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Abstract—Coordinated multi-point (CoMP) transmission has
received a lot of attention, as a way to improve the system
throughput in an interference limited cellular system. For joint
processing in CoMP, the user equipments (UEs) need to feed
back the channel state information (CSI), typically to their
serving base stations (BSs). The BS forwards the CSI to a
central coordination node (CCN) for precoding. These precoding
weights need to be forwarded from the CCN to the corresponding
BSs to serve the UEs. In this work, a feedback load reduction
technique is employed via partial joint processing to alleviate
the CSI feedback overhead. Similarly, to achieve backhaul load
reduction due to the precoding weights, scheduling approaches
are proposed. The state of the art block diagonalization solution
is compared with our proposed constrained and unconstrained
scheduling. Our main contribution is the method of choosing
the best subset of the BSs and UEs at the CCN that yields the
best sum rate under the constraint of efficient backhaul use. In
particular, with constrained scheduling, the choice of a smaller
subset proportionally reduces the backhaul load. Simulation
results based on a frequency selective WINNER II channel model,
show that our proposed constrained scheduling outperforms the
block diagonalization approach in terms of the average sum rate
per backhaul use.

Index Terms—Backhaul Load Reduction, Scheduling, CoMP,
Partial Joint Processing, Zero Forcing

I. INTRODUCTION

In future cellular communication systems, coordinated
multi-point (CoMP) transmission is a promising technique
proposed to improve the throughput of the user equipments
(UEs) at the cell edge, being limited by interference [1]-[2].
To realize these gains, the UEs need to feed back the channel
state information (CSI) typically to their serving base station
(BS). The CSI is forwarded to the central coordination node
(CCN) to form the aggregated channel matrix that is used to
create the precoding matrix to jointly mitigate interference. To
reduce the overhead of feeding back the CSI, clusters of BSs
are formed [2]. In particular, partial joint processing (PJP)
was proposed in [3] for feedback load reduction, in which
dynamically overlapping clusters of BSs are formed.

PJP can be seen as a framework that attempts to categorize
the trade off between how much load can be reduced for
a given perceivable loss in the system performance. In this
regard, the CSI feedback load reduction can be achieved by
limiting the quantity of feedback by the UEs. To this end,
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a relative thresholding is proposed in [3], where the UE
only feeds back the CSI for a set of BSs links that fall
within a threshold relative to its strongest BS. The CSI of
the BSs that fall outside this threshold are modeled as zeros
in the aggregated channel matrix. Likewise, in this context,
the signaling in the backhaul (BSs-CCN) is primarily due
to the distribution of the precoding weights from the CCN
to the cooperating BSs. Limiting the feedback causes the
aggregated channel matrix to be sparse and poses problems
in the case of precoders such as zero forcing (ZF). Under
these circumstances, achieving an efficient use of the backhaul
is difficult. Hence, the structure in the aggregated channel
matrix formed at the CCN needs to be exploited, such that
the zeros are correspondingly preserved in the precoder matrix
for reducing the backhaul load. To achieve this, backhaul load
reduction can be carried out at the medium access control
(MAC) layer or physical (PHY) layer, as proposed in [4].

The MAC layer approach is a scheduling based scheme,
where disjoint BS subgroups are formed, such that the ag-
gregated channel matrix is block diagonal. The main benefit
of this approach is that the inverse of a block diagonal
matrix is still block diagonal and that the zeros are preserved.
The PHY layer approach is a ZF precoding approach, where
the aggregated channel matrix is repeated such that a block
diagonal structure is created, and the precoding matrix is
created with zeros where needed. The limitations of the PHY
layer approach are discussed in [5].

