
GlassTube

A Lightweight Approach to Web Application Integrity

Per A. Hallgren
Daniel T. Mauritzson

Department of Computer Science & Engineering

Chalmers University of Technology

Gothenburg, Sweden 2012

Master’s Thesis 2012

The Author grants to Chalmers University of Technology and University of

Gothenburg the non-exclusive right to publish the Work electronically and in

a non-commercial purpose make it accessible on the Internet. The Author

warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for

example a publisher or a company), acknowledge the third party about this

agreement. If the Author has signed a copyright agreement with a third party

regarding the Work, the Author warrants hereby that he/she has obtained any

necessary permission from this third party to let Chalmers University of Tech-

nology and University of Gothenburg store the Work electronically and make

it accessible on the Internet.

GlassTube: A Lightweight Approach to Web Application Integrity

DANIEL MAURITZSON

PER HALLGREN

c©DANIEL MAURITZSON, May 2012.

c©PER HALLGREN, May 2012.

Examiner: ANDREI SABELFELD

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Goteborg, Sweden May 2012

Abstract

The HTTP and HTTPS protocols are the main corner stones of the

modern web. From a security point of view, they offer an all-or-

nothing choice to web applications: either no security guarantees

with HTTP or both confidentiality and integrity with HTTPS.

However, in many scenarios confidentiality is not necessary and

even undesired, while integrity is essential to prevent attackers

from compromising the data stream.

We propose GlassTube, a lightweight approach to web applica-

tion integrity. GlassTube guarantees integrity at application level,

without resorting to the heavyweight HTTPS protocol. GlassTube

provides a general method for integrity in web applications and

smartphone apps. GlassTube is easily deployed in the form of a

library on the server side, and offers flexible deployment options

on the client side: from dynamic code distribution, which requires

no modification of the browser, to browser plugin and smartphone

app, which allow smooth key predistribution. The results of a case

study with a web-based chat indicate a boost in the performance

compared to HTTPS, achieved with no optimization efforts.

Acknowledgments

The creation of the GlassTube protocol has been performed as

a Master Thesis work in Computer Science and Engineering at

Chalmers University of Technology. The work was performed at

OmegaPoint Göteborg AB. We wish to thank:

• Andrei Sabelfeld for being our examiner, for truly commit-

ting to the project and caring about our progress.

• Peter Magnusson for supervising the thesis work. Thank

you for all your input and feedback, your knowledge and

competence has been invaluable.

• OmegaPoint Göteborg AB thank you for a friendly and in-

spiring work environment. Thank you the coffee, without it

the project would surely have failed!

3

Contents

1 Introduction 1

1.1 Background . 1

1.2 Goal . 3

1.3 Method . 3

1.4 Delimitations . 4

1.5 Disposition . 4

2 Theory 5

2.1 Cryptography . 5

2.1.1 Cryptographic Strength 5

2.1.2 Hash Algorithms 6

2.1.3 Signature Schemes 8

2.1.4 Diffie-Hellman Key Exchange 9

2.2 Web Technologies 9

2.2.1 AJAX . 10

2.2.2 Data URI Scheme 10

2.2.3 Client Side Storage 10

2.2.4 Cross-origin Resource Sharing 11

2.3 Attacks . 11

2.3.1 Man-In-The-Middle Attack 11

2.3.2 Replay Attack 12

2.3.3 Denial of Service Attack 12

2.3.4 Brute Force 12

2.3.5 Attacking an HMAC 14

2.3.6 Cross-site Scripting 14

2.3.7 Cross-site Request Forgery 14

i

CONTENTS

2.4 Google Web Toolkit 15

3 The GlassTube Protocol 16

3.1 GlassTube Setup 16

3.1.1 Client Code Distribution 16

3.1.2 Key Exchange 17

3.2 GlassTube Integrity Protocol 18

3.2.1 Message Identifier 18

3.2.2 Signature 19

3.2.3 Verifying a Request 19

4 Protocol Instances 21

4.1 Web Application 21

4.2 Generic Browser Plugin 23

4.3 Smartphone App 24

5 Security Considerations 25

5.1 Client Code Distribution 25

5.2 Key Exchange . 26

5.3 GlassTube Integrity Protocol 27

5.4 Entropy . 28

5.5 User Authentication 28

5.6 Replay Attacks . 29

5.7 Man In The Middle 29

5.7.1 Network Layer 29

5.7.2 Transport Layer 30

5.7.3 Application Layer 30

5.8 Denial of Service 31

6 Case Study 32

6.1 GlassTube Implementation 32

6.1.1 Server . 33

6.1.2 JavaScript Client 33

6.1.3 Java Client 34

6.2 Benchmark . 34

6.2.1 Server benchmark 34

6.2.2 Client benchmark 36

ii

CONTENTS

7 Discussion 38

7.1 Related Work . 38

7.2 Conclusion . 40

7.3 Future Work . 41

iii

1

Introduction

W
ith the overwhelming expansion of the world

wide web and increasing reliance on it by the so-

ciety, the security of web applications is a crucial

challenge to be addressed.

1.1 Background

Data integrity, or simply integrity in the rest of this report, is

a basic security requirement for web applications; data sent over

the network must not be compromised. Integrity is particularly

important for sessions in web applications. Intended to personal-

ize user experience, sessions are typically implemented by passing

session identifiers via cookies [1]. The cookies are sent with each

request over the stateless HTTP protocol. A range of attacks such

as replay attacks [2, p. 40,471], cross-site request forgery [3], and

session fixation [4] target stealing and abusing the session creden-

tials in order to hijack sessions and impersonate users towards the

server.

Passive attackers are able to eavesdrop on the network and

reuse any obtained sensitive information such as session tokens to

impersonate the client for the server, and vice versa. Active at-

tackers pose additional challenges for integrity as they are able to

suppress and modify messages in transit and mount fully-fledged

man in the middle attacks. Ubiquitous open wi-fi networks further

1

1.1. BACKGROUND CHAPTER 1

exacerbate the problem. Under an open configuration of a wi-fi

network, as frequently used in hotels, airports, and restaurants,

the traffic between the user’s device and base station is unpro-

tected. Open wi-fi networks are susceptible to both passive and

active attackers. This creates an ideal scenario for session hijack-

ing attacks, as popularized by tools such as Firesheep [5], a Firefox

extension to impersonate users logged on to social networks such

as Facebook.

The only other standard alternative to HTTP for web applica-

tions is to use HTTPS, a web protocol that encrypts all commu-

nication using TLS/SSL [6]. TLS/SSL provide encryption of all

data traffic at the transport layer, relying on asymmetric cryptog-

raphy for key exchange, symmetric encryption for confidentiality,

and message authentication codes (MAC) for message integrity.

Achieving both confidentiality and integrity comes at a price of

performance on both the sending and receiving ends.

From a security point of view HTTP and HTTPS offer an all-

or-nothing choice to web applications; either no security guaran-

tees with HTTP or both confidentiality and integrity with HTTPS

at the price of performance. However, in many scenarios confi-

dentiality is not necessary and even undesired, while integrity is

essential to prevent attackers from compromising the data stream.

Example scenarios include:

• Intranet traffic. In a corporate environment, it is important

to maintain integrity of Intranet web traffic. At the same

time, confidentiality is not desired because encrypted traffic

is an obstacle for network logging and intrusion detection.

• Public web site browsing. Many web resorces allow users to

manipulate public data, such as Wikipedia. Data confiden-

tiality is not needed, while attempts of malicious modifica-

tion of content and impersonating users need to be thwarted.

• Open source projects. Large volumes of data are transferred

for publishing and downloading open source software projects.

Since the data is public from the outset, confidentiality is not

necessary. Integrity is however a must to prevent malicious

2

1.2. GOAL CHAPTER 1

modification of the code.

1.2 Goal

Motivated by the above scenarios, our goal is to create a protocol

designed to authenticate both the client and the server towards

each other. Both parties should be able to check that all pack-

ets originate from the other party in the conversation, and should

also be able to verify the integrity of each message. A key goal

is to protect against man in the middle attacks, thwarting any

attempts of modifying the data stream by the adversary. We aim

at specifying a general yet practical protocol for integrity in web

applications. It is thus important to support the protocol with

a proof-of-concept implementation, in order to evaluate program-

ming overhead for the developer as well as indicative performance

overhead.

1.3 Method

With the goals above in mind, we propose GlassTube, a lightweight

approach to web application integrity. GlassTube guarantees in-

tegrity at application level, without resorting to the heavyweight

HTTPS protocol. GlassTube provides a general method for in-

tegrity in web applications and smartphone apps. The protocol in-

cludes an initial setup part, including a key exchange phase, where

the server and client collaborate to establish a session key, to be

later used for signing and signature verification. The setup part re-

quires an encrypted connection, which can be accomplished with

the help of HTTPS. Once set up, the following messages in the

session are sent over HTTP, with integrity assured by GlassTube

signatures on per-message level.

GlassTube is easily deployed in the form of a library on the

server side, and, as mentioned above, it offers flexible deployment

options on the client side: from dynamic code distribution, which

requires no modification of the browser, to browser plugin and

smartphone app, which allows smooth key predistribution.

3

1.4. DELIMITATIONS CHAPTER 1

To evaluate GlassTube in practice, we have implemented a sim-

ple web chat service that uses GlassTube as library for integrity.

