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Hot electron cascades in the scanning tunneling microscope
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The nonequilibrium distribution of electrons at the junction of a scanning tunneling microscope is investigated
by detecting photons with energies hν > eV , where V is the bias voltage. Electrons are found at energies
exceeding the Fermi level by almost eV . While their distribution deviates from a Fermi-Dirac function it is
consistent with a model of hot electrons and holes that diffuse in energy and real space.
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I. INTRODUCTION

The tunneling current in a scanning tunneling microscope
(STM) locally deposits energy in the electron systems of
the tip and the sample. Hot electrons are injected into the
positive electrode leaving behind hot holes in the negative
electrode. The hot carriers may rapidly distribute their energy
in the electron system via electron-electron interaction. More-
over, phonons may be created and transport the energy away
from the tunneling contact. Usually the heating of the electron
systems is insignificant and the STM provides information on
the equilibrium density of states. However, this approximation
may break down when elevated currents are used to probe the
quantum transport through atomic or molecular contacts.1–6

The nonequilibrium distribution of electrons and relaxation
rates have been probed with an electrode coupled by tunneling
to biased metallic wires7 or carbon nanotubes8 in a three-
terminal arrangement. In a conventional two-terminal STM
thermovoltages may be observed.9 Accessing the energy
distribution of hot carriers, however, is difficult because the
tunneling current represents an integral over all electronic
states. In contrast, photons emitted from the STM carry
more direct information on excited states. In the absence of
electron-electron interaction, at low temperatures, the highest
photon energy is limited by the voltage between the electrodes,
hν < eV . Photon energies exceeding eV indicate that hot
carriers are involved.10–12 For simplicity, we refer to this
emission as 2e light.

Here, we investigate 2e light that is emitted from a Au(111)
surface. Spectra of this light vary with bias and are shown to
reflect the nonequilibrium distribution of charge carriers at the
junction. The distributions determined from the experiments,
which deviate from thermal distributions, in particular at
the high-energy end, are analyzed using model calculations.
We find hot carrier occupation numbers of the order of
10−4 (corresponding to carrier concentrations of the order
1018 cm−3 eV−1) at a junction current of 10 μA.

On metal surfaces, the high-frequency noise of the tun-
neling current may excite localized plasmons, which in turn
emit light.14,15 Emission at hν slightly exceeding eV was
first reported from Au-Au junctions at ambient temperature
and fairly low currents (10 nA).16 While an elevated temper-
ature of the electron gas (1200 K) was suggested to cause
smearing of the Fermi distribution, no detailed analysis of
the electron distribution was presented. The emission from

Au-Au junctions in the contact regime was interpreted in
terms of blackbody radiation of electron gas.17 However,
the electromagnetic properties of the junction, namely the
presence of tip-induced plasmon (TIP) modes,18 which affect
the spectral characteristics, were not taken into account. While
the present work focuses on a metallic model system it should
be noted that fluorescence at hν > eV has also been reported
from molecular films.19–21

The thermalization of electrons in metals has been
investigated with pulsed-laser excitation. Electron-electron
interaction leads to thermalization of the electron system
on a sub-ps timescale over which the distribution evolves
from a nonthermal to a hot Fermi-Dirac shape.22 However,
thermalization can be slowed down in the presence of
energy transfer to the lattice.22,23 A nonthermalized electron
distribution was reported for a low density of excited electrons
(<2 × 1018 cm−3).24

II. EXPERIMENT

A. Details

The experiments were performed with a STM operating in
ultrahigh vacuum at low temperature (5.8 K). Light emitted
from STM was collected with a lens and guided to a grating
spectrometer and a liquid nitrogen cooled CCD camera via an
optical fiber.25 Spectra are not corrected for the efficiency of
optical setup, which is shown in Fig. 1(d). Au(111) surfaces
and W tips were cleaned in UHV by Ar+ bombardment and an-
nealing cycles. Finally the tips were indented into the Au(111)
substrate to increase their stability for contact experiments.

