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Abstract

In this thesis we study moduli spaces of four-dimensional N = 2 supersymmetric
gauge theories. We focus on the vector multiplet moduli space and describe how
the rigid special geometry of the Coulomb branch determines the couplings in the
effective Lagrangian. Compactification to three dimensions gives rise to an N = 4
theory whose moduli space is hyperkähler. The twistor space construction of this
hyperkähler metric is presented and put in the context of Gaiotto, Moore and
Neitzke’s physical interpretation of the solution by Kontsevich and Soibelman of
the wall-crossing problem.
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1 INTRODUCTION

1 Introduction

The study of supersymmetric gauge theories has been intimately related to com-
plex geometry since the birth of the first models in the seventies. There are a
multitude of complex manifolds parametrised by the scalar fields. Together the di-
mensionality, the amount of supersymmetry and the gauge symmetry restricts the
scalar geometries. The possibilities ranges from Riemannian manifolds to highly
restricted complex manifolds with very specific geometric structures. Starting from
a theory in high space-time dimension many of these may be obtained by com-
pactification on compact spaces preserving different amounts of supersymmetry.

In this thesis we present the Kähler geometry of the vector multiplet moduli space
of an N = 2 gauge theory in four dimensions. At generic points of this space
the gauge group is broken to a maximal Abelian symmetry making the moduli
space a rigid special Kähler manifold. When compactifying to three dimensions
an effective N = 4 theory is obtained whose moduli space is hyperkähler.

The representation theory of the N = 2 superalgebra contains representations
which in a precise sense are ’smaller’ than a generic representation. These are
called BPS representations or short representations. In general the spectrum of the
theory changes over the moduli space but the BPS spectrum is generically stable.
However, at certain loci splitting or fusion of BPS states may occur, dividing the
moduli space into subregions of constant spectrum. There is an index, the second
helicity supertrace, that count (with signs) BPS state degeneracies and hence it is
locally constant. The wall-crossing problem is about relating this index between
different regions of the moduli space, defining a global invariant.

The solution of the wall-crossing problem by Kontsevich and Soibelman (KS) in
[18] was physically interpreted by Gaiotto, Moore and Neitzke in [13]. They make
use of the twistor space description of a hyperkähler manifold in terms of Darboux
coordinates. The main idea of their paper is that the metric is only continuous
globally if the BPS-index satisifies the KS wall-crossing formula.

The BPS states in four dimensions may wrap the compactified direction and in the
compactification limit these field excitations occur as instantons in three dimen-
sions. The tower of wrapped states contributes to the moduli space metric and the
instanton corrected geometry may be explicitly constructed in terms of Darboux
coordinate functions over the twistor space. It is in terms of these functions the
wall-crossing problem was adressed.

This thesis is organised as follows. In section 2 the N = 2 field theory in four
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

dimensions is introduced, aiming at the scalar geometry. Moduli spaces are then
introduced in general terms and the constraints from supersymmetry and gauge
symmetry are analysed. The implication of magnetic-electric duality on the geom-
etry is presented, leading to the definition of rigid special geometry.

Section 3 is concerned with the representation theory of the N = 2 superalgebra.
The BPS bound is derived and the form of the general BPS representations are
obtained. We aim the presentation towards the hypermultiplet and the vector
multiplet since they contain the scalars that constitute the moduli space.

In section 4 the BPS index is introduced to separate the BPS representations from
the non-BPS ones. We analyse under which conditions the spectrum may jump
giving discontinuities to the BPS-index. Here the KS solution is introduced and
the wall-crossing formula is presented and its interpretation with respect to the
BPS spectrum is discussed.

Compactification to three dimensions are performed in section 5. We derive explic-
itly how the bosonic field content changes and how the hyperkähler moduli space
is described as a torus fibration over the Coulomb branch. We introduce and verify
the Darboux coordinate ansatz for the metric in the semi-flat case, when no instan-
ton contributions are present. Then the instanton corrected metric is constructed
in the case when only electric charges are present. This is the Ooguri-Vafa metric.
Finally we describe how the general wall-crossing problem is formulated and how
the KS formula in the BPS-index is necessary for the continuity of the moduli
space metric.

In appendix A some background on hyperkähler manifolds and their twistor spaces
are presented. Appendix B contains a brief discussion on rigid special Kähler
manifolds in the context of Riemann surface moduli spaces.

2 N = 2 Gauge Theories in Four Dimensions

In this section we review some features of global N = 2 supersymmetric gauge
theories in d = 4. The discussion is inclined towards the scalar field geometry
and how it is encoded in the Lagrangian. We restrict to color gauge symmetries
and omit any possible flavour symmetry. The field theory has a large parameter
space of vacua and we see how gauge invariance and supersymmetry puts restric-
tions on what theories may be constructed. We will see that these two concepts
become closely intertwined and result in a fascinating piece of geometry. The mod-
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

uli space metric determines all couplings in the effective Lagrangian and may be
expressed solely by the prepotential, a holomorphic function of the scalar fields.
In [23] Seiberg and Witten solved the SU(2) N = 2 gauge theory by giving the
prepotential explicitly.

2.1 The Field Theory

In this section we discuss the bosonic degrees of freedom of the theory and some of
its implications. The notation we set here will come back throughout the following
chapters and some of the objects which are briefly introduced here will be clarified
later on. The treatment in this section and the following is close to the one in [3].

The theory we are interested in is the low energy limit of a theory with gauge
group G. The bosonic fields are complex scalar fields ai, i = 1, . . . , r and gauge
fields AI , all in the adjoint representation. We assume that all scalars have a non-
zero vacuum expectation value, breaking the rank r gauge group to U(1)r at low
energies. The general form of the bosonic Lagrangian in two derivatives is

L = −1

2
gij̄(a)Dai ∧ ∗Dāj − 1

8π
=
[
τIJ(a)F I ∧ ∗FJ

]
+ V (a) (2.1)

where V (a) is some gauge invariant real potential in the scalar fields. g is a
real, symmetric and positive definite tensor field. Under an infinitesimal U(1)
transformation of the scalars ai → ai + ξiI(a) we introduce Dµ as the covariant
derivative with respect to the U(1) gauge field 1-forms AI = AIµdxµ. The covariant
exterior derivative acts on the scalars as

Dai = dai + AIξiI (2.2)

treating the generators of the gauge transformation as Killing vectors of isometries
of the parameter space. The field strength F = dA build up a generalised complex
field strength

F I = F I − i ∗ F I (2.3)

where ∗ is the Hodge operator in the Minkowski metric on R1,3. The matrix τ is
a complex symmetric function of the scalars which is conventionally splitted as

τIJ =
θIJ
2π

+ i
4π

(e2)IJ
(2.4)
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

and if we write out the gauge field part of (2.1) we have

LU(1)r = − 1

(e2)IJ
F I ∧ ∗F J +

θIJ
8π2

F I ∧ F J (2.5)

=
1

4π

[
−= τIJF I ∧ ∗F J + < τIJF I ∧ F J

]
,

motivating the generalised field strength (2.3). The kinetic term coefficient func-
tion = τ(a) must be positive definite for unitarity and we may identify (e2)IJ(a)
as the electromagnetic couplings and θIJ(a) as the theta angles of the topological
term F ∧ F . For the path integral to be well defined this angle has to be peri-
odic since a topological term can only contribute an integer multiple of 2π to the
action. Physically the θ-term counts the instanton number of the quantised field
configuration which is an integer, giving the θ-angles the periodicity θ = θ + 2π.
This is equivalent to

τ = τ + 1 . (2.6)

2.2 The Moduli Space

The vacuum of the field theory is obtained as the low energy limit where all field
excitations tends to zero leaving only the vacuum expectation value of the field.
The set of all possible such values parametrize the Riemannian manifoldM0 with
metric g. For notational simplicity we denote the coordinates (vevs) of M0 as
the corresponding fields i.e ai. The potential function V may be defined such
that its minimum is V = 0. Assuming that V attains its minima we see that the
scalar contribution is diffeomorphism invariant under field redefinitions ai → ãi(a),
which is consistent with the picture ofM0 being a manifold when g transforms as
a metric tensor [2].

Generically V 6= 0, potentially destroying the diffeomorphism invariance of M0.
The quotient space

MV =M0/{V = 0} (2.7)

gives however the manifold of vacua of the theory. The set {V = 0} might define
varieties in M0 of different dimension at different loci. Hence the total manifold
need not to be a manifold but may have discontinuities where such varieties meet.

Including the U(1) gauge fields in the picture we need to identify points of MV

that are related by a gauge transformation. The moduli space is then

M =MV /U(1)r (2.8)
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

which leads to the definition of the metric g′ of M by

g′ijda
i ∧ ∗dāj = gijDa

i ∧ ∗Dāj (2.9)

which is gauge covariant by construction. The 1-forms dai and AI are valued
in the cotangent space of M0. The moduli space coordinates must correspond
to neutral scalar fields. To see this suppose the contrary i.e a scalar charged
under U(1). If this scalar gets a non-vanishing vacuum expectation value it will
effectively give a mass term to the gauge field which breaks the gauge invariance
and introduces a scalar potential. By changing the vev one leaves the moduli space
since diffeomorphism invariance breaks with the introduction of a potential. From
this consideration the Lagrangian simplifies to

L = −1

2
gij̄(a)dai ∧ ∗dāj − 1

8π
=
[
τIJ(a)F I ∧ ∗FJ

]
(2.10)

since the covariant exterior derivative D is just d on neutral scalars.

2.2.1 The Coulomb Branch and Supersymmetric Constraints

So far we have treated the field theory and the parameter space in general. In
this section we specialise to the moduli space of the N = 2 gauge theory in four
dimensions. We describe the splitting of the moduli space with respect to the
representations of the algebra and the restrictions emerging from invariance under
supersymmetry [3] [11].

As will be treated in more detail in section 3 there are two representations of the
N = 2 superalgebra that contain scalars, called the hypermultiplet and the vec-
tor multiplet. The supersymmetry transformations for these two representations
implies that no invariant Lagrangian containing kinetic cross terms of the hyper-
multiplet and vector multiplet scalars may be constructed. This implies that the
metric is block diagonal and that the moduli space decomposes as

M =MH ×MV . (2.11)

If the vector multiplet parameter space is trivial we have M = MH , called the
Higgs branch and the other case; M = MV is called the Coulomb branch. This
space is the object of study in this thesis and is denoted B. Recall that at all
points of B the gauge group is broken down to its maximal torus of U(1)r gauge
symmetry. The vector multiplet contains one complex scalar for each gauge vector
and hence we may now enumerate all bosonic fields in (2.10) by the same set of
indices I = 1, . . . , r.
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

The invariance under supersymmetry transformations of the Lagrangian put re-
strictions on the moduli space geometry. These are mild for few supersymmetry
generators and more severe as the number of generators increase. As an example
any σ-model in two dimensions with a Riemannian target space metric allows for
one supersymmetry. Considering the group of holonomy transformations on M
it is shown that the set of matrices that commute with the holonomy group is a
division algebra over R [1]. In the superalgebra this corresponds to having the
center equal to the reals, the complex numbers or the quaternions corresponding
to Riemann, Kähler and hyperkähler geometry respectively (the octonions are not
present due to Bott periodicity) [21].

In four dimensions already N = 1 supersymmetry restricts the metric to be a Käh-
lerian one. We argue for this by considering the simplest case in four dimensions
with minimal supersymmetry. This is the so called chiral multiplet, of one com-
plex scalar φ and one (1

2
,0) Weyl spinor χ. All extensions of this model, both in

terms of field content and number of supersymmetry generators, inherits the basic
geometric structure from this example. For the scalar kinetic term to be invariant
under complex conjugation of the fields i.e g(X, Ȳ ) = g(X̄, Y ) the metric is to be
hermitian which ensures the positive definiteness [20].

We consider the schematic Lagrangian

L = gαβ̄
(
− ∂µφα∂µφ̄β̄ −

1

2
χ̄α /∇χβ̄ − 1

2
χ̄β̄ /∇χα

)
+

1

4
Rαγ̄βδ̄χ̄

αχβχ̄γ̄χδ̄ (2.12)

up to two bosonic dimensions where the left- and right projectors are omitted for
simplicity, see e.g [11]. The covariant derivatives act on the spinors as

∇µχ
α = ∂µχ

α + Γαβγχ
γ∂µφ

β (2.13)

∇µχ
α = ∂µχ

ᾱ + Γᾱβ̄γ̄χ
γ̄∂µφ

β̄ .