In this paper, we propose a constrained scheduling (CS) and
an unconstrained scheduling (US) for backhaul load reduction.
In the CS approach, an exhaustive search is carried out to
find the best subset of the aggregated channel matrix, such
that zeros are avoided in the aggregated channel matrix. This
approach directly aims at reducing the backhaul load as the
zeros are disallowed. The US approach is similar to the CS
approach except that the zeros are allowed to be present in the
aggregated channel matrix, and the backhaul load reduction is
achieved by explicit nulling of the precoding weights corre-
sponding to the zeros in the aggregated channel matrix. We
compare our techniques with the MAC layer scheduling based
block diagonalization (BD) technique proposed in [4]. The BD
approach achieves the backhaul load reduction by forming a
block diagonal structure of the aggregated channel matrix. All
the above techniques are evaluated with the PJP based CSI
feedback load reduction as proposed in [3]. To summarize our
contribution, our proposed CS and US algorithms (i) reduce
the backhaul load, (ii) significantly increase the performance,
as a larger feasible subset is considered compared to the BD
approach, which poses a stricter constraint of being block



diagonal, and (iii) the best subset of BSs and UEs are clustered.
The paper is organized as follows, in Section II the system

model is introduced with the focus on how the feedback and
backhaul load reduction are achieved in a frequency selective
channel. Discussions on the scheduling strategies for backhaul
load reduction are presented in Section III. The performance
of these scheduling strategies are discussed in Section IV
and finally the main results are concluded in Section V. The
notation used in this paper is summarized in the footnote.

II. SYSTEM MODEL

Consider the cluster layout as shown in Fig. 1, where K =
|K| single antenna BSs need to serve M = |M| single antenna
UEs. hm = [hm,1, hm,2, ..., hm,K ] is the CSI of the links from
the K BSs to the mth UE. In this work, we study block-fading
channels where the CSI available at the CCN is considered
to be error free, i.e., the quantization loss and the backhaul
delays are assumed to be negligible [6]. In a wideband system,
consisting of a number of subcarriers, each UE feeds back the
CSI for a given frequency resource. The CSI being fed back
can be applied to a group of subcarriers. The CSI feedback
process is performed under the PJP framework proposed in
[3], using a relative active set thresholding as summarized in
[5, Algo.1]. The CSI feedback from the mth UE based on the
channel from K BSs can be represented as

h̃m = hm � tx,m, (1)

where tx,m (k) ∈ {0, 1} , ∀k = 1, . . . ,K. The operation
is independently performed over a collection of subcarriers
(frequency adaptive thresholding) [7], where all the M UEs
report the CSI for all the subcarriers. When the mth UE
feeds back the CSI of kth BS, it is denoted “1” while a “0”
denotes that the CSI was not fed back. The feedback load
reduction can be seen as a masking operation by a binary
threshold vector tx,m via element wise multiplication with
the CSI measured by the mth UE. The subscript x denotes
the threshold value in dB. When x = 0 dB, it represents a
scenario where only the strongest BS is serving the UE, while
the threshold of x = ∞ dB represents that all the links are
fed back. If K = 3 then the mth UE will feed back in one
of the following ways: tx,m = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1},
{1, 1, 0}, {0, 1, 1}, {1, 0, 1}, and {1, 1, 1}}. However, with
relative thresholding [3], tx,m = {0, 0, 0} will never occur,
as it enables the UE to feedback at least its strongest BS.

For backhaul load reduction, consider a subset of the cluster
formed at the CCN, with N = |N | UEs and L = |L| BSs,
where N ⊆ M and L ⊆ K. The maximum number of BSs
that can be chosen is Lmax = K and the maximum number of

Boldface upper-case letters represent matrices, X, boldface lower-case
letters represent vectors, x, and italics represent scalars, x. The Cm×n is
a complex valued matrix of size m× n. The (·)T and (·)H is the transpose
and conjugate transpose, respectively. Ex {·} is the expectation with respect
to x. The || · ||F is the Frobenius norm. X(i, j) is the (i, j)th element of
matrix X and x (i) is the ith element of the vector x. The ith row of a
matrix X is X(i, :) and the jth column of a matrix X is X(:, j). The sets
are indicated in calligraphic letters and |X | denotes the cardinality of the set
X . The operator � is the element wise multiplication.

