material for medical devices, as sealant and as lubricant. 

The use of PDMS in chemical microsystems emerged in the mid 1990s, when Xia & 
Whitesides introduced the concept of 'Soft-Lithography' as a micro/nano patterning 
method based on a molded PDMS stamp [88-89]. Just a few years later, the same 
replica molded PDMS stamps started a revolution in microfluidics, when Duffy & 
Whitesides described the plasma bonding of PDMS-PDMS and PDMS-glass [25]. By 
this, the full fabrication process of microfluidic devices was established, using relatively 
cheap and simple means (Figure 3.5). After a master is made photolithographically 
(typically a single layer of SU-8 on a Si-wafer, which is also the most basic lithography 
step possible), the remaining process is easily accomplishable in every chemistry lab. 
PDMS is mixed from two components, degassed to remove air bubbles and casted 
onto the master simply by pouring. After curing in an oven, a rubbery PDMS slab can 
be peeled off from the surface treated master. Since the material is soft, fluidic 
interfaces can be easily punched out with hollow punch tools made from syringe 
needles. Finally the slab, and another piece of PDMS or glass, are treated with an 
oxygen plasma (a low-cost plasma cleaner is sufficient) and bonded, by simply pushing 
them together. This procedure was quickly adopted by many labs, and PDMS became 
the dominant polymer material in the field of microfluidics research, with several 
hundreds of publications produced each year [50, 69].  
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Figure 3.5. Fabrication of PDMS microfluidic devices, with chemistry of curing [90-91] and 
bonding. 
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In addition to facile fabrication, several other favorable properties of PDMS have 
contributed to this success. Most important is the optical transparency with low auto-
fluorescence, which allows these devices to be used in microscopy - one of the easiest 
means of detection and visualization. PDMS also has good biocompatibility, as it is 
non-toxic and gas permeable. Not less important is the elasticity, which contributes to 
fabrication but also to reliable interfacing, since a tight seal is formed when supply and 
control tubing is pressed into the punched out conduits. PDMS elasticity is also the 
foundation of the simple, but powerful valve concept invented by Unger & Quake 
[81]. Lately, mechanics and microfluidics have been combined to create soft-actuators 
and robotics [92]. 

Disadvantages of PDMS are low solvent compatibility [93], in some cases also 
deformability, as it introduces compliance (Paper III) and non-linear resistance. In 
some applications, another limiting factor is the unstable surface chemistry after 

oxygen bonding, which gradually returns from the hydrophilic (~5°) to the 
hydrophobic state(109°) [94-95]. From the manufacturing point of view, 30min-1h 
curing time is much longer than the injection molding cycle, which can be completed 
within seconds. Regardless of these few shortcomings, PDMS, with its well-established 
prototyping schemes, is most likely to remain for years to come an important material 
in this field. All microfluidic devices described in this thesis were fabricated from 
PDMS, using soft-lithography. 
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3.2 Microscopy 

Just as the well known idiom states, “Seeing is believing”. When working with small 
structures and objects, microscopy is an essential tool. It makes visible microscopic 
features, which cannot unassisted be resolved by the human eye. The work presented 
in this thesis has been tightly intertwined with the use of microscopes, starting from the 
simplest inspection of microstructures to sensitive quantitative measurements of single 
cell chemistry. One can go even further and state that all microfluidic instruments and 
devices presented in this thesis can be considered to be tools or accessories for 
biological microscopy. 

The history of optical microscopy dates back to the 16th century, where Dutch 
spectacle-makers Hans and Zacharias Janssen assembled the first compound 
microscope [96]. The next, and even more important milestones were set by Robert 
Hook and Antonie van Leeuwenhoek, who used simple microscopes to describe for 
the first time the small-scale world, and introduced this technique to the biological 
society [97]. This was followed by a long list of inventions, including Köhler’s 
homogeneous illumination mode in 1893, Zernike’s phase contrast [98] and 
Nomarski’s differential interference contrast [99] methods, which improved imaging 
of transparent samples, such as cells.  However, for molecular and cell biology the 
biggest breakthrough came with the development of fluorescence microscopy, which 
with its multitude of variations allows high resolution imaging of sub-cellular 
components. Fluorescence techniques now have the sensitivity to visualize single 
molecules,  and makes quantitative characterization of chemical composition, reaction 
rates, diffusion and more, possible. Fluorescence microscopy techniques have been 
used extensively in this work to characterize the fluidic circuits and the kinetics of 
cellular chemistry. 

Fluorescence microscopy techniques are used for visualizing fluorescent molecules, 
which are characterized by absorption and subsequent re-emission of light, where the 
emitted photon has a longer wavelength (lower energy) than the absorbed. The energy 
difference is dissipated as heat. This phenomenon is best explained with the help of 
the Jablonski diagram [100] (Figure 3.6 B). While fluorescence phenomena were 
already observed in the 16th century, and the name “fluorescence” was coined in the 

mid 19th century by G. G. Stokes [101] (the same Stokes who developed 
hydrodynamics) its use in biological microscopy emerged not before the beginning of 

the 20th century (Carl Zeiss’ UV microscope in 1904 and Oskar Heimstädt’s first 
successful fluorescence microscope in 1911) [96]. A rapid development phase 

followed, and by the 1930th various producers and commercial ultraviolet microscopes 
were already on the market. Another important contribution to fluorescence 

microscopy was brought about by the emergence of synthetic dyes in the mid 19th 
century [102]. In 1871, Adolf von Bayer created the first fluorescent dye, fluorescein, 
soon followed by many others [96] (e.g. rhodamine B by Ceresole in 1887). For the 
biologist, the true power of fluorescent dyes arose from the possibility to couple them 
to biomolecules, most notably to antibodies (Albert Coons, 1941) [103], allowing 
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them to be used for highly selective staining of molecular components of cells. A large 
contribution to the current widespread use of fluorescent microscopes came from the 
invention of dichromatic mirrors (Johan Sebastiaan Ploem, 1967). By this point, 
fluorescence microscopy has developed into many branches, making use of specific 
molecular and spectroscopic phenomena. Examples are: fluorescence correlation 
spectroscopy (FCS) [104] & fluorescence recovery after photobleaching (FRAP) [105], 
allowing to study reactions and molecular transport; Förster resonance energy transfer 
(FRET) [106], which can elucidate structures of molecular assemblies, dyes whose 
fluorescence is altered by binding to other chemical species and can be used to study 
cell physiology, two-photon excitation [107] etc. 

 

Figure 3.6. Essentials of optical microscopy. (A) Schematics of a common inverted epi-
fluorescence microscope. (B) Principles of fluorescence microscopy and examples of 
fluorophores (dyes) [108-109] (C) Principles of total internal reflection fluorescence (TIRF) 
microscopy. (D) Schematics of a scanning confocal microscope. (B) Choosing the objective – 
the meaning of numerical aperture (NA). 
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The principle of the fluorescence microscope (Figure 3.6 A-B) is to illuminate the 
sample with light at the excitation wavelength of a fluorophore or dye, while collecting 
at the emission wavelength. The key component of the microscope is a filtering 
system called beam splitter, which in most microscopes contains three parts: the 
dichroic mirror and two band pass filters for excitation and emission. The function of 
the dichroic mirror is to be reflective to a certain wavelength range, and transmissive 
to another. This allows separation of the excitation light, which is focused through the 
objective onto the sample, from the emission light, which emanates from the excited 
sample. Since different dyes have different excitation and emission spectra, filters and 
dichroics need to be exchanged to match the fluorophore. Therefore, for the 
convenience of use, filters and  mirror are usually combined into small assemblies 
commonly called a “cube”.  

