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e OECD/NEA Uncertainty Analysis in Modeling (UAM) expert group organized and launched the UAM benchmark. Its main
objective is to performuncertainty analysis in light water reactor (LWR) predictions at all modeling stages. In this paper,multigroup
microscopic cross-sectional uncertainties are propagated through the DRAGON (version 4.05) lattice code in order to perform
uncertainty analysis on 𝑘𝑘∞ and 2-group homogenized macroscopic cross-sections. e chosen test case corresponds to the ree
Mile Island-1 (TMI-1) lattice, which is a 15 × 15 pressurized water reactor (PWR) fuel assembly segment with poison and at full
power conditions. A statistical methodology is employed for the uncertainty assessment, where cross-sections of certain isotopes
of various elements belonging to the 172-group DRAGLIB library format are considered as normal random variables. Two libraries
were created for such purposes, one based on JENDL-4 data and the other one based on the recently released ENDF/B-VII.1 data.
erefore, multigroup uncertainties based on both nuclear data libraries needed to be computed for the different isotopic reactions
by means of ERRORJ. e uncertainty assessment performed on 𝑘𝑘∞ and macroscopic cross-sections, that is based on JENDL-4
data, was much higher than the assessment based on ENDF/B-VII.1 data. It was found that the computed Uranium 235 �ssion
covariance matrix based on JENDL-4 is much larger at the thermal and resonant regions than, for instance, the covariance matrix
based on ENDF/B-VII.1 data. is can be the main cause of signi�cant discrepancies between different uncertainty assessments.

1. Introduction

e signi�cant increase in capacity of new computational
technology made it possible to switch to a newer generation
of complex codes, which are capable of representing the feed-
back between core thermal-hydraulics and neutron kinetics
in detail. e coupling of advanced, best estimate (BE)
models is recognized as an efficient method of addressing the
multidisciplinary nature of reactor accidents with complex
interfaces between disciplines. However, code predictions
are uncertain due to several sources of uncertainty, like
code models as well as uncertainties of plant, materials, and
fuel parameters. erefore, it is necessary to investigate the
uncertainty of the results if useful conclusions are to be
obtained from BE codes.

In the current procedure for light water reactor analysis,
during the �rst stage of the neutronic calculations, the so-
called lattice code is used to calculate the neutron �ux
distribution over a speci�ed region of the reactor lattice by
solving deterministically the transport equation. Lattice cal-
culations use nuclear libraries as input basis data, describing
the properties of nuclei and the fundamental physical rela-
tionships governing their interactions (e.g., cross-sections,
half-lives, decay modes and decay radiation properties, 𝛾𝛾
rays from radionuclides, etc.). Experimental measurements
on accelerators and/or estimated values from nuclear physics
models are the source of information of these libraries.
Because of the huge amount of sometimes contradictory
nuclear data, the data need to be evaluated before they can
be used for any reactor physics calculations. Once evaluated,
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the nuclear data are added in a speci�c format to so-called
evaluated nuclear data �les, such as ENDF-6 (Evaluated
Nuclear Data File-6). e information of the evaluation �les
can differ because they are produced by different working
groups all around the world (e.g., ENDF/B for the USA,
JEFF for Europe, JENDL for Japan, BROND for Russia, etc.).
e data can be of different type, containing an arbitrary
number of nuclear data sets for each isotope, or only one
recommended evaluation made of all the nuclear reactions
for each isotope. Finally, these data are fed to a cross-sectional
processing code such as NJOY99 [1], which produces the
isotopic cross-section library used by the lattice code. is
process can create a multigroup library speci�cally formatted
for the lattice code in use. For instance, Hébert [2] developed
a nuclear data library production system that recovers and
formats nuclear data required by the advanced lattice code
DRAGON version 4 [3] and higher versions. For these
purposes, a new postprocessing module known as DRAGR
was included inNJOY99, which is thus capable of creating the
so-called DRAGLIB nuclear data library for the DRAGON v
4.05 code.

In themajor nuclear data libraries (NDLs) created around
the world, the evaluation of nuclear data uncertainty is
included as data covariance matrixes. e covariance data
�les provide the estimated variance for the individual data
as well as any correlation that may exist. e uncertainty
evaluations are developed utilizing information from experi-
mental cross-section data, integral data (critical assemblies),
and nuclear models and theory. e covariance is given
with respect to point-wise cross-section data and/or with
respect to resonance parameters. us, if such uncertainties
are intended to be propagated through deterministic lattice
calculations, a processing method/code must be used to
convert the energy-dependent covariance information into
a multigroup format. For example, the ERRORJ module
of NJOY99 or the PUFF-IV code is able to process the
covariance for cross-sections including resonance parameters
and generate any desired multigroup correlation matrix.

Among the different approaches to perform uncertainty
analysis, the one based on statistical techniques begins with
the treatment of the code input uncertain parameters as
random variables. ereaer, values of these parameters are
selected according to a random or quasirandom sampling
strategy and then propagated through the code in order to
assess the output uncertainty in the corresponding calcu-
lations. is framework has been highly accepted by many
scienti�c disciplines not only because of its solid statistical
foundations, but also because it is affordable in practice and
its implementation is relatively easy thanks to the tremen-
dous advances in computing capabilities. In this paper, the
microscopic cross-sections of certain isotopes of various
elements, belonging to the 172-group DRAGLIB library
format, are considered as normal random variables. Two
different DRAGLIB’s are created, one based on JENDL-4 and
the other one based on ENDF/B-VII.1 data, because a large
amount of isotopic covariance matrices have been compiled
for these two major NDLs [4, 5]. e aim is to propagate the
multigroup uncertainties through the DRAGON v 4.05 code,
in order to assess and compare the different code outputs

uncertainties while using both JENDL-4 and ENDF/B-VII.1
data. Uncertainty assessment is performed on 𝑘𝑘∞ and on the
different 2-group homogenized macroscopic cross-sections
of a 15 × 15 PWR fuel assembly segment with poison (UO2-
Gd2O3). is test case corresponds to the ree Mile Island-
1 (TMI-1) Exercise I-2 that is included in the neutronics
phase (Phase I) of the “Benchmark for Uncertainty Analysis
inModeling (UAM) for design, operation, and safety analysis
of LWRs,” organized and lead by the OECD/NEA UAM
scienti�c board [6].

e preferred sampling strategy for the current study
corresponds to the quasirandom Latin Hypercube Sampling
(LHS). is technique allows a much better coverage of
the input uncertainties than simple random sampling (SRS)
because it densely strati�es across the range of each input
probability distribution. In fact, LHS was created in the �eld
of safety analysis of nuclear reactors [7], and the bene�ts and
efficiency of using LHS over SRS have been already proved in
both LWRs neutronic and thermal-hydraulic predictions [8,
9]. Output uncertainty assessment is based on the multivari-
ate tolerance limits concept. Due to the fact that the output
space formed by 𝑘𝑘∞ and some of the two-group homogenized
macroscopic cross-sections are correlated, the univariate
analysis does not apply anymore. By statistically perturbing
450 times the different isotopic microscopic cross-sections,
450 different DRAGLIB libraries are created. erefore, the
output sample formed by the 450 code calculations infers
to cover 95% of the multivariate output population, with at
least a 95% of con�dence. All these is performed twice, once
for libraries based on JENDL-4 data and another time for
libraries based on ENDF/B-VII.1 data, respectively, for their
further comparison.

