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Abstract

High power microwave systems operating in vacuum or near vacuum run the risk of multipactor

breakdown. In order to avoid multipactor, it is necessary to make theoretical predictions of critical

parameter combinations. These treatments are generally based on the assumption of electrons

moving in resonance with the electric field while traversing the gap between critical surfaces.

Through comparison with experiments, it has been found that only for small system dimensions

will the resonant approach give correct predictions. Apparently, the resonance is destroyed due to

the statistical spread in electron emission velocity, and for a more valid description it is necessary

to resort to rather complicated statistical treatments of the electron population, and extensive

simulations. However, in the limit where resonance is completely destroyed it is possible to use a

much simpler treatment, here called non-resonant theory. In this paper we develop the formalism

for this theory, use it to calculate universal curves for the existence of multipactor, and compare

with previous results. Two important effects that leads to an increase in the multipactor threshold

in comparison with the resonant prediction are identified. These are the statistical spread of impact

speed, which leads to a lower average electron impact speed, and the impact of electrons in phase

regions where the secondary electrons are immediately reabsorbed, leading to an effective removal

of electrons from the discharge.
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I. INTRODUCTION

Multipactor is a serious failure mechanism for high power RF systems working in vacuum

or near vacuum conditions1,2. The multipactor discharge consists of electrons that move

between conducting surfaces, being accelerated by the electric field and causing secondary

electron emission upon impact. Under suitable conditions, the number of electrons will grow

exponentially in time and eventually saturate due to space charge effects. The oscillating

cloud of electrons formed in the system will create noise and disturb the signals in various

ways, but what is an even greater risk is that the impact of electrons on the surfaces might

lead to significant outgassing and subsequent corona breakdown.

In order to avoid multipactor discharges, different theoretical models have been used

over the past decades. They are typically based on the dynamics of electrons moving in a

homogeneous electric field between two large parallel plates3, and for electrons to participate

in the multipactor avalanche, they must fulfill certain resonance criteria with respect to

emission and impact times. However, this model is only applicable in systems where the

gap size is small, and the spread in emission velocities of the electrons is small. This was

realized quite early4, when the predicted resonance bands were only found for the first

couple of modes of resonance. For higher modes, the resonance bands tend to merge into a

continuum with rather small variations.

Another complication is added when one tries to apply the resonant model to more

complicated geometries than the parallel plates. Only in a few cases5–14 can the problem

be treated analytically. This has motivated the wide use of numerical simulations, both

particle-in-cell (PIC) and Monte Carlo, to calculate the breakdown thresholds and study

the electron trajectories. The numerical simulation approach has a major drawback; for

complicated and large systems, it is necessary to use a great number of electrons and long

simulation times. Since there are certain stochastic elements in the codes (typically emission

velocities) there is also the problem of reproduciblity, and thus many simulations are needed

to find an accurate breakdown threshold.

The resonant model is only valid when the spread in emission velocity, and the gap size is

small. When the emission spread and gap size becomes larger, resonance is destroyed, and

any analytical approach to the problem needs to be based on statistical methods.

Rather recently15, a sophisticated statistical approach to calculate the threshold and elec-
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tron dynamics has been developed. It takes into account the statistical spread in impact

time for electrons, depeding on the emission phase and speed. The electron population is

tracked by developing a sequence of integral equations. This model is very precise, and

has shown excellent agreement with simulations, but suffers from the drawback of being

rather complicated, since it is necessary to evaluate the transfer probability functions ex-

actly through a rather elaborate scheme. For complicated structures this process becomes

extremely complex. For this reason, the statistical approach has so far only been applied

to double-sided multipactor between parallel plates15–18, in a rectangular waveguide19, and

single-sided multipactor on a dielectric surface20. The theory has also recently been gener-

alized to multicarrier signals, again in the parallel plates geometry21. Unfortunately, it is

not obvious how to apply it to more complicated geometries.

Since the recent statistical methods are valid for any gap size and velocity spread, the

mathematical formulation is rather involved. However, in the limit when the velocity spread

and gap size are sufficiently large, the impact phase of an electron will be almost independent

of its emission phase, and the electrons can be assumed to be evenly distributed in space

above the surface of impact. We here call this type of multipactor non-resonant, and in a

sense, it can be viewed as one of the two extremes of the full statistical model above. The

limit for small gaps and velocity spreads corresponds to the resonant model, whereas the

limit for large gaps and velocity spreads corresponds to the non-resonant model. In the

non-resonant limit, the complexity of the problem is reduced significantly, which allows for

rapid calculations. The main qualitative difference between the resonant and non-resonant

model is that in the non-resonant model, the electrons will be impacting over the entire field

period, with the electron number and impact speed having a certain statistical spread. This

leads to a lower average impact speed than in the resonant case, which raises the breakdown

threshold. However, more importantly, it also leads to the effective loss of electrons when

they impact in phase regions where the secondary electrons are directly pushed back into

the surface. This leads to a loss of electrons into low energy single side multipactor, and

an effective removal of electrons from the discharge process. This electron sink can under

certain conditions remove up to half of the impacting electron number, which significantly

raises the necessary voltage and secondary emission yield (SEY) maximum that is needed

to cause breakdown in comparison to resonant multipactor.

In this paper we develop a simplified theoretical model of the impact and emission statis-
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tics of the electrons in the initial discharge stage (no space charge effects) that we call

the non-resonant model22. It enables fast evaluation of the breakdown threshold and im-

pact statistics for systems where the electrons are expected to move non-resonantly. The

fundamental assumption which renders the analysis less complex as compared to the full

statistical treatment is that the electrons involved in the discharge are assumed to be evenly

distributed in space above the surface of impact. This assumption is valid when the spread

in emission velocity is sufficiently large, and the electron trajectories are sufficiently long.

This approach is by no means new. Several papers published in the Soviet Union in the 70’s

used the assumption of evenly distributed electrons, typically calling it the polyphase regime,

and derived the corresponding impact probabilities23–27. Recently, the polyphase approach

has received renewed interest in connection with experiments on single-sided multipactor28.