Total internal reflection fluorescence (TIRF) microscopy is a modification of 
common fluorescence microscopy in order to image a very thin layer on a surface 
(Figure 3.6 C). This technique, invented by Daniel Axelrod in 1981 [110], is based on 
total internal reflection of light occurring at the interface of two media with different 

optical densities (݊). When a beam, transitioning from a higher to lower refractive 
index material, hitting the interface at an angle which is larger than a critical angle ߠ௖(Eq 3.1), all light is reflected back. However, this reflection occurs in a finite layer 
near the surface, where the electromagnetic field reaches somewhat into the medium 
of lower refractive index. This evanescent wave is confined in a thin layer, about 
100nm in thickness, which decays exponentially with distance from the surface [111]. 
Using the evanescent wave for exciting molecules confines the illumination to the nm 
scale layer. This  eliminates background fluorescence, which would otherwise 
complicate sensitive measurements, of particular use, when imaging single molecules. ߠ௖ = ݊݅ݏܿݎܽ ݊௟௢௪݊௛௜௚௛ 

(3.1) 

In a typical example, the refractive index of glass is about 1.56, that of water is 1.33, 
giving a critical angle of 58°. In this work, we have used TIRF to characterize solution 
exchange near surfaces, in order to mimic the flow around adherent cells, while 
eliminating  responses from higher layers. This was necessary, since faster solution 
exchange higher above the surface could give incorrectly shorter values for the 
exchange times (Paper  III). 

Confocal laser scanning microscopy (CLSM) is another technique based on 
fluorescence microscopy with high vertical (axial) resolution (Figure 3.6 D). The 
principle of confocal microscopy was patented by Marvin Minsky in 1957 [112]. 
Compared to wide-field fluorescent microscopes, which illuminate and accept light 
from various focal planes of the sample, confocal microscopes exploit small pinholes, 
which defines a sharp focus point, while illumination intensity and acceptance of light 
from outside the focal plane drop rapidly. While the simplest configuration of the 
confocal microscope allows collection of light from just a single point (point confocal), 
all modern confocal microscopes contain a scanning mechanism. The scanning action 
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is typically based on deflected mirrors, which sweeps the focus point in the xy plane. 
The light intensities collected from each point are then reconstructed into an image. If 
the focus point is also scanned vertically (z-axis), three dimensional images can be 
created. Modern commercial confocal microscopes integrate additional advanced 
optical instrumentation. Tunable excitation filters (AOTF) allow to adjust the power 
of the different excitation lasers. The dichroic mirrors can be replaced by an acousto-
optic beam splitter (AOBS), which similarly use the interference principle to separate 
wavelengths to be reflected or transmitted. Instead of fixed thin film coatings, a 
layered structure is effectively formed when high frequency sound waves are 
compressing and expanding a piece of glass, changing locally its refractive index 
(interaction of phonons and photons). The great advantage of the AOBS is that all 
filtering properties can be instantaneously and electronically changed by synthesizing 
an appropriate signal for the piezoelectric transducer, which excites the glass. Th 
processing of the emission light can be handled similarly, where tunable spectrometers 
can isolate multiple wavelength ranges, which can be simultaneously collected with 
highly sensitive sensors, typically photomultiplier tubes (PMT) or avalanche 
photodiodes (APD). This flexibility has made confocal microscopes indispensible for 
biologists. A multitude of fluorophores can be monitored simultaneously, helping to 
elucidate intracellular structures and phenomena. 

Fluorophores (dyes) are molecules with fluorescent properties. However, modern 
flurophores have more advanced duties than simple shining. They can be conjugated 
to molecules such as antibodies and lipids, which can bind to particular biomolecules 
and cell components, allowing them to be visualized. Another important type of 
fluorescent dyes are those which change their fluorescent properties after a particular 
modification, or environmental change. For example, temperature dependant 
fluorescence (e.g. Rhodamine B [113], molecular beacons [114]) can be utilized for 
temperature measurements. The fluorescence of some dyes, such as Calcium 

Green™ [115], Fluo-3, or Fluo-4 [116], increases upon binding to Ca2+, one of the 
most important regulators of cellular processes. Therefore, these dyes allow 
physiological monitoring of calcium levels within cells. YO-PRO-1™, another 
example, displays similar fluorescence changes when binding to DNA [117]. Other 
dyes need modifications in their molecular structure to become fluorescent. For 
example, fluorescein diphosphate (FDP) becomes fluorescent when its phosphate 
groups are removed by alkaline phosphatases. Therefore it can be used to monitor 
enzyme activity in cells [118]. The portfolio of methods used in cell biology has been 
redefined by florescent proteins, first green (GFP) [119], and now also many other 
colors. GFP genes can be inserted in particular places of the genome, and the 
resulting fusion can reveal the expression of otherwise invisible proteins. Another 
important aspect of all fluorophores is the chemical and photo stability. Many classical 
fluorescent dyes, in particular fluorescein, are prone to degradation (photobleaching) 
due to the excitation light. A large selection of advanced dyes, featuring superior 
photostability, high fluorescence quantum yield, and a wide range of excitation 
wavelengths, is available today. Further developments concern the engineering of 
interactions of dyes with biological matter, such as specific transport across the 
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boundary of cells or organelles, and deposition in selected locations. This allow for 
accumulating them inside cells (e.g. acetoxymethyl ester conjugates   [Paper III & IV]) 
or their use for probing ion-channel function (e.g. YO-PRO-1 passing through 
TRPV1 channels   [Paper II & VI]).  Thus, fluorophores provide biological 
microscopy with a great advantage - processes inside living cells can be followed under 
physiological conditions in real-time with very high spatial and temporal resolution. 
However, caution has to be taken, as electronically excited dyes in cells are reactive 
molecules. They may also pose unwanted side-effects on cellular processes. And 
establishing a fluorescent probing scheme for a new experiment can be a serious 
challenge.  

Limits of microscopy. Resolution of optical imaging techniques has fundamental limits 
caused by the diffraction of light. This diffraction limit was studied by Ernst Karl Abbe 
1873, who found that light cannot be focused to an infinitely sharp spot, but to a 

minimum spot size ݀, as defined by eq. 3.2 (known as Abbe diffraction limit). 