As an ansatz R(φ) and Γ(φ) are taken as any functions of the scalar field. The
index symmetry of R coincide with that of the Riemann curvature tensor to match
the anticommuting spinors. The supersymmetry of the chiral multiplet is realised
through the action

Qφ = χ Q̄φ = 0 (2.14)

Qχ = 0 Q̄χ = /∂φ

of the supercharges, along with their complex conjugate counterparts. The invari-
ance under supersymmetry requires QL = 0 up to a total derivative. The action
of Q on the quartic term is

QLχ4 ∼ Rαγ̄βδ̄χ̄
αχ̄γ̄ /∂φ(βχδ̄) + . . . (2.15)
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

which may only be cancelled by the last term of the variation of the covariant
derivative

QLφ̄χ2 ∼ Q
[

Γαγ̄δ̄χ̄
αχγ̄ /∂φ̄δ̄

]
= Γαγ̄δ̄ /∂φ̄

αχγ̄ /∂φ̄δ̄ +
∂

∂φ̄ε̄
Γαγ̄δ̄χ̄

αχγ̄χ̄ε̄/∂φδ̄ . (2.16)

This cancelling requires the imposing of index symmetry Γαγ̄δ̄ = Γαδ̄γ̄. It is deriv-
able from the Lagrangian that R and and Γ actually is the Riemann tensor and the
Christoffel symbol, a derivation which we leave out of this treatment focusing on
the metric. The corresponding expression of (2.16) for the conjugated supercharge
Q̄ contains the term

Γαγ̄δ̄χ̄
γ̄ /∂φα/∂φ̄δ̄ (2.17)

and by the same reasoning as above we find that the only possible term to cancel
this one is the one from the scalar kinetic term

Q̄
[
gαβ̄ /∂φ

α/∂φ̄β̄
]

=
∂

∂φ̄γ̄
gαβ̄χ̄

γ̄ /∂φα/∂φ̄β̄ + · · · ≡ ∂γ̄gαβ̄χ̄
γ̄ /∂φα/∂φ̄β̄ + . . . (2.18)

The symmetry of the Γ-indicies then gives the condition (and its conjugate)

∂γ̄gαβ̄ = ∂β̄gαγ̄ ∂γgᾱβ = ∂βgᾱγ (2.19)

which locally has the Kähler potential solution

gαβ̄ = ∂α∂̄β̄K(φ, φ̄) . (2.20)

A manifold equipped with a hermitian metric and a Kähler potential is a Kähler
manifold, which implies the existence of an integrable almost complex structure
compatible with the metric. Thus there is a complex structure I in which φ is a
complex coordinate for a chart on M. Adding more multiplets gives higher even-
dimensional manifolds. The U(1) gauge field may also be incorporated in the gauge
multiplet (λ,F) of a Weyl spinor and the 2-form field strength defined in section
2.1. The supercharge action on the gauge term of the Lagrangian, schematically
written as proportional to = τ(φ, φ̄)F2, necessarily gives the contribution

Q̄[= (τ)F2] = ∂φ̄ τ χ̄F2 + . . . (2.21)

This term has no counterpart in any other term, and hence it is required to vanish,
making τ(φ) holomorphic.

Passing on to more supersymmetry there is even more structure to the scalar field
geometry. In the case of a N = 2 sigma model in four dimensions the second gener-
ator of supersymmetry gives rise to another covariantly constant complex structure
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

J . This is the case for the hypermultiplet scalars parametrising MH of (2.11). It
turns out that the matrix product K = IJ also constitutes a complex structure
and that I, J and K satisfy a quaternion algebra giving a hyperkähler structure to
the target space [5]. The hypermultiplet has a complex scalar doublet, making the
manifold 4n-dimensional. Hyperkähler geometry is introduced in appendix A and
will be the center of attention when compactifying to three dimensions in section
5.

The geometry of the vector multiplet moduli space MV is not a hyperkähler
manifold but a rigid special Kähler manifold, one in a class of geometries aris-
ing from extended supersymmetry and supergravity theories. The N = 1 chiral
and gauge multiplets are combined to the N = 2 vector multiplet (a, χn,F) where
χn = (χ, λ). In the schematic notation the action is

Qna = χn Q̄n = 0

Qnχm = εnmF Q̄nχm = δmn/∂a (2.22)

QnF = εnm/∂χ̄m Q̄nF = −εnm/∂χm
of the supercharges on the multiplet fields. Now, for supersymmetry invariance of
the gauge field kinetic term τIJF I · F I there must be a cancelling of the variation

τIJF I ·Q(F I) ∼ τIJF I · /∂χ̄J (2.23)

which implies that there has to be a kinetic fermion term proportional to τIJχ
I /∂χ̄J .

The conjugate variation of this term gives

Q̄(τIJχ
I /∂χ̄J) ∼ τIJ /∂a

I /∂χ̄J + . . . (2.24)

and to finally cancel this contribution requires a scalar kinetic term

τIJ /∂a
I /∂āJ = τIJ∂µa

I∂µāJ . (2.25)

Considering also the complex conjugate term one conclude that the supersymmetry
transformation of the gauge field kinetic term τF ∧ ∗F may only be cancelled if
the metric is

g(a) = = τ(a) (2.26)

This is striking - the full theory is encoded in the electro-magnetic couplings and
instanton numbers. In the following sections we will see that this is not the end
and that the full matrix τIJ is obtained from a single holomorphic function. The
Lagrangian may now be brought to the form

L =
1

4π

[
−= τIJ(daI ∧ ∗dāJ + F I ∧ ∗F J) + < τIJF I ∧ F J

]
(2.27)

with the normalisation of the scalar fields chosen consistently with [13]. In the
following the special geometry arising from electromagnetic duality is presented in
detail.
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

2.3 Electric and Magnetic Charges

The Maxwell equations of motion with a field source of magnetic charge qm, electric
charge qe and electric coupling e are

1

e
d ∗ F = eqeδ

(3) 1

e
dF =

4π

e
qmδ

(3) (2.28)

which are invariant under redefinitions of what we call magnetic and electric quan-
tities. Transforming

F → ∗F qm → qe e→ 4π

e
(2.29)

leaves the content of the equations unchanged. If the transformation is applied
twice we get additional minus signs in the first two transformations since ∗∗ = −1
on two-forms in four dimensional Minkowski space. With no sources we have the
Bianchi identity dF = 0 as the second case in (2.28). This may be used in a
constraint term Scon =

∫
ÃI ∧ dF I in the path integral. Performing the integral

over F I transforms the gauge term of (2.1) into a new one in the gauge field ÃI

with the corresponding field strength F̃ = dÃ. The generalised field strength is
F̃ = F̃ + i ∗ F̃ as above and the gauge field Lagrangian takes the form

L̃U(1) = − 1

8π
=
[
(−τ IJ(a))F̃I ∧ ∗F̃J

]
(2.30)

where τ IJτJK = δIK . We are thus left with an equivalent theory in a redefined
one-form gauge field Ã and the couplings −τ−1. The shift invariance T : τ 7→ τ +1
in (2.6) and the ’duality’ map S : τ 7→ −τ−1 generates together the transformation

τ → (Aτ +B)(Cτ +D)−1 (2.31)

with the matrices A,B,C and D are such that the block matrix

M =

(
A B

C D

)
(2.32)

is an element of Sp(2r,Z). In this context this is referred to as the magnetic-
electric duality group. Note that for rank one Sp(2,Z) ≈ SL(2,Z) and the τ
parameter may be interpreted as the complex structure of a torus. This will be
important when compactifying the theory on a circle. Arranging the charges in a
2r-dimensional vector (qIm, qe,I) they transform as

(qIm, qe,I)→ (qIm, qe,I)M
−1 (2.33)
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2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

The magnetic and electric charges of matter fields satisfy the Dirac-Zwanziger
quantisation condition. In other words, the electric and magnetic charges takes
value in a lattice Γ which for a given theory is isomorphic to Z2r. The quantisation
condition equip the lattice with the pairing

〈 , 〉 : Γ→ Z (2.34)

which is a nondegenerate symplectic form. A basis {αI , βI}, I = 1 . . . r for a
symplectic lattice is called a Darboux basis, or a duality frame. In the case where
the lattice originates from an Abelian gauge theory the basis elements are referred
to as magnetic and electric respectively and they obey

〈αI , αJ〉 = 0 (2.35)

〈βI , βJ〉 = 0

〈αI , βJ〉 = −〈βJ ,αI〉 = δJI .

An element γ of the lattice, here collectively called a ’charge’, is a linear combina-
tion

γ = qImαI + qe,Iβ
I (2.36)

of magnetic and electric charges which in the case r = 1 also is written as a vector
γ = (qm, qe). The quantisation condition expressed in the symplectic form is

〈γ, γ′〉 = qImq
′
e,I − q′

I
mqe,I ∈ Z (2.37)

which for rank one takes the usual form of Dirac and Zwanziger.

2.4 Rigid Special Kähler Geometry

Extending the construction in the previous section to any point in the Coulomb
branch we find a particular charge lattice Γa for each gauge theory, as τ varies
over B . For each lattice fiber Γa we may construct the symplectic vector space
Γa ⊗ C∗. Together they form a fibration Γa ⊗ C∗ → E

π−→ B over the Coulomb
branch i.e a symplectic vector bundle of rank 2r. As was realised in [26] this makes
the geometry of the configuration space rigid special Kähler. The case of local
special Kähler manifolds is related to local supersymmetry i.e the corresponding
supergravity model which we do not treat here. This work is reviewed in [28].

We describe here the mathematical construction of such geometries. Take L a
flat line bundle over the r-dimensional Kähler manifold B and let E → B be a

12



2 N = 2 GAUGE THEORIES IN FOUR DIMENSIONS

flat, holomorphic symplectic vector bundle. The holomorphicity of E refers to the
holomorphic projection π : E → B. The symplectic form on the vector space fiber
of E is denoted 〈 , 〉. The manifold B is rigid special Kähler if there is a section
Z ∈ Γ(E ⊗ L,B) such that the pairing of its differentials vanish

〈dZ, dZ〉 = 0 . (2.38)

Note that the wedge product of the one-forms together with the symplectic form
gives a symmetric condition, and is thus not by default zero. This will be seen
when we expand this condition in equation (2.41). The Kähler form on B is given
by

ω =
i

2π
∂∂̄〈Z, Z̄〉 (2.39)

defining the Kähler potential as K(a, ā) = 〈Z(a), Z̄(ā)〉. By expanding the section
in the symplectic basis as

Z = XIαI − FIβI (2.40)

we see that the coordinates are extracted as XI = 〈Z, βI〉. The Kähler form (2.39)
is non-degenerate which implies that locally the XI , I = 1, . . . , r is a set of complex
coordinates on B. These are called special coordinates and will henceforth be
denoted aI in accordance with the notation for the scalar fields. These are, by the
symplectic pairing, dual to the coordinates ãI = FI , which depend holomorphically
on aI .

Applying the condition (2.38) to the expanded form of Z gives

0 = −2dXI ∧ dFI = −2
∂FI
∂XJ

dXI ∧ dXJ ⇒ ∂IFJ − ∂JFI = 0 (2.41)

as an integrability condition. From this it follows that the dual coordinates FI =
〈Z, αI〉 locally may be expressed as

FI =
∂F(X)

∂XI
(2.42)

for some holomorphic function F(aI) called the prepotential. Knowing this function
locally specifies the coordinates of B. Since the prepotential determines the Kähler
potential it also determines the couplings of the Lagrangian (2.27). The gauge
coupling matrix τ is given in terms of the prepotential as

τIJ ≡
∂2F

∂aI∂aJ
(2.43)

and is named the period matrix in this context, see e.g appendix B. This is sym-
metric by construction and all gauge theory data for a given choice of special
coordinates is encoded in the prepotential.
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The occurrence of the line bundle L is due to the redundancy in definition of the
Kähler potential. The metric does not change under the Kähler transformation

K → K + f + f̄ (2.44)

under which the section transforms as Z → efZ for a holomorphic function f .
This invariance under holomorphic scaling states that Z besides being a section
of E it is also a section of L. Furthermore it can be shown that the line bundle
is determined by the Kähler form as c1(L) = [ω] i.e the first Chern class is the
cohomology class of which the Kähler form is a representative [7]. This makes the
manifold B a Hodge-Kähler manifold. An equivalent statement is that the Kähler
class is an integer cohomology class [14].

The Coulomb branch of d = 4, N = 2 gauge theory is not the only case where
rigid special Kähler manifolds are encountered. The same structure arises in the
analysis of Calabi-Yau and Riemann surface moduli spaces. The latter case is
briefly presented in appendix B.