The chat service requires minimal efforts from the developer to en-

able secure GlassTube sessions. Further, our experiments indicate

a boost in performance compared to HTTPS, achieved even when

no optimization efforts were made.

GlassTube opens up new possibilities for web application se-

curity. Application-level support implies flexibility in customizing

the level of cryptographic protection suitable for different applica-

tions. It also opens up new avenues for application-specific con-

fidentiality, where only selected information is encrypted, useful

when the bulk of communicated data is public.

1.4 Delimitations

While we focus on the mutual authentication of the client and

the server and integrity of the data stream, we note that the au-

thentication of users is an orthogonal issue, which we leave to the

application.

1.5 Disposition

The rest of the report is organized as follows. Chapter 3 presents

the GlassTube protocol. Chapter 4 demonstrates the generality of

the protocol by overviewing protocol instances. Chapter 5 focuses

on the security of the protocol. Chapter 6 describes the case study

of a web chat. Chapter 7 discusses related work, offers concluding

remarks and gives an outlook into the future of the GlassTube

protocol.

4

2

Theory

T
his chapter describes the technologies used in

the later parts of the report. The chapter gives the

reader a sufficient basic knowledge to understand later

topics. If the reader is already comfortably familiar

with a topic, the section describing it can confidently be skipped.

2.1 Cryptography

Cryptographic functions are vital in creating a secure communica-

tions protocol. In this section all cryptographic concepts, their use

cases and their currently known strengths and weaknesses, are de-

scribed. This section should help the reader evaluate the security

strength of the concepts described later in the report.

2.1.1 Cryptographic Strength

The cryptographic strength of a cryptographic function is mea-

sured in bits, by how much effort it takes for an attacker to actu-

ally break it. In practice, this is equivalent to how many guesses

an attacker has to do before he discovers the key. If there are only

eight possible keys it takes eight guesses for an attacker - in the

worst case - to find the key. The cryptographic strength of the

cryptographic function is thus three, since three bits can store all

possible keys (23 = 8).

5

2.1. CRYPTOGRAPHY CHAPTER 2

Often, a cryptographic function is said to be weakened as per

some new research. This means that the cryptographic function

does not properly make use of it’s key space. The attacker can

somehow determine what keys are more probable - or rule out

certain keys - and thus does not have to guess at the entire key

space. In the example above, this could perhaps mean that the

keys 111 and 000 are never used, and that we thus only have a

cryptographic strength of 2log(6) ≈ 22.584.[2, p. 59-62]

As per Moore’s law, computational power is constantly in-

creasing. This means that the time to execute a successful at-

tack against any cryptographic function is steadily decreasing, and

NIST has recently (January 2011) increased their recommendation

for the number of bits of security to be used in a cryptographic

scheme, in order for it to be classified as secure, from 80 to 112 [7].

2.1.1.1 Entropy

Entropy is a collection of random data, and is used to create

random numbers. Random numbers are usually provided by us-

ing a deterministic random bit generator (DRBG), often called a

pseudo-random number generator (PRNG). A DRBG is initial-

ized with a bit string, called a seed, from which it can generate an

arbitrary number of numbers seemingly random. A DRBG is con-

sidered secure if an attacker is unable to guess any numbers that

are generated, without knowing the seed, regardless of whether he

or she can observe output from the DRBG. The security strength

of a secure DRBG is the same as the number of bits of entropy

provided with the seed. If there are 280 possible seeds with equal

probability, the security strength of the DRBG is 280 since it will

have only that number of random number sequences. [8]

2.1.2 Hash Algorithms

A cryptographic hash function, in this report simply called hash

function or hash algorithm, is a deterministic procedure that given

data of any amount produces a bit-string of a fixed size. A hash

function should be considered a one-way function; it should be

impossible to construct the original data using just the output

6

2.1. CRYPTOGRAPHY CHAPTER 2

from the hash function.

2.1.2.1 MD5

MD5 is one of the fastest and most commonly used hash algo-

rithms, but since its publication by Ronald L. Rivest in 1992 [9]

a number of weaknesses have been discovered. Collision attacks

on MD5 which only needs an order of 220.96 computations have

been found [10], which is indeed far less than 2112. Despite colli-

sion attacks, MD5 can be securely used for HMAC, as theoretical

Preimage attacks against it only have lowered the security to 123.4

bits from the original 128 bits of security [11].

However, it is recommend not to use MD5 in new implemen-

tations, as weaknesses have been found. IETF stated in RFC6151

from March 2011 ”MD5 is no longer acceptable where collision re-

sistance is required such as digital signatures. It is not urgent to

stop using MD5 in other ways, such as HMAC-MD5; however,

since MD5 must not be used for digital signatures, new protocol

designs should not employ HMAC-MD5.” [12].

2.1.2.2 SHA-1

The SHA-1 hash algorithms was published in 1995 by NIST and

has 160-bits of security [13]. It has since its publication become one

of the most popular hash functions. But as with MD5, weaknesses

have been found for SHA-1. IETF stated in RFC6194 that “It

must be noted that NIST has recommended that SHA-1 not be used

for generating digital signatures after December 31, 2010, and has

specified that it not be used for generating digital signatures by

U.S. federal government agencies ”for the protection of sensitive,

but unclassified information” after December 31, 2013” [14].

These weaknesses are in regard to collision-attacks, there have

been some work done by John Kelsey and Bruce Schneier in re-

gards to preimage-attacks but the data sizes required is not prac-

tical [15]. According to NIST [16] it is still safe to use SHA-1 for

HMAC’s as there are no indications that collision attacks against

SHA-1 affects HMAC-SHA-1 in any way.[14]

7

2.1. CRYPTOGRAPHY CHAPTER 2

2.1.3 Signature Schemes

To ensure that a sent message have arrived without being tam-

pered with, and thus ensuring data integrity, a signature scheme

can be utilized. A signature scheme usually consist of three parts:

a secret key, a signing algorithm and a verification algorithm. The

key is used to enforce security and is used in both the signing and

the verification algorithm. It should be infeasible for an attacker to

construct a valid signature without knowing the secret key. This

section should help the reader evaluate the different schemes that

are discussed in the report.

2.1.3.1 HMAC

HMAC is an abbreviation for Keyed-Hash Message Authentication

Code, and is standardized by NIST [17]. An HMAC applied to a

message enables the receiver to authenticate the source and verify

the message’s integrity. The sender supplies the HMAC with the

message and a key shared only by he sender and the receiver, and

sends the produced MAC along with the message. The receiver

can apply the HMAC to the message with the shared key, which

should compute the accompanying MAC. If the sent MAC does not

match the computed one, the message’s authenticity is void [17].

Equation 2.1 shows how an HMAC is computed.

H = the hash function

K = key

B = block input size of H

opad = 5616 repeated B times

ipad = 3c16 repeated B times

b = 0016 repeated B − |H(K)| times

a = 0016 repeated B − |K| times

K0 =

{
H(K) || a |K| > B

K || b |K| ≤ B

HMAC(K, m) = H((K0 ⊕ opad) || H((K0 ⊕ ipad) || m))

Note that even if the hash function is applied twice, the outer

8

2.2. WEB TECHNOLOGIES CHAPTER 2

will always be fed an input of fixed size (B + |H(x)|). Thus, the

running time of a HMAC is quickly dominated by the running

time of the innermost hash function since the message size is not

fixed.

NIST [16] supplies HMAC-SHA1 as one of it’s recommended

HMAC algorithms, and several currently emerging technologies

such as OAuth2 [18] have chosen to support HMAC-SHA1. As

mentioned previously in this chapter HMAC-MD5 is no longer to

be supported in newer protocols, making HMAC-SHA1 the fastest

secure HMAC algorithm as of the time of writing.

2.1.4 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange is an algorithm with which two

parties may agree on a common secret while keeping it secret from

a potential eavesdropper. The protocol makes use of the fact that

the discrete logarithm problem is known to be hard, while expo-

nentiation is computationally easy. [19]

The protocol uses two domain parameters, namely a generator

g and a prime number p. These does not have to be keep a secret

for the key exchange to be safe. The two parties within a Diffie-

Hellman key exchange each generates a random number to be their

private key x and y, respectively. They then create their public

key as X = gx mod p and Y = gy mod p, which they send to

the other party. Both parties can now compute their shared key

Z = g(xy) mod p = Xy mod p = Y x mod p. An eavesdropper will

know both X and Y , but neither of x and y, and can thus never

find Z. [20]

2.2 Web Technologies

This report will have a major focus on web technologies, and as

such the reader is expected to have a general idea of how a web

application works. A few more advanced terms are explained in

this section.

9

2.2. WEB TECHNOLOGIES CHAPTER 2

2.2.1 AJAX

AJAX stands for Asynchronous JavaScript and XML. In a conven-

tional HTTP request to a web server an HTML document is deliv-

ered to the client, the client reads the HTML document and builds

a DOM object from which it renders graphics. With an AJAX call

the HTML information is retrieved directly in the JavaScript in-

stead in your browser. This means that information can be sent

and received without having to reload the page, that is what the

Asynchronous part of the name stands for. [21]

2.2.2 Data URI Scheme

Also called the Data URL Scheme, allows for programmers to

embed the binary data of an element instead of referencing to its

location. This scheme can be used to lessen the number of HTTP

requests needed to populate a HTML document, by replacing i.e.