݀ =  ܣ2ܰߣ

(3.2) 

where ߣ is the wavelength of the light and ܰܣ =  ,ሻ is the numerical apertureߠሺ݊݅ݏ	݊

describing the capacity of the optical system to collect light. ݊ is the refractive index of 

the working medium and ߠ is the maximum acceptance angle as shown on figure 3.6 

E. The larger the maximum angle of acceptance, the higher the ܰܣ, and the better the 

resolution. However, a high ܰܣ has another advantage, the collection of a larger 
fraction of photons of fluorescence, which are emitted equally in all directions (Table 

3.2). Difficulties with high ܰܣ objectives are a shallower depth of focus and shorter 

focal (working) distance. High ܰ(1<) ܣ objectives require an immersion liquid (water, 
glycerol or oil), otherwise the portion of light coming in a high angle could never leave 

the sample, due to the total internal reflection in the cover slip. Therefore the ܰܣ of 
the optical system cannot be larger than the smallest refractive index present in the 

medium separating sample and objective. Air objectives therefore have a ܰ1> ܣ. Last, 
but not least, manufacturing lenses which can focus light equally at a larger range of 

angles requires higher precision and quality, resulting in a high price tag on high ܰܣ 
objectives. (For example, 40x microscope objectives with 0.65 and 1.3 NA cost about 
7'000 and 50'000 kr respectively. [120]) 

Table 3.2. Illustration of light harvesting efficiencies of objectives with different NAs, 
working with an aqueous sample (݊ = 1.33). For isotropic fluorescence, the fraction of light 
collected by the cone of acceptance would be ൫1 − ሻ൯ߠሺݏ݋ܿ 2⁄ . 

NA ࣂሺ°ሻ % of light collected 

0.3 13 1.3 

0.7 32 7.6 

1.3 78 35 

  



Alar Ainla, The Multifunctional Pipette  | 3. Methods  
 

 

49 

3.3 Simulations 

As discussed before, many physical processes are described by partial differential 
equation (PDE) systems, like the Navier-Stokes (Eq. 2.18) or convection-diffusion 
(Eq. 2.27) equations, which are describing fluid flow and transport of chemicals. 
Unfortunately, solving these equation is often challenging, even in case of extremely 
simple geometries, and is completely impossible in almost all real-life settings, where 
multiple physical phenomena, different materials and objects with complex shapes are 
combined. This problem has been greatly alleviated by the emergence of simulation 
methods, which together with the rapidly developing high power personal computers, 
have become commonplace in all branches of engineering. 

To make computer representations of PDEs describing spatially and temporally 
continuous physical fields (e.g. pressure, temperature, concentration etc.), these fields 
have to be discreted by slicing space and time into finite numbers of elements, which 
is represented by the name finite element method (FEM). In contrast, a continuum, 
can be thought of as made from an infinite number of elements. All values themselves 
can only be represented with limited precision. (e.g. the 64-bit double precision 

floating point data type can hold values from about ±	10ିଷ଴଴ to ±	10ାଷ଴଴, with a 
precision of 15 decimal points. It sounds like an enormous range and precision, but 
when small and big numbers are added and subtracted from each other, the rounding 
errors can lead easily to numerical chaos). After dividing the complex object into 
small, simple shapes, which can be described by algebraic equations, these elements 
are joined into a network, called mesh, with connected nodes. Some values in some 
nodes will be defined by boundary conditions, others will be unknown. In a similar 
way, as described in section 2.2.2 for pressures and flows in microfluidic channel 
networks, all relations between the mesh nodes can be encompassed into large 
algebraic equation systems. Solving the equation systems with the help of matrix 
algebra gives the unknown values in each mesh node (simulation results). 

Modern finite element software packages have become convenient tools with easy 
graphical user interfaces, allowing engineers and scientists from various disciplines to 
perform simulations, while requiring neither any programming skill nor understanding 
of the complex mathematics behind the solver algorithms. Nevertheless, it is essential 
that the user knows the system and physics behind it, otherwise resulting graphs may 
look beautiful, but have little touch with reality.  

The typical workflow of finite element modeling is depicted in figure 3.7, using a 
microfluidic mixer as an example. The first essential step is to split the system into 
parts and eliminate unimportant details and those parts which can be calculated 
analytically. This matters greatly, since the total number of elements in the model is 
finite and limited by the available working memory. A well chosen simulation region 
allocates computation resources to the regions in the geometry where they are needed. 
For example, the flow rates in the supply channels of the microfluidic mixer can be 
calculated using analytical expressions (Table 2.1), therefore the interesting region is 
only around the point where the two flows meet. Thereafter the geometry of the 
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selected part of the device is drawn, followed by assigning the physics (e.g. Stoke's 
equation and convection-diffusion equation), materials properties and the relations 
between all these phenomena. In the example, the convection-diffusion depends on 
the flow velocities calculated from Stoke's equation, but it can also have the opposite 
relation if the fluid viscosity depends on the substrate concentration. Determining 
these relations properly is an essential part of model building. Failing to do it, can 
waste computation power or result in errors. Proper boundary conditions must be 
selected and finally, the geometry should be meshed into a network of finite elements. 
Even though the mesh is a purely computational construct, creating it requires 
physical consideration. As the mesh discretely samples the continuum space, its 
density has to correspond to the variations, such that the regions with rapid change 
have the highest, while the more homogenous parts can have a lower density. The 
mesh density has to be finer than the size of the features it tries to reveal. This is 
analogous to the Nyquists-Shannon theorem for signal sampling. Once an actual 
simulation succeeds, the results have to be verified - are they physical and realistic? 
For example, are inflow and outflow of liquids equal, is total amount of substance 
conserved, or how do simulations correspond to experiences from experiments? If 
profiles, which are expected to be smooth, oscillate, the reason is most likely a 
numerical instability - the consequence of poor meshing. In general, a good mesh has 
been achieved when further increase of its density does not change the results 
significantly (convergence). 

The use of simulations can serve two purposes - to understand nuances and 
mechanisms in experiments, which are hard to measure directly, or to evaluate the 
performance of device designs before fabricating them. This saves significant time and 
resources. In the presented work, the FEM modeling package COMSOL (Founded 
1986 by students of the Royal Institute of Technology in Stockholm) has been used 
extensively for both purposes [63]. 

 

Figure 3.7. A typical process of finite element modeling.  
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4. Technology 

For a living organism to function, constant 
exchange of information is required on the  
cellular level, where the messengers are 
different chemicals. In order to study the 
machinery of the cell, it is important to be 
able to control and adjust its surroundings. 
The central theme of this work is the 
development of advanced tools to handle 
chemical environments at the size scales of 
the cell with the help of  microfluidic 
technology. 

 

4.1 Microfluidic Dilution 

The preparation of mixtures and dilutions is a common experimental procedure in 
most areas of chemistry and molecular biology. Since a significant amount of research 
involves optimization of concentrations and mixing of reagents by trial and error, 
automation is very desirable. The use of a microfluidic format for mixing gives 
additional benefits, such as low reagent consumption and low device cost, as 
compared to liquid handling robots. In the following chapter a number of microfluidic 
mixing concepts are presented and compared. 

In principle, dilutions in microfluidics require the same steps as in a macro-scale lab, 
metering reagents and mixing them. If the required dilution factor is large, it is usually 
not practical to dilute in a single step, but rather in several steps, starting from a 
concentrated stock solution (Figure 4.1). 