2.5 The Central Charge

The central charge of an N = 2 supersymmetric theory is an operator whose
eigenvalues are complex scalars. It is in the center of the superalgebra which will
be encountered again in section 3. Hence the bracket

[Z, g} = 0 (2.45)

for all field operators in the superalgebra. Seen from the moduli space one may view
the contiuum of eigenvalues of Z as defining a complex function Z(a), holomorphic
in a over B. This is however not the full story. The magnetic-electric charge γ is
to be specified for a complete description of the theory in question. Hence there
is a fibration of charge lattices Γa over the Coulomb branch. γ is a section of this
fibration and for each point a ∈ B the fiber Γa is isomorphic to Z2r. The physical
charge that we denote γ is thus the value of this section at a particular fiber. From
the previous section we know that for a chosen duality frame, the geometry and
coordinates of B is obtained from the prepotential F , which in turn determines
the section Z of the symplectic vector bundle.

Given a charge γ ∈ Γa we get a complex scalar, holomorphic over B, by the
symplectic pairing. This is the central charge

Zγ(a) = 〈Z(a), γ〉 (2.46)
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3 BPS-STATES

which by the bilinearity of the symplectic form ensures that the map is linear over
Γ i.e

Zγ1(a) + Zγ2(a) = Zγ1+γ2(a) . (2.47)

Z(a) is a vector of the fiber Γa for each fixed a. Via the symplectic pairing this
vector defines a map

Z : Γa → C (2.48)

γ 7→ Zγ(a) , γ ∈ Γa

and for γ = qImαI + qe,Iβ
I we have

Zγ = qImFI + qe,IX
I = qIm∂aIF(a) + qe,Ia

I . (2.49)

The central charge is thus an intertwined object constructed out of the dyonic
electromagnetic charges and expressed in the chosen coordinate frame of the special
geometry.

3 BPS-states

In this section we focus on the N = 2 superalgebra and its representations. We
will derive the short representations, and in particular the vector multiplet whose
moduli space is our main interest. The treatment follows roughly the one in [19]
and [12].

3.1 The Supersymmetry Algebra

The N = 2 extended Poincaré algebra

s = s0 ⊕ s1 (3.1)

is a graded algebra with an even part s0 and an odd part s1. The transformations
generated by the supercharges transforms even elements to odd and vice versa.
Hence they belong to the same representation and by taking the odd part of the
algebra s0⊕ s1 to be a representation of the even part we get a superalgebra. The
even algebra

s0 = poin(1,3)⊕ su(2)R ⊕ u(1)R ⊕C (3.2)

15



3 BPS-STATES

is composed of the Poincaré algebra, the R-symmetry algebra and the center re-
spectively. The R-symmetry algebra su(2)R ⊕ u(1)R reflects the ambiguity in ro-
tating the supercharges into each other, and in addition, the phase-shift symmetry
giving the Q’s electrical charge. The central charge Z is the representation of the
center C of the superalgebra and is identified with Zγ(a) by the eigenvalue relation

Z |a, γ〉 = Zγ(a)|a, γ〉 (3.3)

for an eigenstate of charge γ in the one particle Hilbert space Ha,γ at the point
a ∈ B.

The Poincaré algebra is composed of space-time translations and Lorentz trans-
formations in R1,3. By algebra isomorphism one may view the Lorentz algebra
so(1,3) as su(2)⊕ su(2) and then write the odd part as a representation of s0

s1 = (2,1; 2)+ ⊕ (1,2; 2)− . (3.4)

The first two representations in the parantheses refers to a singlet or a fundamental
of the Lorentz su(2)’s, the third entry refers to the fundamental of the R-symmetry
su(2)R and the sign to the u(1)R.

The two conserved supercharges QA
α , A = 1,2 are two-component Weyl spinors

with chiral spinor component indices denoted α and α̇. The condition

QA
α

†
= Q̄α̇A ≡ εABQ̄

B
α̇ (3.5)

is a reality condition and the lowering of indicies by the Levi-Civita symbol is
introduced here. The anticommutators of the odd generators are

{QA
α ,Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B

{QA
α ,Q

B
β } = 2εABεαβZ̄

{Q̄α̇A,Q̄β̇B} = −2εABεα̇β̇Z

(3.6)

where µ is the spacetime index, P the energy-momentum Lorentz vector and εABZ
the central charge matrix which do only occur in N > 1 theories due to its anti-
symmetry [6]. We will refer to just Z as the central charge.

3.2 Representations

We restrict ourselves to massive representations of the superalgebra. We may then
consider the particle in its rest frame and describe the representations of the little
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3 BPS-STATES

superalgebra. At the end one may get the full representations by Lorentz boosting
to an arbitrary frame. For a particle at rest we have

P µ|ψ〉 = Mδµ0 |ψ〉 (3.7)

and the Casimir of the representation is the quadratic form P 2 = −M2. The
bosonic part of the little superalgebra is

s0
l = so(3)⊕ su(2)R ⊕ u(1)R (3.8)

where the so(3) is the little algebra of the Lorentz algebra so(1,3) and corresponds
to rotations of the particle at rest. A particle in its restframe is invariant under
spatial parity and we denote this operator by P . The parity transformation of the
supercharges are

P [QA
α ] = σ0

αβ̇
Q̄β̇A (3.9)

P [Q̄β̇A] = σ0 β̇αQαA .

In addition we are free to use the u(1)R-symmetry to multiply the supercharges
by some complex phase ζ, this operation we denote U with

UQ = ζQ UQ̄ = ζ−1Q̄ . (3.10)

We may then define the linear combinations

RA
α = ζ1/2QA

α + ζ−1/2σ0
αγ̇Q̄

γ̇A

T Aα = ζ1/2QA
α − ζ−1/2σ0

αγ̇Q̄
γ̇A

(3.11)

with eigenvalue +1 and −1 respectively under the combined transformation U ◦P .

The reason for these supercharge combinations is to make a splitting of the algebra
in two mutually invariant parts. This will make the representations easy to find and
is used in the subsequent sections. The commutation relation of the R-spinors are
derived by using σ0 = −I2×2 and spinor indices are raised/lowered by the Levi-
Civita symbol ε21 = ε12 = 1. The restframe energy-momentum operator is as
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above P µ = Mδµ0 and the R-anticommutator becomes

{RA
α ,RB

β } = {ζ1/2QA
α + ζ−1/2σ0

αγ̇Q̄
γ̇A, ζ1/2QB

β + ζ−1/2σ0
βδ̇
Q̄δ̇B}

= ζ{QA
α ,Q

B
β }+ ζ−1σ0

αγ̇σ
0
βδ̇
{Q̄γ̇A, Q̄δ̇B}+ σ0

αγ̇{QB
β , Q̄

γ̇A}+ σ0
βδ̇
{QA

α , Q̄
δ̇B}

= 2ζZ̄εαβε
AB + ζ−1σ0

αγ̇σ
0
βδ̇
εAEεBF εγ̇ι̇εδ̇κ̇{Q̄ι̇E,Q̄κ̇F}

+ σ0
αγ̇ε

γ̇ι̇εAE{QB
β , Q̄ι̇E}+ σ0

βδ̇
εδ̇κ̇εBF{QA

α , Q̄κ̇F}

= 2ζZ̄εαβε
AB − 2ζ−1Zσ0

αγ̇σ
0
βδ̇
εAEεBF εγ̇ι̇εδ̇κ̇ει̇κ̇εEF

+ 2Mσ0
αγ̇ε

γ̇ι̇εAEσ0
βι̇δ

B
E + 2Mσ0

βδ̇
εδ̇κ̇εBFσ0

ακ̇δ
A
F

=
(
2ζZ̄+2ζ−1Z + 4M

)
εαβε

AB = 4(M + <(Z/ζ))

where we in the last equality use that ζ̄ = ζ−1. Likewise the T commutation
relations is derived and in total we have that

{RA
α ,RB

β } = 4(M + <(Z/ζ))

{T Aα ,T Bβ } = 4(−M + <(Z/ζ)) (3.12)

{RA
α ,T Bβ } = 0

splitting the odd algebra into blocks s1 = s1
+⊕ s1

−. In the following sections we use
this block diagonalisation to find the representations one at the time.

By investigating the Hermitian properties of R we will be able to derive an im-
portant bound on the particle mass. The conjugated operator is derived as

R1
1 = ζ1/2Q1

1 + ζ−1/2σ0
11̇
Q̄1̇1 = ζ1/2Q1

1 − ζ−1/2Q̄1̇1 ⇒
(R1

1)† = ζ−1/2(Q1
1)† − ζ1/2(ε1̇2̇ε12Q̄2̇2)† = ζ−1/2Q̄1̇1 − ζ1/2Q2

2

= −ζ1/2Q2
2 − ζ−1/2σ0

22̇
ε1̇2̇ε12Q̄

2̇2 = −R2
2

where we remember that σ0 = −I2×2.

By construction the operator R1
1 + (R1

1)† is Hermitian and since a Hermitian op-
erator squared is positive semidefinite we have

{R1
1 + (R1

1)†,R1
1 + (R1

1)†} = −2{R1
1,R2

2} = 8(M + <(Z/ζ)) ≥ 0 . (3.13)

By decomposition of the central charge as Z = eiα|Z| for some real phase α we see
that the strongest bound

M ≥ |Z| (3.14)
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is obtained by choosing the u(1)R gauge ζ = −eiα. This bound is called the BPS
bound. Under this particular choice of phase the algebra simplifies to

{RA
α ,RB

β } = 4 εαβε
AB(M − |Z|)

{T Aα , T Bβ } = −4 εαβε
AB(M + |Z|)

{RA
α , T Bβ } = 0

(3.15)

which defines a representation of the subalgebra s0new
l = so(3)⊕ su(2)R where the

u(1)R-part is absent due to the gauge fixing.

3.2.1 Long Representations

In the case that M > |Z| we have two disjoint, nontrivial algebras, and we can
look for the representations separately and then combine them to get the full rest
frame representation. We present the R-case here and the treatment of the other
case is completely analogous. Written out explicitly equation (3.15) is

{R1
1,R1

1} = {R2
2,R2

2} = 0 {R1
1,R2

2} = 4 (M − |Z|)
{R2

1,R2
1} = {R1

2,R1
2} = 0 {R2

1,R1
2} = −4 (M − |Z|) .

(3.16)

Each of the two lines above takes the form of a Clifford algebra of creation and
annihilation operators. One may choose the RA

1 to be the annihilation operators

RA
1 |Ω〉 = 0 (3.17)

which definines the vacuum state |Ω〉. A basis for the Hilbert space of the R-
algebra is then

{|Ω〉, R1
2|Ω〉, R2

2|Ω〉, R1
2R2

2|Ω〉} (3.18)

which is denoted ρhh (for half-hypermultiplet). As mentioned in section 3.1 we
want the fermionic part as a representation of the bosonic algebra. Moreover the
(little) superalgebra is a direct sum, meaning that the odd part is invariant under
the bosonic part. ρhh must then occur as a representation of

s0new
l = so(3)⊕ su(2)R . (3.19)

The basis (3.18) is four dimensional and thus we need a four dimensional repre-
sentation. This is accomplished by letting the Clifford vacuum |Ω〉 be the highest
weight state of the (1

2
; 0) of (3.19) and identifying {|Ω〉,R1

2R2
2|Ω〉} as the two states

of the 2 of so(3).

19
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The two other states {R1
2|Ω〉, R2

2|Ω〉} are spin zero, or singlets under so(3) and
are identified with the 2 of su(2)R. Together they give a four dimensional repre-
sentation and the half-hypermultiplet is thus

ρhh = (0;
1

2
)⊕ (

1

2
; 0) (3.20)

as a representation of s0new
l . These two blocks are representations of the bosonic

parts left of the superalgebra. The fermionic generators R of s1
+ are the links

between these two blocks of s0
l . By a result in [27] a general representation of

s0new
l ⊕ s1

even is
ρhh ⊗ h (3.21)

where h is an arbitrary representation of s0new
l = so(3) ⊕ su(2)R. Including the

T -generator Clifford algebra as well gives the long representation

tL = ρhh ⊗ ρhh ⊗ h (3.22)

of the full superalgebra with the first two contributions from the parity odd and
even algebras. Recall that this is the rest frame representation and that a general
representation is obtained by a Lorentz boost.

3.2.2 BPS Representations

If the BPS bound is saturated, M = |Z|, we see from (3.15) that the R-part of
the algebra becomes trivial, and hence that the representation is the trivial one.
Hence there is only one contribution from the fermionic generators to the full
representation

tBPS = ρhh ⊗ h (3.23)

which is named either a short representation or a BPS representation. As the mod-
uli space geometry is central in this thesis we are interested in the representations
which contains scalar fields, whose vevs parametrize the moduli space. The two
cases are called the hypermultiplet and the vector multiplet.