With the following data URL

<IMG SRC="

///ywAAAAAMAAwAAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQ

u5yqmCYsapyuvUUlvONmOZtfzgFzByTB10QgxOR0TqBQejhRN

zOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSpa/TPg7J

pJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZe

YGejmJlZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk

0Q4XUtwvKOzrcd3iq9uisF81M1OIcR7lEewwcLp7tuNNkM3uN

na3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PHhhx4dbgYKAAA7"

ALT="Larry">

However, for larger images this becomes impractical as a way for

the programmer to embed images into his or her markup. [22]

2.2.3 Client Side Storage

Client side storage was introduces in HTML 5 through the Storage

interface [23] to enable data to be stored locally on the client.

Each top-level browser context, e.g. a tab, has a pair of Storage

objects for each origin. Each pair consists of a sessionStorage

10

2.3. ATTACKS CHAPTER 2

object which will be cleared at the end of each session, and a

localStorage object which is only cleared for security purposes or

when request by the user. Traditional HTTP state management

[1] make use of cookies, which are sent over the network and may

introduce security risks.

2.2.4 Cross-origin Resource Sharing

It is common for web applications to load content, i.e. a JavaScript

library, from other domains through a content distribution network

[24]. This behavior can be used by malicious web site operators

to disturb or abuse traffic on a benign site, which has lead to

the fact that browsers need to isolate content retrieved from dif-

ferent sites through the Origin HTTP header [25]. In order to

still allow specific content to be loaded across sites, developers

can specify allowed sites through the header field Access-Control-

Allow-Origin [26].

2.3 Attacks

The report will discuss different attacks and present ways to counter

them. This section should give the reader good insight into what

different attacks consist of, and how they may be applied by an

attacker to a web application.

2.3.1 Man-In-The-Middle Attack

In a Man-In-The-Middle (MITM) attack an attacker has control

over a part of the network used by a client and server TCP con-

nection, and therefore have the capability to split the connection

in two parts: client - attacker and attacker - server. See figure 2.1.

If the data sent between the sever and client is completely un-

protected then it is easy for the attacker to change the content

before passing it along and the client/server is none the wiser,

this is for example possible to do when using the HTTP proto-

col. However even if the session between the client and server are

protected there are ways to get around it. The attacker can ini-

tiate two SSL connections, one with the client and one with the

11

2.3. ATTACKS CHAPTER 2

Alice Bob

Eve

Figure 2.1: All messages between Alice and Bob goes through Eve,

meaning she can manipulate these at will.

server. But unless the attacker have a certificate that is signed by

a trusted Certificate Authority, the client will be likely to receive

a warning from the browser but of course the user can choose to

ignore the warning and proceed to send data to the attacker [27].

2.3.2 Replay Attack

In its essence a replay attack consists of passively capturing data

to later replay it either to the receiver or the sender. A successful

replay attack can at the minimum disrupt services with messages

that appear to be genuine but are not, but more severe damage

can also be done. An example of this is a money transfer, if an

attacker could replay this transfer the victim might lose a lot of

money [2, p. 40,471]. See figure 2.2 for an example of an simple

replay attack.

2.3.3 Denial of Service Attack

A denial of service aims to cripple or completely shutdown a ser-

vice, this can be anything from a single machine to an entire net-

work. It can be performed in many different ways: disabling the

service in question physically, overloading it with messages so that

“real” traffic can’t get through or exploiting a weakness in the soft-

ware to cause errors that prevents other actions [2, p. 40-41]. See

figure 2.3.

2.3.4 Brute Force

When doing a brute force attack it is not interesting to know how

the specific algorithm used works, all that is interesting is the bit

12

2.3. ATTACKS CHAPTER 2

1

BobAlice

Eve

3
2

Figure 2.2: 1.Alice Sends a message to Bob 2. Eve captures the

message 3. Eve later replay message to Bob

BobAlice

Eve

Figure 2.3: Alice Sends a message to Bob but Eve disrupts Bob

so that the message doesn’t reach him.

length. Brute force means that the attacker tries every possible

key until a match is found such that encrypted text is intelligible

or that a signature can be created for new messages. Usually

the key is in focus, because once the key have been calculated all

messages encrypted with this key can be decrypted and messages

constructed by the attacker can be encrypted, the same goes for

signatures. On average about half of all keys have to be tried

before finding the right one [2, p. 62].

13

2.3. ATTACKS CHAPTER 2

2.3.5 Attacking an HMAC

The security of an HMAC function is dependent on the key and

the underlying hash function. An attack on an HMAC can focus

on either finding the key using brute force or finding a collision in

the hash function.

The brute force attack on an n-bit key is an attack against

the compression function but if a message of size b-bits, the b is

the number of bits in a block, is used it is then the equivalent of

attacking the hash function. This attack require work in the size

of 2n[2, p. 403].

To find a collision the so called collision resistant attack is used,

which builds on the birthday paradox, and means that the attacker

is looking for two messages M1 and M2 such that they produce

the same hash value H(M1) = H(M2). In essence this means

that an attack like this will take 2m/2 attempts for a message with

a m-bit hash value [2, p. 362].

2.3.6 Cross-site Scripting

Cross-site scripting is an attack/vulnerability where the attacker

injects malicious scripts or code or both to an otherwise trusted

website. And the idea is then that a user on the website will

do something, like use a search function, click on a link, fill in a

form or something else and in the reply from the trusted server

will then contain the malicious code. The clients browser have

no way of knowing if the code that it receives is malicious or not

and will execute it in either way, and this also mean that the

malicious code have access to cookies, session-storage or any other

information that is accessible to JavaScript.

Cross-site scripting is a widespread problem and unless user

input are checked, sanitized or validated on a website it is a target

for this kind of attack [28].

2.3.7 Cross-site Request Forgery

An cross site request forgery(CSRF) attack is when an attacker

forces an end user to execute unwanted actions on a web appli-

cation where the user currently is authenticated. A user may be

14

2.4. GOOGLE WEB TOOLKIT CHAPTER 2

forced to execute actions of the attacker’s choosing, which could

be anything from logging out to sending an email to making a pur-

chase. A successful CSRF attack can compromise an end user’s

data and functionality in the case of a normal user, but if the

target is an administrator the entire web application can be com-

promised. [3]

2.4 Google Web Toolkit

Google Web Toolkit (GWT) is a set of open source tools developed

and maintained by Google, made for developing web application

front-end using Java code. Except for a few native JavaScript

libraries everything is Java source. An entire application can more

or less be completely coded in Java and then during compile time

GWT will convert the application to JavaScript, ready to deploy.

The generated JavaScript code comes tailored to work for most

of the popular browsers today, meaning you don’t have to do this

manually.[29]

15

3

The GlassTube Protocol

G
lassTube is designed to provide integrity over in-

secure connection, preventing manipulation of the data

stream. This chapter specifies the GlassTube proto-

col. The protocol consists of two steps. GlassTube

Setup (GTS) is the first part of the protocol. It maintains dis-

tribution of code and the key exchange. The second part of the

protocol is the GlassTube Integrity Protocol (GTIP), which en-

sures integrity between the web server and the client.

3.1 GlassTube Setup

GTIP requires code to be distributed to the client and that a ses-

sion key is shared between the client and the application server,

henceforth called the data site. GlassTube can be initialized in

any fashion that securely meets these requirements. This section

describes some options to distribute code and how keys are ex-

changed, independently from each other.

3.1.1 Client Code Distribution

Since web applications are not present on the client per default,

the client-side code needs to be distributed. If an attack can be

successful at this stage, following packets must be considered com-

promised as e.g. script injection at this stage can change how

transfers are made in the future. It is therefore vital that code

16

3.1. GLASSTUBE SETUP CHAPTER 3

distribution is done securely. Client code can either be statically

or dynamically distributed. Statically-distributed code is previ-

ously present at the client (e.g. a browser plugin). Dynamically-

distributed code is sent when the web application is accessed by

the web browser. Examples of both are presented in the following

paragraphs.

Static distribution of client code refers to the installation and

use of browser plugins or applications for smartphones. For an

end user to communicate with a web server running GlassTube he

or she would have to acquire and install additional software prior

to making the first request.

Dynamic distribution is the most common type for web appli-

cations, as it is used by almost every page on the web. Typically

it consists of JavaScript, Flash, Silverlight, or Java applets embed-

ded within the web page.

Dynamic code distribution for GlassTube must be done over a

link with at least the security equivalent to that of a host servicing

HTTPS, called the secure site. The secure site will only commu-

nicate with the client during the setup of a GlassTube session.

If code is dynamically distributed, the goal is that the client

is reinitialized as rarely as possible, to boost performance by lim-

iting the reliance on HTTPS. Instead, all content can be fetched

with AJAX from the data site, and only the bare bones of the

application should be sent from the secure site.

3.1.2 Key Exchange

GTIP relies on a session key to be shared between the client and

the data site, in order for both of them to be able to sign messages

and verify their integrity. The goal of key exchange is to establish

such a session key.