Fig. 1. The cluster layout

UEs that can be scheduled in a given subcarrier group/resource
is Nmax = Lmax. The discrete time signal received at the N
selected UEs, y ∈ CN×1 is

y = HW̃x+ n, (2)

where H ∈ CN×L is the channel matrix for the subset of
the cluster. W̃ ∈ CL×N is the precoding matrix and n is the
receiver noise at the UEs, which are spatially and temporally
white with variance σ2.

A linear ZF precoding is considered in this work. The
precoding matrix is firstly calculated as the Moore-Penrose
pseudoinverse of the aggregated channel matrix H̃

W̃ = H̃H(H̃H̃H)−1, (3)

where H̃ = H�Tx and Tx =
[
tTx,1, t

T
x,2, . . . , t

T
x,N

]T
. Then,

the columns of W̃ are normalized to have a unit norm [4].
Finally, based on equal user rate power allocation [8], the
precoding matrix can be obtained as

W̃ =

√√√√√ Pmax(
max

l=1,...L
||W̃(l, :)||2F

) · W̃, (4)

where Pmax is the maximum power at which a BS can transmit
on a given resource, i.e., we are not considering optimal
power allocation over the parallel resources. The signal to
interference plus noise ratio (SINR) for the nth UE is given
as

SINRn =
||hnW̃ (:, n) ||2∑

j∈N ,j �=n

||hnW̃ (:, j) ||2 + σ2
. (5)

The sum rate in bps/Hz for scheduling the N different UEs
on the same frequency/time resource is

Rtot =
∑
n∈N

log2 (1 + SINRn) . (6)

Due to feedback load reduction, the channel matrix H̃ might
have zero elements depending on the threshold x dB. Hence, a
sparse channel matrix is used to obtain the precoding matrix,
W̃. The zeros in H̃ pose problems for the ZF precoder for
backhaul load reduction. For example, if the nth UE does not



feed back the CSI for the lth BS, then H̃ (n, l) = 0. Applying
the pseudoinverse in (3), the sparse aggregated channel matrix
H̃ of size N × L, will create W̃ of size L ×N , however, it
could lead to W̃ (l, n) �= 0. This will lead to unnecessary
backhaul, given that the UE has not fed back the CSI while
the ZF solution still tries to serve the nth UE from the lth BS.
Also, consider the situation where the nth UE has fed back the
CSI for the (l + 1)th BS such that H̃ (n, l + 1) �= 0, however
(3) might lead to a situation where W̃ (l + 1, n) = 0. This
is poor backhauling as the uplink resources are already being
spent for the nth UE to feed back the CSI.

Hence, suitable scheduling strategies need to be developed
in achieving an efficient use of the backhaul. These are
discussed in the subsequent section.

III. SCHEDULING

Let a set of N ⊆ M UEs be chosen to be served from a
set of L ⊆ K BSs. To maintain orthogonality with a linear ZF
precoder, the number of UEs chosen are N = |N | and the BSs
chosen are L = |L|, such that N ≤ L. The particular choice
of the set of UEs and BSs are driven by the combination that
maximizes the sum rate as

{L∗,N ∗} = arg max
{L,N :|N |≤|L|}

∑
n∈N

log2
(
1 + ŜINRn

)
,(7)

ŜINRn =

∑
l∈L

H̃ (n, l)W (l, n)

∑
j �=n
j∈N

∑
l∈L

H̃ (n, l)W (l, j) + σ2
, (8)

where H̃ is the channel sub-matrix of size N × L related
to the set {N ,L} of UEs and BSs. Applying (3) and (4) to
this H̃ results in the precoding matrix W. In the following
subsections, we evaluate the scheduling strategies considered
in this work.