The hypermultiplet are obtained by taking h to be the trivial representation (0; 0)
which leaves just ρhh. It contains a spinor that is a singlet under su(2)R and a
scalar in the 2-dimensional representation of su(2)R, hence a doublet of complex
scalars.
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By taking h = (1
2
; 0) the vector multiplet is obtained as

ρhh ⊗ (
1

2
; 0) =

[
(
1

2
; 0)⊗ (

1

2
; 0)
]
⊕
[
(0;

1

2
)⊗ (

1

2
; 0)
]

= (
1

2
;
1

2
)⊕ (1; 0)⊕ (0; 0)

(3.24)

and consists of a spinor doublet of su(2)R, a vector and a complex scalar. It is
possible to get more specific representations containing scalars by choosing other
su(2)R-representations in h, as

h = (
1

2
,
1

2
) ⇒

ρhh ⊗ (
1

2
,
1

2
) =

[
(
1

2
; 0)⊕ (0;

1

2
)
]
⊗ (

1

2
,
1

2
) = (

1

2
; 0)⊕ (

1

2
; 1)⊕ (1;

1

2
)⊕ (0;

1

2
)

finding the scalar doublet as the last term but this refinement is not interesting for
our purposes. BPS-representations are specified by the mass and are hence defined
by the little algebra which make the choice of representation of the R-symmetry
algebra redundant. This will be treated again in section 4.1.

The space of BPS states

HBPS =
{
|ψ〉 ∈ H : H|ψ〉 = |Z||ψ〉

}
(3.25)

is the subspace of the one-particle Hilbert state space H for which the total energy
of the state equals the central charge. The single particle Hilbert space H for any
state is graded by the magnetic-electric charge lattice

H =
⊕
γ∈Γ

Hγ . (3.26)

A BPS state may be supported by any charge γ and therefore the BPS Hilbert
space inherits the grading by the charge lattice so that for some point a ∈ B we
have

HBPS
a =

⊕
γ∈Γ

HBPS
a,γ (3.27)

HBPS
a,γ =

{
|ψ〉 ∈ Ha,γ : H|ψ〉 = |Zγ(a)||ψ〉

}

4 Wall-Crossing

In this section we introduce the BPS index that ’count’ BPS representations and
discuss its global properties. In general the spectrum of the supersymmetric gauge
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theory will vary over the moduli space. Considering only the BPS representations
one expect them to be stable over B since there are no ’smaller’ representations to
which they can decay. We will see that this is not true in general and that there
are loci in the Coulomb branch where fusing and decay of BPS states do occur.
These loci form real codimensional one hypersurfaces in the moduli space named
walls of marginal stability. The wall-crossing problem is about determining the
change of the BPS spectrum, or the BPS index, when crossing such a wall.

4.1 The BPS Index

The subject of wall-crossing, as treated in [13], is about determining the BPS
spectrum of a theory at different loci in the moduli space. Hence one need some
measure, a way to count the number of BPS states. The ’counting’ of BPS states
is realised through an index which maps a representation to an integer. It should
be zero for any representation that is not BPS and non-zero for the BPS rep-
resentations. This distinction contains a difficulty, namely that some non-BPS
representations might, as sums of BPS states, ’look like’ BPS states. In the fol-
lowing we omit the su(2)R-part of the bosonic algebra since we will distinguish the
representations exclusively through data from the Poincaré algebra. In this case,
the half-hypermultiplet is rewritten as

ρhh = (
1

2
; 0)⊕ (0;

1

2
) −→ ρhh = 2[0]⊕ [

1

2
] (4.1)

highlighting the field content; two scalars and one spinor. As an example we take
one BPS representation Sj and one long representation Lj ;

Lj = (2[0]⊕ [
1

2
])⊗ (2[0]⊕ [

1

2
])⊗ [j] = ([1]⊕ 4[

1

2
]⊕ 5[0])⊗ [j]

Sj = (2[0]⊕ [
1

2
])⊗ [j]

(4.2)

with [j] an arbitrary representation of the little algebra so(3) and j the eigenvalue
of the generator J3 of the little algebra. In this case we may form the sum

L0 = 2S0 ⊕ S 1
2

(4.3)

and it is in this sense L0 ’looks like’ a BPS state and is called a fake-BPS state.
The index should distinguish between fake and true representations.

The second helicity supertrace, here called the BPS-index, is defined as

Ω(a, γ) ≡ −TrHBPSa,γ
(−1)2J3(2J3)2 (4.4)
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for a state of charge γ. This type of index was introduced for N = 2 theories in [8]
and is unique up to a normalisation factor. By diagonalisation the trace reduces
to the sum of its eigenvalues over the space of BPS states. Computing the BPS
index of the long representation L0 and the short representations S0 and S 1

2
(the

hypermultiplet and the vector multiplet) gives

−TrL0(−1)2J3(2J3)2 = −
{

(−1)2 · 22 + 4 · (−1)1 · 12 + 5 · (−1)0 · 0
}

= 0

−TrS0(−1)2J3(2J3)2 = −
{

2((−1)0 · 0) + (−1)1 · 1
}

= 1

−TrS 1
2

(−1)2J3(2J3)2 = −
{

(−1)2 · 22 + 2 · (−1)1 · 12 + 0
}

= −2 . (4.5)

This illustrates the fact that the index takes nonzero values for BPS representations
and otherwise zero. Note that the indices sum up as ΩL0 = 2ΩS0+Ω 1

2
in accordance

with the construction of the long representation L0.

4.2 The Wall-Crossing Formula

The BPS index is, as we will see, a piecewise constant function over B. On the
moduli space the index will then locally be an invariant. A full description of the
spectrum for any point in B require a method of determining the spectrum in any
region of the moduli space. This may contain regions of strong coupling where
methods of finding the spectrum is either very hard or non-existing. This problem
may also be adressed in finding the exact BPS-index discontinuities when passing
the walls of marginal stability. Then the knowledge of the spectrum at some region
of the moduli space may be used to determine the global spectrum. This is the
wall-crossing problem and the main issue of the paper [13].

A corresponding problem is solved in algebraic geometry where an analogous phe-
nomenon occur for generalised Donaldson-Thomas invariants, a topological invari-
ant related to Calabi-Yau geometries. The solution by Kontsevich and Soibelman
(KS) [18] make use of a Lie algebra of operators Kγ acting on a torus. By forming
operator products, with the Donaldson-Thomas invariants as exponents, they man-
aged to account for the discontinuities by setting equal different orderings of the
products on the two sides of the wall of marginal stability. The discontinuities are
accounted for as contributions from the commutation relations when rearranging
the operator product.

In the following we describe under what circumstances the BPS spectrum may
change and how this splits the moduli space in regions separated by codimension
one walls. Then we present the Lie algebra used by KS to formulate the wall-
crossing formula. Note that we present the KS transformations and wall-crossing
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formula in terms of the BPS-index, not in the context of the Donaldson-Thomas
invariants. In section 6 the connection between the particle spectrum and the mod-
uli space will be unraveled, and the formulation of this relation will be expressed
in the BPS-index.

The BPS spectrum is defined by the central charge. At some locus a0 ∈ B the
central charges for two or more BPS-states may align, sharing the same complex
argument and then the triangle inequality

|Zγ1(a0)|+ |Zγ2(a0)| ≥ |Zγ1+γ2(a0)| (4.6)

saturates. The binding energy E of a bound BPS-state is generically negative

E = |Zγ1+γ2(a0)| − |Zγ1(a0)| − |Zγ2(a0)| ≤ 0 (4.7)

and a splitting of the bound state is only possible when equality holds. The
saturated case is a complex argument condition and hence the points a0 for which
this holds constitutes a codimR = 1 loci Ξ ⊂ B. At these loci BPS-states may
split or fuse in agreement with (4.6). In a neighbourhood of a generic point in the
Coulomb branch this possibility does not exist and hence a BPS-state is locally
stable. The moduli space may therefore be divided by one ore more codimension
one walls of marginal stability, away from which the BPS-spectrum is fixed or
’constant’. The wall-crossing phenomenon is thus the jump in the BPS-spectrum
when passing such a wall in the parameter space.

Consider the symplectic vector space Γa ⊗ C∗ at some point a on the Coulomb
branch. This space is a complexified torus Ta for each a ∈ B. Let Xγ be functions
on this torus obeying XγXη = Xγ+η. Moreover we chose these functions such
that if the set {γi} is a basis for Γa the corresponding set of functions {Xγi} is a
coordinate basis for Ta. If we take the rank one case as an example there are two
charges spanning the charge lattice, and they correspond to two coordinates for
the torus T 2.

Since the space is symplectic any function serves as a Hamiltonian function and we
will construct a Lie algebra of the transformations generated by Xγ as Hamiltonian
functions. The symplectic 2-form on Ta is defined by

ϑTa =
1

2
〈γi, γj〉−1d logXγi ∧ d logXγi (4.8)

and is closed by construction. Let the operator fγ be the infinitesimal symplecto-
morphism of the torus generated by the Hamiltonian Xγ. The Poisson bracket is
defined through the Poisson structure which is the inverse of the symplectic form.
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For two functions f and g we have

{f, g} = ϑ−1
Ta

(df, dg) (4.9)

and thus the action of the Lie algebra generators is

fγXη = {Xγ, Xη} = ϑ−1
Ta

(dXγ, dXη) = 〈γ, η〉XγXη = 〈γ, η〉Xγ+η . (4.10)

In the following we motivate how to arrive at the KS Lie algebra by studying the
fγ operators. The bracket acting on the torus functions is by the Poisson bracket
Jacobi identity

[fγ, fη]Xρ = {{Xγ, Xη}, Xρ} (4.11)

and thus by acting with the bracket on Xρ one gets a multiple of the generator
fγ+η as

[fγ1 , fγ2 ] = 〈γ1, γ2〉fγ1+γ2 (4.12)

with the proportionality factor given by the symplectic pairing. This defines the
algebra used in [18] up to a sign, which may be picked up by introducing a map
σ : Γ→ Z2. Letting the multiplication rule for σ be

σ(γ1)σ(γ2) = (−1)〈γ1,γ2〉σ(γ1 + γ2) (4.13)

and defining eγ as the symplectomorphisms generated by σ(γ)Xγ the bracket (4.12)
modifies just by a sign. One realisation of the σ-map is given by σ(γ) = (−1)pq

for γ = (p,q). The action on Xη and the commutation relation is

eγXη = 〈γ, η〉σ(γ)Xγ+η (4.14)

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2

for eγ. The Lie algebra of this bracket is the foundation for the mathematicians
solution of the wall crossing problem. The symplectomorphisms

Kγ ≡ exp
∞∑
n=1

1

n2
enγ (4.15)

are the ones used by KS in the operator products in the vicinity of the wall.

For each BPS-state of charge γ there is a ray lγ in the complex ζ-plane. For a ∈ B

lγ = {ζ : Zγ(a)/ζ ∈ R−} (4.16)

and these rays rotate in their plane as Zγ(a) varies over the Coulomb branch.
The ordering of the rays are constant in the vicinity of generic points of B and so
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4 WALL-CROSSING

are the number of rays. If a reaches a wall of marginal stability a set of central
charges becomes aligned, sharing the same complex argument. The rays then come
together, and when passing the wall the order and the number of rays are changed
as in figure 1. Let γ1 and γ2 be primitive vectors of Γ. At some point a0 on the
wall a general splitting of the central charge is

Zγ(a0) = mZγ1(a0) + nZγ2(a0) m, n > 0 (4.17)

and the set of charges for which the central charges of the BPS-states line up
may thus be expressed as mγ1 + nγ2 for positive integers m and n. Forming the
composition of the Kγ on one side of the wall

y
A (u) ≡

y∏
γ=mγ1+nγ2

KΩ(γ,a)
γ m, n > 0 (4.18)

with the ordering such that the rays lγ line up clockwise in the ζ−plane. Let a±
be points separated by a single wall. The wall-crossing formula can now be stated
as follows: y

A (a+) =
x
A (a−) . (4.19)

When crossing the wall the order of K-factors is reversed and the condition that

the product
y
A is unchanged means that the contributions from commuting all

symplectomorphism generators must be balanced by discrete changes in the index
Ω. In the physical context this is the information needed to compute the change

∆Ω = Ω(γ, a+)− Ω(γ, a−) (4.20)

in the BPS-index across the wall. To make use of this formula one notices that
the only generators that occur in

y
A are emγ1+nγ2 from which it follows that the

set {eγ} with m,n ≥ M is an ideal of the Lie algebra (4.14) [25]. Hence one may
construct quotient algebras by ideals with any positive M . The infinite product in
y
A then reduces to finite products accessible for determining the degeneracies Ω(γ).