In the next sections, the multigroup microscopic cross-
section uncertainties computed with ERRORJ are shown for
some important nuclides. ereaer, a deeper review on
how to perform a statistical uncertainty analysis is presented,
with emphasis on a developed methodology to properly
sample the scattering kernel and the �ssion spectrum. is
allows a correct uncertainty propagation through the lattice
code since the neutron balance is preserved in the transport
equation. Finally, results of the uncertainty analyses are
shown for the test case and discussed.

2. Multigroup Uncertainty Based on
JENDL-4 and ENDF/B-VII.1

2.1.Main Features. euncertainty information in themajor
NDLs is included in the so-called “covariance �les” within
the ENDF-6 formalism. e following covariance �les are
de�ned�

(i) data covariances obtained from parameter covari-
ances and sensitivities (MF30),

(ii) data covariances for number of neutrons per �ssion
(MF31),

(iii) data covariances for resonance parameters (MF32),
(iv) data covariances for reaction cross-sections (MF33),
(v) data covariances for angular distributions (MF34),
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(vi) data covariances for energy distributions (MF35),

(vii) data covariances for radionuclide production yields
(MF39),

(viii) data covariances for radionuclide production cross-
sections (MF40).

To propagate nuclear data uncertainties in reactor lattice
calculations, it is necessary to begin by converting energy-
dependent covariance information in ENDF format into
multigroup form. is task can be performed conveniently
within the latest updates of NJOY99 bymeans of the ERRORJ
module. In particular, ERRORJ is able to process the covari-
ance data of the Reich-Moore resolved resonance parameters,
the unresolved resonance parameters, the 𝑃𝑃𝑃 component
of the elastic scattering cross-section, and the secondary
neutron energy distributions of the �ssion reactions [5].
ERRORJ was originally developed by Kosako and Yamano
[10] as an improvement of the original ERRORR module in
order to calculate self-shielded multigroup cross-sections, as
well as the associated correlation coefficients. ese data are
obtained by combining absolute or relative covariances from
ENDF �les with an already existing cross-section library,
which contains multigroup data from the GROUPR module.

In the presence of narrow resonances, GROUPR handles
self-shielding through the use of the Bondarenko model [1].
To obtain the part of the �ux that provides self-shielding
for the isotope 𝑖𝑖, it is assumed that all other isotopes are
represented with a constant background cross-section 𝜎𝜎0.
erefore, at resonances the �ux takes the following form:

𝜙𝜙𝑖𝑖 (𝐸𝐸) =
𝐶𝐶 (𝐸𝐸)

𝜎𝜎𝑖𝑖 (𝐸𝐸) + 𝜎𝜎0
. (1)

e most important input parameters to ERRORJ are the
smooth weighting function 𝐶𝐶(𝐸𝐸) and the background cross-
section 𝜎𝜎0. It should be noticed that these are assumed to be
free of uncertainty.

2.2. Computation of Uncertainties and Correlation Matrices
of Important Isotopes. In this section, results of the ERRORJ
module are shown from Figures 1, 2, 3, 4, 5, 6, and 7,
respectively, for different reactions of 5 important nuclides:
𝑃H, 𝑃6O, 56Fe, 235U, and 238U. Results for 𝑃H are based on
JENDL-3.3 data since JENDL-4 does not contain uncertainty
information for this isotope. e value of the microscopic
cross-sections and their relative variances in percentage were
computed for an energy-grid of 172 groups by using aweight-
ing �ux that corresponds to the 𝑃/𝑒𝑒 + �ssion spectrum +
thermal maxwellian shape (in NJOY, this is equivalent to the
𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖 option of GROUPR). For all cases, an in�nite dilution
condition was assumed (i.e., 𝜎𝜎0 = 𝑃 × 𝑃0𝑃0 barns) and the
temperature was considered to be 293K.

Each of the following �gures contains 3 main plots.
e plot on the right corresponds to the value of a certain
reaction cross-section, while the plot at the top corresponds
to the relative variance (i.e., the variance of the cross-section
divided by the actual value of the cross-section at a certain

energy group). ese two plots are presented in multigroup
format as a function of energy (eV). Finally, the plot at
the center represents the correlation that exists among the
different 172 energy groups for that type of reaction.

From the isotopic composition of the TMI-1 exercise, 𝑃H,
𝑃6O, 56Fe, 235U, and 238U are the only nuclides for which
uncertainty information exists in both JENDL-4 and ENDF/
B-VII.1 libraries.erefore, only the corresponding reactions
of these nuclides were statistically perturbed. It has to be
mentioned that the �ssion spectrum uncertainty could not be
computed by ERRORJ for the ENDF/B-VII.1 library, neither
for the 235U nor the 238U isotope. e code gave an error
message about the I/O format of the MF = 35 �le and,
since this could not be resolved, the �ssion spectra covariance
matrices from JENDL-4 were used instead. is problem has
already been addressed to the ENDF/B research group.

As seen in the previous �gures, for each cross-section of a
given nuclide, the variability of the probability of interaction
at a certain energy group is related to the probability of
interactions at other energy groups since the samemeasuring
equipment was used when determining such probabilities.
Such correlation can be studied through the self-reaction
covariance matrix. In the same way, the variability of the
probability of interaction at a certain energy groupof a certain
type of reaction is also related to the probability of interaction
of a second type of reaction at the same energy group due
to the same reason as above. Such correlation can be studied
through the multireaction covariance matrix.

It should be noted that in the modern JENDL libraries,
covariances for mu-bar (which allows performing an uncer-
tainty analysis up to a linear degree of anisotropy) are
de�ned for actinides. However, this is not the case for
the newly ENDF/B-VII.1 library and thus, the uncertainty
analysis was only performed on the isotropic components
of the scattering matrix. Another important issue that was
noticed while computing the different reaction covariances
was the fact that resonance uncertainties in JENDL-4 are
absolute. is means that self-shielded relative variances (or
relative standard deviations) will change as a function of
temperature and dilution at the resonant groups. To illustrate
this issue, relative standard deviations at the resonant groups
for different background cross-sections were computed for
the 235U(𝑛𝑛𝑛 𝑛𝑛) and 238U(𝑛𝑛𝑛 𝑛𝑛) reactions, as shown in Figures
8 and 9, respectively. Small relative standard deviations are
obtained with large background cross-section values and vice
versa. is fact is supported by the results obtained by Chiba
and Ishikawa [11], where a dependency between relative
multigroup covariances and background cross-sections at
the resonances was observed when JENDL-3.2 data were
employed.

Regarding the ENDF/B-VII.1 resonant uncertainties,
only an absolute dependency was observed, leaving the
relative terms intact for any temperature and/or dilution
conditions.is is an important issue, because as will be seen
in Section 3, it is very easy to implement the perturbation
methodology based on relative uncertainties. Nevertheless,
an exception must be made at the actinides resonances for
the JENDL-4 case.
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F 1: Covariance plot for 1H(𝑛𝑛𝑛 el.) and 1H(𝑛𝑛𝑛 𝑛𝑛) based on (a) JENDL-3.3 and (b) ENDF/B-VII.1.