A. Block Diagonalization (BD)
In [4], a MAC-layer approach is proposed where disjoint

subgroups of BSs are formed to preserve the block diagonal
structure of the aggregated channel matrix. An important
property of a block diagonal structure is that it is preserved
even under matrix inversion. This property is key to backhaul
load reduction which conserves an equivalent feedback load
reduction for the scheduled UEs belonging to the set N , i.e.,
if H̃(n, l) = 0 then W̃(l, n) = 0. However, it should be noted
that this BD approach based on [4] always requires Nmax UEs
to be scheduled. Therefore, with feedback load reduction, M
UEs feeding back the CSI results in Nmax = Lmax = K
UEs being scheduled. The choice of Nmax corresponds to
an exhaustive search for the best combination of UEs that
maximizes the sum rate given that the aggregated channel
matrix is block diagonal. The BD approach can be summarized
as choosing the combination of the UEs as in Algorithm 1.
The block diagonal channel matrix H̃BD is extracted based on
Tx and correspondingly W̃BD is obtained from (3).

Due to the BD structure, the positions of zeros in H̃BD and
W̃BD are identical, and the aggregated channel matrix needs

to be a square matrix such that Nmax = Lmax. This gives rise
to some ill-effects. Consider N < Nmax and L < Lmax then
N < L is not considered which could potentially produce
a better sum rate translating to a better system performance.
This is due to the stringent constraint of the BD approach that
Nmax = Lmax = K, where the feasible set is considerably
reduced. Also, the feedback can be significantly reduced at
the cluster center, via small relative thresholds [7].

Algorithm 1 BD approach: Note that the BD algorithm [4]
always considers L = Lmax = K.

1: M UEs feed back the CSI as defined in Section II
2: for every N from M such that Nmax = |N | = Lmax do
3: Form Tx (n, l) ∈ {0, 1} , ∀n = 1, . . . , Nmax;∀l = 1, . . . , Lmax
4: if permuted Tx is block diagonal then
5: Found Tx to have a block diagonal structure, evaluate (7)
6: Save Tx based on the best {L∗,N ∗} achieved so far
7: else
8: Failed to find a block diagonal structure
9: end if

10: end for
11: return Schedule the subset formed with {L∗,N ∗} using Tx

For example, a threshold of 5 dB creates a sparse aggregated
channel matrix which is difficult to block diagonalize. One of
the ways to overcome this limitation of the BD approach is to
increase the threshold towards infinity. However, this increases
the feedback load. On the contrary, a full aggregated channel
matrix with few zeros also renders the BD approach difficult
to realize. As a generalization, the BD approach proposed in
[4] can be extended to consider the cases when N = L < K.
However, in this work, we confine our study to the original
algorithm proposed in [4].

B. Unconstrained Scheduling (US)

With feedback load reduction, the aggregated channel ma-
trix is sparse depending on the threshold. The choice of a
feasible subset of BSs and UEs, {L∗,N ∗}, that produces the
best sum rate is summarized in Algorithm 2.

Algorithm 2 US approach
1: M UEs feed back the CSI as defined in Section II
2: Assign L = K
3: while L ≥ 1 do
4: for L : L ⊆ K; |L| = L do
5: for every N from M such that N = |N | ≤ L do
6: Form Tx (n, l) ∈ {0, 1} , ∀n = 1, .., N ; ∀l = 1, .., L
7: Evaluate (7)
8: Save Tx based on the best {L∗,N ∗} achieved so far
9: end for

10: end for
11: L = L− 1
12: end while
13: return Schedule the subset formed with {L∗,N ∗} using Tx

The scheduled BSs and UEs in matrix form can be written as
Tx (n, l) ∈ {0, 1} , ∀n = 1, . . . , N and ∀l = 1, . . . , L. Hence,
the sparse aggregated channel matrix can be written as H̃US =
H�Tx. Compared to the BD approach, the US approach has
a flexibility in considering N ≤ L, and W̃ is obtained from
H̃US by applying (3) and (4). This is followed by explicit



nulling of the precoded weights as W̃US = W̃ � (Tx)
T , to

achieve backhaul load reduction based on the nulls due to
feedback load reduction. However, explicit nulling gives rise
to multi-user interference to remain in the system. It should
be noted that the explicit nulling is automatically taken care of
in the BD approach in Section III-A. Explicit nulling seems
like an intuitive approach but the ZF precoder has its own
limitations when there are zeros in the aggregated channel
matrix (see Section II).