B. Results

Figure 1 shows luminescence spectra acquired in series
with the same tip above a Au(111) surface. Figure 1(a) was
measured in the tunneling range at low current. An elevated
bias voltage V = 3.5 V was used to ensure that the shape of
the spectrum essentially reflects the shape of the tip-induced
plasmon mode. At low photon energies, however, the spectral
shape is affected by vanishing response of the detection
system, which is indicated by a dashed line in Fig. 1(d).
As the tunneling current is low, heating of the electron gas
is insignificant. The two data sets shown in blue and red
colors were recorded before and after the measurements
of Figs. 1(b)–1(d). Their close similarity confirms that no
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FIG. 1. (Color online) (a) Luminescence spectra recorded with a
Au coated W tip on Au(111) in the tunneling regime at V = 3.5 V
and I = 1n A before (blue) and after (red) the contact data of (b)–(d)
was measured. Black arrows indicate photon energies hν = eV .
(b)–(d) Spectra acquired at sample voltages V = 1.6,1.4, and
1.2 V and an elevated current I = 10 μA. A dashed curve in
(d) shows an estimate of the detection efficiency of the optical setup.

significant changes of the tip occurred during the experiments,
which would affect the spectra.26–28

The spectra of Figs. 1(b)–1(d) were recorded at I = 10 μA
and sample voltages V = 1.6,1.4, and 1.2 V. The correspond-
ing conductances are close to that of a single atom contact on
Au.11,29 At the low bias voltages used, the limited phase space
for inelastic transitions limits the intensities at high photon
energies. The threshold for single-electron processes (1e light),
hν = eV , is indicated by arrows. The spectra acquired at 1.6
and 1.4 V exhibit intense 1e light while the related signal
is weak at V = 1.2 V owing to low detection efficiency
[cf. dashed line in Fig. 1(d)]. In agreement with previous
work,11 additional significant emission occurs at higher photon
energies, hν > eV , which involves hot charge carriers.

While the spectra of Fig. 1 reflect the presence of hot
electrons or holes they are also influenced by other factors
such as the electromagnetic modes of the tip–sample junction.
Following Ref. 30 we use the ratio N2(hν)/N1(hν), where N2

and N1 are the intensities from spectra recorded at low (V2 =
1.2,1.4, and 1.6 V) and high (V1 = 3.5 V) bias and different
currents, respectively, to obtain a quantity that is more closely
related to calculated electron distributions. In particular, the
variation of the detection efficiency of the optical setup with the
wavelength cancels out. Figure 2 shows light emission spectra
for photons with hν > eV2 at V2 = 1.2, 1.4, and 1.6 V divided

1.2 V
1.4 V
1.6 V

FIG. 2. (Color online) 2e-intensity N2 at sample voltages V2 =
1.2,1.4, and 1.6 V and a tunneling current I2 = 10 μA (red circles,
blue diamonds, and black rectangles, respectively) divided by the
1e-intensity N1 at V1 = 3.5 V and I1 = 1 nA. Photon energies hν >

eV2 are shown. Calculated values of the ratio N2/N1, multiplied by a
factor of 3, are shown with solid lines.

by the spectrum at V1 = 3.5 V. As expected for the density of
hot electrons, N2/N1 increases at higher bias voltages.

III. CALCULATIONS

A. Model

We have carried out model calculations of the intensity of 1e

and 2e light in order to get a comparison with the experimental
results. In general, the light emission intensity from the STM
junction, by applying the Fermi golden rule, can be written as
a sum over initial and final states

d2P

d�d(hν)
= ν2|G(hν)|2

2ε0c3

∑
i,f

|jif|2fe(Ei)

× [1 − fc(Ef)]δ(Ei − Ef − hν). (1)

Here G(hν) denotes the enhancement of the electromagnetic
field in the tunneling gap between sample and tip at photon
energy hν, and jif is a transition matrix element for the inelastic
tunneling transition from an initial electron state of energy Ei

in the emitter electrode to a final state of energy Ef in the
collector. The distribution functions fe and 1 − fc appearing
in the sum dictate that an inelastically tunneling electron must
start from an occupied state in the emitter and make a transition
to an unoccupied one in the collector. For the case of 1e-light
emission, it is sufficient to view the electrodes as two Fermi
seas at temperature T = 0 where the emitter Fermi energy lies
eV above the collector Fermi energy. The 2e-light emission, on
the other hand, is due either to hot electrons above the emitter
Fermi level, fe > 0, tunneling into unoccupied states in the
collector or hot holes below the collector Fermi level, 1 − fc >

0, being filled by electrons tunneling from the emitter. We wish
to stress here that the distribution functions fe and fc, as the
experimental as well as theoretical results will show, are not
identical to the Fermi distribution function.

Our calculation of the 1e-light emission follows earlier
work.14,18 The tunneling current and inelastic tunneling
matrix elements are calculated employing an essentially
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FIG. 3. (Color online) Mechanisms leading to the emission of 2e

light. Gray shading indicates the occupation electron states. (a) Elastic
tunneling (1) at energies below the Fermi level of the emitter creates
a hot hole. This causes a cascade (2) and results in electrons with
energies above the Fermi level of the tip. Inelastic tunneling of these
electrons leads to the emission of photons with energies hν > eV .
(b) A hot electron is injected into the sample (1). A cascade (2)
produces hot holes. Inelastic tunneling to this hole results in 2e light
(3). The modeling presented in the text predicts similar probabilities
for both processes.

one-dimensional model, whereas the electromagnetic field
enhancement in the cavity between tip and sample is evaluated
for a spherical model tip (R = 30 nm) with the dielectric
properties of tungsten.