3. Statistical Uncertainty Analysis

3.1. Uncertainty Assessment Using Nonparametric Tolerance
Limits. e �rst step of the standard statistical framework
is to identify from the code inputs the most important
uncertain parameters de�ned as 𝑋𝑋 𝑋 (𝑋𝑋1𝑛 𝑋𝑋2𝑛… 𝑛 𝑋𝑋𝑘𝑘), which

can be models, boundary conditions, initial conditions, clo-
sure parameters, and so forth. ey should be characterized
by a sequence of probability distribution functions (PDFs)
𝐷𝐷1𝑛𝐷𝐷2𝑛… 𝑛𝐷𝐷𝑘𝑘 known as the uncertain input space. en, a
sampling strategy is used to generate a sample of size𝑁𝑁 from
such an input space which is propagated through the code
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F 2: Covariance plot for 16O(𝑛𝑛𝑛 el.) and 16O(𝑛𝑛𝑛 𝑛𝑛) based on (a) JENDL-4 and (b) ENDF/B-VII.1.

in order to treat the output calculations 𝑦𝑦1𝑛 𝑦𝑦2𝑛… 𝑛 𝑦𝑦𝑁𝑁 as
random variables. is scheme is shown in Figure 10.

Once a sample of the code output has been taken, a
statistical inference of the output population parameters
is performed. During recent years, it has been common
in the �eld of nuclear reactor safety to use the theory of

nonparametric tolerance limits for the assessment of code
output uncertainty. is approach, proposed by Gesellscha
für Anlagen-und Reaktorsicherheit (GRS) [12], is based on
the work done by Wilks [13, 14] to obtain the minimum
sample size in order to infer a certain coverage of a pop-
ulation, with a certain con�dence. Let us assume that the
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F 3: Covariance plot for 56Fe(𝑛𝑛𝑛 el.) and 56Fe(𝑛𝑛𝑛 𝑛𝑛) based on (a) JENDL-4 and (b) ENDF/B-VII.1.

uncertainty assessment is only performed in one output
parameter. For the two-sided case, where the coverage of
the output population is expected to be inferred from the
(100 − (𝛼𝛼 𝛼 100)) percentile to the (𝛼𝛼 𝛼 100) percentile with a
𝛽𝛽 𝛼 100(𝛽) of con�dence, the minimum sample si�e is given

by the following implicit equation [15]:

1 − 𝛼𝛼𝑛𝑛 − 𝑛𝑛 (1 − 𝛼𝛼) 𝛼𝛼𝑛𝑛−1 ≥ 𝛽𝛽𝛽 (2)

For example, if the 5th and 95th percentiles of the
population are to be inferred with a 95𝛽 of con�dence,
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F 4: Covariance plot for 235U(𝑛𝑛𝑛 el.), 235U(𝑛𝑛𝑛 inel.), 235U(𝑛𝑛𝑛 𝑛𝑛), 235U(𝑛𝑛𝑛 𝑛𝑛), 235U(𝜐𝜐), 235U(𝜇𝜇), and �ssion spectra based on ��ND�-4 data.

a sample size of 93 elements is required. It should be noticed
that this analysis is solely based on the number of samples
and applies to any kind of PDF the output may follow.
Also, since the input space is only used as an indirect
way to sample the output space, the use of nonparametric
tolerance limits is independent from the number of uncertain
input parameters. When the code output is comprised by
several variables that depend on each other, the uncertainty
assessment should be based on the theory of multivariate
tolerance limits. Wald [16, 17] was the �rst to analyze the
statistical coverage of a joint distribution-free PDF. In Guba
et al. [18], the concern about assessing separate tolerance
limits to statistically dependent outputs was raised within
the nuclear reactor safety community. In such a work, it was
shown that the general equation developed by Noether [19]
for simultaneous upper and lower tolerance limits can be used
to determine the minimum sample size required to cover,
in a distribution-free manner, a joint PDF depending on the
number of output variables. Such equation reads as follows:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖 (𝑟 𝑟 𝛼𝛼)
𝑖𝑖𝛼𝛼𝑛𝑛𝑟𝑖𝑖 ≤ 𝑟 𝑟 𝛽𝛽𝑛 (3)

where 𝑟𝑟 is the number of upper tolerance limits and 𝑟𝑟 is
the number of lower tolerance limits to be assessed. For
instance, in the case of two-sided tolerance limits for a single
variable, 𝑟𝑟 𝑖 𝑟𝑟 𝑖 𝑟 and (3) turns out to be the same
as (2). erefore, if a two-sided uncertainty assessment is
going to be performed to 2 statistically dependent output
variables then 𝑟𝑟 𝑖 𝑟𝑟 𝑖 2, and so on. It should be noticed

that the sample size in the multivariate case depends on the
correlation among the different parameters. Guba et al. [18]
exempli�ed this fact for a bivariate normal distribution. It
was then shown that if the variables were highly correlated,
the required sample size to cover the joint PDF is smaller
than for the poorly correlated case. Nevertheless, if nothing
is known about the output space PDF, (3) would give the
required sample size for the desired multivariate coverage
with a desired con�dence independently of the correlation
(or covariance) among the output parameters. is is a very
powerful statistically signi�cant way to assess uncertainty in
the design of computational experiments since in general,
nothing is known about the PDF where the calculations are
coming from.

Other authors have done some work to derive the min-
imum sample size for multivariate nonparametric tolerance
limits, such as the equation presented by Scheffe and Tukey
[20] as follows:

𝑛𝑛 𝑖 (𝑟𝑟 𝑟 𝑟𝑟)
𝜒𝜒2𝛼𝛼𝑛2(𝑟𝑟𝑟𝑟𝑟)/2 (𝑟𝑟 𝑟 𝑟𝑟) 𝑟 𝑟𝛽𝛽 𝑟 𝑟

𝑟 𝑟 𝛽𝛽
𝑛 (4)

where 𝜒𝜒2𝛼𝛼𝑛2(𝑟𝑟𝑟𝑟𝑟) is the value of the 𝜒𝜒
2-distribution with 2(𝑟𝑟 𝑟

𝑟𝑟) degrees of freedom. Ackermann and Abt [21] tabulated
(4) as a function of the desired coverage and con�dence,
respectively, for a large number of tolerance limits the
space in study may be comprised with. ese tables are in
agreement with for instance, Table no. 4 shown in [18] with
respect to the solution of (3) for the two-sided case and up to
3 variables in question.
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F 5: Covariance plot for 238U(𝑛𝑛𝑛 el.), 238U(𝑛𝑛𝑛 inel.), 238U(𝑛𝑛𝑛 𝑛𝑛), 238U(𝑛𝑛𝑛 𝑛𝑛), 238U(𝜐𝜐), 238U(𝜇𝜇), and �ssion spectra based on �ENDL-4 data.