The key exchange scheme needs to be secure; there are several

ways to accomplish this. We propose two key exchange schemes,

one being Authenticated Diffie-Hellman [30], while the other be-

ing GlassTube’s own key exchange scheme, the GlassTube Key

Exchange (GTKE), which have better performance then Authen-

ticated Diffie-Hellman. Both key exchange schemes require that

17

3.2. GLASSTUBE INTEGRITY PROTOCOL CHAPTER 3

the client possess a public key belonging to the data site. The

public key can be acquired either by distributing it with the code

or by fetching it from a secure site after code distribution.

Random numbers are used in both of the key exchange schemes.

It is possible that the client does not have enough entropy to pro-

vide secure random number generation. In that case, the client

can be supplied with random numbers as well as code, in dynamic

code distribution.

GTKE is accomplished by letting each party generate a sepa-

rate part of the session key K, both at random. The client con-

structs a pair (K1, C). Where K1 is the first part of the session

key, and C = E(K1) is encrypted using the data site’s asymmetric

public key. The client sends the encrypted key C to the data site,

after which the data site can compute K1 = D(C). The data site

then generates the second part of the session key, K2, and com-

putes the final session key K = K1 ⊕K2. The data site signs K2

with K, creating the signature SIG = SIGN(K, K2) and sends

K2||SIG to the client. The client uses the received second part

of the key K2 to compute K = K1 ⊕ K2, and must finally ver-

ify the data site’s authenticity by comparing if SIG is equal to

SIGN(K, K2).

3.2 GlassTube Integrity Protocol

Data transfers done with GTIP guarantees that data integrity is

kept; the authenticity of the sender of each message can be verified,

prevents messages from being replayed. Details on how this is

accomplished are described in the rest of this section.

3.2.1 Message Identifier

In order to prevent replay attacks it must be possible to distin-

guish each request from other requests containing the same data.

The receiver must be able to determine whether a message identi-

fier is invalid or if it is to be accepted. The protocol addresses this

by appending a unique identifier to each submission. This identi-

fier can be anything from a sequence number or a timestamp to

18

3.2. GLASSTUBE INTEGRITY PROTOCOL CHAPTER 3

a nonce. Sequence numbers provides good security and can be

efficiently implemented and are therefore the recommend message

identifier for GlassTube.

3.2.2 Signature

The authenticated data includes all information that defines the

request or response. All data that if changed would modify the

data stream must be signed, together with the message identifier.

The complete URL and all parameters have to be signed for re-

quests, for responses the response code have to be signed. And for

both of them the message identifier have to be signed.

Reordering the request parameters will produce a different sig-

nature. The union of all request parameters are sorted alpha-

betically, in order to deterministically determine the order on an

arbitrary platform. The request parameters consist of key-value

pairs which are concatenated as follows:

$PARAMS := [$KEY1=$VAL1[&$KEY2=$VAL2[...]]]

The parameters must be encoded as they will be sent in the actual

HTTP request by the browser. The string to be signed is then

constructed as:

$MESSAGE := if(client)

$URL?$PARAMS:$MSG_IDENT

else

$RESP_CODE:$RESP_DATA:$MSG_IDENT

$SIGNATURE := SIGN($SESSION_KEY, $MESSAGE)

A GlassTube signature is computed on the GlassTube message

using the session key. HMAC-SHA1 is the recommended method

for signing GlassTube packets as it is efficient and secure. The

signature and the message identifier are included in each request

and each response.

3.2.3 Verifying a Request

The steps needed to verify a signed message are depicted in Figure

3.1. The figure gives an overview of the process, detailed in the

following paragraph.

19

3.2. GLASSTUBE INTEGRITY PROTOCOL CHAPTER 3

Read
Message
Identifier

Yes

Calculate
signature AbortMatching

signature?

Deliver to
application

Valid
Itentifier?

Message
Received

No

Yes

No

Figure 3.1: A flow diagram that outlines the verification process

Upon receiving a message, the recipient must first calculate

the signature, as described in Section 3.2.2. In the case that the

signature does not match the received signature, the message is

discarded. Otherwise, the message identifier must be verified. If

the message identifier is valid, the message is accepted and sent

to the application, and if it is not, it is discarded. Whenever a

client discards a message, it must reset the session. If a server

discards a message, it must send a signed error message to the

client, indicating what went wrong.

20

4

Protocol Instances

T
he GlassTube protocol offers a wide range of setup

and deployment choices. This chapter outlines three

different instances that all use the GlassTube protocol,

in order to help the reader see the practical applica-

tions of the concepts presented in the Chapter 3.

4.1 Web Application

This section describes a setup for a web application which uses

dynamic code distribution and server-side random number gener-

ation, illustrated in Figure 4.1.

HTTPS

Page Request

Data
Site

ClientSecure
Site

HTTP
Browser

K ||SIGN(K,K)
2 2

URL||Code||Public Key||K1
E(K)1 G

TK
E

Figure 4.1: A GlassTube setup to be used with a web browser

with no additional software installed.

21

4.1. WEB APPLICATION CHAPTER 4

To start the session the client sends a Page Request to the

secure site. The response from the secure site consists of four

parts: a URL to the data site, Code that consist of GlassTube

functionality and the web page’s static elements and layout, the

data site’s Public Key and the client’s part of the session key K1.

When the client has interpreted the received code it will initiate

GTKE towards the data site using AJAX, after which it will have

established a GlassTube session. If the data site receives a regular,

non-GlassTube page request, it would typically redirect the client

to the secure site to force it to set up a GlassTube session.

The developer sets up two sites, the secure site running HTTPS

and the data site servicing HTTP. Note that the secure site and

data site can be hosted by the same machine, but may as well

be distributed among different machines for load balancing. To

add GlassTube functionality to the data site the developer would

typically import a GlassTube library and mark individual pages

to use GlassTube. As the secure site and the data site make use

of different protocols, they are separate origins and separated by

the same origin policy [25]. The data site must therefore explicitly

allow the secure site to make Cross-Origin requests to it, making

use of Cross-Origin Resource Sharing (CORS) [26]. A typical client

code needs few modifications in order to work with GlassTube, for

an example see Section 6.1.2.

In a web application, it is common that data transfers are ini-

tiated when HTML is loaded on a page, making the browser fetch

additional content. This happens when e.g. <img src="image.jpg"

/> is rendered. The browser will fetch the image image.jpg from

the server, without resorting to AJAX and JavaScript. The same

is true for <script> and <iframe> tags, which means that if these

tags are used by in the application, they may break GlassTube.

However, a programmer may make use the data URL scheme [22],

which embeds the binary data of an element instead of referenc-

ing to its location, to achieve the same functionality that can be

achieved with the traditional URL scheme.

GlassTube is completely transparent to the end user. Users

access a GlassTube web page as any other web page, e.g. using a

22

4.2. GENERIC BROWSER PLUGIN CHAPTER 4

bookmark or following a link. A benefit of using this setup is that

the application provider does not have to create, maintain and

distribute a separate software for the client. The setup requires a

secure site servicing HTTPS, and will thus have a slightly bigger

impact on the server than a client with completely predistributed

code and public key.

4.2 Generic Browser Plugin

Another way to set up a GlassTube session is by utilizing a generic

browser plugin; generic in the sense that it is not bound to a certain

web application or domain. This setup is outlined in Figure 4.2.

Upon connecting to a web site, the plugin will announce that it

can handle GlassTube sessions, through e.g. a custom header field.

The secure site will see if a new client is running a compatible

plugin, and if it is respond with the URL to the data site and its

Public Key. The plugin will initiate GTKE with the data site,

and once a GlassTube session has been established it will load the

initial user interface from the data site.

HTTPS

Certificate Request

Data
Site

ClientSecure
Site

HTTP
Plugin

URL || Public Key

K ||SIGN(K,K)
2 2

E(K)1

G
TK

E

Figure 4.2: GlassTube protocol instance where a generic plugin

which fetches the data site’s public key for each new session.

By creating a generic plugin the need for individual applica-

tion providers to maintain and distribute it is avoided, and the

end user only needs to do one additional action for any number

of GlassTube sites. The public key for every accessed site must

be fetched from a secure site. Benefits of using a plugin instead

23

4.3. SMARTPHONE APP CHAPTER 4

of dynamic code is potentially better client performance and the

possibility to sign HTML initiated requests.

The work needed from the developer to implement GlassTube

in this setup is very similar to the work required in Section 4.1.

The implementation difference between the two methods is that

with this approach, no effort related to the client code, and CORS

does not have to be used.

4.3 Smartphone App

Many web applications might find it desirable to release an app

that lets the users browse and edit the information, this setup

is illustrated in Figure 4.3. It differs from the other two in the

sense that no secure site is used, instead the data site’s public key

comes shipped with the app. This means that the overhead of

first connecting to a secure site is gone, which gives a performance

boost. As most apps it will be dedicated to one web site, thus an

end user has to install one app per site.

Data
Site

Client HTTP
Phone App

K ||SIGN(K,K)
2 2

E(K)1

G
TK

E

Figure 4.3: GlassTube as used by a smartphone app tailored to

work only with one web application.

For this setup the developer creates and releases an app. No

secure site needs to be deployed, as the public key for the data site

is shipped together with the app. Any functionality needed in the

app for key exchange and GTIP can be accessed from a library,

thus very little extra work needs to be done. The data site is set

up as in Section 4.1.