Metering is the most crucial step, as it determines the accuracy of the final 
concentration. In microfluidics, various principles exists to determine the ratios of 
supplied fluids. Metering can be based on a ratio of input flows, or it can be defined 
by known volumes of reservoirs. Figure 4.1 depicts four of these concepts. In the first 
example, the mixing ratio in a continuous flow device is set by the ratio of external 
pumping rates (e.g. syringe pumps), by the ratio of pressures on liquid reservoirs, or 
by hard-wired differences in fluidic resistance of the channels. These diluters can be 
sequentially combined into networks in order to generate spatial gradients, whose 
shapes are controlled by the inflows [121]. Such gradients were, for example, used to 
dynamically regulate the nutrient levels of yeast and elucidate its metabolic regulation 
mechanisms [122]. The second type is also based on the ratio of flow rates, but here 



Alar Ainla, The Multifunctional Pipette  | 4. Technology  
 

 

52 

the flows are generated by on-chip peristaltic pumps, which are controlled by a  
pneumatic pulse sequence, whose frequency is proportional to the flow [123].  

 Peristaltic metering can be also used for volumetric injections. In this case the 
number of cycles is more important than the frequency [124]. In the third method the 
concentration is equally controlled by flow rate, but in a time averaging way, where the 
contributions are determined by the length of flow pulses emerging from supply 
channels. Concentration control with variable pulse lengths is the fluidic counterpart 
to pulse width modulation (PWM), commonly used in electronics to convert digital 
codes into analog signals [18] (Paper I & II). In the fourth example, the metering is 
based on the volume of defined channel segment [125-126].  

 

Figure 4.1. Generation of dilutions in microfluidics. 
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An important analytical figure of merit is, of course, precision, where many factors can 
contribute to the practical results. If we put aside possible clogging by dirt particles etc. 
(gross error), then there are two major contributions, the precision of the chip and the 
precision of the control signal. In microfabricated devices, the channel length is 
normally much larger than the width, and all fabrication techniques allow it to be 
produced with negligible variance. Much harder is to control the uniformity of the 
channel cross-section, in particular height. Neither spin-coating nor etching produce 

exactly uniform structures. Thick (30μm) SU8 has about ~10% or more height 

variation, [127], glass etching [128] and DRIE [42] about ~5%, and SOI wafers [43] ~1%. Size variation can have different effects on precision (Table 4.1). For example, 
the hydrodynamic resistance depends on the 4-th power of the cross-sectional size 
(Table 2.1), while the volume only on the 2-nd, which means that pressure driven 
metering (flow rate based and PWM) is twice as sensitive to geometry variations 
compared to the channel volume-based ones (peristaltic pumping and reservoirs). 
Higher precisions in the control signals are typically easier to achieve. Typical 

electronic pressure regulators have an accuracy of ~1% [129]). Peristaltic and PWM 
metering relies on timing precision, which is easily achieved with electronic control, 
but since they involve also pneumatic actuation by solenoid valves, which requires a 
switching time of a few to 10 ms, the maximum frequency becomes limited. 

Mixing is the next step in making dilutions. Mixing speed and efficiency determine 
time response and stability of the diluter. It is desirable to have a precisely determined 
output concentration with no spatial or temporal variations. The simplest mixer is the 
T-junction, where two flows meet and co-flow until molecular diffusion eradicates the 
concentration differences. Since there are no turbulences, this processes is slow. It can 
be boosted by increasing the contact area, where liquid sheets are pressed wider and 
thinner. The contact area can be increased even more efficiently by using the so called 
baker's transform (due to the dough making analogy), where a fluid stream is split and 
rejoined such that opposite sides will be connected. The problem with the  baker's 
transform circuits is that they require either crossing channels (multilayered design) or 
3D channel geometries [27, 130]. Both are complicated to achieve with most of the 
common fabrication methods. While in intermediate Re number flows mixing eddies 
can be generated by various bumps and sharp edges, passive stirring at low Re is more 
challenging [131]. An elegant solution is a staggered herringbone mixer (invented by 
Stroock & Whitesides, 2002), where small diagonal grooves at the bottom of the 
channel guide the liquid and give its flow field a  non-zero component in the y-z plane 
(Eq. 2.24). This leads to general rotation, which can efficiently mix substrates in about 
1cm of the channel length [132]. Some other micro-stirring concepts introduce radial 
velocities by electric fields or sonication. An interesting example is an acoustic 
micromixer using a trapped bubble, which can achieve complete mixing in a few 
milliseconds [133]. Pulsed flows, like the one produced by PWM flow metering, are 
favorable, since flow segmentation together with Taylor dispersion helps to improve 
mixing efficiency (Paper I). A similar process happens also in rotary mixers, where 
one pulse is circularly pumped in the channel, where it spreads due to the Taylor 
dispersion [124-125]. 
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The choice of the mixing concept depends on the required features. Should there be 
a continuous outflow,  or should the mixtures be made in portions? What are the 
required response time, precision and dynamic range? Can it be made in one stage, or 
need multiple diluters be connected in series? Shall the output be a spatial or 
temporal gradient? Compromises are generally needed and a higher dynamic range 
and precision requires longer preparation (response) time (Table 4.1). 

 

Table 4.1. Comparison of dilution concepts in microfluidics. 

 
Flow rate Peristaltic PWM 

Volume 
(reservoirs) 

Continuous 
outflow 

Yes Yes Yes No 

Geometry 
dependence 

∝ ∝ ସݎ ∝ ଶݎ ∝ ସݎ  ଶݎ

Continuously 
adjustable output 

Yes, 
Pressures 

Yes, 
Frequency 

Yes, 
Pulse length 

No, 
Discrete steps 

Output  Proportional Proportional Proportional 
Exponential 

 # of dilutions 
Increasing 
dynamic range 

Multiple 
stages 

Multiple 
stages 

Multiple 
stages 

- 

 

4.2 Localized Delivery of 

Chemicals 

4.2.1 Hydrodynamic Flow Confinement 

In a stereotypic view, microfluidic devices are confined laboratories on chips, into 
which  materials and samples are introduced, and all the magic of the experiment 
occurs inside channels surrounded by walls. Instead, this work describes another, 
younger and less explored paradigm in microfluidics, where useful properties of 
micro-scale fluid flows are projected beyond the boundaries of the device, into an 
open volume. This allows for easy integration with existing instrumentation and 
experimental environments, and lowers the acceptance barrier for the new technology. 