To deal with the 2e-light emission we calculate the distri-
bution functions appearing in Eq. (1) within a simple model of
hot-hole–hot-electron cascades (Fig. 3). The rate of the energy
transfer processes in the model from hot carriers to electrons
in the Fermi sea are set by phase-space considerations.31 At
the same time all of the hot holes and electrons are allowed to
diffuse in the electrodes. Thus, the model leads to a combined
diffusion and energy transfer rate problem which we solve
in order to determine the quantity of primary interest for the
photon emission at energies hν > eV , namely the hot electron
occupation fe above the tip Fermi level and the hot hole
occupation 1 − fc below the sample Fermi level. The model as
well as the parameter values employed are discussed in more
detail in the Appendix.

B. Results

The results of such a “cascade” calculation are shown in
Fig. 4. The distributions are to a large extent each other’s mirror
images around the Fermi level. The main difference occurs for
the injected excitations. Since the tunneling probability is the
largest for electrons with high energy, it is easier to inject hot
electrons far from the Fermi level in the sample than to inject
hot holes far from the Fermi level in the tip. The quantities
relevant to the 2e-light emission fe and 1 − fc here reach
values in the range of 10−5–10−4 for energies some 0.5–1 eV
away from the Fermi level.

IV. DISCUSSION

To compare the calculated occupation numbers with exper-
imentally accessible quantities we note that the ratio N2/N1

N2(V2,I2)

N1(V1,I1)
= [d2P/d(hν)d�](V2,I2)

[d2P/d(hν)d�](V1,I1)
(2)
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FIG. 4. (Color online) Calculated hot electron (f ) and hot hole
(1 − f ) occupation probabilities at a tunneling contact at three bias
voltages, and for a tunneling current I = 10 μA. Data is shown for the
emitter (index “e”) and collector (index “c”) electrodes. Straight lines
show the high-energy tails of distributions ∝ exp[(EF − E)/(kBT )]
at temperatures 2200, 2500, and 2700 K. A local energy scale for
each electrode is used.

between 2e and 1e-light emission at the same photon energy
but with different bias voltages and tunnel currents obtained
from Eq. (1) is primarily determined either by fe or 1 − fc.
Results for N2/N1 are shown in Fig. 2 for V1 = 3.5 V,
I1 = 1 nA, I2 = 10 μA, and V2 set to 1.2, 1.4, and 1.6 V,
respectively, together with experimental results for the same
ratio. The theoretical and experimental results show the same
dependence on the photon energy, with an initially steady
slope (on a logarithmic scale) followed by a much faster
decrease closer to the maximum photon energy that can
possibly be obtained from the hot excitations. This behavior
of N2/N1 is different from that of a hot electron Fermi gas,
where the rapid decrease at the high-energy end of the spectrum
would not be present. Neglecting their high energy part, the
distributions of hot electrons correspond to temperatures of
2200–2700 K (Fig. 4). The ratio between the two intensities
reaches numerical values of order 1. This agrees well with what
one can expect from the calculated hot-excitations occupation
numbers. While the occupation numbers are of the order 10−4,
with a current that is a factor of 104 higher for the 2e-light
emission the probability of an electron crossing the tunnel
barrier is roughly 104 times larger in both elastic and inelastic
tunneling events, hence the similar intensities in the two cases.

A closer look at the results for N2/N1 in Fig. 2 shows a
good agreement between theory and experiment for V = 1.2 V,
while there are larger differences for 1.4 and 1.6 V. There the
hot electron and hole occupation factors are not the only factor
determining N2/N1 within the model. Instead, in the calculated
results the electromagnetic response |G|2 still adds some more
features to N2/N1 that cannot be seen in the hot-excitations
distributions alone. Since the 2e-light emission occurs at
elevated tunneling currents, which correspond to a smaller
gap between the tip and sample, yielding a larger resonant
electromagnetic enhancement than at I = 1 nA. At higher
photon energies, above about 2.2 eV, the electromagnetic
enhancement found in the model is less geometry sensitive,
which causes a drop in the calculated N2/N1 ratio with
increasing hν in addition to what the decrease in hot carrier
occupation gives. The experimental results (for 1.4 and 1.6 V)
do not exhibit this decrease, and in fact show much the
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same dependence on energy as the calculated hot carrier
distributions do. We do not fully understand the reason for
these differences between experiment and theory. A possible
explanation is that the experimental tip shape is sufficiently
different from the model tip that geometry effects on the
electromagnetic response are weaker in the experiment. Model
calculations neglecting the calculated shift of the plasmon
resonance actually lead to a slightly better agreement with
the experimental data.