For small gap sizes, the velocity spread will cause no disturbance to the resonance, and high

energy impacts will be caused by the electrons that are emitted with the highest energy. In

this way, only the electrons that correspond to a certain resonance band will be involved in

the breakdown. However, when the gap size becomes larger, the emission velocity spread

will cause this linking between emission and impact phase to be destroyed, meaning that it

is no longer the most energetic electrons that are solely responsible for the discharge, but

also low energy emission electrons will be causing high energy impacts. This will lead to

the participation in the discharge of electrons emitted from a wider phase band than in the

resonant case. In the susceptibility diagram this is seen as the expansion of the resonance

bands to the sides, causing them to blur. In reality, for large enough gaps, there will be a

contribution from all electrons with a positive drift velocity (although the influence of slow

electrons is limited due to the long gap transit times as compared with the fast electrons),

and the term polyphase seems a bit misleading. Instead we prefer to call it by one of the

other names in use: non-resonant multipactor. In any case, the assumption was the same,

and most of the key results were found, but the investigations were severly limited by the

computer power available, and the secondary electron emission models in use at the time.

For example, Grishin and Luk’yanchikov26 found that by using the non-resonant approach,

and an approximation for the SEY curve, there could be no multipactor if the SEY maxi-

mum was below 1.96. Their conclusion about a lower value for the SEY maximum which will

allow multipactor was correct, but the accuracy was limited by the precision in the numer-

ical calculations, and the fact that the treatment did not incorporate single sided electron
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multiplication.

With present computers and programs, the implementation of the non-resonant model

is rather easy, and the computation time needed is measured in seconds. The great speed

of the calculations as compared to simulations is due to the elimination of the long elec-

tron trajectories by making the impact and emission statistics a purely local process. This

hopefully signals the possible application of the statistical approach to more complicated

systems, where the need for evaluating the transfer probability function exactly is removed.

The inhomogeneity of the electric field can be incorporated using the concept of the pon-

deromotive force, which affects the electron drift velocity10,20,28–30, and the concept of ge-

ometrical spreading can be used to model curved surfaces by diluting the electron density

appropriately29.

II. ELECTRON DYNAMICS

In this section we rederive the emission and impact characteristics of electrons involved in

the multipactor discharge. We shall see that the field oscillation period can be divided into

a segment corresponding to electrons that will move away from the surface until returned

by some external force, and another segment where the emitted electrons will impact the

surface again within one period from emission. The electron population can at all times

be divided into these two populations, the ”long range” and ”short range” electrons. The

long range electrons are able to move between surfaces in the system, and the dynamics of

their motion is assumed to be dictated by the geometry of the metal or dielectric surfaces,

coupled with the action of RF ponderomotive forces and applied external DC electric and

magnetic fields. To simplify the treatment in this paper, we shall assume that the field

gradients and surface curvatures are small enough to be neglected, and the emission and

impact surfaces can be considered as locally flat, with an electric field that is normal to the

surface, and homogeneous. The field can be considered as homogeneous, and the surface can

be considered as flat if two conditions are fulfilled. First, the electron oscillation amplitude

should be much smaller than the scale length of the gradient of the electric field, and second;

the electron oscillation amplitude should be much larger than the scale length of irregularity

of the surface.
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A. Electron Emission

Consider a conductive surface subject to an oscillating electric field which is parallel to the

surface normal, ẑ. Under these conditions, the field is described by

Ē = ẑE0 sinωt (1)

where E0 is the amplitude of the electric field, ω the field angular frequency, and t the time.

The motion of an electron in this field , when the electron velocity is small in comparison

with the speed of light, is described by

z̈ = −
eE0

m
sinωt (2)

where e is the electron charge, and m the electron mass. If we consider an electron which is

emitted from the surface (z = 0) at the time te with an initial velocity, ve, in the z-direction,

we find the trajectory, z(t), and velocity, v(t)

z(t) =
vω
ω
(sinωt− sinωte) + (ve − vω cosωte)(t− te) (3)

v(t) = vω(cosωt− cosωte) + ve (4)

where vω ≡ eE0/(mω) is the amplitude of the oscillatory velocity. The electron emission

velocity, ve, is a quantity with a certain statistical spread. In fact, this is the foundational

hypothesis of the non-resonant approach. However, in our treatment, we do not include

the spread explicitly, we simply assume that it is large enough to cause nonresonance. Of

course, this means that the theory will only be exact when ∆ve ≪ ve, where ∆ve is the

typical spread in the emission velocity. This in turn requires very large electron transit

times, for the discharge to become non-resonant (see section III). In reality, most surface

materials will have ∆ve ≈ ve, which makes it unclear how good the predictive power of the

theory will be with respect to real multipactor discharges. However, taking into account the

effect of a more realistic emission velocity spread goes beyond the scope of this paper.

It is clear that the initial acceleration imparts a drift velocity to the electron

vd = ve − vω cosωte (5)
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FIG. 1: This figure illustrates the importance of emission phase for the future motion of an emitted

electron. The dashed curves represent electrons emitted at a phase which leads to reabsorbtion,

whereas the solid curve represents an electron that is able to leave the plane (symbolized by the

straight line).

which depends strongly on the emission time. For convenience we introduce the normalized

variables t̃ ≡ ωt, z̃ ≡ ωz/vω, α ≡ ve/vω, and ṽ(t̃) ≡ ∂z̃/∂t̃. The equations for the motion of

the electron after emission become

z̃(t̃) = sin t̃− sin t̃e + (α− cos t̃e)(t̃− t̃e) (6)

ṽ(t̃) = cos t̃+ α− cos t̃e = cos t̃ + ṽd

It is very important to realize that electrons that are emitted with certain values for the

emission phase t̃e will return to the surface within one period. These are the short range

electrons. We can find the values for the emission phase when this happens by solving

z̃(t̃e + t̃i) < 0 (7)

0 ≤ t̃i ≤ 2π

where t̃i is the impact time. The limits for short range emission are illustrated in Fig. 2.

The electrons that are not short range will drift away from the surface, and will only

return due to some external force, for example the ponderomotive force of an electric

inhomogeneity10,19,29. These are the long range electrons.
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FIG. 2: The limiting times for long range electron emission as a function of the normalized emission

velocity α. Grey area represents short range emission, and white long range.

B. Long Range Impacts

We will now consider the impact dynamics of long range electrons, and determine limiting

impact times and heights for electrons as functions of their drift speed. The drift speed is

set by the emission velocity and phase. In the case of single-sided multipactor in coaxial

and circular waveguides excited in the TE01 and TM01 modes respectively, electrons are

reflected by the ponderomotive force while approaching the center, and therefore return

towards the emitting surface with their drift velocity reversed. In the case of parallel plates

of the same material, the drift velocity of electrons approaching one plate is determined

by the emission phase at the opposing plate. But in the non-resonant limit, the impact

dynamics are determined completely by the drift speed of the electrons, and considerations

about detailed trajectories and emission phases are unnecessary. This allows us to treat the

impact dynamics by only looking at one surface. And in a steady state scenario, the two

opposing plates will spawn secondaries with the exact same distribution over the magnitude

of the drift velocity.