3.2. Latin Hypercube Sampling. e simplest sampling
procedure for developing a mapping from input space to
output space is through SRS. In this procedure, each sample
element is generated independently from all other sample
elements; however, there is no assurance that a sample
element will be generated from any particular subset of
the input space. In particular, important subsets with low
probabilities but high consequences are likely to be missed
if the sample is not large enough [7]. Even though in the
theory of nonparametric tolerance limits, the minimum
sample size is independent from the dimension of the input
space, if an efficient coverage of the different inputs can
be performed with the same sample size that is needed
to statistically signi�cant cover the output space, then the
code nonlinearities would be better handled and the output
uncertainty assessment would be as well more efficient. e
aforementioned goal can be achieved if Latin Hypercube
sampling is employed instead of simple random sampling.

LHS can be viewed as a compromise, since it is a
procedure that incorporates many of the desirable features of
random and strati�ed sampling. LHS is done according to the
following scheme to generate a sample of size𝑁𝑁 from the 𝑋𝑋
input space in consistency with their PDFs.e range of each
variable (i.e., the 𝑥𝑥𝑗𝑗) is exhaustively divided into 𝑁𝑁 disjoint
intervals of equal probability and one value is selected at
random from each interval.e𝑁𝑁 values thus obtained for𝑥𝑥1
are paired at random without replacement with the𝑁𝑁 values
obtained for 𝑥𝑥2. ese 𝑁𝑁 pairs are combined in a random
manner without replacement with the𝑁𝑁 values of 𝑥𝑥3 to form
𝑁𝑁 triples.is process is continued until a set ofNK-tuples is

formed. In this way, a good coverage of all the subsets de�n-
ing the uncertain input space can be achieved.is procedure
is exempli�ed in Figure 11 for two different possible input
distributions, one corresponding to a uniform distribution
and the second to a normal distribution, respectively.

In the �eld of computational experiments, the concept of
tolerance limits applied to the code uncertainty assessment
is valid even if the input space is sampled with LHS. is is
due to the fact that such a theory does not assume any kind of
parametric distribution of the code output space, and is only
founded on the ranking of a statistically signi�cant number of
samples.erefore, since this theory is independent from the
dimensionality of the input space, it does not matter how the
input space is sampled as long as the minimum sample size
requirement is being ful�lled. In other words, LHS is used to
cover much better the input space and ergo, to much better
handle the code nonlinearities in order to try to infer more
realistic output percentiles that the ones SRS might infer for
the same sample size, and for the same level of con�dence.
For example, the use of LHS applied to the inference of code
output tolerance limits in a nonparametric way can be found
in [7, 22, 23]. Moreover, it should be reminded that the
estimation of the output cumulative density function (CDF)
when LHS is employed is unbiased [24].

3.3. Determination of the Sample Size according to Two-
Group Diffusion eory. Since uncertainty analysis in this
work is performed to both 𝑘𝑘∞ and homogenized two-
group macroscopic cross-sections, the minimum sample size
to assess multivariate uncertainty based on nonparametric
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F 6: Covariance plot for 235U(𝑛𝑛𝑛 el.), 235U(𝑛𝑛𝑛 inel.), 235U(𝑛𝑛𝑛 𝑛𝑛), 235U(𝑛𝑛𝑛 𝑛𝑛), and 235U(𝜐𝜐) based on ENDF/B-VII.1 data.
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F 7: Covariance plot for 238U(𝑛𝑛𝑛 el.), 238U(𝑛𝑛𝑛 inel.), 238U(𝑛𝑛𝑛 𝑛𝑛), 238U(𝑛𝑛𝑛 𝑛𝑛), and 238U(𝜐𝜐) based on ENDF/B-VII.1 data.
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F 8: Relative standard deviation as a function of background
cross-section at the resonance groups for the 235U(𝑛𝑛𝑛 𝑛𝑛𝑛 reaction.
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F 9: Relative standard deviation as a function of background
cross-section at the resonance groups for the 238U(𝑛𝑛𝑛 𝑛𝑛𝑛 reaction.

tolerance limits is dependent on the number of macroscopic
cross-sections that are required to calculate 𝑘𝑘∞. For example,
by following the solution of the two-group diffusion equation
in a homogenous system and applying vacuum boundary
conditions [25], the well-known four-factor formula can be
derived

𝑘𝑘∞ = 𝜀𝜀𝜀𝜀𝑛𝑛𝜀𝜀 =
𝜐𝜐𝜐𝑛𝑛𝑛2 + 𝜐𝜐𝜐𝑛𝑛𝑛𝑓 ⋅ 𝜐𝑎𝑎𝑛2/𝜐𝑟𝑟

𝜐𝑎𝑎𝑛2
×

𝜐𝑟𝑟
𝜐𝑟𝑟 + 𝜐𝑎𝑎𝑛𝑓

𝑛 (5)

where the removal cross-section is given by

𝜐𝑟𝑟 = 𝜐𝑠𝑠𝑠𝑛𝑓𝑠2 − 𝜐𝑠𝑠𝑠𝑛2𝑠𝑓 
𝜙𝜙2
𝜙𝜙𝑓
 . (6)

It is common that thermal upscattering is not present and
thus,𝜐𝑟𝑟 = 𝜐𝑠𝑠𝑠𝑛𝑓𝑠2.erefore, when assessing the covariances
between 𝑘𝑘∞ and the two-groupmacroscopic cross-sections, a
minimum of 6 output parameters are in question (i.e., 𝜐𝜐𝜐𝑛𝑛𝑛𝑓,
𝜐𝜐𝜐𝑛𝑛𝑛2, 𝜐𝑎𝑎𝑛𝑓, 𝜐𝑎𝑎𝑛2, 𝜐𝑠𝑠𝑠𝑛𝑓𝑠2, and 𝑘𝑘∞). According to Table 1b
present in [21], for a two-sided 95% coverage of 6 variables
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F 10: Scheme of statistical uncertainty analysis [12].
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F 11: Coverage of a probability space formed by a uniform and
normal distributions using LHS and for a sample size of 10 elements.

with a 95% of con�dence, a minimum of 361 samples
are required. Nevertheless, if the uncertainty assessment is
extended to other parameters such as diffusion coefficients,
a sample size of 410 elements is needed, because diffusion
coefficients are related to 𝑘𝑘∞ through the transport cross-
section.erefore, since one of the main goals of performing
lattice calculations is to prepare a set of homogenized and
energy collapsed set of parameters for any further core
analysis, the output sample for the multivariate uncertainty
analysis should contain at least 410 elements.
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F 12: DRAGLIB statistical perturbation system.

4. The Input Uncertain Space: Sampling
Procedure of the DRAGLIB Library

4.1. Main Features of the DRAGON Code and the DRAGLIB
Library. e DRAGON code is the result of an effort made
at École Polytechnique de Montréal to rationalize and unify
the differentmodels and algorithms used to solve the neutron
transport equation into a single code.

Advanced lattice codes essentially feature self-shielding
models with capabilities to represent distributed and mutual
resonance shielding effects, leakagemodelswith space depen-
dent isotropic or anisotropic streaming effect, availability
of the characteristics method and burnup calculation with
energy-resolved reaction rates. e advanced self-shielding
models available in DRAGON version 4.05 are based on
two main approaches: equivalence in dilution or subgroup
models. State-of-the art resonance self-shielding calculations
with such models require dilution-dependent microscopic

T 1: Test case geometry.