24

5

Security Considerations

T
his chapter covers the security within each stage

of the GlassTube Setup, and assesses the security of

the GlassTube Integrity Protocol. Different attacks

and the respective countermeasures are discussed.

5.1 Client Code Distribution

To ensure that requests are signed and verified correctly, it is im-

portant that the code running on the client is not modified by an

attacker. This means that the code has to be distributed in a se-

cure way. Two options were presented in Section 3.1.1, one where

the code is fetched from a dedicated code server, dynamically, and

one where the code is available via a plugin or application on the

client, statically. For both mechanisms, trusted third parties are

used to securely distribute initial code.

When code is sent at the beginning of each session, it needs to

be done over a secure channel. The channel must be end-to-end

between the server and client, as man in the middle attacks can be

attempted at any point during the transmission. HTTP over SSL

offers the required security and is a typical choice as it is broadly

supported.

Static code distribution is an effective way to decrease the risk

of a man in the middle attack against the client code, since the

code is not sent over the network at the start of each session. It is

25

5.2. KEY EXCHANGE CHAPTER 5

still vital that the code is securely distributed to the client. The

common distribution channels for smart-phone apps and browser

plugins provide secure downloads and verifies the publisher. This

means that most use cases of statically distributed code can be

assumed to be secure.

GlassTube relies on HTTPS in many of the concepts presented,

for which there is a known man in the middle attack where the

attacker relies on users to disregard when the browser warns about

incorrect certificates [31]. This can lead to insecure dynamically

distributed code or forged certificates, which will break GlassTube.

5.2 Key Exchange

Recall that there are two key exchange mechanisms to support the

GlassTube protocol, authenticated Diffie-Hellman and GTKE. Au-

thenticated Diffie-Hellman is a canonical way of exchanging keys

in a secure manner, as it a part of TLS versions 1.0 [32], 1.1 [33]

and 1.2 [30].

GTKE is a novel contribution of this report. It makes use

of asymmetric encryption to share a session key between the two

parties, and is detailed in Section 3.1.2. The secrecy of K1 is

guaranteed, as long as a sufficiently secure encryption is used. K2

is added by the server, and is sent in clear text to the client. K2

is the only part of the key that is publicly known, but a potential

attacker must also know K1 in order to find K. An attacker can

try to recover the K1 by attacking the HMAC algorithm, but this

is redundant since the attacker will know K without finding K1 if

he or she attacks the HMAC algorithm.

K2 is present in GTKE in order to prevent an attacker from

replaying a key exchange followed by replaying selected messages

from the session which followed. The two parties share K1, that

could be used as a session key, before K2 is generated. However,

if the server does not generate some addition to the key, an eaves-

dropper can replay an entire session. The attacker will not be able

to sign any new messages, but can send messages that he or she

has listened to (possibly with restricted order because of sequence

numbering), since the attacker knows that the server will use the

26

5.3. GLASSTUBE INTEGRITY PROTOCOL CHAPTER 5

same session key as in the original session. With the addition of

K2, each new client will have a new session key, and sessions can

not be replayed.

5.3 GlassTube Integrity Protocol

The signature of each message is the most vital part of GlassTube,

as it is the entity which enables the integrity of a message to be

verified. The GlassTube signature must be created using a secure

signature algorithm, and relies on the fact that session keys are

kept secret.

By including the request parameters and the URL in the sig-

nature, GlassTube asserts that the client will know if intended

data is delivered to the intended service on the intended server. If

an attacker modifies the URL, it may be delivered to a different

web application, in which case the client will reject the response

since the signature will be invalid. If the packet is delivered to the

same application but using a different URL, the application will

detect that the signature is invalid, and will discard the packet. If

the service is not running GlassTube, for example if it is a public

page on the same service, or simply another service not running

GlassTube, the packet might not be discarded by the server. How-

ever, neither will it be signed correctly, which will make the client

discard the response. Any modifications to the request parameters

will trivially invalidate the signature.

With each response, the response code and response data are

signed. An attacker will therefore fail to forge new data, as it will

invalidate the signature. Modifying the response code can have

more complicated consequences, as it is interpreted by the web

browser. There are several response codes that omit an entity

body, such as 204 No Content [34, p. 59]. If an adversary modifies

the packet to use an empty response, there will be no signature,

and the client will therefore discard the packet and reinitialize the

GlassTube session. The response code 304 Not Modified [34, p. 62]

may be inserted by the attacker to make the browser use a cache,

but as GlassTube messages include message identifiers they cannot

be cached. This leaves browsers in a state inconsistent with the

27

5.4. ENTROPY CHAPTER 5

specification. The browser may try to resend the request, and if

so, it will be detected as a replay attack by the server, and the

session will be terminated. Some response codes, as 301 Moved

Permanently [34, p. 61], are intended to redirect the client, such

responses will cause the session to be terminated and are further

described in Section 5.7.3. Thus, editing the response code will

terminate the session, possibly after an extra round-trip.

5.4 Entropy

When creating random numbers to be used in a cryptographic

function, it is important that the random generator used is sup-

plied with enough entropy to be secure [8]. Not all programing

languages have generators suited for this. JavaScript [35] cur-

rently has no support for secure random number generation. If

no third party library is used only Math.random() is available in

JavaScript, which is not guaranteed to give cryptographic secu-

rity. However, adding cryptographically strong random number

generation to JavaScript API is only a matter of time [36].

In any case, GlassTube does not depend on the ability of the

client to generate random numbers. The client must not be used to

generate random numbers if it can not guarantee cryptographically

secure random numbers. In this case, the secure site generates the

random numbers and sends them embedded within the code.

5.5 User Authentication

The GlassTube protocol does not provide user authentication, but

leaves it to the application to authenticate each user. By design,

GlassTube does not offer confidentiality, and it is therefore im-

portant that the application does not send authentication data in

clear text. If the user gives the attacker enough information to

authenticate as the user, there is often no need for integrity.

28

5.6. REPLAY ATTACKS CHAPTER 5

5.6 Replay Attacks

GTIP makes use of message identifiers, as described in Section

3.2.1, to prevent replay attacks. If the message identifier is unique

for every message, the recipient will only accept a specific message

identifier once. Thus if message identifiers are unique, no messages

can be replayed. It is possible to use a timestamp as a message

identifier, which is not unique as the recipient only verifies that

the message is fresh, if the service can accept that replays are

possible within a short timeframe after the message has been sent.

Different message identifiers thus provide different levels of preven-

tion against replay attacks. By using the recommended message

identifier, sequence numbers, all replay attacks are prevented.

5.7 Man In The Middle

A correctly set up GlassTube protects against most aspects of a

man in the middle attack, except for when the attacker delays

or completely removes packets from the stream, for which it is

unfeasible to create a solution.

An adversary cannot masquerade as the data site because each

key exchange scheme uses public keys. The public keys are ei-

ther distributed with the code, or fetched from the secure site, as

detailed in Section 3.1.1. Both of these methods are considered

secure, see Section 5.1.

An active attacker may during a full man in the middle attack

modify the entire packet, which includes HTTP headers, TCP and

IP. The rest of this section discusses in depth what data can be

modified in order to try to nullify the integrity of the data stream,

and how GlassTube can prevent some of these attack.

5.7.1 Network Layer

GTIP does not sign any information from the network layer. This

means that if an application is dependent on information from the

network layer, GlassTube can not guarantee the integrity of the

data stream for that application. A common usage of information

29

5.7. MAN IN THE MIDDLE CHAPTER 5

from the network layer is geolocation, where the application uses

the IP address to find the geographic location of the user.

5.7.2 Transport Layer

By changing the TCP sequence numbers of packets in a GlassTube

stream, an attacker can make sure that they are delivered to the

application layer out of order [37]. This can be countered if se-

quence numbers are used as message identifiers, as it assures that

packets arrive in order. Since message identifiers are signed, the

attacker can not modify these to make packets arrive out of order,

as detailed in section 5.6. There are numerous ways the attacker

can disrupt the data stream by modifying data in the TCP layer,

such as truncating the session by sending a FIN [38] packet.

5.7.3 Application Layer

An active attacker can add, remove and moify HTTP headers, but

since GlassTube forbids the application to depend on any supplied

headers the result of a request should always be the same regard-

less of any HTTP headers. Any inherent behavior of the web server

is considered to be the responsibility of the programmer; the con-

figuration of the web server is part of the application. However,

since browsers and intermediate hosts, such as firewalls and prox-

ies, may react to different header fields, consideration and care is

still needed.

It is possible for an attacker to modify HTTP headers in such

a way that the message is interpreted differently by the browser.

However, if an attacker forces the browser to modify a message,

the signature will be void. An attacker can use the Location

header [34, p. 135] to force the browser to execute a new request

towards another URL. Since the browser sends the same request

to a different URL, this message will be treated in the same man-

ner as a message with a modified URL, described in Section 5.3,

and will lead to that the either the request is discarded by the

server or by the client, depending on where the new URL points.

When a benign intermediate host, such as firewalls and proxies,

modifies header fields, a GlassTube session may be terminated or

30

5.8. DENIAL OF SERVICE CHAPTER 5

unable to commence. Thus, there may be false negatives over cer-

tain links, making GlassTube malfunction. These may completely

prevent a client from reaching the service, but does not lead to a

breach of integrity.