Thus, we consider impacts on the surface located at z̃ = 0, in this case, only long range

electrons that drift in the negative z-direction will be able to impact. The full motion of the

electrons is made up of an oscillatory part, determined by the local field at the surface, and

the drift part (see Eq. (6)). The electrons move according to (assuming ṽd is positive)

ṽ(t̃) = cos t̃− ṽd (8)
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FIG. 3: Relevant features of the approaching trajectories. The circles mark the limiting phases for

impact, and H̃ is the normalized distance the electron drifts during one period, i.e. H̃ = 2πṽd.

By integrating this equation and setting the height above the surface at t̃ = 0 to h̃, we find

the trajectory

z̃(t̃) = sin t̃− ṽdt̃ + h̃ (9)

In Fig. 3 the important features of approaching trajectories are shown. It is clear that if

ṽd < 1, there are two limiting values for the impact time, t̃i,min and t̃i,max, below and above

which impact is impossible during one period. An electron which did not suffer impact

during the first period will start from a lower position at the beginning of the next period.

The height of this new position is the original height, z̃(0) = h̃, minus the distance the

electron drifts during one cycle, H̃ = 2πṽd. Thus z̃(2π) = h̃− H̃ = h̃− 2πṽd.

The limiting values for the impact times can be found as a function of the normalized

drift velocity and the initial height, provided that the normalized drift velocity is less than

unity and larger than zero. Along with the minimum and maximum time of impact there

is a minimum and maximum height: h̃min and h̃max, from where these electrons start. The

maximum time of impact is located at the middle circle in Fig. 3, where the motion of the

electron is reversed, and the velocity, ṽ, is zero. It is clear that this can only happen when

t̃i ≥ 3π/2, and from Eq. (8) We find

ṽ(t̃i,max, ṽd) = 0 ⇒ t̃i,max = 2π − arccos(ṽd) (10)
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If the starting height of an electron is too high, the electron motion will reverse before it

reaches the surface, i.e. z̃(t̃i,max) > 0. The limiting height is thus found by using Eqs. (9)

and (10), and solving for z̃(t̃i,max) = 0,

h̃max = sin(arccos(ṽd)) + ṽd(2π − arccos(ṽd)) (11)

There is also a minimum height, located at a point h̃max − H̃ = h̃max − 2πṽd. The reason

for this is that the region below this height will have been cleared of electrons during the

previous period due to impacts with the surface. Using Eq. (11) we find

h̃min = h̃max − 2πṽd = sin(arccos(ṽd))− ṽd arccos(ṽd) (12)

The minimum time of impact, t̃i,min, correspond to the time of impact of an electron starting

at h̃min. It is found by inserting h̃ = h̃min in (9) and solving for z̃(t̃i,min) = 0, viz.

ṽdt̃i,min − sin(t̃i,min) = h̃min (13)

The solutions to Eqs. (10), (11), (12) and (13) must in general be found numerically, and

only in the two cases when ṽd = 0 and ṽd = 1 do we find analytical limits, which are shown

in table 1.

ṽd = 0 ṽd = 1

t̃i,min 3π/2 0

t̃i,max 3π/2 2π

h̃min 1 0

h̃max 1 2π

Table 1. The analytical limits for the minimum and maximum impact times and heights

corresponding to normalized drift speeds zero and unity.

These limits make perfect intuitive sense. When the drift velocity is zero, the electrons will

have no net drift towards the surface, and although an electron that would be within the

normalized distance 1 from the surface would impact during a cycle, there would only be
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ṽd

t̃/
π

0 0.5 1
0

0.5

1

1.5

2
h̃min and h̃max

ṽd
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FIG. 4: The minimum and maximum impact times and heights as functions of the drift velocity.

Lines 1 and 2 represent the maximum and minimum impact time respectively, whereas lines 3 and

4 represent the maximum and minimum impact height.

impacts during that cycle, and afterwards all electrons would be gone. This is the reason for

the joining of the maximum and minimum height at the value 1 in the limit where ṽd = 0.

In the opposite case, when ṽd = 1, the height over which electrons are impacting during a

field period extends from 0 to 2π, and electrons will impact during the entire period. The

limiting times and heights as a function of the drift velocity can be seen in Fig. 4.

It is also necessary to know the minimum drift velocity that is able to cause impact for a

given impact phase, t̃i. When t̃i ≥ 3π/2 this corresponds to the drift velocity which causes

reversal of the electron motion at t̃i. Thus, the minimum drift velocity, ṽd,min, that can cause

impact at a certain t̃i is given by the solution of ṽ(t̃i, ṽd,min) = 0. From (8)

ṽ(t̃i, ṽd,min) = 0 ⇔ ṽd,min = cos t̃i (14)

and when t̃i < 3π/2, the minimum drift velocity corresponds simply to the electrons that

start from the minimum height, given by Eq. (12), that cause impact at the instant t̃i. So

from Eq. (9), the minimum drift velocity is found by solving

ṽd,mint̃i − sin(t̃i) = h̃min(ṽd,min) (15)
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III. IMPACT STATISTICS

In this section we derive the impact statistics of non-resonant, long range electrons moving

towards a surface. The non-resonant limit is reached when the emission velocity spread is

large enough to cause the time of arrival for the most energetic electrons that are approaching

the surface to be completely randomized. To determine when this approximation applies,

consider electrons that are emitted with the highest drift velocity from a surface. At first

the electrons will form a thin sheath moving away from the surface, but as they drift, the

velocity spread will cause the electron sheath to expand. When the sheath has expanded

to a size that is larger than the distance the electrons can drift during one period, electrons

emitted from different cycles will start to mix with each other and form a continuous cloud

moving away from the surface. This is the essence of the non-resonant approximation, and

it is valid when the drift velocity spread times the flight time is larger than the drift speed

times the field period. For the fastest electrons, vd ≈ ve + vω, which means

∆veP
2π

ω
> (ve + vω)

2π

ω
(16)

where P is the number of field periods since the time of emission. In a parallel plate system,

the gap width d is traversed in roughly P ≈ dω/(2π(ve + vω)) periods, giving

∆ved >
2π

ω
(ve + vω)

2 (17)

In Fig. 5 the electron spreading due to the emission velocity spread is illustrated. In this

example, the emission velocity is assumed to follow a normal (Gaussian) distribution, with

a standard deviation
√

〈∆v2e〉 = 0.025vd. According to (17), this value of emission velocity

spread implies that the non-resonant regime should be reached when dω/(2πvd) > 40, but

it is clear from the figure that the mixing of the consecutive electron bunches becomes

significant far before this.