The explicit action of Kγ on the torus coordinates is obtained by first noting
that enγXη = n〈γ, η〉(σ(γ)Xγ)

nXη and then considering the action of the operator
Wγ = logKγ on the function Xη

WγXη =
∞∑
n=1

1

n2
enγXη = 〈γ, η〉

∞∑
n=1

1

n
(σ(γ)Xγ)

nXη (4.21)

= log
[
(1− σ(γ)Xγ)

〈η,γ〉]Xη

concluding that KγXη = (1− σ(γ)Xγ)
〈η,γ〉Xη .
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4 WALL-CROSSING

A few examples are in order to see how wall-crossing formulae behave and the
interpretation of them. Since the Xη are multiplicative it suffices to investigate
the transformation of the unit magnetic and electric functions respectively. By
denoting X(1,0) = x and X(0,1) = y the KS symplectomorphism is

Kγ : (x, y) 7→
(

(1− (−1)pqxpyq)q x, (1− (−1)pqxpyq)−p y
)

(4.22)

for any charge γ = (p,q). By straightforward algebra one verifies the operator
equality

K(1,0)K(0,1) = K(0,1)K(1,1)K(1,0) (4.23)

which realises the general formula (4.19) when quoting the algebra by the ideal

P lγ1

lγ2

lγ1 = lγ1+γ2 = lγ2 lγ2

lγ1

lγ1+γ2

a = a+ a = a−a = aw

Figure 1: When a ∈ B crosses the wall the rays lγi corresponding to BPS states of
charge γi rotate towards each other and their mutual ordering is eventually reverted.
aw belongs to the wall of marginal stability and at this locus all rays coalesce to a
single ray. This example illustrates the behaviour of equation (4.23) where a bound
state of charge γ1 + γ2 is formed when a ∈ B follows a path a+ → a− that crosses
the wall.

given by m,n > 1. This is illustrated in figure 1. The physical interpretation of
this formula is two BPS particles of unit magnetic and electric charge respectively
coming together at a wall. When passing the wall one new dyonic charged particle
is created. This is in accordance with results from supergravity investigations [10]
where this extra bound state is found. A simililar result for the N = 2 theory with
gauge group SU(3) was analysed in [4]. For the wall-crossing formula (4.23) the
BPS index discontinuities ∆Ω(γ) = Ω(a+, γ)− Ω(a−, γ) are

∆Ω(1,0) = 0

∆Ω(1,1) = −1 (4.24)

∆Ω(0,1) = 0 .
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5 COMPACTIFICATION TO THREE DIMENSIONS

In SU(2) Seiberg-Witten theory there is one wall of marginal stability separating
the parameter space in a strong coupling and a weak coupling region. The wall-
crossing phenomena is captured in the formula

K(2,−1)K(0,1) = (K(0,1)K(2,1)K(4,1) . . . )K−2
(2,0)(. . .K(6,−1)K(4,−1)K(2,−1)) (4.25)

where the left hand side reflects the strong coupling spectrum - one monopole and
one dyonic state. The exponents of both KS factors are 1 and hence these belong
to the hypermultiplet. The right hand side represents the weak coupling side of
the wall, where an infinite sequence of hypermultiplet states of dyonic charges
reside. The ’middle’ factor K−2

(2,0) corresponds to a state in the vector multiplet

since Ω = −2, recall equation (4.5). This state has charge (2,0) and is thus a
vector boson since the vector multiplet scalars are all neutral.

5 Compactification to Three Dimensions

In this section we compactify one direction of the four dimensional theory on a
circle, keeping the circle radius as a parameter. An effective three dimensional
theory is obtained in the small radius limit. We describe how the dimensional
reduction is performed reaching a N = 4 sigma model for the scalars. The vector
field is dualised to two scalars in three dimensions and the moduli space geometry is
restricted to be a hyperkähler manifoldM. The rest of this section is devoted to the
explicit description of the geometry, starting from the Gibbons-Hawking ansatz.
With a compactified direction there is a tower of field excitations on the circle
which contributes to the metric. It is described how these instanton corrections
are accounted for in a twistor space construction of the metric. This approach
is the one used in [13] to formulate a Riemann-Hilbert problem for the Darboux
coordinates onM. The continous solution for this problem is then shown to be in
one-to-one correspondence with a KS wall-crossing formula for the BPS-index.

5.1 The Bosonic Field Content

Compactifying the theory on S1 will give an effective theory in three dimensions
with the circle radius R as a parameter. The gauge field AI splits to a three
dimensional 1-form AI(3) and a scalar AI4 upon compactification. The two-form
field strength in three dimensions is Hodge dual to a 1-form field strength of a real
scalar field. Thus each gauge field will give rise to two real scalar fields and since
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5 COMPACTIFICATION TO THREE DIMENSIONS

there are one gauge field to each complex scalar aI in the vector multiplet this
doubles the dimension of the moduli space.

By imposing that the fields of (2.27) not depend on the fourth coordinate x4 we
get the splitting

d4a
I → daI(xi) AI → AI(3) + AI4(xi)dx4 F I → F I

(3) + dAI4 ∧ dx4 (5.1)

where all exterior derivatives on the right hand side are three dimensional, a con-
vention which is used from now on. The metric on R1,2 × S1 is g = dxi ⊗ dxi +
R2dx4 ⊗ dx4 with Lorentzian signature and i = 0,1,2. Under the splitting (5.1)
the kinetic terms become

daI ∧ ∗dāJ → Rdx4 ∧ daI ∧ ∗dāJ (5.2)

F I ∧ ∗F J → Rdx4 ∧ F I
(3) ∧ ∗F J

(3) +
1

R
dx4 ∧ dAI4 ∧ ∗dAJ4

and all quantities on the right hand side are three dimensional. We also note here
that ∗∗ = −1 on two-forms in three dimensional Minkowski space which will be
used in the following calculations.

Inserting the splitted fields in the Lagrangian (2.27) and integrating out the S1

direction gives

L(3) = − 1

4π

∫
S1

[
dx4 ∧ = τIJ(R daI ∧ ∗dāJ +

1

R
dAI4 ∧ ∗dAJ4 (5.3)

+RF I
(3) ∧ ∗F J

(3)) + 2dx4 ∧ < τIJF I
(3) ∧ dAJ4

]
= −1

2

[
= τIJ(R daI ∧ ∗dāJ +

1

R
dAI4 ∧ ∗dAJ4

+RF I
(3) ∧ ∗F J

(3)) + 2< τIJF I
(3) ∧ dAJ4

]
since the x4 periodicity is 2π. The gauge field A(3) is dualised to a magnetic scalar
ΛI by adding a Lagrange multiplier term F I

(3) ∧ dΛI . This term is exact and will
not change the equations of motion. Then the Euler-Lagrange equations

0 = δFL = δF I
(3) ∧

(
−R=τIJ ∗ F J

(3) −< τIJdAJ4 + dΛI

)
(5.4)

⇒ ∗F J
(3) =

1

R
(= τ)−1,IJ (dΛI −< τIJdAJ4 )

allow us to rephrase the Lagrangian in terms of Λ instead of A(3). By replacing all
field strengths F I

(3) = − ∗ (∗F I
(3)) in (5.3) eliminates the field strength in favor of

the introduced scalar field.
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5 COMPACTIFICATION TO THREE DIMENSIONS

To be consistent with the notation of [13] we introduce the magnetic and electric
coordinates θm,I = ΛI/2π and θIe = AI4/2π of periodicity 1. These are the ’electric’
and ’magnetic’ Wilson lines over the circle dimension

θIe =

∫
S1

AI4 dx
4 θm,I =

∫
S1

(A∗(3))Idx
4 (5.5)

where (A∗(3))I are the scalars dual to the three-dimensional gauge fields. This is not

the scalars ΛI , which are obtained after truncating the dependence on x4. After
some simplification the Lagrangian takes the form

L(3) = −1

2

{
R= τIJdaI ∧ ∗dāJ (5.6)

+
1

4π2R
(= τ−1)IJ(dθm,I − τIKdθKe ) ∧ ∗(dθm,J − τ̄JLdθLe )

}
.

This is a sigma model of maps from R
1,2 into the target space M and the metric

is that of a fibration of 2r-tori over B pictured in figure 2. By introducing the
coordinates zI by dzI = dθm,I − τIJdθIe we get the metric

gsf = R= τ |da|2 +
1

4π2R
= τ−1|dz|2 (5.7)

adopting the index free notation τ |da|2 ≡ τIJdaI ∧ ∗dāJ . Note that dzI is closed
only for each fixed point a ∈ B i.e on each fixed torus fiber Mu. The sf label
stands for semiflat and reflects that the torus fiber is flat, which makes up half of
the dimension of the manifold. This last form of the metric states that the Kähler
metric gsf is compatible with a complex structure in which daI and dzI is a basis
for the holomorphic one-forms on M.

5.2 Dimensional Reduction of the Supercharges

In four dimensions and N = 2 extended supersymmetry there is 8 real supersym-
metries. These are organised in the two supersymmetry generating Weyl spinors
QA of SO(1,3). When compactifying on a circle and performing the dimensional
reduction the supercharges must occur as representations of so(1,3) → so(1,2).
Compactification on S1 preserves all supersymmetries and the irreducible spinor
in three dimensions is Majorana with 2(3−1)/2 = 2 components [11]. This yields
four 2-component conserved spinor charges Q̃a in three dimensions i.e an N = 4
theory.
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5 COMPACTIFICATION TO THREE DIMENSIONS

B

M

a

Ma

θe

θm

Figure 2: The hyperkähler manifoldM as a fibration of toriMa over the Coulomb
branch B.

The R-symmetry is enhanced under the dimensional reduction. To see this we start
from the N = 1 gauge multiplet in six dimensions as in [24]. The fields are the six
dimensional gauge field A and Weyl fermions ψ, both in the adjoint representation.
The fermion fields come in a doublet of su(2)R, so do the supercharges. Imposing
independence of the last three coordinates x3, x4, x5 gives three scalar fields from
the corresponding components of the gauge field. These transform in the 3 of the
rotations so(3) = su(2)N .

When reducing the six dimensional theory to four dimensions one gets the N = 2
theory studied in this thesis. The six dimensional gauge field gives rise to two real
scalars i.e the complex scalar we already encountered and the symmetry is the
u(1)R rotations of the x4, x5-plane.

The u(1)R → su(2)N enhancement when going down to three dimensions acts on
the scalars, which in turn constitute the moduli space geometry. In this context the
su(2)N rotates the three complex structures of M. This is the full S2 of complex
structures defining the hyperkähler moduli space of the N = 4 field theory with
bosonic Lagrangian (5.6).

31



5 COMPACTIFICATION TO THREE DIMENSIONS

5.3 Describing the Hyperkähler Geometry

The following subsections are devoted to reproducing the metric (5.7) from a hy-
perkähler metric ansatz. First we consider the classical, or semi-flat, metric valid
in the large radius limit. Then we describe how corrections to this metric due
to instantonic excitations along the compact direction is accounted for. Some
background on hyperkähler geometry is reviewed in appendix A.

5.3.1 The Semiflat Metric

We now describe how the semiflat hyperkähler geometry with metric gsf may be
obtained using the twistor space construction which is introduced in appendix
A. The twistor space Z = M × P is topologically the trivial fibration of the
hyperkähler manifold M over the complex projective line P. The projection π :
Z → P is the map π(u, ζ) = ζ for u ∈M and ζ ∈ P is the twistor parameter.

In the twistor approach Darboux coordinates ξ on the twistor space Z are searched
for, such that

ϑ =
1

4π2R
dξm ∧ dξe (5.8)

is a section of Ω2
Mζ
⊗OP(2). The prefactor (4π2R)−1 is due to the chosen notation.

This ϑ(ζ) is a holomorphic symplectic form for each fiber Mζ = π−1(ζ), that is,
ϑ(ζ) is a (2,0)-form in the complex structure Jζ for each fixed ζ ∈ P. As a section
of the line bundle OP(2) ϑ is a section defined as a second degree polynomial in ζ
(with the proper transition functions between the patches of P). The three Kähler
forms onM are ω± = ω1 ± iω2 and ω3 and the symplectic form on Z is expressed
as

ϑ(ζ) = − i

2ζ
ω+ + ω3 −

iζ

2
ω− . (5.9)

At ζ = 0 and ζ =∞ this form is to be multiplied with the OP transition functions
ζ and ζ−1 respectively.

