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Abstract—The capacity of multiple-antenna systems affected by

Wiener phase noise is investigated. We present a non-asymptotic

capacity upper bound that is shown to be tight in the large-SNR

regime. The capacity upper bound is compared with a lower bound

obtained by evaluating numerically the information rates achiev-

able with QAM constellations. For a Wiener phase-noise process

with standard deviation of the phase increments equal to 6�, our

results suggest that QAM constellations incur a penalty of more

than 3 dB for medium/high SNR values.

I. INTRODUCTION

Phase noise caused by both phase and frequency instabilities in
the radio-frequency (RF) oscillators used in wireless transceivers
is one of the major impairments in certain communication sys-
tems. One example is high-throughput microwave links used to
provide backhaul connectivity in wireless cellular networks [1].
These links typically employ high-order constellations (512
QAM is used in commercial products), which make them ex-
tremely sensitive to phase noise. Another example are commu-
nication systems employing low-cost low-quality RF oscillators,
such as in DVB-S2 transceivers (see [2] and references therein)
and in the large-MIMO transceivers currently under theoretical
investigation [3].

A fundamental way to characterize the impact of phase noise
on the throughput of these systems is to study their Shannon
capacity. Unfortunately, the capacity of the phase-noise channel
is not known in closed-form, even for simple channel models.
Lapidoth [4] obtained a large-SNR characterization of the ca-
pacity of the general class of stationary phase-noise channels
(the widely used Wiener model [2] belongs to this class). Specif-
ically, he showed that the capacity of the phase-noise channel is
asymptotically equal to half the capacity of an AWGN channel
with the same SNR plus a correction term that accounts for the
memory in the phase-noise process. The result in [4] has been
recently extended to the waveform phase-noise channel in [5].
The capacity of the block-memoryless phase-noise channel (a
non-stationary channel) has been characterized in [6] in the large-
SNR regime.

Moving away from asymptotic results, Katz and Shamai [7]
provided tight upper and lower bounds on the capacity of mem-
oryless phase noise channels. These bounds have been recently
extended to the block-memoryless phase-noise case in [8]. For
the Wiener phase-noise model, an upper bound on the rates
achievable with PSK constellations has been recently proposed

in [9]. Capacity lower bounds obtained by numerically comput-
ing the information rates achievable with various families of
finite-cardinality independent and identically distributed (i.i.d.)
input processes (e.g., QAM, PSK, and APSK constellations)
have been reported in [9], [2], [10]. The numerical evaluation of
these bounds is based on the algorithm for the computation of
the information rates for finite-state channels proposed in [11].

The impact of phase noise on multiple-antenna systems has
been recently discussed in [1] where it is shown that different RF
circuitries configurations (e.g., independent oscillators at each
antenna as opposed to a single oscillator driving all antennas)
yield different capacity behavior at high SNR.

Contributions: We study the capacity of multiple-antenna
systems affected by phase noise. Specifically, we consider the
scenario where a single oscillator drives all RF circuitries at each
transceiver. We present a non-asymptotic capacity upper bound
for the case of Wiener phase noise. When particularized to con-
stant modulus constellations and to single-antenna systems, our
bound recovers the upper bound obtained in [9]. By exhibiting a
matching lower bound, we show that our upper bound is tight in
the large-SNR regime. Focusing on single-antenna systems, we
finally compare our upper bound with lower bounds obtained by
evaluating numerically the information rates achievable with
QAM constellations. For the case of a Wiener phase-noise
process with standard deviation of the phase increments equal
to 6

�, our results imply that QAM constellations incur a penalty
of more than 3 dB for medium/high SNR values.

II. SYSTEM MODEL

We consider an M ⇥ M MIMO phase noise channel with
memory, described by the following input-output relation

yk = e

j✓kHxk + wk, k = 1, 2, . . . (1)

Here, xk denotes the M -dimensional input vector at discrete
time k, H is the MIMO channel matrix, which we assume
deterministic, full-rank, and known to the transmitter and the
receiver, {✓k} is the phase-noise process, and wk is the additive
Gaussian noise, which is circularly symmetric with zero mean
and covariance matrix IM , i.e., wk ⇠ CN (0, IM ). This model
is accurate for MIMO systems where the distance between the
antennas at the transceivers is sufficiently small for the RF
circuitries at each antenna to be driven by the same oscillator [1].



A common model for the phase-noise process {✓k} is the
Wiener model [2], according to which1

✓k+1 = ✓k + �k (2)

where the process {�k} is made of i.i.d. zero-mean Gaussian
random variables with variance �2

�, i.e., �k ⇠ N (0,�

2
�). The

i.i.d. assumption on {�k} implies that {✓k} is a Markov process.
Specifically,

f✓k | ✓k�1,...,✓0 = f✓k | ✓k�1
= f�

where

f�(�) ,
1
X

l=�1

1

p

2⇡�

2
�

exp

✓

� (� � 2⇡l)

2

2�

2
�

◆

, � 2 [0, 2⇡].

(3)

In words, f� is the probability density function (pdf) of the
innovation �k modulo 2⇡.