Parameter Value (mm)
Pellet diameter 9.39
Cladding thickness 0.673
Rod outside diameter 10.992
Rod pitch 14.427

cross-sections for all resonant reactions, and formore than 10
speci�c dilutions. �ltra�nemultigroup cross-section data are
also required in the resolved energy domain.us, the cross-
sections library energy structure should comprise at least 172
groups. Since these capabilities require information that is
not currently available in for example, the WIMS-formatted
library, a nuclear data library production system was written
by Hébert [2] to recover and format the required nuclear data
that is needed to feed the DRAGON v 4.05 code.
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T 2: 𝑘𝑘∞, macroscopic cross-sections and diffusion coefficient computed for the fast group (nominal calculation).

𝑘𝑘∞
Diffusion

coefficient (cm) NUSIGF (1/cm) Absorption
(1/cm)

Scattering
(in-group) (1/cm)

Scattering
(out-group) (1/cm)

JENDL-4 1.40851 1.45121 0.00672 0.00855 0.47355 0.01917
ENDF/B-VII.1 1.40373 1.45209 0.00677 0.00859 0.47514 0.01911

T 3: Macroscopic cross-sections and diffusion coefficient computed for the thermal group (nominal calculation).

Diffusion
coefficient (cm) NUSIGF (1/cm) Absorption

(1/cm)
Scattering

(in-group) (1/cm)
Scattering

(out-group) (1/cm)
JENDL-4 0.47952 0.13048 0.07683 1.23170 0
ENDF/B-VII.1 0.48583 0.13086 0.07730 1.21337 0

emanagement of a cross-section library requires capa-
bilities to add, remove, or replace an isotope, and the capabil-
ity to recon�gure the burnup data without recomputing the
complete library. For these purposes, DRAGR was developed
by Hébert [2] and is an interface module to perform all these
functions while maintaining full compatibility with NJOY99
and its further improvements. DRAGR produces DRAGLIB,
a direct access cross-section library in a self-described format
that is compatible with DRAGON or with any lattice code
supporting that format. e DRAGR Fortran module was
written as a clean and direct utility that makes use of the
NJOYmodules PENDF andGENDF. For each nuclide within
DRAGLIB, the cross-sections for the following neutron-
interaction reactions are described: (𝑛𝑛𝑛 total), (𝑛𝑛𝑛 elastic),
(𝑛𝑛𝑛 𝑛𝑛𝑛), (𝑛𝑛𝑛 𝑛𝑛𝑛), (𝑛𝑛𝑛 𝑛𝑛𝑛), (𝑛𝑛𝑛 �ssion), and (𝑛𝑛𝑛 gamma). Also,
Nu-Sigma-Fission, the released neutron energy spectrum
(CHI), and the P0 and P1 scattering matrices are included.
Since the uncertainty study reported hereaer is based on
JENDL-4 data, a DRAGLIB library of 172 groups was needed
to be produced using JENDL-4 information for different
temperatures and background cross-sections. e �rst 79
groups correspond to the thermal region; the next 46 groups
correspond to the resonant region and the last 47 groups
correspond to the fast region. An example of microscopic
cross-sections for different reactions included in DRAGLIB
can be found in Figures 1, 2, and 3 for 1H, 𝑛𝑛5U, and 𝑛𝑛8U,
respectively. ese cross-sections were calculated at 293K
and considering an in�nite dilution.

e DRAGON code solves the multigroup criticality
equation at the pin cell level using the collision probability
theory, and at the fuel assembly level by means of the method
of characteristics. In its integro-differential form, the zero-
level transport corrected multigroup equation is given by

Ω ⋅ ∇𝜙𝜙𝑔𝑔 𝐫𝐫𝑛 Ω + Σ
0
𝑇𝑇𝑛𝑔𝑔𝜙𝜙𝑔𝑔 𝐫𝐫𝑛 Ω

=
1
𝑛𝜋𝜋

𝐺𝐺

𝑔𝑔′=1

Σ0𝑠𝑠𝑛𝑔𝑔′ →𝑔𝑔𝜙𝜙𝑔𝑔′ (𝐫𝐫) +
𝜒𝜒𝑔𝑔
𝑛𝜋𝜋𝑘𝑘

𝐺𝐺

𝑔𝑔′=1

𝜐𝜐𝑔𝑔′Σ𝑓𝑓𝑛𝑔𝑔′𝜙𝜙𝑔𝑔′ (𝐫𝐫) 𝑛

𝑔𝑔 = 1𝑛𝑔 𝑛𝐺𝐺𝑔
(7)

T 4: Uncertainty analysis of 𝑘𝑘∞.

Max. value Min. value Mean 𝜎𝜎STD %Δ𝑘𝑘𝑘𝑘𝑘
JENDL-4 1.47408 1.36896 1.40101 0.01532 1.094
ENDF/B-VII.1 1.41076 1.38967 1.40236 0.00250 0.178

e le hand side of (7) is related to how neutrons
disappear in space by leakage and any absorption or scat-
tering reaction at the group 𝑔𝑔, while the right hand side
is related to how neutrons are being produced at the 𝑔𝑔
energy level through the sum of the scattering and �ssion
contributions coming from the different neutron energy
groups. en, the input uncertain space is composed by
the different microscopic cross-sections, 𝜒𝜒𝑔𝑔 and 𝜐𝜐𝑔𝑔. If any
statistical perturbation on a type of reaction is going to be
made in one side of the transport equation, it should be
somehow propagated to the other side as well in order to
preserve the neutron balance. However, some uncertainty
information (depending on the type of reaction and nuclide
in question) cannot be directly computed directly from the
NDLs. For example, straightforward covariances cannot be
obtained for the scattering matrices, and so on. erefore,
different methodologies needed for a proper propagation of
microscopic cross-section uncertainty are detailed in the next
subsections.

4.1.1. Uncertainty Analysis of the Scattering Cross-Section.
e scattering source can be expanded such as

𝑆𝑆𝑔𝑔 =
1
𝑛𝜋𝜋

𝐺𝐺

𝑔𝑔′=1

Σ0𝑠𝑠𝑛𝑔𝑔′ →𝑔𝑔𝜙𝜙𝑔𝑔′ (𝐫𝐫)

=
1
𝑛𝜋𝜋

𝑛

𝑥𝑥=1

𝑗𝑗
𝑁𝑁𝑗𝑗

𝐺𝐺

𝑔𝑔′=1

𝜎𝜎0𝑥𝑥𝑛𝑗𝑗𝑛𝑔𝑔′ →𝑔𝑔𝜙𝜙𝑔𝑔′ (𝐫𝐫) 𝑛

(8)

where the 𝑥𝑥-index indicates if the reaction is elastic or inelas-
tic, and 𝑗𝑗 is referred to the nuclide index. In general, the 𝑃𝑃0
and 𝑃𝑃1 scattering matrices in multigroup format computed
by NJOY are based, within the ENDF-6 formalism, on the
MF = 6 �le which accounts for energy-angle distributions
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T 5: Uncertainty analysis of homogenized macroscopic cross-sections (fast group, JENDL-4).