C. Constrained Scheduling (CS)

The CS approach is similar to the US approach with an
important constraint that the aggregated channel matrix H̃CS

is full due to the proper selection of UEs and BSs, i.e., H̃CS =
H � Tx, where H̃CS ∈ CN×L and H̃CS (i, j) �= 0, ∀i, j as
Tx (n, l) ∈ {1} , ∀n = 1, . . . , N and ∀l = 1, . . . , L. This
simplifies the ZF in (3). The CS approach is summarized in
Algorithm 3. The main advantage of this approach is that
the backhaul load reduction is automatically achieved by this
constrained scheduling approach as smaller subset of a matrix,
H̃CS, is formed from H. Also, multi-user interference is
removed from the system.

Algorithm 3 CS approach
1: M UEs feed back the CSI as defined in Section II
2: Assign L = K
3: while L ≥ 1 do
4: for L : L ⊆ K; |L| = L do
5: for every N from M such that N = |N | ≤ L do
6: Form Tx (n, l) ∈ {1} , ∀n = 1, . . . , N ; ∀l = 1, . . . , L
7: Evaluate (7)
8: Save Tx based on the best {L∗,N ∗} achieved so far
9: end for

10: end for
11: L = L− 1
12: end while
13: return Schedule the subset formed with {L∗,N ∗} using Tx

Illustrative Example: To illustrate the above algorithms

with an example, consider Tx =

⎡
⎣ 1 1 0

1 1 0
0 0 1

⎤
⎦. This sub-

set is feasible with the BD approach, while the CS ap-
proach requires the zeros to be removed. Hence, a feasible
subset Tx after removing the zeros can be any of these{[

1 1
1 1

]
,
[
1 1

]
, [1]

}
⇒ SCS = {2× 2, 1× 2, 1× 1}

while {3× 3, 2× 3, 1× 3} /∈ SCS for this particular case of
Tx. As for the US approach, all possible combinations are
feasible. From our proposed algorithms, what clearly falls out
is that they offer an inherent seamless mode switching capa-
bility between CoMP and single cell 1× 1 scenario. When N
users are selected to be served from L BSs, they are expressed
as N × L. Table I summarizes the possible combinations of
the various user scheduling strategies described above. In all
the scheduling strategies, it should be noted that the UEs that
are not currently being served can be expected to be served
in another resource, thereby achieving user fairness.

Table I
SUMMARY OF THE SCHEDULING APPROACHES WITH K = 3

BD US CS
Feasible

{3× 3}
{3× 3, 2× 3, {3× 3, 2× 3,

Set†, 2× 2, 1× 3, 2× 2, 1× 3,
Salgo 1× 2, 1× 1} 1× 2, 1× 1}

Search Exhaustive Exhaustive Exhaustive
Cardinality |SBD| < |SCS| |SUS| |SCS| ≤ |SUS|

Zeros‡ Allowed Allowed Not Allowed
Interference Removed Partially Removed

† The subscript “algo” refers to BD or US or CS.
‡ The zeros in the aggregated channel matrix, ˜H, formed at the CCN.