One of the useful properties of microflows is their stability, which has allowed to 
develop devices to address biological cells with high spatial [11] and temporal [134] 
resolution. To  use this feature, the cells have to be brought or even grown inside the 
devices, which can be unfavorable. For example, adherent cells or cells extracted from 
tissues lose their spatial organization when suspended. Free-floating cells in 
suspensions may also increase the risks of clogging of smaller channels. The 
alternative approach of culturing cells inside the device can be challenging too, due to 
different rates of oxygen and nutrient transport, requiring additional optimization. 
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Most of these concerns can be alleviated by separating cells and fluidics. Biologists can 
prepare their cell cultures and tissue slices in conventional Petri dishes, using well 
established protocols, and the fluidic functions can be brought in when and where 
needed. The simplest device of this kind is a glass capillary injecting a liquid. Though 
widely used, its capacity to define the exposed area is very limited due to diffusion. As 
described before (Ch 2.1.2), microfluidics offers means to combat diffusion by 
convective flow and therefore allows to maintain inhomogeneous concentration 
distributions. This principle is not limited to closed channels. If fluid leaves into the 
open volume, it can be captured and circulated back into the device by sufficient 
neighboring inflow. Such circulation forms a small reservoir, whose boundaries are 
defined by hydrodynamic flow-lines and the content by the outflow. In the following 
we call this circulation a hydrodynamically confined flow (HCF). 

The general concept of using simultaneous out- and inflows (circulation) in liquid 
delivery is not new, it has in several incarnations found use in different devices (Figure 
4.2). One of the earliest is the push-pull cannulae (developed by J. H. Gaddum, 1961) 
[135], used to sample neurotransmitters in brain. This early device suffered from the 
risk of damaging the tissue by the liquid, got frequently clogged and became 
contaminated by cells and blood. An improvement, the dialytrode (by Delgado et al, 
1972) [136], was introduced, separating the liquid flow from the cells by a semi-
permeable polysulfone membrane. The chemitrode, a similar probe, was reported 
around the same time [137]. The practical construction and efficiency of this sampling 
device was improved by U. Ungerstedt (Karolinska Institute) in 1974, using a hollow 
membrane tube [138]. This method, known as microdialysis, has become widely used 
to sample neurochemicals in both research [139] and clinical settings [140]. Although 
related, microdialysis is not using hydrodynamic confinement, since the flow is 
separated from th external volume by the membrane, and coupling occurs only by 
diffusion. 

In 1996, semi-open volume confinement of liquid has been patented by Mitsumori et 
al. for a wet cleaning nozzle, invented for processing of large substrates of the kind 
used for solar cells and LCD displays [141]. Confinement occurs on a dry surface, 
where a precise flow balance allows to avoid leaks from the close gap between 
substrate and  flow chamber, such that it required no seal or mechanical connection. 
This device is a gigantic, several orders of magnitude larger relative of the HCF 
systems discussed in this thesis. In a same year, another microscopic flow confinement 
system emerged, used as a fast local superfusion technique for the stimulation of 
adherent neurons [142]. Here, two glass capillaries (Ø about 10 μm) are positioned in 

close vicinity (~20 μm) around the cell, one used for injection, the other for 
aspiration. This setup formed a HCF about 30 μm in size, and pressure switching 
allowed solution exchange on the ms time scales. This tool has been an essential 
component in studies of the motility of dendric filopodia [143], and potentiation of 
synapses [144]. However, it suffered from many practical shortcomings. It was hard to 
control the exact geometries of the capillaries, which affected the flowrates.  It was also 
tedious to position them repeatedly, since already slight variations in distance can 
cause a significant change in the flow field and exposure profile. The aspect of 
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positioning has been simplified by combining two needles into one coaxial 
superfusion pipette ('Picoliter fountain-pen') [145], where a smaller injection pipette is 
placed through the orifice of another, the larger one, for aspiration. Even though it 
reduced the positioning difficulties of two separate pipettes, it introduced much more 
complex assembly and interfacing requirements. Somewhat simpler to handle is the 
dual pipette pulled from the theta-tube [146]. An important limitation of both of these 
dual-capillary systems is that they do not allow fast exchange of perfusion solution. As 
with all glass pipettes, they also are extremely fragile, making their handling 
cumbersome. In any case, dual-pipettes have made an important contribution to 
research, where they have been used, for example, to stimulate artificial neural 
networks [147] and measure signal propagation in them [148], as well as for 
stimulation of cardiac myocytes [149] and collection of mRNA [146]. 

Most of the problems associated with glass pipettes can be overcome by using 
microtechnology, which allows repeated fabrication of channels with well defined 
geometries and positions, as well as to design circuits that allow fast solution exchange, 
dilution and other liquid processing functions. 

First microfabricated HCF device was the Microfluidic probe (by D. Juncker & E. 
Delamarche in 2005) which has been inspired by inkjet and spotting technologies, but 
was crafted to provide superior spot-quality for surface processing in liquid 
environments [150-151]. This device resembles a print head, brought into close 
vicinity of the surface such that the channels point towards it. The first practical 
difficulty associated with this design was the alignment of the large head, which has to 
be parallel to the surface in order to avoid contact and damage, and close enough to it 
to deliver solutions. Another shortcoming was the rather complicated fabrication, 
which consisted of three lithography steps, HF etching, two DRIE processes, dicing 
and bonding. These aspects were somewhat improved in a later vertical design by the 
same inventors [152-153]. The microfluidic probe was used to pick up cells, pattern 
antibodies [150], and stain adherent cells and tissues [150, 153-154]. From a biologists 
perspective, many practical limits remained, such as the apex, which  covers the 
processed area and restrains the use of upright microscopes and limits access by other 
probes such as glass pipettes, microelectrodes or optical fibers, used in various 
biological experiments. These restrictions are particularly severe for neuroscientists, 
who would like to combine solution exchange with electrophysiological recordings. 
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Figure 4.2. History and examples of hydrodynamically confined flow devices and related 
concepts. 
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Table 4.2. Comparison of microfluidic probes and multifunctional pipette. 

Features Microfludic probes 
Multifunctional 

pipette 

Alignment Apex parallel to surface Variable application angle 

Angle sensitivity 
Sensitive around 2 axes 

Large (mm scale) apex would 
collide with surface 

Insensitive 
Application angle flexible 
Low sensitivity to rotation 

around tip axis due to sharp tip 
Vertical height 
sensitivity 

Identical 

Confinement 
boundary 

Sharper Smoother 

Shear stress on the 
sample 

Higher Lower 

Microscope 
compatibility 
- Inverted 
- Upright 
- Transmission 

Yes 
No 
No 

Yes 
Yes 
Yes 

Compatibility with 
additional probes 

No Yes 

Solution exchange No 
Yes  

(4 solutions ~ 50 - 100ms) 

1D gradients Yes Yes 

2D gradients Yes No 

Chemical 
compatibility 

High Limited to aqueous solutions 

Supply 
External through tubing 

(cleaning needed) 
Integrated wells 

(cleaning not needed) 

Flow driving Syringe pumps 
Air pressure from computer 

controlled pneumatics 

Materials hard Si/glass (mostly) Soft (PDMS) 

Fabrication 
Complex  

Multistep photolithography 

Simple 
One step soft-lithography. 