Parameter Min. value (1/cm) Max. value (1/cm) Mean (1/cm) 𝜎𝜎STD (1/cm)
NUSIGF 0.00679 0.00719 0.00697 7.341𝑒𝑒 𝑒 𝑒𝑒
Absorption 0.00861 0.00895 0.00878 4.124𝑒𝑒 𝑒 𝑒𝑒
Scattering (in-group) 0.46812 0.47424 0.47120 81.742𝑒𝑒 𝑒 𝑒𝑒
Scattering (out-group) 0.01826 0.01864 0.01851 𝑒.63𝑒𝑒𝑒 𝑒 𝑒𝑒

T 6: Uncertainty analysis of homogenized macroscopic cross-sections (thermal group, JENDL-4).

Parameter Min. value (1/cm) Max. value (1/cm) Mean (1/cm) 𝜎𝜎STD (1/cm)
NUSIGF 0.13188 0.14736 0.13744 219.328𝑒𝑒 𝑒 𝑒𝑒
Absorption 0.07938 0.08202 0.08074 29.239𝑒𝑒 𝑒 𝑒𝑒
Scattering (in-group) 0.99676 0.99820 0.99734 23.322𝑒𝑒 𝑒 𝑒𝑒
Scattering (out-group) 0 0 0 0

of different reactions. For example, the MT = 2 reaction is
considered for elastic scattering, while all the reactions that
are present in the �le between MT = 𝑒1 andMT = 91 should
be taken into account for inelastic scattering.

Let us analyze the 𝑃𝑃𝑒 matrix. For the nominal case,
the following relationship between energy-integrated
cross-sections and the scattering matrix can be grounded

𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′ = 𝑝𝑝𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥

⟹ 𝑝𝑝𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′ =
𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′

𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥
.

(9)

Since uncertainties are only given to the isotropic scatter-
ing reaction 𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥, any sampling of the form 𝜎𝜎(∗)𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥 can be
propagated to the scattering matrix if the nominal transfer
matrix 𝑝𝑝𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′ is kept constant, that is

𝜎𝜎 (∗)
𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′

= 𝑝𝑝𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′𝜎𝜎
(∗)
𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥. (10)

In the nominal case of the transport corrected version,
a degree of linear anisotropy can be taken into account by
modifying the diagonal of the scattering matrix as follows:

𝜎𝜎𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑒 𝜎𝜎𝑥𝑥1𝑥𝑥𝑥𝑥𝑥𝑥

⟹ 𝜎𝜎𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑒 𝜇𝜇𝑥𝑥𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥.
(11)

As shown before in Section 2, uncertainties for the
average of the cosine of the scattering angle mu-bar are
de�ned in JENDL-4 only for some actinides. Nevertheless,
since this is not the case for the ENDF/B-VII.1 library,
perturbations to mu-bar were not considered in this paper
because otherwise, a fair comparison between the distinct
uncertainty assessments would not take place.

If it is considered that any nondiagonal element of the
scatteringmatrix is isotropic (i.e.,𝜎𝜎𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′ = 𝜎𝜎𝑥𝑥𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′), any
perturbation can be balanced in the transport equation since
the total microscopic cross-section is given by the sum of the

absorption and the corrected scattering cross-sections. is
means that

𝜎𝜎𝑒 (∗)𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 = 𝜎𝜎
(∗)
𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 + 𝜎𝜎

𝑒 (∗)
𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 = 𝜎𝜎(∗)𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 +

2

𝑥𝑥=1

𝐺𝐺

𝑥𝑥′=1

𝜎𝜎𝑒 (∗)
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′

𝑥 (12)

where the capture and �ssion perturbations expressed such as

𝜎𝜎(∗)𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 = 𝜎𝜎
(∗)
𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 + 𝜎𝜎

(∗)
𝑥𝑥𝑥𝑗𝑗𝑥𝑥𝑥 (13)

can be directly sampled from the covariance matrices com-
puted with ERRORJ.

4.1.2. Uncertainty Analysis of the Fission Spectrum. Equation
(7) is expressed in such away that the �ssion spectrum should
always satisfy the following normalization condition:

𝐺𝐺

𝑥𝑥=1
𝜒𝜒𝑥𝑥 = 1. (14)

If a sample is to be drawn for the different spectrum
groups, the perturbed spectrum should be carefully re-
normalized to unity. In the statistical uncertainty approach,
this can be achieved by dividing each of the perturbed group-
terms of the spectrum by the sum of all of the perturbed
group-terms. For example, for a certain sample, this can be
illustrated as follows:

𝜒𝜒(∗𝑥𝑛𝑛)𝑥𝑥 =
𝜒𝜒(∗)𝑥𝑥

∑𝐺𝐺
𝑥𝑥=1 𝜒𝜒

(∗)
𝑥𝑥
𝑥 (15)

where the new perturbed �ssion spectrum will satisfy the
normalization condition, that is

𝐺𝐺

𝑥𝑥=1
𝜒𝜒(∗𝑥𝑛𝑛)𝑥𝑥 = 1. (16)

4.2. Sampling the DRAGLIB Library. For our study, the
multigroup microscopic cross-sections of certain isotopes
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T 7: Uncertainty analysis of fast and thermal diffusion coefficients (JENDL-4).

Min. value (cm) Max. value (cm) Mean (cm) 𝜎𝜎STD (cm)
Fast diffusion coefficient 1.42150 1.49531 1.45501 0.01118
ermal diffusion coefficient 0.58332 0.58582 0.58472 0.00042

T 8: Uncertainty analysis of homogenized macroscopic cross-sections (fast group, ENDF/B-VII.1).

Parameter Min. value (1/cm) Max. value (1/cm) Mean (1/cm) 𝜎𝜎STD (1/cm)
NUSIGF 0.00689 0.00716 0.006974 2.831𝑒𝑒 𝑒 𝑒𝑒
Absorption 0.00868 0.00888 0.00879 2.786𝑒𝑒 𝑒 𝑒𝑒
Scattering (in-group) 0.46901 0.47385 0.47127 87.𝑒4𝑒𝑒𝑒 𝑒 𝑒𝑒
Scattering (out-group) 0.01847 0.01859 0.01852 1.794𝑒𝑒 𝑒 𝑒𝑒

are treated as random variables following a normal PDF.
erefore, for each cross-section of a given nuclide, the nom-
inal cross-section value at each energy group corresponds
to the mean value. Since the LHS methodology described
in the previous section assumes that the different variables
are independent, the Latin hypercube procedure developed
by Iman and Conover [26] for sampling correlated variables
was followed. is procedure is based not directly on the
covariance matrix but, instead, on the correlation matrix.
Nevertheless, it can be applied in a very straightforward
manner because the ERRORJ output can be processed by the
NJOYCOVX [27] program in order to obtain directly, for
each reaction, the variance of each group and the associated
correlation matrices.