IV. PERFORMANCE EVALUATION

Consider the cluster center where M single antenna UEs
moving at 3 kmph are dropped as shown in Fig. 1. The radius
of the cell is R = 500 m. These UEs are uniformly dropped
in an ellipsoid in R2, whose center is the cluster center. The
major and minor axis of the ellipsoid are (2Δx, 2Δy) where
0 ≤ Δx ≤ R

16 , 0 ≤ Δy ≤ h/2
16 and h is the height of the

hexagon or cluster. K = 3 single antenna BSs are positioned
as shown in Fig. 1. A realistic WINNER II channel model [9]
corresponding to scenario B1: urban micro-cell, non-line of
sight with pathloss and shadow fading is considered with 500
independent channel realizations at 2 GHz center frequency.
The signal to noise ratio at the cell-edge (reference value for
one user located at the cell-edge) is fixed at 15 dB. For the B1
scenario, the channel provided by the WINNER II model is
converted to the frequency domain with a 256-fast Fourier
transform, where 32 consecutive subcarriers correspond to
one resource for simplicity. The feedback load reduction is
performed for one such resource, Tx, where x takes the values
0, 5 and 40 dB. The results presented are averaged over the
Monte Carlo simulations over all the resources.

Figure 2 shows the average sum rate of the various schedul-
ing algorithms considered in this work. As expected for lower
thresholds, the unconstrained scheduler, US, performs better
than the constrained scheduler, CS. However, this is achieved
at the expense of the backhaul. This is due to the smaller sets
of L and N being formed with CS unlike US. For CS and
US, the sum rate increases with the increase in the feedback
threshold. However in the case of BD, for lower number of
UEs, the 0 dB threshold outperforms the 5 dB. This is related
to Fig. 3 where the original BD algorithm is unable to find a
block diagonal structure. The BD 0 dB case has a better chance
of finding an identity matrix that results in block diagonal
struture than the BD 5 dB, as the 0 dB thresholding maps to
the UEs feeding back atleast the strongest BSs, while the 5
dB allows the UE to feed back more BSs, thereby making it
hard to find a block diagonal structure. However, the situation
improves when the number of UEs increase and the scheduler
is able to find a block diagonal structure. Theoretically, an ∞
dB threshold is the case when CS, US and the generalized BD
scheduling algorithm converge to the same solution.

The BD algorithm performs reasonably well in terms of
sum rate, however, it is not feasible when the number of
UEs are small with lower threshold. Figure 3 captures this
in terms of the probability of failure to find a block diagonal
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Fig. 2. Average sum rate versus the increase in the number of UEs.

subset of UEs, Pf , such that Nmax = Lmax = K = 3, for a
given threshold for feedback load reduction. This failure maps
to Algorithm 1, step 8. Pf goes to zero when the number
of UEs exceeds 25 for all the thresholds considered in this
work. With small number of UEs, the failure is due to the
relative thresholding. The ratio of the number of unsuccessful
attempts to the total number of attempts to find a block
diagonal structure when performing the exhaustive search
is 77.8%, 94.9%, and 0.6% for 0 dB, 5 dB, and 40 dB,
respectively. These values do not change with the increase
in the number of UEs. Let us consider the number of UEs to
be 30. This translates to the total number of attempts being(
30
3

)
= 30!

3!27! = 4060. With a feedback load reduction threshold
of 5 dB, corresponding to the cluster center [10, Fig. 4.19],
the BD approach cannot be evaluated for potentially 94.9%
of the time. With a threshold of 40 dB, the failure to find a
block diagonal structure is as low as 0.6%, this is due to the
fact that a bigger threshold allows the UE to feed back the
CSI from more BSs, causing H̃ to be a full matrix more often
than not. Hence, the BD procedure can easily be applied to a
40 dB threshold. However, it should be noted that this failure
can be avoided if the BD approach in [4] is generalized, such
that the subsets {2×2, 1×1} are also included. This is treated
as part of our future work.