Assuming that the non-resonant criterion is fulfilled, we now proceed to derive the impact

statistics. Instead of considering one electron coming towards the surface, we wish to de-

termine the impact distribution of a large number of electrons, moving towards the surface,

with different drift velocities. The easiest way to derive the mathematical relationships is

to start with a bunch of long range electrons having a single drift velocity, and assume that

there are Nl electrons over the surface which will impact during the next cycle. Since we are
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FIG. 5: The density, n, of electrons above an emitting surface, located at z = 0. The emission

velocity distribution is normal (Gaussian) with a standard devioation
√

〈∆v2e〉 = 0.025vd, and a

mean which is vd. During each field period a bunch consisting of 40000 electrons is emitted at a

fixed emission phase. As the bunches move away from the surface, the individual position of each

electron becomes displaced from the average position, which results in the mixing of the consecutive

bunches.

assuming complete nonresonance, these electrons will be evenly distributed over a segment

of length H̃ = 2πṽd, extending from h̃min to h̃max. The density of electrons over the surface,

nl, is thus a constant in that height interval

nl =
Nl

H̃
=

Nl

2πṽd
(18)

These electrons will impact in an interval t̃i ∈ [t̃i,min, t̃i,max], and give rise to an impact

density, ni,l(t̃i), related to nl through

ni,l(t̃i)dt̃i = nldh̃ (19)

Corresponding to each impact time, for a given drift velocity, there is a unique height, h̃(t̃i)

from where the electron starts at t̃ = 0. From Eq. (9) we find

h̃(t̃i) = ṽdt̃i − sin t̃i (20)

and consequently

dh̃(t̃i) = (ṽd − cos t̃i)dt̃i (21)
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Combining this result with (18) and (19) gives

ni,l(t̃i)dt̃i = nl(ṽd − cos t̃i)dt̃i =
Nl

2πṽd
(ṽd − cos t̃i)dt̃i (22)

In order to describe the non-resonant discharge, we need to take be able to take into

account electrons having different drift velocities. The incoming long range electrons are

distributed over normalized drift velocity and height, so we introduce a distribution function,

ηl(h̃, ṽd), which integral over drift velocity gives the electron density at a specific height. So

nl(h̃) =

∫

∞

ṽd,min

ηl(h̃, ṽd)dṽd (23)

where ṽd,min is given by the solution to Eq. (15). Furthermore, the density of incoming

electrons in velocity space is found by integrating over normalized height

nl(ṽd) =

∫ h̃max

h̃min

ηl(h̃, ṽd)dh̃ (24)

But the non-resonant assumption states that electrons are evenly distributed in the height

segment H̃ = h̃max − h̃min = 2πṽd above the surface. This means that

nl(ṽd) =

∫ h̃max

h̃min

ηl(h̃, ṽd)dh̃ = 2πṽdηl(h̃, ṽd) ⇔ ηl(h̃, ṽd) =
nl(ṽd)

2πṽd
(25)

The impact density is distributed over normalized impact time and impact speed. Only

electrons that are moving towards the surface will impact. Consequently, the normalized

impact speed (which is a positive quantity) of the long range electrons is found by changing

the sign of Eq. (8)

ṽi,l = −ṽ(t̃i) = ṽd − cos t̃i (26)

We introduce the impact distribution function, ηi,l(t̃i, ṽi), caused by the long range elec-

tron distribution, ηl. If ηi,l is integrated over all allowed impact velocities, it gives the impact

density, ni,l(t̃i), at a specific impact time, t̃i,

ni,l(t̃i) =

∫

∞

ṽi,l,min

ηi(ṽi,l, t̃i)dṽi,l (27)

where
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ṽi,l,min = ṽd,min − cos t̃i (28)

Since the relation between ṽi,l and ṽd for a given t̃i is linear, we can equally well take ηi,l

to be a function of ṽd, and take the integral over drift velocity

ni,l(t̃i) =

∫

∞

ṽd,min

ηi(ṽd, t̃i)dṽd (29)

In fact, the relationship between the electron distribution in phase space above the surface

and the corresponding impact distribution is

ηi,l(t̃i, ṽi,l)dt̃idṽi,l = ηl(h̃, ṽd)dh̃dṽd (30)

Using dṽi,l = dṽd, and Eqs. (21) and (25) we find

ηi,l(t̃i, ṽd) =
nl(ṽd)

2πṽd
(ṽd − cos t̃i) (31)

It is interesting to investigate the impact distribution of a cloud of electrons all having

the same drift velocity, ṽd,0. This would represent the population of electrons emitted at the

same phase with a small velocity spread, at first occupying a very thin layer in space. But

they have now travelled so far that this thin layer has expanded into a region covering the

impact height several periods. If there are Nl electrons that will impact during one cycle,

the density in velocity space is given by

nl(ṽd) = Nlδ(ṽd − ṽd,0) (32)

where δ is the Dirac delta function. From Eq. (31) we find

ηi,l(t̃i, ṽd) =
Nl

2πṽd
(ṽd − cos t̃i)δ(ṽd − ṽd,0) (33)

and from Eq. (29) the impact density is

ni,l(t̃i ∈ [t̃i,min, t̃i,max]) =

∫

∞

ṽd,min

ηi,l(t̃i, ṽd)dṽd =
N

2πṽd,0
(ṽd,0 − cos t̃i) (34)

This impact distribution is seen in Fig. 6 for values of ṽd,0 ranging from 50 to 0.1. In a

resonant discharge, all electrons impact at a specific phase, and for certain combinations of

gap width and frequency, the electrons impact with the maximum velocity, vi = 2vω+ve. In
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FIG. 6: The impact distribution of a bunch of electrons all having the same drift velocity. Curves

1 to 5 show the impact distributions for ṽd equal to 50, 10, 4, 2 and 1. It is clear that when the

electrons are not allowed to move resonantly, the spread over impact phases will lead to a lower

secondary emission, and a loss of electrons into the short range phase, given that the emission

velocity, α, is small. Curves 6 to 9 show the impact distribution of electrons having normalized

drift speeds ṽd = 0.9, 0.6, 0.3, and 0.1. The impact region becomes smaller when the drift speed

decreases.

the non-resonant case, the impacts are distributed over a phase region [t̃i,min, t̃i,max], which

means that the average impact speed will always be lower than this value. For low values of

ṽd,0 > 1, the impact distribution will basically be sinusoidal, which leads to a loss of electrons

into short range emission and low energy secondaries (see Fig. 2) but when ṽd,0 is large,

the entire field period is open for long range emission, and this loss source is eliminated.