A �nal total correlation matrix needs to be computed in
order to evaluate all the individual self and mutual-reaction
correlation matrices. is corresponds to a square matrix of
size 172∗(number of individual correlation matrices). Before
starting the sampling procedure, the total correlation matrix
should be positive de�nite. If not, the negative eigenvalues
contained in the diagonal of the 𝐿𝐿 matrix should be made
slightly positive (and 𝐿𝐿new is created). en, the new positive
de�nite total correlation matrix takes the form:

𝐶𝐶new = 𝑉𝑉𝐿𝐿new𝑉𝑉
′, (17)

where𝑉𝑉 is amatrix containing the eigenvectors of the original
correlation matrix.

For each nuclide, the procedure for correlated variables
begins by taking an LHS sample based on the individual
group variances, and assuming that the group cross-section
values are independent, for example:

𝑋𝑋 = 



𝜎𝜎11 𝜎𝜎12 ⋯ 𝜎𝜎1𝑛𝑛
𝜎𝜎21 𝜎𝜎22 ⋯ 𝜎𝜎2𝑛𝑛
⋮
𝜎𝜎𝑚𝑚1

⋮
𝜎𝜎𝑚𝑚2

⋮ ⋮
⋯ 𝜎𝜎𝑚𝑚𝑛𝑛





, (18)

where 𝑚𝑚 is the total number of multigroup cross-sections,
and 𝑛𝑛 the number of samples. e aim of this procedure
is to rearrange the values in the individual columns of 𝑋𝑋,
so that a desired rank correlation structure results among
the individual variables. is can be achieved by somehow
relating the correlation coefficients of the 𝑋𝑋 matrix, to the
total correlation matrix 𝐶𝐶new.

If the correlation matrix of 𝑋𝑋 is called 𝑇𝑇, the method
applies a Cholesky decomposition to both 𝑇𝑇 and 𝐶𝐶new in
order to obtain, respectively, 𝑄𝑄 and 𝑃𝑃 lower triangular
matrices that satisfy the following relationships:

𝐶𝐶new = 𝑃𝑃𝑃𝑃
′,

𝑇𝑇 = 𝑄𝑄𝑄𝑄
′
.

(19)

en, the target or desired matrix𝑋𝑋∗ can be computed such
as:

𝑋𝑋∗ = 𝑋𝑋𝑆𝑆
′
, (20)

where the 𝑆𝑆matrix relates 𝑇𝑇 and 𝐶𝐶new as follows:

𝐶𝐶new = 𝑆𝑆𝑇𝑇 𝑆𝑆
′
. (21)

In the end,𝑋𝑋∗ has a correlationmatrix equal to𝐶𝐶new, and
the values of each variable in 𝑋𝑋 must be rearranged so that
they have the same rank (order) as the target matrix𝑋𝑋∗. at
is why this method is known as the rank-induced method.

Since ERRORJ only can evaluate one dilution at a time, a
methodology was developed in this work to shield the cross-
sections covariances at all dilutions and temperatures. Due
to the fact that ERRORJ gives both the relative and absolute
covariance matrices, only one evaluation is necessary at
one temperature and one dilution (i.e., in�nite dilution and
273K). Aerwards, it is only required to multiply the cross-
sections value at each energy group by the relativemultigroup
covariance matrix. is scheme is exempli�ed in Figure 12.

For moderators and some other materials, only (𝑛𝑛, 𝑛𝑛𝑛
and the 𝑃𝑃𝑒 matrix are to be perturbed already in the
DRALGIB format. It is important to modify the total cross-
section according to the different (𝑛𝑛, 𝑛𝑛𝑛 and𝑃𝑃𝑒 perturbations,
since the total cross-section is used by the code and the
neutron balancedmust be preserved. For important actinides
present in LWRs, the (𝑛𝑛, �ssion𝑛, Nu-Sigma-Fission, and
�ssion spectrum should be as well modi�ed in DRAGLIB.
e total cross-section for these cases should bemodi�ed and
transport corrected according to (11) and (12). In principle,
according to the code developers [3], the transport correction
is made at the code level and thus, the total cross-section
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T 9: Uncertainty analysis of homogenized macroscopic cross-sections (thermal group, ENDF/B-VII.1).

Parameter Min. value (1/cm) Max. value (1/cm) Mean (1/cm) 𝜎𝜎STD (1/cm)
NUSIGF 0.136721 0.13750 0.13710 6.904𝑒𝑒 𝑒 0𝑒
Absorption 0.08014 0.08103 0.08077 2.904𝑒𝑒 𝑒 0𝑒
Scattering (in-group) 0.99708 0.99742 0.99732 2.938𝑒𝑒 𝑒 0𝑒
Scattering (out-group) 0 0 0 0

T 10: Uncertainty analysis of fast and thermal diffusion coefficients (ENDF/B-VII.1).

Min. Value (cm) Max. Value (cm) Mean (cm) 𝜎𝜎STD (cm)
Fast diffusion coefficient 1.42330 1.48890 1.45488 0.01123
ermal diffusion coefficient 0.58439 0.58470 0.58474 0.00005

included in DRAGLIB should be only based on isotropic
terms. However, in this implemented statistical methodology
DRAGLIB is modi�ed to include the transport corrected
version at each sample and therefore, while performing lattice
calculations, a �ag must be raised at the input deck level
in order to inform the code not to perform the transport
correction.

5. Results

5.1. Uncertainty Analysis. e TMI-1 test case corresponds
to a 1𝑒 × 1𝑒 PWR fuel assembly segment with poison at
full power conditions (i.e., pellet temperature at 900K). Four
fuel pins are doped with gadolinia as a burnable poison. e
actual UO2-Gd2O3 fuel has a density of 10.144 g/cm3, the
fuel enrichment is 4.12w/o, and the Gd2O3 concentration is
2wt%. Important geometrical rod parameters are presented
in Table 1; more information like isotopic composition and
so forth, can be found in [6].

e nominal solution to this exercise is shown in Tables 2
and 3, where the fast and thermal macroscopic cross-sections
and 𝑘𝑘∞ are presented, respectively, using libraries based on
both JENDL-4 and ENDF/B-VII.1 data. For example, for this
exercise, Ball [28] computed a 𝑘𝑘∞ value of 1.40340 based on
the 69-group IAEA library. All these nominal values can be
used as a point of comparison for the uncertainty results.

e �nal sample of 450 elements is signi�cant to cover
95% of the output space formed by the different homogenized
macroscopic cross-sections, 𝑘𝑘∞ and diffusion coefficients
with a 95% of con�dence, since all one needs is a sample size
of 410 as previously explained. If the relative uncertainty for
𝑘𝑘∞ is de�ned such as:

%Δ𝑘𝑘
𝑘𝑘

=
𝜎𝜎STD
𝑘𝑘∞

× 100. (22)

en, uncertainty results for 𝑘𝑘∞ are presented in Table 4.
For the two-group macroscopic cross-sections and diffusion
coefficients, uncertainty results based on JENDL-4 are shown
fromTables 5, 6, and 7, while other results based on ENDF/B-
VII.1 are shown from Tables 8, 9, and 10.

e correlation matrices among the different output
parameters are shown, respectively, in Figures 13 and 14.
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F 13: Correlation matrix of the output parameters based on
JENDL-4 data.
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ENDF/B-VII.1 data.