We define the average feedback load reduction, fLR as
the average of the number of zeros in a sparse aggregated
channel matrix H̃ ∈ CM×K i.e., the cardinality of set
SFB =

{
H̃ (i, j) = 0, ∀i, j ∈ N+, i ≤ M, j ≤ K

}
. The aver-

age feedback load reduction is calculated as

fLR = E
˜H {|SFB|} . (9)

Figure 4 shows the fLR due to various thresholds that were
applied to all the scheduling algorithms considered in this
work. As more number of UEs feed back the CSI, the same
needs to be available at the CCN. The savings in the feedback
load is linear whose slope decreases with increasing threshold.
As expected, the feedback load reduction with threshold of 40
dB and ∞ dB has poor savings.
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Fig. 4. Average feedback load reduction, fLR, achieved via PJP

Now we discuss the impact on the backhaul due to the
precoding weights. We define the normalized average backhaul
load reduction as the relative difference in the total number
of UEs and BSs to the cardinality of the set, SBH consisting
of non-zeros in the precoded matrix, W̃algo ∈ CL×N , i.e.,

SBH =
{
W̃algo (j, i) �= 0, ∀i, j ∈ N+, i ≤ N, j ≤ L

}
. The

normalized average backhaul load reduction is calculated as

bLR =
(LmaxNmax)−E

˜H {|SBH|}
LmaxNmax

, (10)

where Lmax = K = 3 and Nmax = Lmax as the maximum
number of UEs served is limited by the maximum number of
BSs selected. This is captured in Fig. 5 for the various schedul-
ing algorithms considered in this work. The CS approach has
nearly 90% backhaul savings with the smallest feedback load
reduction threshold, and the savings diminish as the threshold
increases. As the number of UEs grows, it is interesting to note
that with CS 40 dB and US 40 dB, the savings are nearly
similar, with both undergoing an exponential decay. An ∞
dB threshold also shows this decay, resulting in savings in the
backhaul. This is due to the fact that the scheduler is capable of
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Fig. 5. Average normalized backhaul load reduction, bLR
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Fig. 6. The average sum rate per backhaul use

finding a smaller set of BSs and UEs that can achieve a better
sum rate. With smaller thresholds, the CS and US both tend
to have higher savings in the backhaul. There is no backhaul
savings when the feedback threshold is 40 dB in the case of
BD, as the aggregated channel matrix is full. The BD 5 dB
has better savings in the backhaul compared to BD 0 dB when
M is small. This is due to the failure to find a block diagonal
structure that results in the savings in the backhaul as observed
in Fig. 3.

The metric average sum rate per backhaul use is considered,
as the user data will be routed at the CCN based on the
non-zero precoding weight. This will dominate the backhaul
compared to the CSI feedback [5, Fig. 1]. Hence, the average
sum rate per backhaul use is calculated as

Rtot
per backhaul use

=
Rtot(

1− bLR
)
LmaxNmax

=
Rtot

E
˜H {|SBH|} , (11)

and Fig. 6 captures this metric. It can be observed that our
proposed CS algorithm performs the best compared to all the
other algorithms, providing the best sum rate per backhaul use.

The limitation of the proposed approaches is that they need
to perform an exhaustive search to find the best possible set of
BSs and UEs that gives the best sum rate. However, a greedy
based user selection can be easily implemented based on the
proposed algorithm in order to reduce the complexity [11]. It
should be noted that the algorithms presented in this paper are
independent of the scheduling criteria (7).

V. CONCLUSION

In this work, we explore scheduling techniques that can
efficiently use the backhaul for distributing the precoding
weights (from CCN to corresponding BSs) under feedback
load reduction achieved via partial joint processing for coor-
dinated multipoint transmission. We proposed the constrained
and unconstrained scheduling schemes, comparing them to the
state of the art MAC layer block diagonalization technique for
backhaul load reduction. The constrained scheduling achieves
the best tradeoff in terms of the sum rate per backhaul use.
The block diagonalization technique performs well in terms
of the sum rate when the number of users is large, however,
they fail to find a block diagonal structure when the number
of users are small.

As part of our future work, combining the constrained
scheduling and the block diagonalization technique can har-
ness the gains of both these approaches and overcome
their limitations simultaneously. This combined technique can
achieve a better tradeoff between the sum rate and backhaul
use. Also, generalizing the block diagonalization technique,
such that N = L ≤ K can improve these preliminary results.
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