For very low values of ṽd,0, the impacts are limited to a small interval between π and 3π/2,

giving rise to long range secondaries with a certain spread in drift velocity.

We can also calculate the average impact speed, ũi,l(t̃i), by multiplying ηi,l with the

impact speed, ṽi,l = ṽd,0 − cos t̃i, and integrating. In this way we find

ũi,l(t̃i ∈ [t̃i,min, t̃i,max]) =

∫

∞

ṽd,min

ηi,l(t̃i, ṽd)ṽi,ldṽd
∫

∞

ṽd,min

ηi,l(t̃i, ṽd)dṽd
= ṽd,0 − cos t̃i (35)

Which is just the impact speed, ṽi,l.

The total average impact speed, w̃i,l, is found by integrating ũi,l over the impact times.
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For the case when ṽd ≥ 1, the entire period is the integration domain, and using Eqs. (34)

and (35) we find

w̃i,l =

∫ 2π

0
ni,l(t̃i)ũi,ldt̃i

∫ 2π

0
ni,l(t̃i)dt̃i

=
ṽ2d,0 +

1

2

ṽd,0
(36)

If we switch back to unnormalized variables we find

wi,l =
v2d,0 +

1

2
v2ω

vd,0
(37)

For electrons having the maximal drift velocity, ve + vω, this becomes

wi,l =
(vω + ve)

2 + 1

2
v2ω

vω + ve
(38)

This formula was derived previously29 in a slightly different way, and used to approximate

the average impact speed in a non-resonant discharge.

IV. SHORT RANGE IMPACTS

The previous investigation of impact statistics only dealt with electrons coming from far

away, drifting close to the surface, and being randomly distributed in height. If we wish

to perform a similar analysis for the short range electrons, we cannot use the non-resonant

approach. Short range electrons have as their sole characteristic the emission phase, t̃e. The

emission phase determines completely the impact phase, t̃i. In fact, it should be sufficient

to describe the density of impacting short range electrons, ni,s, at t̃i, as a function of the

density of emitted short range electrons, ns, at t̃e using

ni,s(t̃i)dt̃i = ns(t̃e)dt̃e (39)

The relationship between emission and impact phase is given by a function, f

t̃i = f(t̃e) (40)

which symbolizes the connection between normalized emission and impact time, in the short

range emission interval, that one finds when solving Eqs. (7). Assuming that f is known

we can write
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ni,s(f(t̃e))
df

dt̃e
dt̃e = ns(t̃e)dt̃e ⇒ ni,s(t̃i) = ns(f

−1(t̃i))(
df

dt̃e
)−1 (41)

Where f−1(x) = y is the inverse of y = f(x). The function, f , is not very hard to find using

a computer, one simply goes through the entire emission interval, and tabulates the impact

times of all short range electrons. Finding an analytical expression however is probably not

worth the effort.

The velocity of these short range electrons is given by Eq. (6), and the corresponding

impact speed, ṽi,s, is given by changing the sign of this equation, giving

ṽi,s = −ṽ(t̃i) = cos t̃e − α− cos t̃i (42)

The scheme we use to handle short range impacts and secondary emission is to calculate

the impact density for all t̃i once per field period, and use it to create secondary electrons

with that emission phase. There is however a problem associated with the numerical imple-

mentation of this algorithm. The fundamental time scale for the impact statistics of long

range electrons is the field period. At the beginning of each period the electrons start from

within some height and all impact during one period. We can use the impact distribution to

spawn the next generation of long and short range electrons. But the short range electrons

have much more complicated trajectories. One short range electron may give rise to several

impact-emission events during one period, and tracking this chain of events would destroy

the simplicity of our scheme. The effect of only updating the position of the short range

electron once every period will be a slowing down of the process with respect to the long

range impacts. However, the emitted electrons that will impact almost directly after short

range emission will do so with very little energy, corresponding to the emission energy, and

will not cause a significant amount of secondary emission. On the other hand, we should not

neglect the short range electrons completely, as was done in all the previous non-resonant

investigations23,24,26–28, for some of them will have large impact velocities, and impact in the

interval that gives rise to long range electrons. These high velocity electrons take a rather

long time between emission and impact (in the order of one period), and we do not disturb

the time-evolution significantly by only updating their position once per period.
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V. SECONDARY EMISSION

When the long and short range electrons impact the surface, they will spawn a new pop-

ulation of long and short range secondary electrons, n′. The emitted density of secondary

electrons from the long range impacts is

n′

l(t̃i) =

∫

∞

ṽd,min

σ(ṽi,l)ηi,l(ṽd, t̃i)dṽd (43)

where σ is the SEY function, which only depends on the impact speed (we disregard any

angular variation, as this model does not include any such features).

The secondary emission density caused by impacting short range electrons is

n′

s(t̃i) = σ(ṽi,s)ni,s(t̃i) (44)

Which means that the total secondary emission during each cycle is

n′(t̃i) = n′

l(t̃i) + n′

s(t̃i) (45)

This secondary population is divided into a new generation of long and short range electrons

having as their emission phase, t̃′e = t̃i. So in a general system where one wants to apply the

method above, the impact distributions at any point would have to be related to the emitted

secondary distributions at all the other points. In addition to this, there is the complication

of time delay between emission at one point and impact at another. Taking account of

this leads to the statistical method of Vdovicheva et al.15. But restricting ourselves to a

steady state, non-resonant scenario, where the average total number of electrons does not

change in time, there are two possible situations. Either we have a cyclical evolution of

the electron distributions, both in space and time. Luk’yanchikov24 argues that no such

situations occur, but offers no definitive evidence for this. The other, more simple situation

is that, at all points, the distribution that is impacting will spawn a perfect copy of itself

through secondary emission. Only the latter case will be considered further.