The semiflat Darboux coordinates have a neat realisation in terms of the central
charge Z and the gauge field Wilson lines θ. When no instanton contributions are
considered they are given by

ξγ = πRζ−1Zγ + iθγ + πRζZ̄γ (5.10)

and in the following we will see that they reproduce the semiflat hyperkähler
geometry (5.7). In the work of [13] the concept of ’Darboux functions’ X are
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5 COMPACTIFICATION TO THREE DIMENSIONS

introduced as the exponentiations

Xγ = exp(ξγ) (5.11)

of the Darboux coordinates which turns out to be convenient in the wall-crossing
context, treated in section 6. The holomorphicity of ξ, X or ϑ for each fixed ζ may
be phrased in terms of the Cauchy-Riemann equations overM [13]. In appendix A
the holomorphicity of ϑ over M in complex structure Jζ is shown explicitly. The
semiflat moduli space metric of the compactified theory has a simple realisation in
terms of the Darboux functions. Collecting the magnetic and electric coordinates
as θ = θIeαI − θm,IβI the Darboux functions

X sf
γ (ζ) = exp[πRζ−1Zγ + iθγ + πRζZ̄γ] (5.12)

are defined. Computing the holomorphic symplectic form using the special Kähler
condition (2.38) gives

ϑsf (ζ) =
1

8π2R
〈γi, γj〉−1d logX sf

γi
(ζ) ∧ d logX sf

γj
(ζ) (5.13)

=
1

4π

[
iζ−1〈dZ, dθ〉+

(
πR〈dZ, dZ̄〉 − 1

2πR
〈dθ, dθ〉

)
+ iζ〈dZ̄, dθ〉

]
.

Comparing this expression with (5.9) the Kähler form ω+ is extracted as

ω+ = − 1

2π
〈dZ, dθ〉 = − 1

2π
〈dXIαI − dFIβ

I , dθJe αJ − dθm,Jβ
J〉 (5.14)

=
1

2π
(daI ∧ dθm,I −

∂2F(a)

∂aI∂aJ
daI ∧ dθJe ) =

1

2π
daI ∧ dzI

by choosing a duality frame. In appendix A it is shown how the complex structure
Jsf3 may be calculated from this Kähler form. The terms independent of ζ in (5.13)
constitute the Kähler form

ωsf3 =
R

4
〈dZ, dZ̄〉 − 1

8π2R
〈dθ, dθ〉 (5.15)

in the third complex structure. Again, by choosing a duality frame this Kähler
form is rewritten in the coordinates {aI , zI} as

ωsf3 =
i

2

(
R(= τ)IJdaI ∧ dāJ +

1

4π2R
(= τ)−1,IJdzI ∧ dz̄J

)
, (5.16)

which states that in Jsf3 the metric gsf is Kähler with the Kähler form given above.
It follows that this is the hyperkähler metric as obtained from the compactification
on S1 (5.6).
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5.3.2 The Ooguri-Vafa Metric

When compactifying on a circle one introduces the possibility for field excitations
around the compact direction which are referred to as instanton contributions.
BPS states of mass M = |Z| wrapping a circle of radius R are exponentially
supressed by e−|Z|R as the radius goes to infinity. Their action is ∼ |Z|R and
hence the partition function gets the exponential supression. In this limit there
are no contribution from winding states and the semiflat metric is the classical one.
The opposite limit, when R→ 0 was identified as the Atiyah-Hitchin manifold in
the case of a SU(2) theory [24].

In the following we are interested in the region where R is not small. In this case
the contributions from all the BPS states in the four-dimensional theory must be
accounted for and this will lead to the wall-crossing phenomenon. For arbitrary
finite R one may expect contributions from the wrapped excitations to the metric.
In the following we describe how to take this into account in a simplified case.
Given a number of charged particles that are all mutually local it is possible to
choose a duality frame where all particles are electrically charged [22]. To start with
we restrict the treatment to the case of one particle of electric charge γ = (0, q).

Recall that the moduli space M is a torus fibration over the Coulomb branch B.
Without coupling to some charged particles the magnetic and electric coordinates
of the torus in are invariant under a U(1)m×U(1)e action of shift symmetry along
the torus directions. When introducing a electrically charged particle the isometry
in the electrical coordinate are broken while shifts of the magnetic coordinates still
are isometries.

The Gibbons-Hawking ansatz describes a family of hyperkähler metrics with a U(1)
isometry. In this first example we consider the rank 1 case and we take coordinates
(x1, x2, x3) with a = x1 + ix2 and θe = 2πRx3. For the isometry Killing vector ∂θm
the Gibbons-Hawking form of the metric is

g = V −1(x)(
dθm
2π

+ A(x))2 + V (x)dxi ⊗ dxi (5.17)

for A the U(1) connection and V obeying

dA = ∗dV (5.18)

making V the dual scalar potential to the connection. Given this form of the
metric three Kähler forms are obtained as

ωa = dxa ∧ (dθm + A) +
V

2
εabcdxb ∧ dxc (5.19)
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5 COMPACTIFICATION TO THREE DIMENSIONS

giving the hyperkähler structure to the geometry on M specified by g. These are
closed due to the condition (5.18) and it follows that V is harmonic, [15]. To give
an explicit expression for the Gibbons-Hawking form of the metric some physical
constraints are needed.

First of all the metric should reduce to the semiflat metric when instanton contri-
butions are suppressed and R → ∞. The singular point in this example is a = 0
where the BPS-states become massless and the full gauge group is restored. Hence
for |a| → ∞ the limit of g must be gsf . The wanted metric is periodic in θe and
have no continuous shift invariance along this direction. Also, the semiflat metric
is invariant under rotations of a which suggests that the full metric is just a func-
tion of |a| and the torus coordinates. As concluded in [22] these constrains have a
unique solution (up to a possible integration constant) which in our notation takes
the form

V (a, θe) =
q2R

4π

∞∑
n=−∞

1√
q2R2|a|2 + ( qθe

2π
+ n)2

− bn (5.20)

with some bn of order 1/|n| introduced for convergence.

This potential contains all contributions to the metric, with the semiflat metric
as the zero mode. In extracting this mode it is convenient to perform a Poisson
resummation of this expression. Starting from the identity

1

|x|
=

∫ ∞
0

dt

t3/2
exp[−π

t
|x|2] (5.21)

and for simplicity defining the denominator expression√
q2R2|a|2 + (

qθe
2π

+ n)2 ≡ |y|, y = y1 + i(y2 + n) (5.22)

the potential is rewritten

V =

∫ ∞
0

dt

t3/2
exp[−π

t
y2

1]
∞∑

n=−∞

exp[−π
t

(y2 + n)2] . (5.23)

By employing the Poisson resummation formula

∞∑
n=−∞

f(n) =
∞∑

k=−∞

f̂(2πk) for f̂(ω) =

∫ ∞
−∞

f(x)eiωxdx (5.24)

V may be rewritten as

V =

∫ ∞
0

dt

t3/2
exp[−π

t
y2

1]
√
t
∞∑

n=−∞

exp[−πtn2 − 2πiy2n] (5.25)
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and the occurence of the factor 2π in the resummation formula is due to the choice
of Fourier transform convention. Extracting the oscillating term in the equation
above, which is independent of the integration parameter, gives the Bessel integral

V =
∞∑

n=−∞

exp[−2πiy2n]

∫ ∞
0

dt

t
exp[−π

t
y2

1 − πtn2] = (5.26)

= 2
∞∑

n=−∞

exp[−2πiy2n]K0(2π|y1n|) .

The modified Bessel functionK0(x) has the asymptotic behaviourK0(x) ∼ − log(x/c)
for small x and for some constant c. The zero mode may be viewed as the |a| → 0
behaviour of K0 for some non-zero n. The choice of regularization bn will contribute
to this constant and they are treated collectively as the constant Λ. Inserting the
expressions for y1, y2 and the prefactor gives the final expression

V = V sf + V inst = −q
2R

4π
log(

aā

ΛΛ̄
) +

q2R

2π

∑
n6=0

exp[iqθen]K0(2πR|qan|) (5.27)

and the Λ is to be interpreted as the energy scale. The Bessel function in (5.27)
has a large argument expansion in which the leading behaviour is K0(2π|a|R) ∼
e−2πR|a| for large R and a, as expected for instanton contributions. The classical
metric is obtained in the region far away from the singular point |a| = 0 as well
as in the decompactification limit. The exponential in θe breaks the translational
invariance from R to Z as expected in the presence of an electric charge. The
connection dual to the potential V in (5.18) is given by A = Asf + Ainst with

Asf =
iq2

8π2

(
log

a

Λ
− log

ā

Λ̄

)
dθe (5.28)

Ainst = −q
2R

4π

(da

a
− dā

ā

)∑
n6=0

sgn(n) exp[iqθen]|a|K1(2πR|qan|) .

The semiflat contribution is singular at a = 0 and taking the corrections into
account we see that the possible singularities is a = 0, θe = 2πn/q. The second
condition has q solutions while θe is 2π-periodic. The four dimensional space
with coordinates (a, θm, θe) is locally C2, and subject to the identification θe ∼
θe + 2πn/q. The space in the vicinity of a = 0 is then the quotient space C2/Zq
i.e an Aq−1 singularity. In the special case of q = 1 there is no singularity and the
space is perfectly smooth.
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5.3.3 Twistor Space Description

In this section we make connection with section 5.3.1 and describe how to extend
the twistor construction of the semiflat case to the instanton corrected metric. The
holomorphic symplectic form ϑ over the twistor space M×P is obtained as

ϑ(ζ) =
1

4π2R
dξm ∧ dξe (5.29)

for ξm,e the magnetic and electric Darboux coordinates whose differentials are

dξm = idθm + 2πiA(x) + iπV (x)
(
ζ−1da− ζdā

)
(5.30)

dξe = idθe + πR
(
ζ−1da+ ζdā

)
.

The holomorphic 2-form ϑ is an element of Ω(2,0)(M) for each ζ ∈ P in complex
structure Jζ . This implies that both Darboux coordinate differentials are of type
(1,0) i.e holomorphic one forms in Jζ .

Taking ξe = logXe and using that the electric unit charge is γ = (0,1) gives Zγ as
the coordinate a ∈ B and θγ = θe. Written out ξe is

ξe = πRζ−1a+ iθe + πRζā (5.31)

which is the same expression as in (5.10). The conclusion is that the electric coor-
dinate contribution to the symplectic form is the classical one and the instanton
corrections are all in the magnetic coordinate ξm. The problem of finding the
instanton corrected Darboux functions over the twistor space is thus restricted
to finding the magnetic solution. The straightforward way would be to make an
ansatz for Xm and then solve the corresponding Cauchy-Riemann equations onM.

In [13] a different approach is presented for the solution, and instead of demanding
holomorphicity given the geometry they look for a solution that is validated by
giving the right symplectic form ϑ. By linearity the splitting in semiflat and
instanton corrected contributions are transferred to the symplectic form as

ϑ(ζ) = ϑsf (ζ) + ϑinst(ζ)

ϑsf (ζ) = − 1

4π2R
dξe ∧

[
idθm + 2πiAsf + πiV sf (ζ−1da− ζdā)

]
(5.32)

ϑinst(ζ) = − 1

4π2R
dξe ∧

[
2πiAinst + πiV inst(ζ−1da− ζdā)

]
identifying dξsfm as the right factor of the second line. In the semiflat part above
the term Asf ∼ dθe carries a dependence on the electric torus coordinate θe. In
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5 COMPACTIFICATION TO THREE DIMENSIONS

constructing the Darboux functions with the origin in the magnetic-electric duality
frame we want to separate the dependence on θm and θe. The solution to this
is to simply subtract a multiple of the electric coordinate dξe such that the θe
dependence cancels. This maneuver preserves the symplectic form

ϑsf ∼ dξe ∧ (dξsfm − kdξe) = dξe ∧ dξsfm (5.33)

and the explicit semiflat magnetic coordinate is

dξsfm = idθm + 2πiAsf + πiV sf (ζ−1da− ζdā)− iq2

4π

(
log

a

Λ
− log

ā

Λ̄

)
dξe

=
Rq2

2i
ζ−1d(a log

a

Λ
− a) + idθm −

Rq2

2i
ζd(ā log

ā

Λ̄
− ā) . (5.34)

where we recognise the multiple of dξe as the rightmost term in the first line. This
expression coincides with the ansatz (5.12) for a unit magnetic charge γ = (1,0),

and for the central charge function Zm = q2

2πi
(a log a

Λ
− a).