5.8 Denial of Service

Both the secure site and data site can be attacked independently.

Denying the user one service will have the same effect as denying

both, since neither will function without the other.

GlassTube does not have a large performance impact on the

secure site, as this site will always perform only a fixed number

of operations for every client; the extra workload caused by every

separate GlassTube client will not increase with the number of

clients.

Each session between a client and the data site requires that the

data site stores information. The time to access this information

will increase with each client, and thus each new session does not

just add its own workload but does also affect the workload for

all other sessions. This in turn means that the data site is more

vulnerable to a resource exhaustion attack.

31

6

Case Study

T
he following chapter presents a working prototype

of GlassTube, and investigates how it performs rel-

atively to HTTP and HTTPS. The web application

used in the study is a simple chat that allows the users

to login, post messages, read messages, and logout.

6.1 GlassTube Implementation

This section covers a server implementation of GlassTube using

Java and two separate clients implemented in Java and JavaScript.

Java is chosen as the backbone for both the server and clients, us-

ing Google Web Toolkit [29] (GWT) to generate JavaScript as

needed. Standard Java libraries are used whenever possible as

they provide reasonable performance and are easy to use. The cho-

sen implementation strategies are dynamic code distribution and

server-side random number generation for the JavaScript client,

with static code distribution and client-side random number gen-

eration for the Java client. A secure site and a data site are set

up, but no actions have to be taken to prepare a web browser to

use the JavaScript client.

The Java client is developed in order to benchmark the server,

see Section 6.2. The JavaScript client is developed to assert that

the user experience is not noticeably affected by GlassTube.

32

6.1. GLASSTUBE IMPLEMENTATION CHAPTER 6

6.1.1 Server

Both servers are implemented with Java servlets using standard

Java libraries for cryptographic functions as well as web applica-

tion functionality. The implementation of the server-side part of

GlassTube consists of 203 lines of Java, 66 at the secure site and

137 at the data site.

The secure site consist of two servlets. The first servlet only

delivers the data site’s public key. The second delivers static ele-

ments, JavaScript, K1 as well as the data site’s public key. This

separation of functionality is because the Java client only needs

the public key, while a browser needs to be served with a normal

web page. K1 is generated using Java’s SecureRandom and the

data site’s public key is hardcoded to the servlet. As it is only

part of the setup phase no further data is handled by this server.

For the data site a GlassTubeServlet is created. It extends the

HTTPServlet but adds GlassTube specific functions for key ex-

change and signing and verification of messages. The GlassTube-

Servlet demands that the first message from a client contains C.

K2 is generated using SecureRandom, and K = D(C) ⊕ K2 is

calculated. The response K2||SIGN(K,K2) is sent to the client,

concluding the GTKE. All servlets extending GlassTubeServlet on

the data site are now ready to use GTIP. All information required

for GTIP this is stored in the server’s session storage.

6.1.2 JavaScript Client

The JavaScript client uses GWT to convert all cryptographic func-

tions from Java to JavaScript. The jQuery JavaScript library is

used to provide smooth access to AJAX and different user interface

functionality. Functions for exchanging keys, signing and verifying

are thus coded in Java, while data transfers during GTPI are man-

aged in native JavaScript using jQuery. The Java code is 75 lines

long, and the JavaScript functionality needed is 14 lines long. This

excludes the cryptographic functions (HMAC and SHA-1) that

were needed to be imported because javax.security is unavailable

to GWT.

Upon initialization, the JavaScript generated by GWT initi-

33

6.2. BENCHMARK CHAPTER 6

ates GTKE using the public key embedded in the code, together

with the first part of the session key K1, which is computed by

the secure site. When the key exchange is complete, the web ap-

plication is ready to be used by the end user.

GlassTube’s presence is only noted when signing and verify-

ing messages. To make an AJAX request with jQuery, the pro-

grammer writes for example $.ajax(url, { data: parameters

}). Using our implementation the programmer has to add the

line $.extend(parameters, gt.sign(url, parameters)) prior

to making the AJAX call. The extend function simply appends

the information needed in GTIP, to be sent along with the regular

AJAX call. To the programmer, GlassTube does not incur a large

amount of extra work.

6.1.3 Java Client

The Java Client is able to make use of Java’s standard API to

provide all needed cryptographic functions. The Java client has

access to Java’s SecureRandom, which is cryptographically secure,

and K1 is therefore generated locally by the Java client. It fetches

the data site’s public key from the secure site, after which it com-

mences GTKE towards the data site. When GTKE is completed,

GTIP is ready to be used.

6.2 Benchmark

This section details the results of a series of tests conducted to

verify how GlassTube performs in relation to SSL.

The first benchmark measures how well the server performs,

and compares the average number of successful requests per second

for the different techniques. The second benchmark compares the

response time as experienced by a web client without a plugin to

boost the performance of GlassTube.

6.2.1 Server benchmark

The benchmark is done against a simple chat application by the

name of SimpleChat. The implementation of SimpleChat is very

34

6.2. BENCHMARK CHAPTER 6

simple, using static fields to maintain the state of the web appli-

cation. The servlets that make use of SimpleChat simply passes

along parameters from the request to SimpleChat. The only imple-

mentation differences between the instance for HTTP and HTTPS,

and the instance running GlassTube, is the servlets base class. The

servlets in the GlassTube instance are a subclasses of GlassTube-

Servlet instead of HttpServlet. Each access to any of SimpleChat’s

functions is counted as a successful request by a client.

To test the server performance using the three different tech-

niques, a benchmarking tool has been written in Java as to not be

constrained by the performance of JavaScript. The tool supports

three different types of clients, HTTP, HTTPS and GlassTube.

All clients make use of Apache’s DefaultHttpClient [39], and

the GlassTube client makes use of the GlassTube Java client, de-

scribed in Section 6.1.3.

The benchmarking tool is able to spawn a user-specified num-

ber of threads, each opening an individual and independent (on

application level) connection to the server. Each thread logs in to

SimpleChat and starts sending chat posts. The Java client is ca-

pable of both sending posts as quickly as possible and with a delay

between each. The later is more similar to that of an actual user

scenario, since the first sends many hundred requests per second.

The size of the data sent is also configurable.

Figure 6.1 plots the result of a benchmark conducted towards

GlassTube, HTTPS and HTTP. The graph plots successful mes-

sages per second on the Y-axis, and the tests are carried out with

an increasing number of clients for each test. The clients are con-

figured to log in with a delay of between 0 and 100 milliseconds,

and once logged in they will proceed to send 2000 messages of 4096

bytes at an interval between 10 and 300 milliseconds. The rate at

which the clients send messages is labeled as Max in Figure 6.1, as

it is the maximal throughput of a server with unlimited processing

power and a network without latency.

The benchmarks were carried out towards a server running

Tomcat 6, configured with 200 threads for both HTTP and HTTPS

connectors, with the java runtime allowed 1.5G of ram. The server

35

6.2. BENCHMARK CHAPTER 6

machine is an HP Compaq dc7600 with a 3.00 GHz 64 bit proces-

sor with two cores and 2GB of RAM. The client machine was an

HP Compaq 6730b with a 2.4 GHz 64 bit processor with two cores

and 4GB of RAM.

Figure 6.1: Shows different number of clients on the X-axis, and

successful messages per second on the Y-axis. Very short delays are

in place, and each post is 4096 Bytes large.

Figure 6.1 clearly indicates what the throughput limit for each

protocol is. HTTP will follow closely to the maximal limit until

just about 3200 packets per second is reached, while HTTPS can

handle almost 1680 packets per second and GlassTube can process

around 2300 packets per second. The number of requests that can

be served by GlassTube in this setting is 39.6% higher than that

of HTTPS, at 800 clients.

6.2.2 Client benchmark

The client was benchmarked using Google Chrome, comparing the

time for an AJAX call to be prepared, sent, received, and in-

terpreted. The application used was SimpleChat, and each chat

message posted was timestamped. Any timestamps in JavaScript

inherently includes any time spent preparing and verifying HTTPS

details, and thus all GlassTube computations are included in the

timestamps as well.

The average of 20 samples was 8.4 ms for HTTPS, 10.2 ms

for GlassTube, and 9.15 ms for HTTP. This shows clearly that

36

6.2. BENCHMARK CHAPTER 6

the protocol used has little, if any at all, implication on the user

experience for an application such as SimpleChat, as plain HTTP

does not perform strictly better than the other two.

37

7

Discussion

T
his chapter first discusses how GlassTube differs

from similiar protocols, after which it offers concluding

remarks and summarizes the report, and lastly gives

an outlook into the future of the GlassTube protocol.

7.1 Related Work

There has been several attempts to create an alternative to HTTPS

for web applications, as the redundancy of confidentiality is appa-

rant with applications such as Wikipedia. This section will put

these in relation to GlassTube.

Adida presents SessionLock [40], a mechanism to protect a web

session from eavesdropping. SessionLock uses HMAC to prevent

eavesdroppers from simply reusing the session cookie to authen-

ticate themselves. SessionLock does not prevent against active

attacks, but will prevent session hijacking and thus incapacitate

tools such as Firesheep. However, an active attacker can easily

alter the client’s behavior by modifying a response to contain dif-

ferent JavaScript, which could then be used to either leak the

session key or make use of the compromised client to construct

signed messages.