V. CONCLUSIONS

In conclusion, we used spectra of the light that is emitted
from a biased STM junction to determine the distribution of
hot electrons at the tip apex. Electrons are found at energies
exceeding the Fermi level by up to eV . While their distribution
deviates from a Fermi-Dirac function it is consistent with a
model of hot electrons and holes which diffuse in energy and
real space.
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APPENDIX: MODEL FOR HOT-ELECTRON-HOLE
CASCADE

To calculate the concentration of hot electrons and holes
at the STM tunneling contact that can cause light emission at
photon energies hν > eV , we employ a model that takes into
account hot-electron-hole cascades, i.e., essentially diffusion
in energy space, and diffusion in real space on an equal footing.
The diffusion in energy space is dealt with along the lines of
the work of Ritchie.31 We denote the concentration of hot
electrons with an energy of ε > EF at the point �r with u(�r,ε)
and the concentration of hot holes with energy ε < EF with
v(�r,ε). These quantities are governed by diffusion equations
which in a steady-state situation ( ∂u

∂t
= 0 and ∂v

∂t
= 0) take the

form

u/τ0 − D∇2u = Se(�r,ε) − u(ε)
∫ ε

EF

μe1(ε,ε′)dε′

+
∫ Emax

ε

u(ε′)[μe1(ε′,ε) + μe2(ε′,ε)]dε′

+
∫ 2EF −ε

Emin

v(ε′)μhe(ε′,ε)dε′, (A1)

and

v/τ0 − D∇2v = Sh(�r,ε) − v(ε)
∫ EF

ε

μh1(ε,ε′)dε′

+
∫ ε

Emin

v(ε′)[μh1(ε′,ε)dε′ + μh2(ε′,ε)]dε′

+
∫ Emax

2EF −ε

u(ε′)μeh(ε′,ε)dε′. (A2)

Here Emin is the lowest possible hole energy and Emax the
highest possible electron energy given the energy distribution
of the injected electrons and holes. The source terms Se and
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FIG. 5. Schematic illustration of cascade processes in which
either a hot electron or a hot hole loses energy by creating a new
electron-hole pair.

Sh account for charge carriers injected as a result of tunneling
processes. Of the remaining terms in the right hand side, the
first one describes scattering out from a particular electron or
hole energy and the rest of the terms describe scattering in
of electrons and holes to the same energy. Figure 5 illustrates
the different scattering processes in which either an electron
(top) or hole (bottom) loses energy and creates an additional
electron-hole pair, with the associated rates μ, introduced in
the work of Ritchie, used as labels: μe1(ε,ε′) is the rate (per unit
time and energy) at which the primary electron is transferred
to a state with energy ε′; μe2(ε,ε′) is the rate at which a
secondary hot electron with energy ε′ is created in this process;
μeh(ε,ε′), finally, is the rate at which a secondary hot hole with
energy ε′ is created in the process. In the same way μh1, μh2,
and μhe refer to a process where a hot hole loses energy.
Based on phase-space arguments one arrives at the following
approximate expressions for the rates in a free-electron model,

μe1(ε,ε′) = μe2(ε,ε′) = μ0

EF

ε − ε′

ε
θ (ε − ε′) (A3)

μeh(ε,ε′) = μ0

EF

ε + ε′ − 2EF

ε
θ (ε + ε′ − 2EF ) (A4)

μh1(ε,ε′) = μh2(ε,ε′) = μ0

E2
F

(ε′ − ε) θ (ε′ − ε) (A5)

μhe(ε,ε′) = μ0

E2
F

(2EF − ε − ε′) θ (2EF − ε − ε′). (A6)

In these expressions θ denotes a step function and all energies
are measured relative to the band bottom.

We should stress here that we deal with transition rates
per unit time, whereas in Ref. 31 transition rates per unit
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length were used. We make the connection with that work by
determining the overall rate μ0 as

μ0 = vF /	0, (A7)

where the length 	0 in a free-electron model is given by31

1

	0
= 1

18γ a0

[
arctan(1/γ ) + γ

1 + γ 2

]
(A8)

with

γ =
(

4

9π4

)1/6

r1/2
s , (A9)

and a0 is the Bohr radius. For gold, with rs ≈ 3, we arrive
at 	0 ≈ 0.5 nm, and we have used this value for all the
calculations even though the STM tip below the Au coating
consists of tungsten. The total scattering out rates for electrons
and holes of energy ε, 1/τe and 1/τh, are given by

1

τe(h)(ε)
=

∫ ε

EF

μe(h)1(ε,ε′) dε′, (A10)

which yields inelastic mean free paths of the order 10 nm (and
inelastic life times of the order of 10 fs) for excitations with
an energy of 2 eV away from the Fermi level.