Most limiting step is individual 
tip punching 

Fabrication 
infrastructure 
requirements 

High Low 

Device usage Most likely multiple use Most likely disposable use 

Optimal for Chemical surface processing Single-cell manipulations 
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We, initially unaware of the microfluidic probe, were driven to build our Pipette by 
the need of biologists and biophysicists to exchange the solution environment around 
cells (superfusion), to stimulate them or to create gradients in order to drive 
membrane migration. Knowing that glass pipettes are widely used for these purposes, 
we saw our device as a modern variant of the classical pipette with extended 
functionality and more convenient use - and named it multifunctional pipette. In 
contrast to the microfluidic probe, it is applied under an angle, just like glass needles 
in typical biological experiments. The combination with other probes, e.g.,  
electrophysiological recording pipettes, and upright microscopes, remains 
unrestricted. Our device works well in conjunction with micromanipulators, and 
needs no specific station to position and align it [155]. Furthermore, as biological 
experiments can require series of multiple reagents to be applied to a cell, our device 
has the functionality to switch solutions and create dilution series through a single 
HCF. In order to perform switching, no physical movement of probe or sample is 
required, another advantage for the biologists, since motion could hinder the use of 
other probes or even disturb sensitive imaging or recording. 

 

Other, related devices exist. For example, the Chemistrode (not to be confused with 
the aforementioned Chemitrode, which is a different concept) by Chen & Ismagilov 
[156], is used for both stimulating and collecting responses from local areas on a 
surface, using droplet microfluidics. This probe is not a HCF device, since conformal 
contact with the surface is required during operation. Very similar is also a PDMS 
spotter used for fabrication of protein chips [157], but instead of droplet flow, 
continuous flow was used there. Some other device are applied to deliver, maintain 
and refresh microscale droplets on dry surfaces. One example is a microfluidic probe, 
which used a hydrophobic/-philic apex region to define the flow chamber [158]. A 
similar approach had been shown before, also for liquid guidance inside channels 
[159]. A different open volume push-pull probe was reported for the delivery of fresh 
electrolyte in scanning electrochemical microscopy [160-161].  

It is interesting to note that chemical circulation is actually used in nature for the same 
purpose: to stimulate cells. Nature's probe is called synapse (more precisely chemical 
synapse), where one nerve cell stimulates the other by the release of 
neurotransmitters. In order to avoid contamination and to control the stimulation, 
neurotransmitters can be pumped back by transporter proteins [162]. Differently from 
the above described liquid handling devices, this circulation is not hydrodynamic but 
molecular, and occurs on significantly smaller size scales. 

 

4.2.2 Solution Exchange - Need for Speed 

As mentioned in the preface to this chapter (Ch. 4), all communication between cells 
is mediated by exchange of chemical species - ions, small and large molecules. In 
order to study this communication, we need tools, both for detecting and for 
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stimulating. The processes themselves can occur on various timescales: Pathways 
involving regulation of gene expression have slow response times (minutes to hours) 
[122, 163]. Neural communication, on the other hand, is fast - for example seeing or 
feeling something is separated from the perception in the brain by mere milliseconds, 
even though it requires multiple steps of cell-to-cell information exchange. Even 
higher, microsecond scale time resolution is needed for signals arriving from either 
ear to enable us to locate the origin of the sound (stereo effect) [163]. This is owed to 
the fast ion-channels in the membranes of nerve cells, which receive and carry signals. 
Ligand-gated ion-channels in the synapse of a receiving cell are sensing to the release 
of neurotransmitters from another cell. Some of these receptors can have gating 
constants of only a few tens to hundreds of microseconds (e.g. Acetylcholine and 
AMPA receptors) [164-165]. Fortunately, as ion channels are conducting charged 
ions, electrical current through them can be relatively easily measured by the patch-
clamp technique and high sensitivity amplifiers [166]. Using small membrane patches 
extracted from cells and immobilized at the tip of a glass pipette allows measurements 
of current, even through individual ion-channels (single-channel recording). In order 
to study kinetic and different steps of the gating process of these channels, it is also 
important to apply a stimulus, the chemical ligand, with time resolution higher than 
the opening and closing of the channel. This is not trivial and has been the subject of 
many studies. The performance of solution exchange is highly dependent on the 
instrumentation and the nature of the sample. The shortest solution-exchange times 

can be achieved by switching flows on the tip of a glass pipette (~10-20 ms) [167], by 
steering the streams from a theta-tube (200 μs) [168], or by using piezo driven 
scanning of fluid streams (<100 μs) [165]. More complicated is the situation around 
cells, which can vary in size, and be either suspended on a pipette or adherent to a 
surface. For suspended cells, microfluidic open volume superfusion can produce 

exchange times of about ~30 ms [169]. With glass capillaries and special flow 

chambers, exchange time of  ~10 ms  were reported for small cells [170] and 200-400 
ms for large Xenopus oocytes.  

Solution exchange times have often been characterized by liquid junction potential 
measurements in the tip of glass pipettes, which represent well the settings of single-
channel recordings, but not those of actual cells. V. Pidoplichko [171] characterized  
the relationship between sample size and solution-exchange times as nearly linear: ~0.8 ms per μm of cell diameter. Theoretical models suggest that 20 μs exchange 
times are possible for small patches [172]. 

Fast timescales can not only be found in gating of ion-channels, but  also in other 
cellular processes. Some, such as electron-transfer processes or passage of ions 
through ion-channels [162] are much faster than the technically possible solution 
exchange times. More relevant are the timescales found in enzymatic reactions [173] 
and in conformational changes of large protein complexes, where characteristic time 
constants can easily be on the order of tens of milliseconds to several seconds [174]. 
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4.2.3 Other Methods to Deliver Chemicals 

While hydrodynamic flow confinement is a relatively universal method to control the 
chemical environment at size scales in the area of 10-100 μm, other techniques exists, 
which can beat a HCF device in speed and size, but are more limited for specific 
applications.  

Photolysis can be used to generate active molecules by optically releasing them from 
biologically inactive caged pre-cursors.  As the method is extremely fast and localized 
(<1 μm/<1 μs) [175], it has gained popularity to stimulate neuronal networks, where 
the use of lasers and acousto-optic scanning allows to define spatial exposure patterns. 
This method has also its limitation, in particular the need for caged substances. 
Currently there are caged forms of acetylcholine, glutamate, calcium, GABA, glycine, 

and IP3 available [176].  Control of the exact concentration, the inability to remove 
released substances by other means than diffusion, and the complex experimental 
setup are other difficulties. 

Iontophoresis is analogous to pressure driven injection through capillaries, only that 
electrical current is used instead. A problem, this technique shares with other 
electrokinetic mechanisms is that transport mode is more substance-specific than the 
pressure driven counterpart [177]. Organic ion pumps [178] are somewhat similar to 
iontophoresis. Here, ion-conducting polymer materials are used to eject ions by 
means of current. A related technique is nanopipette based delivery [179], where 

electrical pulses are used to eject single-fluorescent molecules from a ~100nm pipette 
tip in a scanning ion-conductance microscopy (SICM) setup. 

Nanoliter patterns [180] based on two phase aqueous polymer solutions  have been 
used to reduce diffusion and maintain the chemical composition in artifical cellular 
microenvironments. An advantage of this technique is that a large number of chemical 
environments can be created and maintained without continuous active intervention. 
It is, however, limited to experiments where a steady environments is sufficient, since 
the polymer hull around the cell does not support fast changes in composition. 