5.2. Analysis of the Results. As can be appreciated from
the previous study, computed uncertainties in the output
parameters are much higher for the JENDL-4 case, than for
the ENDF/B-VII.1 case. For example, the standard deviation
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F 15: 172 groups relative variances computed with ERRORJ
for the 235U(𝑛𝑛𝑛 �ssion) cross-section.

of the JENDL-4 Nu-Sigma-Fission cross-section for JENDL-
4 is 78 times larger than its ENDF/B-VII.1 counterpart. In a
previous sensitivity study applied to a 17 × 17 PWR fuel seg-
ment and based on JENDL-4 [9], it was found that the most
dominant input parameter corresponded to 235U(𝑛𝑛𝑛 �ssion)
reaction. If one compares the computed ERRORJ variances
from both NDLs for such reaction, just like the one made
below in Figure 15.

It can be seen that up to 1000 eV, uncertainties based on
JENDL-4 data are much larger than the uncertainties based
on ENDF/B-VII.1.is creates a large sampling variability of
the 235U(𝑛𝑛𝑛 �ssion) microscopic cross-section. For example,
this effect at 29�� and assuming in�nite dilution is presented
in Figure 16, where two different samples of 100 elements
were taken based on both JENDL-4 and ENDF/B-VII.1
covariance data.

A big difference is observed in the spread of the samples
for thermal energies and almost up to the last resonant ener-
gies. e fact of having large relative variances in JENDL-4
for the thermal groups (∼7%) compared to small relative
variances in ENDF/B-VII.1 (∼0.5%), and also large variance
differences (up to 10 times) at the resonances, is the cause of
such a huge sampling variability between both libraries.

Since uncertainties included in JENDL-4 for
235U(𝑛𝑛𝑛 �ssion) are very high compared with for instance, the
ones included on the ENDF/B-VII.1 library, such reaction
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F 16: 100 LHS samples taken from the 235U(𝑛𝑛𝑛 �ssion) cross-
section and based on the different JENDL-4 and ENDF/B-VII.1
covariance matrices.

becomes the most dominant. Other studies based on the
SCALE 44-group covariance matrices [28, 29] suggested
that the 238U(𝑛𝑛𝑛 𝑛𝑛) microscopic cross-section is the most
in�uential one. Indeed, it is natural to think that capture
cross-sections have a big impact on lattice calculations, since
it is the only reaction that imbalance only one side of the
neutron transport equation (i.e., disappearance at a certain
energy group). Nevertheless, unfair uncertainties among
different input reactions make the uncertainty computations
to be very biased.

6. Conclusions

In this paper, a statistical uncertainty analysis was performed
on lattice calculations using the DRAGONv4.05 code. e
input uncertainty space corresponded to the microscopic
cross-sections of the different nuclides of the DRAGLIB
library. is work is one of the �rst attempts to process
in multigroup format uncertainties from modern nuclear
libraries such as JENDL-4 and ENDF/B-VII.1, so they could
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be applied to the uncertainty assessment of lattice calcula-
tions. us, con�dence in the results of advance lattice codes
can be obtained through the use of a statistical uncertainty
analysis.

By comparing the obtained 𝑘𝑘∞ relative uncertainty com-
ing from the two different NDLs, a huge difference could be
observed. It can be concluded that large differences in the
computed covariances, just like the ones existing between
JENDL-4 and ENDF/B-VII.1 for the 235U(𝑛𝑛𝑛 �ssion) reaction,
are the cause of such biases in the uncertainty results. is
fact was supported by making a comparison on the spread of
the different samples of suchmicroscopic cross-section; huge
spreads were obtained at the thermal and resonant regions
when the sampling is based on JENDL-4 than when is based,
for instance, on ENDF/B-VII.1 data.

e results obtained in this work are important because
they demonstrate that it is feasible to statistically perturb and
propagate basic uncertainty data through lattice calculations
with the current computational technology. is is also
the �rst step to develop an integral statistical uncertainty
methodology for nuclear reactor predictions using advanced
models, since the lattice code outputs are to be used as inputs
to the core simulators. Further studies may include a global
and nonparametric sensitivity analysis, where the correlation
between the different microscopic and macroscopic cross-
sections can be assessed. Also, geometrical uncertainties, as
well as state-variable uncertainties can be included.

Uncertainty analysis applied to lattice calculations is very
important to trust LWR core designs, because the computa-
tion of the homogenized and energy-collapsed macroscopic
cross-sections is the �rst step in the modeling of LWRs.
erefore, con�dence in the further calculation of the effec-
tive neutron multiplication factor is totally bounded to the
computed uncertainties of lattice codes output parameters.

Abbreviations

𝜀𝜀: Fast �ssion factor
𝑝𝑝: Resonance escape probability
𝑓𝑓: ermal utilization factor
𝜂𝜂: ermal �ssion factor
Σ𝑟𝑟: Removal macroscopic cross-section

(1/cm)
Σ1→2: Fast down-scattering macroscopic

cross-section (1/cm)
Σ2→1: ermal upscattering macroscopic

cross-section (1/cm)
Σ𝑎𝑎1: Fast absorption macroscopic

cross-section (1/cm)
Σ𝑎𝑎2: ermal absorption macroscopic

cross-section (1/cm)
𝜈𝜈Σ𝑓𝑓1: Fast Nu-sigma-�ssion macroscopic

cross-section (1/cm)
𝜈𝜈Σ𝑓𝑓2: ermal Nu-sigma-�ssion macroscopic

cross-section (1/cm)
𝜙𝜙𝑔𝑔: Scalar neutron �ux at the energy group

𝑔𝑔 (neutrons/cm2s)

Σ0𝑇𝑇𝑛𝑔𝑔: Transport-corrected total macroscopic
cross-section at the energy group 𝑔𝑔 (1/cm)

Σ0𝑠𝑠𝑛𝑔𝑔: Transport-corrected scattering macroscopic
cross-section at the energy group 𝑔𝑔 (1/cm)

𝜎𝜎𝑥𝑥0𝑛𝑥𝑥𝑛𝑔𝑔→𝑔𝑔′ : 𝑃𝑃0 scattering matrix at the 𝑥𝑥-inelastic or
elastic reaction, from the 𝑥𝑥-nuclide from
energy group 𝑔𝑔 to 𝑔𝑔′ (cm2)

𝜎𝜎𝑐𝑐𝑛𝑥𝑥𝑛𝑔𝑔: Capture microscopic cross-section, from the
𝑥𝑥-nuclide and at the energy group 𝑔𝑔 (cm2)

𝜎𝜎𝑓𝑓𝑛𝑥𝑥𝑛𝑔𝑔: Fission microscopic cross-section, from the
𝑥𝑥-nuclide and at the energy group 𝑔𝑔 (cm2)

𝜈𝜈𝑔𝑔: Nu-bar at the energy group 𝑔𝑔
𝜇𝜇𝑔𝑔: Mu-bar at the energy group 𝑔𝑔
𝜒𝜒𝑔𝑔: Normalized �ssion spectrum at the energy

group 𝑔𝑔.
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