Dacosta et al. suggest One-Time Cookies [41] (OTC) as an

alternative to using session cookies for authentication. OTC pro-

tects the session by sending a session key, encrypted, which is also

38

7.1. RELATED WORK CHAPTER 7

used to sign the message together with each request. The state-

less protocol is inspired by Kerberos, leading to a scalable design.

However, the server responses are not signed, and thus the proto-

col is vulnerable to man in the middle attacks, in the same manner

as SessionLock.

Singh et al. propose HTTPi [42], as an alternative to HTTPS

that guarantees end-to-end integrity. They achieve convincing per-

formance results by focusing on utilizing web caching. HTTPi

shares much of the motivation with our approach when arguing

that integrity without confidentiality is often desired. However, it

occupies a somewhat different point in the design space. HTTPi

is a direct alternative to HTTP and HTTPS, with possibilities for

access control across HTTPS, HTTPi, and HTTP content. Simi-

larly to HTTP and HTTPS, HTTPi relies on the support of the

browser. In contrast, GlassTube is a lightweight approach that

focuses on application-level support for integrity. GlassTube does

not require browser modification. Being a customizable library,

GlassTube features flexibility for supporting application-specific

policies.

Choi and Gouda describe an integrity protocol for web applica-

tions, named similarly to the above protocol, HTTPI [43]. HTTPI

is designed to allows intermediate cache servers to function, while

still maintaining integrity. However, the protocol lacks protection

from replay attacks, and it requires a plugin to function. Cache

servers can be a great performance boost for web applications,

which is most desirable. However, the choice of MD5 for hashing

makes collision attacks feasible, leading to inferring the hash of

the content, and hence opening for man in the middle attacks.

In the paper App Isolation [44] Chen et al. presents a means

to tackle the problem of cross-site attacks that can occur while

accessing multiple websites simultaneously in the same browser,

such as cross-site request forgery. To address this problem they

isolate browser sessions from each other. GlassTube provides the

same level of protection when using JavaScript or a smartphone

app without any additional efforts, as each browser window will

have a local and protected session key, which cannot be accessed

39

7.2. CONCLUSION CHAPTER 7

by other windows. When utilizing a browser plugin it is up to the

implementation of the plugin to provide this separation. Efforts

such as App Isolation thus becomes redundant if GlassTube is

employed.

The tools like SIF [45] and SWIFT [46], based on Jif [47],

allows the programmer to enforce powerful policies for confiden-

tiality and integrity in web applications. The programmer labels

data resources in the source program with fine-grained policies

using Jif, an extension of Java with security types. The source

program is compiled against these policies into a web application

where the policies are tracked by a combination of compile-time

and run-time enforcement. The ability to enforce fine-grained poli-

cies is an attractive feature of this line of work. At the same time,

the enforcement is rather heavyweight, given that the programmer

is required to use Jif as the programming language.

7.2 Conclusion

This section will present conclusions drawn from the material pre-

sented in this report.

We have proposed GlassTube, a lightweight approach to web

application integrity. Such an approach is vital when confiden-

tiality is not needed or undesired and when application-specific

integrity policies are in place. GlassTube is compatible with sev-

eral secure setup options with and without modified client. Upon

successful setup, GlassTube guarantees per-message integrity, pre-

venting a man in the middle attack from inferring changes to

data between the client and the server, without being detected.

GlassTube assures mutual authentication between client and server.

As is common, the authentication of the user to the application is

left to the application.

We have demonstrated that the deployment of GlassTube is

lightweight, both in the web application setting and in the scenario

of smartphone apps. Little effort is required of the developer to use

the GlassTube library. GlassTube is fully transparent for the end

user. The benchmarks from the case study show that GlassTube

reduces the load compared to HTTPS. The performance results

40

7.3. FUTURE WORK CHAPTER 7

are encouraging, given that no optimization efforts were made.

GlassTube provides a solid foundation for future implementa-

tions both refining security policies and optimizing performance,

so that it can be efficiently implemented and easily deployed in

existing applications.

7.3 Future Work

This section suggests future work to complement GlassTube and

bring a full-featured integrity protocol for web-applications closer

to a state where it can be deployed with such ease that it a clear

alternative to HTTPS for applications where confidentiality is un-

wanted.

An important avenue for future work is lifting the restriction

GlassTube puts on the developer regarding HTTP headers: they

can be used but are not protected by GlassTube. It will increase

the usefulness of GlassTube if support for a selected few standard

headers is added, since they are sometimes used by developers. To

be able to add this support, future work is focused on an in-depth

study of the standard headers.

Another direction of future work is focused on the truncation

attacks in the TCP layer. When a user performs a number of

actions in sequence, the adversary might cause unexpected results

by dropping the last packets. A promising way to combat this is

to implement application level transactions. This means that if

an adversary tries to truncate the data stream it will be detected,

and changes made by previous request during the transaction will

roll back.

GlassTube will have the potential to further enhance flexibility

over HTTPS-based applications if encryption is supported. This

would enable the programmer to specify application-specific con-

fidentiality and integrity policies. We conjecture that sending a

few packets encrypted with GlassTube while already having a

GlassTube session negotiated is more efficient than setting up a

new HTTPS connection for these transfers.

Another improvement that GlassTube can benefit from is free-

ing the programmer from using the binary data of each image,

41

7.3. FUTURE WORK CHAPTER 7

instead of its path. A similar improvement can be also made for

dynamically loaded frames and scripts. This can be accomplished

by having GlassTube deployed as a proxy or a module in the web

server, similarly to the technique by Lekies et al. [?].

42

Bibliography

[1] A. Barth, HTTP State Management Mechanism, RFC 6265

(Proposed Standard) (Apr. 2011).

URL http://www.ietf.org/rfc/rfc6265.txt

[2] W. Stallings, Cryptography and Network Security, 5th Edi-

tion, Pearson Education, 2011.

[3] Aung Khant, A Most-Neglected Fact about Cross Site Re-

quest Forgery, http://yehg.net/lab/pr0js/articles/A_

Most-Neglected_Fact_About_CSRF.pdf?1334750354 (Aug.

2010).

[4] Mitja Koľsek, Session fixation vulnerability in web-based

applications, http://www.acros.si/papers/session_

fixation.pdf, accessed: 2012-05-02.

[5] E. Butler, Firesheep, http://codebutler.com/firesheep,

accessed: 2012-05-02.

[6] E. Rescorla, HTTP Over TLS, RFC 2818 (Informational),

updated by RFC 5785 (May 2000).

URL http://www.ietf.org/rfc/rfc2818.txt

[7] National Institute of Standards and Technology, Recommen-

dation for Transitioning the Use of Cryptographic Algorithms

and Key Lengths, SP 800-131A (Jan. 2011).

[8] National Institute of Standards and Technology, Recommen-

dation for Random Number Generations Using Deterministic

Random Bit Generations, SP 800-90A (Jan. 2012).

43

http://www.ietf.org/rfc/rfc6265.txt
http://yehg.net/lab/pr0js/articles/A_Most-Neglected_Fact_About_CSRF.pdf?1334750354
http://yehg.net/lab/pr0js/articles/A_Most-Neglected_Fact_About_CSRF.pdf?1334750354
http://www.acros.si/papers/session_fixation.pdf
http://www.acros.si/papers/session_fixation.pdf
http://codebutler.com/firesheep
http://www.ietf.org/rfc/rfc2818.txt

BIBLIOGRAPHY

[9] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321

(Informational), updated by RFC 6151 (Apr. 1992).

URL http://www.ietf.org/rfc/rfc1321.txt

[10] T. Xie, D. Feng, How to find weak input differences for md5

collision attacks, Cryptology ePrint Archive, Report 2009/223

(2009).

URL http://eprint.iacr.org/2009/223

[11] Sasaki, Yu and Aoki, Kazumaro, Finding Preimages in Full

MD5 Faster Than Exhaustive Search, in: Joux, Antoine

(Ed.), Advances in Cryptology - EUROCRYPT 2009, Vol.

5479, Springer Berlin / Heidelberg, 2009, pp. 134–152.

URL http://dx.doi.org/10.1007/978-3-642-01001-9_8

[12] S. Turner, L. Chen, Updated Security Considerations for the

MD5 Message-Digest and the HMAC-MD5 Algorithms, RFC

6151 (Informational) (Mar. 2011).

URL http://www.ietf.org/rfc/rfc6151.txt

[13] National Institute of Standards and Technology, Secure Hash

Standard, FIPS 180-1 (Apr. 1995).

[14] T. Polk, L. Chen, S. Turner, P. Hoffman, Security Consider-

ations for the SHA-0 and SHA-1 Message-Digest Algorithms,

RFC 6194 (Informational) (Mar. 2011).

URL http://www.ietf.org/rfc/rfc6194.txt

[15] J. Kelsey, B. Schneier, Second preimages on n-bit hash func-

tions for much less than 2n work, Cryptology ePrint Archive,

Report 2004/304, http://eprint.iacr.org/ (2004).

[16] National Institute of Standards and Technology,

Cryptographic Algorithm Object Registration, http:

//csrc.nist.gov/groups/ST/crypto_apps_infra/csor/

algorithms.html (Feb. 2011).

[17] National Institute of Standards and Technology, The Keyed-

Hash Message Authentication Code (HMAC), FIPS 198-1

(Jul. 2008).