The left hand side of the diffusion equations contain a
phenomenological damping term, u/τ0 or v/τ0, which we will
discuss further below, and a diffusion term with a diffusion
constant

D = vF 	

3
, (A11)

where 	 is a diffusion mean free path and vF is the Fermi
velocity. Here we have used 	 = 2 nm, assuming a high degree
of disorder in the tip.

To summarize, the model combines a local-in-space
electron-hole cascade and diffusion without energy changes
for the electrons and holes. The model is of course an
approximation in that the typical energy transfer involves
particles separated by a distance of the order of a screening
length in the electron gas.

We treat electron and hole diffusion in a generic model
geometry of a hemisphere of radius Rh = 50 nm in each
electrode. The primary hot electrons and holes are injected
at the hemisphere centers, at r = 0, corresponding to the
position of the tunneling contact. Given this model geometry,
the electron and hole concentrations u and v, as well as the
source distributions Se and Sh, can be expanded in terms of
spherical Bessel functions. For example, for electrons

u(�r,ε) =
∞∑

n=1

un(ε)j0(knr), (A12)

with corresponding expansion coefficients vn(ε), Sn,e(ε), and
Sn,h(ε) for the other functions. We assume that electrons and
holes are specularly reflected off the hemisphere’s boundaries
meaning that the wave numbers kn must satisfy ∂j0(knr)/∂r =
0 at r = Rh which yields the first few values for kn,

k1 = 0, k2 ≈ 4.49/Rh, etc. (A13)

Inserting the expansions into Eqs. (A1) and (A2), we can
solve for un and vn, and get

un(ε) = S(tot)
ne (ε)

1/τ0 + 1/τe(ε) + Dk2
n

, (A14)

and

vn(ε) = S
(tot)
nh (ε)

1/τ0 + 1/τh(ε) + Dk2
n

. (A15)

The total source strengths S(tot)
ne and S

(tot)
nh for hot electrons

and holes of energy ε including both primary and secondary
excitations are

S(tot)
ne (ε) = Sne(ε) +

∫ 2EF −ε

Emin

μhe(ε′,ε)vn(ε′)dε′

+
∫ Emax

ε

[μe1(ε′,ε) + μe2(ε′,ε)]un(ε′)dε′ (A16)

and

S
(tot)
nh (ε) = Snh(ε) +

∫ Emax

2EF −ε

μeh(ε′,ε)un(ε′)dε′

+
∫ ε

Emin

[μh1(ε′,ε) + μh2(ε′,ε)]vn(ε′)dε′. (A17)

The fact that the source strengths only involve the concen-
trations of “hotter” electrons and holes than ε, simplifies
the solution. We can start by solving for electron and hole
concentrations at the energies furthest from the Fermi energy
and work inwards towards EF .

The phenomenological damping time τ0 is introduced to
avoid the buildup of high artificial concentrations of hot holes
and electrons for energies near the Fermi level because the
model assumes specular reflection at r = Rh, meaning that
the diffusion rate Dk2

1 in the denominators of Eqs. (A14)
and (A15) is zero. To take into account that in reality holes
and electrons can diffuse to regions far from the tunneling
contact, the rate 1/τ0 is set to a nonzero value. We used
1/τ0 ≈ 2.7 × 1012 s−1 in the calculations here. The exact value
of this rate has little influence on the hot hole and hot electron
concentrations except in the immediate vicinity of the Fermi
level.

The discussion has so far been general enough not to
distinguish between the tip and sample, however, to calculate
the occupation numbers fe and fc appearing in the main text we
have to make the connection to the hot electron concentration
ue in the emitter electrode and the hot hole concentration vc in
the collector electrode, respectively. We do this by using the
concentrations of hot electrons and holes right at the tunneling
contact, i.e., at r = 0 in the diffusion model, and relating them
to the density of electron states D(E) at the energy in question.
Provided energies are measured relative to the bottom of the
free electron band we have

D(E) = m3/2
√

E

π2h̄3 . (A18)
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We then get

fe(E) = ue(E,r = 0)/D(E), (A19)

and

1 − fc(E) = vc(E,r = 0)/D(E). (A20)
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