In addition to this simplification we will restrict ourselves to a limited range of geometries.

We will consider the two completely analogous cases when we either have two infinite parallel

conducting plates that are well separated, or we have one surface to which all emitted

electrons are forced to return due to some ponderomotive force. In these two cases, the
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electron drift velocity distribution of the incoming and outgoing electrons will be equal but

opposite in direction.

In these cases we can apply the results from sections III and IV, specifically using Eqs.

(31), (41), (43), and (44) in (45), which gives us the total secondary emission density

n′(t̃i) =

∫

∞

ṽd,min

σ(ṽi,l)
nl(ṽd)

2πṽd
(ṽd − cos t̃i)dṽd + σ(ṽi,s)ns(f

−1(t̃i))(
df

dt̃e
)−1 (46)

In a steady state situation, the incoming long range electrons will have a certain distribu-

tion over drift velocity, where the drift velocity is the combined result of the emission velocity

and emission phase. Under the assumtion that α is constant, the incoming distribution over

drift velocity can be represented by a distribution over emission phase corresponding to the

surface it will impact (not the surface which emitted it). Since the drift velocity in these

systems is given by

ṽd = α− cos t̃e (47)

The transformation is effected by inserting (47) in (46), replacing nl(ṽd)dṽd with nl(t̃e)dt̃e,

and limiting the integration interval to [t̃e,min, t̃e,max], resulting in

n′(t̃i) =

∫ t̃e,max

t̃e,min

σ(ṽi,l)
nl(t̃e)

2π

α− cos t̃e − cos t̃i

α− cos t̃e
dt̃e + σ(ṽi,s)ns(f

−1(t̃i))(
df

dt̃e
)−1 (48)

It is necessary to be careful and use the correct limiting times when integrating nl, because

the whole point of the non-resonant approach is to use an average value, where the fact that

nl should be zero outside the allowed interval is not included. The values for t̃e,min and t̃e,max

are given by inserting Eq. (47) in (14) or (15), depending on t̃i, and solving for t̃e.

Consider now the new generation of secondaries that will be spawned by the impacting

electrons. The density of secondary electrons is given by Eq. (48), and the new electron

population is generated by dividing the secondary emission density into a short range and

a long range part according to

ns(t̃e) = n′(t̃e), t̃e ∈ TS (49)

nl(t̃e) = n′(t̃e), t̃e ∈ TL (50)
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where TS and TL are the intervals where electrons become short and long range respectively.

In this way we can find a steady state distribution of electrons which represents the

electron population on the breakdown threshold simply by finding the combination of pa-

rameters which yields a population of secondary electrons which is exactly the same as the

incoming one. The equations are possible to solve completely using computer, while ana-

lytic solutions can be found for some idealized SEY functions, as well as unrealistically high

emission velocities22.

By setting σ = 1, we can study the impact dynamics of different distributions over

emission phase. It is quite instructive to investigate the impact dynamics of long range

electrons having a flat distribution over emission phase (nl = N/(t̃e,max − t̃e,min), while

disregarding the short range electrons. The fraction of impacting electrons that strike in

the long range emission interval, and the corresponding average impact speed of these, w̃i,

are shown in Fig. 7 for values of α between 0 and 2. The two most important features

of the non-resonant model are seen quite clearly in these figures. The effective SEY of the

electrons that impact in the short range emission interval is quite low in comparison with

those that impact in the long range interval. In this way, the fraction of impacts in the

long range interval, NL, illustrates the main non-resonant effect; the loss of electrons due to

impact in low energy emission regions. The right panel shows quite clearly that the average

impact speed is heavily dependent on the emission speed, not only due to the combined

velocities, but more importantly due to the size of the long range emission interval, which

is very sensitive to α.

VI. REALISTIC, NUMERICAL SOLUTIONS

In this section we shall apply the formalism we developed in the previous sections into

calculating the breakdown threshold for realistic systems. It is possible to present the

solutions in several ways. For a specific system, where the SEY maximum is known, one

can calculate the breakdown threshold for any value of emission energy to first cross over

energy ratio. We do this for silver and compare with the predictions of resonant theory, and

the approximate value given by Eq. (38).

Besides from calculating the specific threshold for a given SEYmaximum, we can calculate

the lowest value for the SEY maximum that can sustain multipactor for any combination
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FIG. 7: Line 2 shows the fraction of impacts in the long range emission interval for a flat distribution

of electrons over the long range emission phase interval. When α ≈ 1.26 (see Fig. 2)15 the entire

period is open for long range emission, and the fraction reaches 1, marked by the line 1. Line 4

shows the average impact speed of electrons impacting in the long range emission interval, for a

flat electron distribution over the allowed long range emission interval. Line 3 shows the result of

Eq. (38), which does not apply for α < 2 but is included for reference. Line 5 represents α. The

kink in line 4 is due to the rapid expansion of the long range emission interval when α approaches

1.26. This expansion leads to the rapid inclusion of low energy impacts in the interval, and the

lowering of the average impact speed.

of emission energy, first cross over energy, and electric field strength. This yields a set of

general curves that can be directly applied to any system where some of the parameters are

known.

A. The numerical proceedure

To solve the equations using numerical techniques it is necessary to discretize the system.

We start with the general equation for the impacting electrons (48)

n′(t̃i) =

∫ t̃e,max

t̃e,min

σ(ṽi,l)
nl(t̃e)

2π

α− cos t̃e − cos t̃i

α− cos t̃e
dt̃e + σ(ṽi,s)ns(f

−1(t̃i))(
df

dt̃e
)−1 (51)
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It is most convenient to use a fixed time vector for both the emission and impact distribu-

tions, on the form

t̃[i] =
π

M
(2i− 1), i = 1...M (52)

The time step is ∆t̃ = 2π/M . We replace all quantities with their discrete counterparts,

and use ∆t̃ = ∆t̃i = ∆t̃e along with t̃i = t̃[i], and t̃e = t̃[j], to find

n′[i] =
1

M

jmax
∑

j=jmin

σ(ṽi,l[i, j])nl[j]
α− cos t̃[i]− cos t̃[j]

α− cos t̃[j]
+ σ(ṽi,s[i, js[i]])ns[js[i]] (53)

where t̃[i] = f [t̃[js[i]]], and the number density of emitted electrons at t̃[i] is n′[i]. The

complete removal of the inverse derivative appearing with the short range electron density

is a practical measure. Since we are using time vectors with the same step size for t̃i and

t̃e, the discretization of t̃i = f(t̃e) will result in a situation where each impact time will

not have a corresponding emission time, and to ensure the conservation of particle number,

the simplest solution is to put (df/dt̃e)
−1 = 1. This entire proceedure results in a certain

jaggedness of the resulting short range impact density, which can be reduced by using a fine

time vector, i.e. a large M .