44

http://www.ietf.org/rfc/rfc1321.txt
http://eprint.iacr.org/2009/223
http://dx.doi.org/10.1007/978-3-642-01001-9_8
http://www.ietf.org/rfc/rfc6151.txt
http://www.ietf.org/rfc/rfc6194.txt
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html

BIBLIOGRAPHY

[18] Internet Engineering Task Force, HTTP Authentication:

MAC Access Authentication, draft-ietf-oauth-v2-http-mac-00

(May 2011).

[19] W. Diffie, M. E. Hellman, New directions in cryptography

(1976).

[20] E. Rescorla, Diffie-Hellman Key Agreement Method, RFC

2631 (Proposed Standard) (Jun. 1999).

URL http://www.ietf.org/rfc/rfc2631.txt

[21] Getting Started, https://developer.mozilla.org/en/

AJAX/Getting_Started, accessed: 2012-04-18 (Mar. 2012).

[22] L. Masinter, The “data” URL scheme, RFC 2397 (Proposed

Standard) (Aug. 1998).

URL http://www.ietf.org/rfc/rfc2397.txt

[23] Ian Hickson, Cross-Origin Resource Sharing, http://www.

w3.org/TR/2011/CR-webstorage-20111208/ (Dec. 2011).

[24] A. Barbir, B. Cain, R. Nair, O. Spatscheck, Known Content

Network (CN) Request-Routing Mechanisms, RFC 3568 (In-

formational) (Jul. 2003).

URL http://www.ietf.org/rfc/rfc3568.txt

[25] A. Barth, The Web Origin Concept, RFC 6454 (Proposed

Standard) (Dec. 2011).

URL http://www.ietf.org/rfc/rfc6454.txt

[26] World Wide Web Consortium, Cross-Origin Resource

Sharing, http://www.w3.org/TR/2012/WD-cors-20120403/

(Apr. 2012).

[27] Open Web Application Security Project, Man-in-the-middle

attack, https://www.owasp.org/index.php/Man-in-the-

middle_attack, accessed: 2012-04-10 (Apr. 2009).

[28] Open Web Application Security Project, Cross-site

Scripting, https://www.owasp.org/index.php/Cross-

site_scripting, accessed: 2012-04-10 (Aug. 2011).

45

http://www.ietf.org/rfc/rfc2631.txt
https://developer.mozilla.org/en/AJAX/Getting_Started
https://developer.mozilla.org/en/AJAX/Getting_Started
http://www.ietf.org/rfc/rfc2397.txt
http://www.w3.org/TR/2011/CR-webstorage-20111208/
http://www.w3.org/TR/2011/CR-webstorage-20111208/
http://www.ietf.org/rfc/rfc3568.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.w3.org/TR/2012/WD-cors-20120403/
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Cross-site_scripting
https://www.owasp.org/index.php/Cross-site_scripting

BIBLIOGRAPHY

[29] Google Web Toolkit, https://developers.google.com/

web-toolkit/, accessed: 2012-04-19.

[30] T. Dierks, E. Rescorla, The Transport Layer Security (TLS)

Protocol Version 1.2, RFC 5246 (Proposed Standard), up-

dated by RFCs 5746, 5878, 6176 (Aug. 2008).

URL http://www.ietf.org/rfc/rfc5246.txt

[31] Burkholder, P., SSL Man-in-the-Middle Attacks,

http://www.sans.org/rr/whitepapers/threats/480.php,

accessed: 2012-04-11 (Feb. 2002).

[32] T. Dierks, C. Allen, The TLS Protocol Version 1.0, RFC 2246

(Proposed Standard), obsoleted by RFC 4346, updated by

RFCs 3546, 5746, 6176 (Jan. 1999).

URL http://www.ietf.org/rfc/rfc2246.txt

[33] T. Dierks, E. Rescorla, The Transport Layer Security (TLS)

Protocol Version 1.1, RFC 4346 (Proposed Standard), obso-

leted by RFC 5246, updated by RFCs 4366, 4680, 4681, 5746,

6176 (Apr. 2006).

URL http://www.ietf.org/rfc/rfc4346.txt

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, T. Berners-Lee, Hypertext Transfer Protocol –

HTTP/1.1, RFC 2616 (Draft Standard), updated by RFCs

2817, 5785, 6266 (Jun. 1999).

URL http://www.ietf.org/rfc/rfc2616.txt

[35] ECMA International, ECMAScript Language Specification,

http://www.ecma-international.org/publications/

files/ECMA-ST/Ecma-262.pdf (Jun. 2011).

[36] W3C Web Cryptography Working Group, Group char-

ter, http://www.w3.org/2011/11/webcryptography-

charter.html.

[37] S. Bellovin, Defending Against Sequence Number Attacks,

RFC 1948 (Informational), obsoleted by RFC 6528 (May

1996).

URL http://www.ietf.org/rfc/rfc1948.txt

46

https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/
http://www.ietf.org/rfc/rfc5246.txt
http://www.sans.org/rr/whitepapers/threats/480.php
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.w3.org/2011/11/webcryptography-charter.html
http://www.w3.org/2011/11/webcryptography-charter.html
http://www.ietf.org/rfc/rfc1948.txt

BIBLIOGRAPHY

[38] J. Postel, Transmission Control Protocol, RFC 793 (Stan-

dard), updated by RFCs 1122, 3168, 6093, 6528 (Sep. 1981).

URL http://www.ietf.org/rfc/rfc793.txt

[39] DefaultHTTPClient, http://hc.apache.org/

httpcomponents-client-ga/httpclient/apidocs/org/

apache/http/impl/client/DefaultHttpClient.html,

accessed: 2012-04-19.

[40] B. Adida, Sessionlock: securing web sessions against eaves-

dropping, in: Proceedings of the 17th international confer-

ence on World Wide Web, WWW ’08, ACM, New York, NY,

USA, 2008, pp. 517–524.

URL http://doi.acm.org/10.1145/1367497.1367568

[41] I. Dacosta, S. Chakradeo, M. Ahamad, P. Traynor, One-

time cookies: Preventing session hijacking attacks with state-

less authentication tokens, http://smartech.gatech.edu/

handle/1853/42609.

[42] K. Singh, H. Wang, A. Moshchuk, C. Jackson, W. Lee, Prac-

tical end-to-end web content integrity, in: Proceedings of

the 21st international conference on World Wide Web, ACM,

2012, pp. 659–668.

[43] T. Choi, M. Gouda, HTTPI: An HTTP with Integrity, in:

Computer Communications and Networks (ICCCN), 2011

Proceedings of 20th International Conference on, 2011, pp.

1 –6.

[44] E. Y. Chen, J. Bau, C. Reis, A. Barth, C. Jackson, App

isolation: get the security of multiple browsers with just one,

in: Proceedings of the 18th ACM conference on Computer

and communications security, CCS ’11, ACM, New York, NY,

USA, 2011, pp. 227–238.

URL http://doi.acm.org/10.1145/2046707.2046734

[45] S. Chong, K. Vikram, A. C. Myers, Sif: Enforcing confiden-

tiality and integrity in web applications, in: Proc. USENIX

Security Symposium, 2007, pp. 1–16.

47

http://www.ietf.org/rfc/rfc793.txt
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/impl/client/DefaultHttpClient.html
http://doi.acm.org/10.1145/1367497.1367568
http://smartech.gatech.edu/handle/1853/42609
http://smartech.gatech.edu/handle/1853/42609
http://doi.acm.org/10.1145/2046707.2046734

BIBLIOGRAPHY

[46] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,

X. Zheng, Building secure web applications with automatic

partitioning, Commun. ACM 52 (2) (2009) 79–87.

URL http://doi.acm.org/10.1145/1461928.1461949

[47] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, N. Nystrom,

Jif: Java information flow, software release. Located at http:

//www.cs.cornell.edu/jif (Jul. 2001).

48

http://doi.acm.org/10.1145/1461928.1461949
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

	Introduction
	Background
	Goal
	Method
	Delimitations
	Disposition

	Theory
	Cryptography
	Cryptographic Strength
	Hash Algorithms
	Signature Schemes
	Diffie-Hellman Key Exchange

	Web Technologies
	AJAX
	Data URI Scheme
	Client Side Storage
	Cross-origin Resource Sharing

	Attacks
	Man-In-The-Middle Attack
	Replay Attack
	Denial of Service Attack
	Brute Force
	Attacking an HMAC
	Cross-site Scripting
	Cross-site Request Forgery

	Google Web Toolkit

	The GlassTube Protocol
	GlassTube Setup
	Client Code Distribution
	Key Exchange

	GlassTube Integrity Protocol
	Message Identifier
	Signature
	Verifying a Request

	Protocol Instances
	Web Application
	Generic Browser Plugin
	Smartphone App

	Security Considerations
	Client Code Distribution
	Key Exchange
	GlassTube Integrity Protocol
	Entropy
	User Authentication
	Replay Attacks
	Man In The Middle
	Network Layer
	Transport Layer
	Application Layer

	Denial of Service

	Case Study
	GlassTube Implementation
	Server
	JavaScript Client
	Java Client

	Benchmark
	Server benchmark
	Client benchmark

	Discussion
	Related Work
	Conclusion
	Future Work