Dip-Pen nanolithography (DPN) [181] is a surface patterning technique for features 
on the size scale of 1-100 nm, using an AFM tip. It cannot be used for maintaining 
liquid environment around cells. An enhancement of DPN is the nanofountain probe 
[182-183] featuring a molecular ink-feeding mechanism. FluidFM [184], is another 
variant of AFM, where the injection aperture is milled into the tip by using a focused 
ion beam. It can work as a regular AFM, but also penetrate the cell membrane and 
inject femtoliter amounts of liquids. 
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4.3 Functional Biomembranes 

Biomebranes form the reaction vessels for the chemical machinery of life. Universally 
from small bacteria to human cells, they are confining all necessary components and 
nutrients [162]. Material and information transport can occur controllably and 
selectively through exo- and endocytosis, transmembrane proteins or sometimes  just 
by diffusion. This vital role of membrane proteins in orchestrating cellular processes, 
has made them also essential drug targets. Up to 70% percent of  new drugs address 
membrane proteins [185]. In a different aspect, biomembranes represent an intriguing 
physical structure: a molecularly thin two-dimensional fluid, where the motion of 
molecules is restricted in normal direction of the membrane, while they can easily 
diffuse laterally [186].  

The role of biomembranes in the context of this thesis is significant, as all example 
applications of the developed devices directly addressed biomembranes, either by 
activating ion-channels, inducing membrane vesiculation, or by creating or 
manipulating artificially assembled model membrane structures on solid supports. 

 

 

Figure 4.3. A cell membrane and its components 

 

4.3.1 Structure of the Biomembrane 

The biomembrane is a thin elastic sheet, self-assembled from various amphiphilic 
lipid molecules [187]. Lipids have a hydrophobic tail, which is most commonly 
composed of two fatty acid chains, a hydrophilic head which often consists of a 
phosphate moiety (phospholipid), and a small organic headgroup, such as choline. 
Both parts of the molecule are linked together by a glycerol unit. When brought into 
water, the lipids spontaneously line up their hydrophobic tails and assemble into thin 
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sheets, screening their nonpolar ends from the polar environment. The most efficient 
screening is obtained in an arrangement where two molecularly thin sheets of  lipid 
film orient their hydrophobic sides towards each other, forming a bilayer. The film 
remains fluidic, as the molecules are not covalently interconnected, but held together 
by weak interactions [188]. Molecules other than lipids can populate the bilayer, either 
by dissolving into the hydrophobic inner part of the membrane (cholesterol and other 
sterols), by chemically conjugating to the lipid head group (sugars and small proteins, 
forming glycolipids and lipoproteins), or by embedding themselves into the 
membrane, often spanning it entirely. The last category is most important, since 
membrane-spanning proteins fulfill numerous transport, sensing, regulatory and other 
functions in the membrane [162]. With this diverse composition, the membrane is no 
longer a passive layer of mixed molecules, separating the inside from the outside of a 
cell, but rather a highly functional active boundary, which controls and regulates the 
concentration of  molecules on either side, establishes identity, and manages the 
connection to neighboring cells.        

   

4.3.2 Properties of the Biomembrane 

Major features of the biomembrane  are elasticity and fluidity [189]. The elasticity 
provides the cell with the ability to adapt its shape to environmental cues, such as 
changes in temperature, osmotic pressure or other sources of stress. Fluidiy, on the 
other hand, serves various transport and interaction needs. Self-healing after rupture 
[190], distribution of different lipids to other regions of the membrane, and the ability 
to fuse and mix molecules are some of the beneficial consequences of membrane 
fluidity [162]. Another  major aspect is the need for insertion of lipids and proteins 
after their biosynthesis, which is also ensured by the high lateral mobility of the 
membrane. Finally, molecules can meet in the fluid lipid matrix, interact and generate 
chemical signals [162]. Other biomembrane properties are high electrical resistance 
and limited ion permeability, while gases, lipid-soluble molecules and small amounts 
of water can pass the boundary almost unrestricted [162].  Some of the beneficial 
properties, in particular the ability to host ion channels and other membrane proteins, 
have led to the desire to construct biomimetic membrane models [191]. In this 
context it is desired to maintain the fluidic features of the membrane, while managing 
to stabilize and immobilize the nanometer-thin assemblies. A practical solution to this 
problem is the solid-supported lipid membrane.       

 

4.3.3 Supported Lipid Membrane 

Technologies 

In order to facilitate scientific studies and the technological use of biomembranes, a 
planar, fixed geometry is favorable [191]. Many probing techniques, microscopy, and 
patterning techniques such as photolithography are constructed for planar substrates. 
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Compatibility with these technologies has helped to investigate and exploit membrane 
features to a great extent. Supported lipid membranes can serve as biomimetic surface 
coating [192]. Moreover, selective transport can be investigated, for example in ion-
channel based biosensors [193]. In some examples, two-dimensional transport is 
achieved either by diffusion, spreading [194], electric field [195], thermophoresis   
[Gözen et al, unpublished], hydrodynamic shearing [196] or surface acoustic waves 
[197]. Others use biomembranes as a natural medium for handling membrane 
proteins, including their accumulation [198] and separation [196]. In some cases, 
supported membrane are used for bulk coating, while in other instances  
micropatterns are needed. The lipid membrane can be patterned with the assistance 
of surface strcutures [194, 199], or lithographically, using soft-lithographic stamping 
[200], DPN [201] or even by microfluidic flow chambers [202]. Paper VII presents a 
novel concept of using a HCF of small unilamellar vesicles as a means to pattern 
compositionally diverse membrane circuits.  
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Summary 

 

This work describes the development of microfluidic technology for spatial and 

temporal manipulation of chemical microenvironments at the size scale of a single 

cell. 

In Paper I a microfluidic dilution system is presented.  The dilution is based on pulse 

width flow modulation (PWFM), where fluid streams are multiplexed using 

pneumatically actuated microvalves made in PDMS. By balancing the accuracy of the 

shortest pulse lengths and response time, we found that up to 10-fold dilution per 

stage and about 5s response time are feasible. In order to achieve a wider range of 

dilutions, multiple stages can be combined in series (two in this paper and three in a 

follow up-study). Since PDMS channels deform under pressure, which causes non-

linear resistance and compliance effects, the circuits were made to maintain, ideally, 

the same pressure and flow in every switching state. The main features and advantages 

of this diluter are the low-cost PDMS fabrication, fast response time, time-dependent 

output through a single channel, continuously variable concentration settings, a 

minimal number of control channels (serial control signal), and a simple control 

system, where no pressure regulation is needed, only digital valves. Some drawbacks 

are the required calibration and the limited dynamic range. In the paper the diluter 

was characterized using fluorescence and electrochemical measurements, and finally 

applied to control the spreading of supported lipid-double bilayers. In a follow up 

study, which is not included in this thesis, a three stage diluter was fabricated, and a 

fully automated calibration and deployment system was developed  [Genner, Ainla 
and Jesorka]. This  diluter was eventually modified to allow liquid exchange in front of 

its outlet. This gave rise to the concept of the microfluidic pipette. 