Finding a solution, and the breakdown threshold, for a given SEY-function consists of

balancing the number of electrons in the incoming distribution, nl + ns, with the electrons

in the secondary emission distribution, n′.

B. Solutions

How to express the solution depends on the choice of SEY-function. The most simple

Vaughan model31, Eq. (54), has two parameters that determine its shape; the maximum

SEY, σmax, and the first cross over energy, W1 (or equivalently the SEY maximum energy,

Wmax).

σ = σmax [ǫ exp(1− ǫ)]β (54)

where ǫ = Wi/Wmax = (vi/vmax)
2, β = 0.62 for ǫ < 1, and 0.25 for ǫ ≥ 1. To fix the problem

completely, one also has to know the emission energy of the secondary electrons, We, and
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FIG. 8: On the ordinate axis, the breakdown field amplitude, E, divided by the amplitude

corresponding to the electron oscillatory velocity being equal to the first cross over velocity,

E1 = mωv1/e. On the abscissa axis, the emission energy, We, divided by the first cross over en-

ergy, W1. Line 1 shows the breakdown field according to the numerical solution of the non-resonant

model. Line 2 corresponds to the non-resonant approximation, ((vω + ve)
2 + v2ω/2)/(vω + ve) = v1,

whereas line 3 corresponds to the resonant approximation, 2vω + ve = v1.

the frequency of the electric field. Given these four parameters, there is only one value for

the electric field amplitude, E0, which will result in an equilibrium distribution function.

The threshold for silver, found from solving Eq. (53), is shown in Fig. 8. Silver has W1 =

30 eV, and σmax = 2.2229,30,32, and the act of solving for the breakdown threshold consists

in finding the electric field strength ratio E0/E1 which produces a steady state impact-

emission density for a given ratio We/W1. The two dashed lines indicate the approximations

corresponding to non-resonant (Eq. (38)), v1 ≈ ((vω + ve)
2 + vω/2)/(vω + ve), and resonant

multipactor, v1 ≈ 2vω + ve (see Kryazhev et al.25 for a discussion on this topic). It is seen

quite clearly that these approximations are only good for rather high emission velocities.

The non-resonant approximation is closer to the numerical value since it takes account of

the fact that the impact speed is a statistical average, but it fails to include the heavy

dependance of the size of the short range interval upon the emission velocity. This leads to

an underestimation of the threshold field for low values of the emission velocity. The failure

of the resonant approximation is due to the compound effect of the loss of electrons into the

short range intervals, and the assumption that all electrons participating in the discharge

impact with the maximal velocity.
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FIG. 9: Universal non-resonant breakdown curves for the simple Vaughan SEY function. The left

hand branch corresponds to the lower breakdown threshold, and the right hand branch to the upper

threshold. The SEY maximum on the y-axis is allowed to reach unrealistic values to illustrate the

functional behavior. The values for γ are 0.001, 0.01 and 0.1 for lines 1, 2 and 3.

We now wish to construct more general curves that describe the breakdown threshold for

any system, given the shape of the SEY function. Grishin and Luk’yanchikov26 constructed

a set of such curves by using nondimensional variables. They used a different model for the

SEY than the standard curve nowadays, so our choice of dimensionless variables is slightly

different, but their main conclusions were correct. First of all they concluded that given the

shape of the SEY curve, one can find a set of dimensionless parameters, that will provide

a universal set of curves, describing the necessary criterion for non-resonant multipactor.

We use the most simple form of the Vaughan model, and the most logical choice for the

dimensionless parameters seems to be, γ ≡ ve/v1, κ ≡ vω/v1, and σmax. By using these

parameters when solving Eq. (53), we can find a set of curves which allows one to determine

the critical regions for multipactor in general. These curves are shown in Figs. 9 and 10.

The left hand branch of these curves depict the lower threshold and the dependence on

the emission velocity. In the limit where γ = 1 the threshold reaches a value σmax = 1,

and any small decrease in γ causes a very steep increase in the limiting value for σmax as

κ → 0. Previous investigations have shown that there is a lower value of σmax for the

existence of non-resonant multipactor. Fig. 10 illustrates quite clearly that this value is

heavily dependent on the emission velocity. For the special case when γ = 0 we find the

smallest value of σmax to be roughly 1.97, which is remarkably close to the value 1.96 found
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FIG. 10: More realistic values for the SEY maximum and fractions γ = 0, 0.1, 0.2, 0.4 and 0.8 for

curves 1 to 5.

by Grishin and Luk’yanchikov26. The values should be close, for they used a SEY curve

not too far from Vaughan’s, but the almost exact agreement is likely to be a coincidence.

It should be noted however that γ = 0 is unrealistic, and more realistic values of γ should

be roughly in the range 0.1-0.5, depending on the material. It is more difficult to compare

our results with Sazontov et al.17, for they do not state explicitly at what fraction vω/v1 the

limiting values for the SEY were found. It is also difficult to compare with the values of

Kossyi et al.28 and Sakamoto et al.33, for in the first case there is the presence of a DC field

to account for, and in the second case, the model for secondary emission is rather different.

Suffice to say, our investigations are not in contradiction with any of these results, for in our

model, any value of the threshold SEY between 1.97 and 1 can be found.

On the right hand branch of the figures we find the upper threshold. In this region the

multipactor avalanche takes on quite a different dynamical structure than that which we

have previously assumed. In this case it is the low energy impacts that will have a high

SEY. Only a small fraction of the long range electrons will make low energy impacts, and

thus generate a net increase in electrons. For realistic values of γ, these electrons will be

emitted in the short range interval, and must first make a low energy impact in the long

range interval before any new long range electrons are generated. The method we have

developed in this paper is ill suited for investigating this type of multipactor, for we have

simplified the short range dynamics significantly. Due to this fact, only a short segment of

the line corresponding to the upper threshold is included in the figures.
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VII. COMPARISON WITH SIMULATIONS

We wish to compare our model with simulations, to verify that the statistical treatment

is correct and gives good predictions. In order to do this we created a Monte Carlo code

which simulates the electron trajectories in a parallel plate system. The full non-resonant

regime is hard to reach in simulations, for it is necessary to run the code for so many

cycles, with such a large gap, that statistical fluctuations in the electron population becomes

overwhelming. However, it is not necessary to reach the full non-resonant regime, for the

important characteristics should become evident much earlier (as is suggested by Fig. 5),

and it is merely the removal of resonant artefacts which is achieved by going to the limit.