The form of the instanton-corrected magnetic solution worked out in [13] is the
ingenious ansatz

Xm = X sf
m exp

[ iq
4π

∫
l+

dη

η

η + ζ

η − ζ
log[1−Xe(η)q] (5.35)

− iq

4π

∫
l−

dη

η

η + ζ

η − ζ
log[1−Xe(η)−q]

]
where the paths l± are any paths from 0 to ∞ on P belonging respectively to the
half-planes

H± = {ζ : ±< a
ζ
< 0} (5.36)

which are viewed as two hemispheres of P. The two contours are to be read as the
contributions from positively and negatively winded state excitations around S1.
The verification of the ansatz (5.35) reduce to checking that

ϑ(ζ) = − 1

4π2R
d logXe ∧ d logXm (5.37)

reproduces the symplectic form (5.29) corresponding to the Ooguri-Vafa metric.
The differential of the magnetic Darboux coordinate is

d logXm = d logX sf
m + I+ + I− (5.38)
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for the integrals

I± = ± iq
4π

d
(∫

l±

dη

η

η + ζ

η − ζ
log[1−Xe(η)±q]

)
= ± iq

4π
· ∓q

∫
l±

dη

η

η + ζ

η − ζ
X±qe (η)

1−X±qe (η)

dXe(η)

Xe(η)
(5.39)

= −iq
2

4π

∫
l±

dη

η

η + ζ

η − ζ
X±qe (η)

1−X±qe (η)
d logXe(η) ,

remembering that theP parameter ζ is constant with respect to the exterior deriva-
tive. The expression (5.38) and the splitting (5.32) implies that the correction part
must obey

d logXe ∧ (I+ + I−) = d logXe ∧
[
2πiAinst + πiV inst(ζ−1da− ζdā)

]
. (5.40)

This is the equation that we verify by evaluating the left hand side. To perform
the integrals we deform the contours l± to the specific case

l± = {η : ±a
η
∈ R−} (5.41)

which are the two rays centered on the half planes H±. First we note that the
modulus of the electric Darboux function

|Xe(η)| < 1 ∀ η ∈ l+ (5.42)

since the real part of ξe is strictly negative on this path. The analogous statement
is that |Xe| > 1 on l−. The wedge products on the left in (5.40) may be rewritten
by moving the one form under the integral yielding the expression

η + ζ

η − ζ
d logXe(ζ) ∧ d logXe(η) =

η + ζ

η − ζ
d logXe(ζ) ∧ [d logXe(η)− d logXe(ζ)]

= πR
η + ζ

η − ζ
d logXe(ζ) ∧

[
(η−1 − ζ−1)da+ (η − ζ)dā

]
(5.43)

= −πR d logXe(ζ) ∧
[
(η−1da− ηdā) + (ζ−1da− ζdā)

]
which contains terms of order −1, 0 and 1 in η. Inserting this expression in (5.40)
gives the integrals

iq2R

4
d logXe(ζ) ∧

{∫
l+

dη

η

[
(η−1da− ηdā) + (ζ−1da− ζdā)

] X q
e (η)

1−X q
e (η)

+

∫
l−

dη

η

[
(η−1da− ηdā) + (ζ−1da− ζdā)

] X−qe (η)

1−X−qe (η)

}
(5.44)
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5 COMPACTIFICATION TO THREE DIMENSIONS

which may be evaluated in closed form. We consider the different orders of η
separately. The l+-integral over the ζ- and ζ−1-terms is

(ζ−1da− ζdā)

∫
l+

dη

η

X q
e (η)

1−X q
e (η)

(5.45)

and since the modulus of the Darboux function is less than one we may rewrite the
integral part above as a geometric series. This allows for moving out the oscillating
θe-factor leaving a Bessel integral∫

l+

dη

η

X q
e (η)

1−X q
e (η)

=

∫
l+

dη

η

∑
n>0

X qn
e (η)

=
∑
n>0

exp[iqnθe]

∫
l+

dη

η
exp[πRqn(

a

η
+ ηā)] (5.46)

=
∑
n>0

exp[iqnθe]

∫
R+

dx

x
exp[−πRqn(

1

x
+ x|a|2)]

= 2
∑
n>0

exp[iqnθe]K0(2πR|qan|) .

Over the ray l+ from 0 to ∞ the integral is evaluated as a real integral, changing
variable to x = η/a < 0 giving dη/η = dx/x. This ensures that the exponent is
always real and negative and hence a convergent Bessel integral. The corresponding
integral over l− gives by the same construction x > 0 and the negative sign is due
to the negative charge q over this ray. The geometric sum is thus effectively over
the negative integers and together the integrals contribute by

iq2R

2
d logXe(ζ) ∧ (ζ−1da− ζdā)

∑
n6=0

exp[iqnθe]K0(2πR|qan|) = (5.47)

d logXe(ζ) ∧ iπV inst(ζ−1da− ζdā)

to (5.40). To evaluate the integrals multiplying the (η−1da− ηdā) factor in (5.44)
we treat first the l+-case. The first integral is

da

∫
l+

dη

η2

X q
e (η)

1−X q
e (η)

= da

∫
l+

dη

η2

∑
n>0

X qn
e (η) =

da
∑
n>0

exp[iqnθe]

∫
l+

dη

η2
exp[πRqn(

a

η
+ ηā)] (5.48)

= −2 da
∑
n>0

|a|
a

exp[iqnθe]K1(2πR|qan|)
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5 COMPACTIFICATION TO THREE DIMENSIONS

where we picked up a total minus sign from the dη/η2-term which is negative for
the l+-ray and the factor of |a| is due to the Bessel integral. In the same spirit the
second integral (of order η in (5.44)) is evaluated to

dā

∫
l+

dη

η
η
X q
e (η)

1−X q
e (η)

=

dā
∑
n>0

exp[iqnθe]

∫
l+

dη exp[πRqn(
a

η
+ ηā)] (5.49)

= −2 dā
∑
n>0

|a|
ā

exp[iqnθe]K1(2πR|qan|) .

Adding the results of the ray l−, with sums over negative integers, and an overall
sign due to the positiveness of the integral parameter the result is

− iq2R

2
d logXe(ζ) ∧

∑
n6=0

sgn(n)|a| exp[iqnθe]K1(2πR|qan|) (5.50)

= d logXe(ζ) ∧ 2πiAsf

which completes the check that the ansatz actually gives the magnetic function
that reproduces the metric. Comparing (5.40) to the integral contributions (5.47)
and (5.50) we see that all instanton contributions agree.

We note here that the generalisation to higher rank, or manifolds of higher dimen-
sion, is carried out following the same line of reasoning. In coordinates xI = (aI , θIe)
and θm,I chosen such that the U(1)r isometry Killing vectors are ∂θm,I the metric
is

g = V (x)−1,IJ(
dθm,I

2π
+ AI(x))(

dθm,J
2π

+ AJ(x)) + V (x)IJdxI · dxJ (5.51)

and to keep the hyperkähler structure the relation between AI and VIJ are chosen
such that the Kähler forms

ωa = dxa,I ∧ (dθm,I + AI) +
1

2
VIJε

abcdxb,I ∧ dxc,J (5.52)

all are closed, in accordance with the existence of the Kähler forms (5.19). Analo-
gous expressions for the potentials V and A are obtained and it is found that the
electric Darboux functions are the semiflat ones. The instanton corrections are
accounted for in the magnetic functions. Details of these calculations are found in
[13].
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6 WALL-CROSSING IN TWISTOR SPACE

P l+

ζ

Σ

Figure 3: When ζ move along a path across the integration contour l+ the contour
encircles the pole by the curve Σ.

6 Wall-Crossing in Twistor Space

This section is devoted to the relation between the Kontsevich-Soibelman wall-
crossing formula introduced in section 4.2, and the general problem of finding
Darboux functions Xγ that reproduces the symplectic form of the hyperkähler
moduli spaceM. The main point is to accentuate that a continuous metric on the
moduli space is in one-to-one correspondence with the validity of the wall-crossing
formula. This problem contains lot of subtleties and details, many of them which
we leave out of this part. This section should be viewed as an introduction to the
problem and gives an intuition for its solution and main features.

We want to investigate how the solutions Xm,e behave close to a ray l. The electrical
and the semiflat magnetic Darboux functions are regular in ζ, except for the the
singularities at zero and the infinity point. The full solution for Xm is holomorphic
in ζ only on the complement of the rays l±. Consider the first integral of (5.35)
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6 WALL-CROSSING IN TWISTOR SPACE

and let ζ follow a path crossing the ray l+ clockwise. When crossing the contour of
integration the pole of the integrand crosses the ray as well and hence the integral
may be splitted ∮

l+

→
∮
l+

+

∮
Σ

(6.1)

where Σ is a closed positively oriented curve enclosing the pole on the other side of
the curve, as in figure 3. The limits when ζ → l+ clockwise and counterclockwise
respectively are denoted (Xm)±l+ and correspondingly for the path l−. Due to the
exponent in the solution (5.35) the contribution from the Σ-integral is multiplica-
tive. By the residue theorem the closed contour integral is

iq

4π

∮
Σ

dη

η

η + ζ

η − ζ
log[1−Xe(η)q] = 2πi

iq

4π
· ζ + ζ

ζ
log[1−Xe(ζ)q]

= log(1−Xe(ζ)q)−q (6.2)

and the contribution to Xm is thus (1 − Xe(ζ)q)−q. Equating the expressions on
both sides of the rays yields

(Xm)+
l+

= (Xm)−l+(1−Xe(ζ)q)−q (6.3)

and the corresponding expression

(Xm)+
l−

= (Xm)−l−(1−Xe(ζ)−q)q (6.4)

for the path l−. We see that these expressions resembles the behaviour of the torus
coordinates Xm,e under the KS transformation introduced in section 4.2. In the
following we make this relation precise.

The functions Xm and Xe constitutes, for fixed values of a,R and ζ, a map

X :Ma → Ta (6.5)

whereMa is the torus fiber of the hyperkähler fibrationM→ B with coordinates
(θm, θe). One may restate the relation, saying that Xγ is the pullback Xγ(θ) =
Xγ(X (θ)) to the torus fiber Ma of the coordinates Xm,e. Ta is a complexified
torus with coordinates (Xm, Xe) introduced in section 4.2. As functions on the fiber
Xm,e = exp[i(θm,e + f(θ))] where f is due to possible monodromy transformations
around a = 0. They both hence take S1-values and this is the reason for the map
(6.5) to take values on a torus Ta.

The solutions X are valued on the torus Ta and hence the KS transformations
(4.22) apply to the Darboux functions. Actually the discontinuities of Xm in (6.3)-
(6.4) may be stated as

X+
m = K(±q,0)X−m (6.6)
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6 WALL-CROSSING IN TWISTOR SPACE

at the rays l±. This is the link between the work of Kontsevich and Soibelman and
the description of the moduli space in the simplest case. The description of the
Darboux coordinates over M has necessarily discontinuities, which are accounted
for as KS transformations. So far we have considered mutually local particles and
we now turn to the general case.

We now turn to the case where not all particles are mutually local i.e there is no
duality frame where all particles may be considered electrically charged. As in the
previous case the full hyperkähler metric g receives corrections from instantons
originating from massive BPS states in four dimensions. The contribution from
each BPS state of charge γ are expected to be weighted by the BPS index Ω(γ).
From section 4.1 we know that these degeneracies are only piecewise constant over
the base B. Hence the instanton corrections have discontinuous jumps at some loci
on the Coulomb branch and so should the full metric.

From the Lagrangian of the compactified theory we expect the metric g to be ev-
erywhere smooth, since it is specified by the holomorphic period matrix τ . The
tower of instanton contributions and their discontinuities must therefore be care-
fully balanced so to make g smooth. The authors of [13] found that this is achieved
if the BPS index obey the Kontsevich-Soibelman wall-crossing formula. This state-
ment is at the heart of the physical interpretation of the wall-crossing formula. In
the following we motivate why this has to be true.

A Riemann-Hilbert problem is the problem of finding holomorphic functions f+(z)
and f−(z) on the interior and exterior respectively of a closed curve Σ. For all
z ∈ Σ they obey a boundary condition α(z)f+(z) + β(z)f−(z) = γ(z) for some
given holomorphic functions α, β and γ.

This is the precise setup needed to describe the Darboux functions as piecewise
analytic over the full manifold M. The KS symplectomorphisms are maps

Kγ : Ta → Ta (6.7)

which for charges that support BPS states gives contribution to the wall-crossing
formula. To make contact with the contours l of the solution (5.35) for the magnetic
Darboux function the subset

Γa,l = {γ ∈ Γa |Zγ(a)/ζ ∈ R−} , ζ ∈ l (6.8)

of the local charge lattice Γa is defined. The rays where Γa,l 6= ∅ are named BPS
rays. The corresponding transformation

Sl =
∏
γ∈Γa,l

KΩ(γ)
γ (6.9)
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over BPS states is thus over all possible charges whose central charges line up along
the ray l. If the set Γa,l is empty then Sl is 1. Note that this is very similar to

the construction of
y
A in section 4.2. However for γ ∈ Γa,l all KS transformations

commute, since the charges in this subset are all real multiples of each other. This
gives 〈γ, γ′〉 = 0 and thus the Lie algebra generators all commute from which it
follows that no particular ordering of the operator product need to be stated.