Paper II introduces the microfluidic pipette. Compared to the diluter shown in paper 

I, which also features an open volume outlet, the channel exits are here concentrated 

in the sharp tip of the device. This allows to position them next to objects of interest 

on a surface, i.e., it isa free standing device. Another aspect is the simultaneously 

applied inflow, which allows the outflowing liquid to be confined in a small volume - a 

hydrodynamically confined flow (HCF). In this paper the properties of the HCF were 

studied and the device was combined with a simple one-stage PWFM diluter, which 
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used a valveless switching principle based on hydrodynamic flow steering. The 

microfluidic pipette was used in several single-cell applications, to induce membrane 

zeiosis (blebbing), stimulate ion-channels in electrophysiology experiments, and to 

perform dose-response measurements. 

Paper III describes the reshaping of the initial pipette prototype into a real 

multifunctional research tool. Practical inconveniences associated with its use were 

removed. Most importantly, shape and interfacing were improved, adjusting the 

device to the environment of biological microscopy, which is, typically, crowded by 

the objective, condenser lens, dish edge and other needles and probes. Therefore, a 

narrow and elongated design with a sharp tip has been chosen. Another important 

aspect was efficient interfacing, which is required to facilitate quick set-up, to prevent 

leaks and contamination and to reduce cleaning needs. This has been achieved by 

using integrated wells, which preserve solutions and have no dead volumes to fill. 

Since the simple, low-cost pipette tip can be considered to be disposable, there is also 

no need for cleaning and no risk of contamination. The first presented function of this 

new pipette was fast switching between three solution environments, which yielded 

about 200 ms exchange time. The switching process and the contributing factors were 

analyzed theoretically, and by means of computational models. This theoretical insight 

has been used later (Xu et al. unpublished manuscript and Paper VI & VII) to further 

improve the circuitry, now being capable of switching between four solutions in 50-

100 ms. Further improvements and novel functions are easy to introduce, due to the 

modularity of the design. New circuits are integrated at the cost and effort of 

fabricating a channel structure on a silicon wafer - the molding tools as well as the 

holders are reused without modifications. The efforts were rewarded by the editors of 

Lab on a Chip, who elected our technology into the top 10% technologies! 

Paper IV extends the capabilities of the multifunctional pipette by integrating 

electrodes into the PDMS device.  It is difficult to use conventional metal patterning 

techniques on PDMS, owed to the poor adhesion between the materials. Therefore, 

our approach was to fill the channels with the low-melting Field's metal. This method 

is favorable, as high conductivity electrodes can be post processed by means of a 

simple hot-plate and a pump. The modified pipettes were used to combine localized 

solution delivery and electroporation of single adherent cells. A shortcoming of this 

approach is the brittleness of Field's metal structures. The otherwise robust tip 

became fragile and sensitive to bending. More flexible future alternatives could involve 

conductive polymer composites, but they exhibit lower conductivity and require larger 

channels,  as the materials are more viscous and coarse. 

Paper V explores applications of the pipette on rat brain slices. As discussed already 

in previous chapter, neuroscience is in great need for fast superfusion, while the high 
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spatial organization of the brain requires confined stimulation. Microfluidics is 

generally well suited for these tasks, but harder to apply in tissues. Specific chambers 

to hold tissue in the device are required [203]. The pipette provides an easier 

alternative, allowing electrophysiological experiments to be performed in their 

conventional environments (e.g. oxygenation). A distinct benefit of the pipette is faster 

solution exchange time compared to the conventionally used whole-slice perfusion. 

Localized stimulation not only allows new types of experiments to be performed, it 

also aids in the economic use of resources, as more data sets per slice can be 

collected,  increasing efficiency and saving the lives of animals. 

In Paper VI, the advantages of solution exchange and confinement are harnessed in a 

fluorescence based optofluidic thermometer, where the HCF allows contamination-

free delivery of dyes, used for direct temperature measurement in the physiological 

temperature range.  Switching between two fluorophores of different temperature 

dependent fluorescence intensity is used to create a reference system capable of 

eliminating microscope and alignment specific variability. This measurement 

technique was used together with a fiber optic microheater, to observe heat activation 

of temperature sensitive ion-channel (hTRPV1), monitored as an uptake of YO-PRO-

1 to the channels. 

Finally, Paper VII is engaging the pipette to implement a unique rapid prototyping 

platform for 2D nanofluidic circuits based upon supported lipid bilayers. The lipid 

material is locally deposited from small unilamellar vesicles, which are fusing into a 

continuous membrane, where molecules can be transported by diffusion and, and in 

some cases, by capillary or shear forces. The geometry and composition of the 

circuitry is defined by synchronous computer controlled switching between membrane 

sources and scanning of the microscope stage. In addition to writing such  

compositionally diverse networks, they can be at any point removed, repaired or 

functionalized in a single experiment. This large variety of possibilities to manipulate 

lipid films and attached compounds constitutes a lab on a membrane, useful to 

controllably and conveniently study transport of membrane components and their 

interactions. 

Conclusion and remarks 

My research described in this thesis has been focused on the development of a 

microfluidic liquid handling tool, starting from basic principles and finishing with a  

refined instrument, which has been diversely applied in studies on cell cultures, tissue 

slices and biomimetic membranes. Locally controlled liquid handling can also be the 

foundation for other independent techniques, such as microthermometry and most 

notably: the writing of two-dimensional nanofluidic networks. 
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All the functions presented here are based on the concept of localized solution 

exchange. This is, however,  just one possible aspect of the use of this device. Perhaps 

more desirable, but also more challenging is the opposite: collection and analysis of 

cellular content or release. Proteins are expressed in really tiny quantities: amounts in 

the 200 zmol range are typical according to [204], which correspond to just 100'000 

molecules. Many rare proteins are even less abundant.  

Another exciting area for future studies is the Lab on a Membrane and its applications 

in investigations of molecules confined in 2D liquids. On one hand, direct analysis of 

membrane proteins and their behavior is central to  fundamental understanding of cell 

biology and aids in the development of new drugs. On the another hand, 2D fluidity 

represents a fundamentally different transport mode and a special environment for 

chemistry. Simplicity and robustness of our method may render 2D chemistry 

practically useable. Particularly fascinating is the combination of 2D fluidic and 2D 

electronics. One can envision connecting molecularly thin flows and graphene sensors 

to create new analytical techniques, able to detect just a few molecules extracted from 

a single cell. Even if the multifunctional pipette will be not an active part of membrane 

based detection devices, it may become a development tool as indispensible as the  

oscilloscope is for the development of electronics. 

I believe that this technology, being functional, robust and simple to use, will find its 

way into many bioscience labs. It will enable new kinds of experiments, will improve 

data quality and ensure the efficient use of reagents, cell cultures and tissues. But after 

all, most of the exciting journey is still ahead of us: to discover new applications and 

abilities and solve questions and problems which we, at this point, are not even aware 

of.  
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