The scheme of the Monte Carlo code was rather simplistic. The trajectories of the electrons

in the system are known exactly, and the stochastic part of the program consisted of the

electron emission velocity, which was randomly distributed, using a flat distribution, in

an interval ve ∈ [0.5ve,0, 1.5ve,0], where ve,0 =
√

2We/m, and We is the emission energy.

The field period was divided into M segments, where M ≥ 200 was found to give sufficient

accuracy. Each phase segment contained T electron trajectories, where the necessary number

of trajectories needed to suppress random fluctuations in the result depended on the number

of field periods considered in the simulation. A value of at least T = 100 was found to be

necessary. During the first cycle, all M×T trajectories where launched from the lower plate,

and the impact statistics on the upper and lower plate was recorded, together with the total

number of electrons. During the first cycle, each trajectory contained one electron, but

upon impact, this number was multiplied with the secondary emission yield corresponding

to the impact speed of the trajectory. The multipactor threshold was defined as the point

where the total electron number started to show an exponential increase over the main part

of the total simulation time. The total amount of time it was necessary to run the code

also depended on the gap size, but at least a 100 field periods was used. Running the code

for too long causes the electron population to develop a randomly fluctuating sequence.

After a while, depending on the number of trajectories included in the code, some electron

trajectories will grow wildly due to a sequence of high emission impacts, but then upon

the next impact, the impact phase might be in a region of very low secondary emission,

and the trajectory is depleted of electrons completely. In this way, the total population of

electrons will suffer random depletion, eventually stopping the avalanche completely, even
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FIG. 11: The breakdown threshold for a parallel plate gap with silver surfaces. The dashed line

shows the predictions by the non-resonant theory, whereas the solid line represents the identity

2vω + ve = v1.

though the field might be above the breakdown threshold. It is therefore very important to

be wary of this random electron depletion, not mistaking it for subthreshold behavior, and

counteracting it by increasing the number of trajectories.

The parameters used in the simulations were σmax = 2.22, We = 3 eV, W1 = 30 eV, f = 8

GHz, and d going between 0.1 and 4.1 mm in steps of 0.05 mm. The choice of parameters

corresponds to silver, and is the same as in our previous recent publications29,30, making

the results easy to compare. But as is seen in Fig. 11, the threshold can be presented in

a normalized way, against a normalized gap width, making the solution applicable to other

frequencies and gaps where the SEY and emission velocity characteristics are the same. As

stated, Fig. 11 shows the breakdown threshold for the case of silver surfaces as a function

of normalized gap width. For small gaps, the resonant structure is evident, and even the

first hybrid resonance zone can be seen. But as the gap width is increased, the resonance

is suppressed quite rapidly. It is quite clear that the breakdown threshold predicted by the

non-resonant theory is very close to the simulated one, except in the regions where some

resonant behavior can be seen.

Fig. 12 displays the electron impact distribution on one of the parallel plates for three

gap widths, when the field is slightly below the threshold. The two smallest gap widths

correspond to the first and second resonance zones, whereas the large gap width correspond

to the beginning of the non-resonant regime. Clearly, the emission velocity spread coupled
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FIG. 12: The impact distributions on the breakdown threshold for three different gap widths:

d = 0.15, 0.45 and 6 mm, from top to bottom, using 20000, 20000 and 150000 trajectories respec-

tively. The field frequency is 8 GHz, the voltages 150, 450 and 3500 respectively, and the surface

parameters correspond to silver. The smallest gap width corresponds to the first resonance zone,

the intermediate gap width to the second resonance zone, and the largest gap width represents the

situation close to the non-resonant regime. It is clear that for the smallest gap, the emission veloc-

ity spread causes little disturbance to the impact phase distribution, whereas for the intermediate

gap, the influence starts to show. For the largest gap width, impacts are distributed in a sinusoidal

pattern over the entire field period.

with the transit time determines the overall impact distribution. For the smallest gap,

electrons impact only in a very narrow region, whereas for the second resonance zone, this

region has expanded. For the largest gap, the distribution appears sinusoidal, which agrees

qualitatively with the non-resonant predictions (see Fig. 6).

VIII. CONCLUSIONS

The main purpose of the statistical treatment in this paper has not been to describe any

new physics, but rather to point the direction to a faster way of finding the multipactor

threshold in complicated systems where simulations are impractical, and a full statistical

treatment might be very complicated. At the present stage of development, the theory
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should be directly applicable to finding the threshold in a parallel plate geometry with a

large gap, a coaxial waveguide with a small inner conductor excited in the TE01 mode, and

a circular waveguide excited in the TM01 mode. Proving beyond doubt that the model is

working for all such cases where the multipactor avalanche can be considered as non-resonant

is of course impossible. Instead a comparison between the model and simulations has been

done in the important case of parallel plates with a large separation. The predicted and

simulated breakdown threshold fields are in agreement, and the impact statistics show the

same qualitative behavior in theory and simulations. In addition to this, general curves for

the non-resonant threshold have been found for the simple Vaughan approximation for the

SEY. It was seen that there is a lower value of the SEY maximum under which non-resonant

multipactor is impossible, but that the actual value is heavily dependent on the emission

velocity, and can be anywhere between 1 and 1.97. The general mechanisms for the raising

of the lower multipactor threshold has been identified as the lowering of the average electron

impact speed and the loss of electrons into phase regions of low secondary emission. Both

these effects are due to the statistical impact spread of electrons, essentially caused by the

spread in emission velocity coupled with long transit times. As for the upper threshold, it

was realized that a discharge close to the threshold must be of a quite different nature as

compared to the one typically considered. Instead of high energy electrons causing emission

of high energy electrons with large drift velocities, it is the low energy impacts of high energy

electrons that are able to sustain multipactor, through impacts in the short range interval,

where in turn, those secondaries will impact in the long range interval. Evidently, this type

of multipactor is rather complicated, and the statistical nature of the secondary emission is

very important. As a consequence, it cannot be accurately modeled with the methods used

in this paper, and it is unclear as to whether this mechanism is actually physically realizable.
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