The boundary condition of the Riemann-Hilbert problem over the ray l is set to

X+ = SlX− (6.10)

where X± are the limits of X when ζ approaches l clockwise or counterclockwise
respectively. This is the generalisation of the discontinuity over l for the unit charge
functions Xm,e in (6.6). For each ray where the central charges share their complex
argument a Riemann-Hilbert problem is formulated as above. The solutions are
piecewise holomorphic functions of ζ away from the rays.

So far the discussion of the solution has been about the ζ-dependence of the Dar-
boux functions. The metric is not dependent on the twistor parameter and we
want to say something about the solutions as functions on M. Away from the
marginal stability walls in B the solutions are continuous since the BPS spectrum
is constant at these loci. Let a0 be any point on the wall and consider the case
when a ∈ B approaches this wall from one side. The BPS rays corresponding to
charges γ = mγ1 + nγ2 will rotate towards each other eventually approaching a
single ray while keeping their mutual ordering. The Riemann-Hilbert discontinuity
of X at the wall is thus

y
A =

y∏
γ=mγ1+nγ2

KΩ(γ,a+)
γ m, n > 0 (6.11)

and if the limit lima→a0 X exists from this side of the wall it is a solution to
the Riemann-Hilbert problem at the ray l. If one makes the same argument, but
consider a approaching the wall from the other side gives a analogous discontinuity,
but with the product in the reverse order. X is continuous at a0 if the two limits
agree at this point and is thus the solution to the same Riemann-Hilbert problem.
Recall that the wall-crossing formula (4.19) is precisely this statement if X is
continuous over the wall of marginal stability.

The full instanton corrected Darboux functions are solutions to the integral equa-
tion

Xγ(ζ) = X sf
γ exp

[
− 1

4πi

∑
γ′

Ω(γ′, a)〈γ, γ′〉
∫
lγ′

dη

η

η + ζ

η − ζ
log{1− σ(γ′)Xγ′(η)}

]
,
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which is a crucial part of the main result of Gaiotto, Moore and Neitzke in [13].
If the Kontsevich-Soibelman wall-crossing formula is satisfied by the BPS index
there is an piecewise analytic solution in a and ζ for the Darboux functions over
M. It follows that the metric constructed out of the symplectic form on the
hyperkähler manifold is continuous. The transformations Kγ over the wall are all
symplectomorphisms and hence they are compatible with differentiable transition
functions gluing the charts of M together to a manifold.
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Appendices

A Hyperkähler Geometry

In appendix A.1 a brief background on hyperkähler geometry is presented. The
basic ingredients and relations are introduced on a working level for application
in section 5. In A.2 the construction of a hyperkähler geometry via Darboux
coordinates are introduced. Making use of the full Riemann sphere of complex
structures and the symplectic form on the manifold allows for Darboux coordinate
functions X (u, ζ) with certain properties, all used in section 5, and presented in
part two of this appendix. See e.g [17].

A.1 Foundations

A hyperkähler manifold M is a Riemannian manifold of 4n real dimensions. It
carries three covariantly constant complex structures J1, J2 and J3 giving three
different Kähler forms ω1, ω2 and ω3 respectively. The complex structures are
(1,1) tensor fields obeying the quaternion algebra

JaJb = −δab + εabcJc . (A.1)

The space of Kähler metrics is infinite dimensional since a Kähler metric may be
transformed to another Kähler metric by adding any function f(z, z̄) ∈ C∞ to
the Kähler potential. The set of hyperkähler geometries are much more restricted,
since a Kähler transformation has to preserve the compatibility with all complex
structures and it is known that the set of isometry classes is finite [16]

For any point (a1, a2, a3) ∈ S2 we may form the linear combination aiJi which is
also a covariantly constant complex structure on M since

(aiJi)
2 = aiajJiJj = −aiai = −1 (A.2)

and where the cross terms vanish due to antisymmetry. The map

a1 = i
ζ̄ − ζ
1 + ζ̄ζ

a2 = − ζ̄ + ζ

1 + ζ̄ζ
a3 =

1− ζ̄ζ
1 + ζ̄ζ

(A.3)

realises the isomorphism S2 ≈ CP
1 = P. Hence we have a family of complex

structures and corresponding Kähler forms, parametrised by a complex parameter
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ζ ∈ P and

Jζ = − 1

1 + ζ̄ζ

(
i(ζ̄ − ζ)J1 − (ζ̄ + ζ)J2 + (1− ζ̄ζ)J3

)
(A.4)

= − 1

1 + ζ̄ζ

(
iζ̄J+ − iζJ− + (1− ζ̄ζ)J3

)
for J± = J1 ± iJ2. We will consider the form

ϑ(ζ) = − i

2ζ
ω+ + ω3 −

iζ

2
ω− (A.5)

where correspondingly ω± = ω1 ± iω2. At the points 0 and ∞ of the Riemann
sphere this form must be multiplied by ζ and ζ−1 respectively to make sense.
Hence ϑ is a section of the line bundle OP(2). This (1,1)-form is symplectic by
construction and since the complex structures are covariantly constant it is closed.
It is holomorphic with respect to the complex structure Jζ i.e for each fixed ζ we
have

Jζϑ(ζ) = iϑ(ζ) (A.6)

as seen by taking

Jζϑ(ζ) = − 1

1 + ζ̄ζ

(
iζ̄J+ − iζJ− + (1− ζ̄ζ)J3

)
(− i

2ζ
ω+ + ω3 −

iζ

2
ω−) (A.7)

= −g 1

1 + ζ̄ζ

[
iζ̄J+J3 +

1

2
ζ̄ζJ+J− −

1

2
J−J+ − iζJ−J3

− i

2
ζ−1(1− ζ̄ζ)J3J+ −

i

2
ζ(1− ζ̄ζ)J3J− − (1− ζ̄ζ)

]
= − 1

1 + ζ̄ζ

[
(−ζ̄ − 1

2
ζ−1(1− ζ̄ζ))ω+ + (−ζ +

1

2
ζ(1− ζ̄ζ))ω−

− i(1 + ζ̄ζ)ω3

]
= iϑ(ζ)

where we note that the algebra gets modified a bit in the J± structures. The
existence of a holomorphic symplectic form may be restated as the existence of an
isomorphism between the holomorphic tangent and cotangent space. As this must
be non-degenerate we have for m = dimT (1,0)M

0 6= detϑij = det(−ϑji) = (−1)m detϑji ⇒ m ∈ 2Z (A.8)

and the even dimension of both the holomorphic and the anti-holomorphic tangent
spaces gives that dimRM is necessarily a multiple of four.
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A hyperkähler manifold is a holomorphic symplectic manifold as a complex man-
ifold in the complex structure Jζ . This motivates an example of a hyperkähler
manifold - the K3 surface. It is a Calabi-Yau 2-fold and hence it carries a non-
vanishing holomorphic top-form, which in this low-dimensional case is the holo-
morphic symplectic form of the hyperkähler manifold. Note that the K3 surface is
a compact manifold in opposition to the hyperkähler manifold considered in this
thesis. Compactness of the K3 follows from the description of the manifold e.g as
a the vanishing locus of a degree four polynomial in P3, which is compact.

A.2 Twistor Space Construction of a Hyperkähler Metric

The symplectic form (A.5) suggests to consider the fibration of M over P with
the simple projection π(u, ζ) = ζ for u ∈ M. This is the twistor space Z of the
hyperkähler manifold which topologically is the product M× P. The symplectic
form is a holomorphic 2-form section valued in Ω2

Mζ
⊗OP(2), giving a holomorphic

symplectic form for each fiber Mζ = π−1(ζ). The line bundle factor is due to the
polynomial transition functions of order 2 over P.

The twistorial construction of a hyperkähler metric uses a set of holomorphic
functions Xγi(u, ζ) on the twistor space. These are related to the choice of Darboux
coordinates by exponentiation and may be called Darboux functions defined such
that the holomorphic symplectic form is

ϑ(ζ) = K〈d log(X ), d log(X )〉 (A.9)

for some constant K and the wedge product implicitly assumed in the symplectic
pairing. In the physical case we consider the functions Xγi enumerated by the
magnetic-electric charge γi and in this case the constant K is supported by a
antisymmetric inverse form αij = 〈γi, γj〉−1 as

ϑ(ζ) = Kαij d(logXγi) ∧ d(logXγj) (A.10)

At the end of this section we describe how the metric is obtained from this form.

The functions Xγ are assumed to have some basic properties compatible with
the structure of a twistor space [16]. The enumerating charges add up under
multiplication XγXγ′ = Xγ+γ′ . This multiplicativity allow for unit magnetic and
electric charge solutions to be combined into a solution of any charge.

There is a reality condition on how X transforms under the antipodal map ζ 7→
−1/ζ̄ on P. The Darboux functions obey X̄−γ(ζ) = Xγ(−1/ζ̄) under this trans-
formation. In the solution of the wall crossing problem as in [13] one has to
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assume that the Darboux functions are at least piecewise holomorphic in u, which
is enough to make ϑ(ζ) globally defined. This is equivalent to the statement that
X is solution to the Cauchy-Riemann equations on (M,g) which take the form for
u ∈M and for any fixed ζ ∈ P

∂uX = AkuX (A.11)

where Ak are first order differential operators acting on the torus fiber Mu →
M→ B. We do not get into the details of the Cauchy-Riemann equations on M
here but refer to [13].

Once computed, the symplectic form ϑ(ζ) may be used to recover the metric by
reading of the coefficients of order 1, −1 and 0 in ζ. That is, we pick out the three
Kähler forms ωi and then, since the inverse of a complex structure is the negative
of it self

ω2 ab(ω
−1
1 )bc = gadJ

d
2 b(gJ1)−1 bc = −gadJd2 bgecJ b1 e = gadg

ceJd3 e = J c3 a (A.12)

The metric is then obtained from ω3 which is obtained by lowering the indicies of
J3 by the metric. By acting with the inverse complex structure from the right one
gets gab = −ω3 adJ

d
3 b. Note that since ϑ is a (2,0)-form in complex structure Jζ so

is the Kähler form ω3. However ω3 is of type (1,1) in it’s corresponding structure
J3 which gives g as the Kähler metric on M.

B Special Geometry and Riemann Surfaces

The rigid special geometry structure also occur in the analysis of Riemann surfaces
and we briefly introduce this framework here [9] [23] . A readable introduction is
found in [28]. Considering families of Riemann surfaces there is a moduli space of
these manifolds analogous to the field theory moduli space. The moduli space is
parametrised by a set of variables ui. The period matrix, central in the physical
picture, have a natural interpretation in terms of the surface homology. For a
Riemann surface Σ of genus g there is a homology basis of 1-cycles αA and βB
obeying

αA · βB = −βB · αA = δAB α2 = β2 = 0 A,B = 1, . . . , g (B.1)

which repeats the pattern of the duality frame introduced above. By Poincaré
duality this basis corresponds to g independent, holomorphic 1-forms ηi on Σ. We
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may therefore introduce the periods of these 1-forms with respect to the homology
basis as ( ∫

αA
ηi,

∫
βB
ηi
)

(B.2)

which for each i is a symplectic vector with 2g components. Since only half of
them is linearly independent they are related by a transformation τ as∫

βB
ηi = τBA

∫
αA
ηi . (B.3)

Riemann’s first and second relation [14] implies that τAB = τBA and that = τ > 0.
If there exists a meromorphic one-form λ(u) (the Seiberg-Witten differential) such
that it is holomorphic in ui over the moduli space and∫

αA
ηi =

∂

∂ui

∫
αA
λ(u) ,

∫
βB
ηi =

∂

∂ui

∫
βB
λ(u) (B.4)

then locally there is a solution F(a) such that a basis (dual basis) {aA} ({ãB}) for
the moduli space of Σ is

aA =

∫
αA
λ(u) ãB =

∂F(a)

∂aB
=

∫
βB
λ(u) (B.5)

Inserting the basis in (B.4) and then using (B.3) implies that

∂

∂ui
∂F(a)

∂aB
= τBA

∂aA
∂ui

⇒ ∂2F(a)

∂aA∂aB
= τAB (B.6)

and the transformation τ is thus analogous to the period matrix we already know
from the prepotential.

One may also, if choosing the one-form basis ηA = PD(αA) (PD denotes Poincaré
dual) rewrite (B.3) as∫

βB
PD(αA)(u) = τBC(u)

∫
αC

PD(αA)(u) = τBC(u)δAC = τBA(u) (B.7)

which represents the period matrix as the homology intersection form, holomorphi-
cally varying over the moduli space of Σ. The Poincaré dual carries the dependence
of the moduli parameters, and this viewpoint somewhat justifies the name period
matrix, representing it as the periods of the homology basis.
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