Under the additional assumption that ✓0 is uniformly dis-
tributed in the interval [0, 2⇡], i.e., ✓0 ⇠ U [0, 2⇡], the pro-
cess {✓k} is stationary. Let � ⇠ f� (defined in (3)). The
differential entropy rate of a stationary Wiener process is

h({✓k}) = h(�)  1

2

log(2⇡e�

2
�).

The upper bound, which holds because the Gaussian distribution
maximizes differential entropy under a variance constraint [12,
Thm. 8.65], turns out to be tight whenever �� . 50

�.

III. CAPACITY

We are interested in computing the capacity of the MIMO
phase-noise channel (1), which is defined as

C(⇢) = lim

n!1

1

n

sup I(xn
;yn

). (4)

Here, the supremum is over all probability distributions on xn
=

{x1, . . . ,xn} that satisfy the average-power constraint
n
X

k=1

E
⇥

kxkk2
⇤

 n⇢. (5)

Since the additive noise has unit variance, the parameter ⇢ � 0

can be thought of as the SNR. The capacity C(⇢) is not known
in closed form. In Section IV we shall present a capacity upper
bound that will turn out to be tight in the large-SNR regime.

Before presenting our upper bound, two observations are in
order.

i) As H is known to transmitter and receiver, C(⇢) depends
on H only through its singular values. For simplicity, in the
remainder of the paper we shall focus on the special case
when all eigenvalues of H are equal to one. In this case, we
can (and will) assume without loss of generality H = IM .

ii) The following proposition establishes that the capacity-
achieving input process {xk} can be assumed isotropically
distributed, a property that will be useful in our analysis.

1See [5] for a discussion on the limitations of this model.

Proposition 1: The input process {xk} that achieves the ca-
pacity of the channel (1), with H = IM , can be assumed
isotropically distributed. Specifically, if {xk} achieves C(⇢)

in (4) then {Ukxk}, where the matrix-valued random process
{Uk} is i.i.d. and each Uk is uniformly distributed on the set of
M ⇥ M unitary matrices, achieves C(⇢) as well.

Proof: The proof, which exploits thatUkwk ⇠ wk, follows
the same steps as the proof of [13, Prop. 7].

IV. A CAPACITY UPPER BOUND

We next present an upper bound on C(⇢), which is constructed
by extending to the MIMO case the method used in [4] to derive
an asymptotic bound on the capacity of stationary single-antenna
phase-noise channels. We also use the approach proposed in [8]
to make the bound non-asymptotic.

Theorem 2: The capacity of the channel (1) can be upper-
bounded as C(⇢)  U(⇢), where

U(⇢) , min

↵>0
min

��0

⇢

↵ log

⇢+ M

↵

+ d�,↵ + log(2⇡)

+ max

⇠�0
g�,↵(⇠, ⇢)

�

. (6)

Here,

g�,↵(⇠, ⇢) , (M � ↵)E

2

4

log

0

@|⇠ + z1|2 +

M
X

j=2

|zj |2
1

A

3

5

� h(|⇠ + z|2) + (↵� �)

⇠

2
+ M

⇢+ M

� h( ⇠ + z + �

�

� |⇠ + z|) (7)

where x denotes the phase of x 2 C and z, z1, . . . , zM are i.i.d.
CN (0, 1)-distributed random variables. Furthermore,

d�,↵ , log

�(↵)

�(M)

+ �� M + 1. (8)

Proof: Because of Proposition 1, we can restrict ourselves to
input processes that are isotropically distributed. Specifically, we
will consider {xk} of the form {xk = skvk}, where sk = kxkk
and vk = xk/sk, with vk uniformly distributed on the unit
sphere in CM and independent of sk. We start by using chain
rule as follows

I(xn
1 ;yn

1 ) =

n
X

k=1

I(xn
1 ;yk |yk�1

1 ). (9)

By proceeding as in [4], we next upper-bound each term on the
right-hand side (RHS) of (9) as

I(xn
1 ;yk |yk�1

) = h(yk |yk�1
) � h(yk |yk�1

,xn
)

(a)
 h(yk) � h(yk |yk�1

,xn
)

= h(yk) � h(yk |yk�1
,xk�1

,xk)

(b)
 h(yk) � h(yk |yk�1

,xk�1
,xk, ✓

k�1
)

(c)
= h(yk) � h(yk |xk, ✓

k�1
)

= h(yk) � h(yk |xk) + h(yk |xk)



� h(yk |xk, ✓
k�1

)

= I(xk;yk) + I(yk; ✓
k�1 |xk)

(d)
= I(xk;yk) + I(yk; ✓k�1 |xk). (10)

Here, in (a) and (b) we used that conditioning reduces entropy; (c)
follows because yk and the pair (yk�1

,xk�1
) are conditionally

independent given (✓

k�1
,xk); finally, (d) holds because {✓k}

is a first-order Markov process. Let zk ⇠ CN (0, 1). The second
term on the RHS of (10) can be evaluated as follows:

I(yk; ✓k�1 |xk)
(a)
= I(e

j✓k
sk + zk; ✓k�1 | sk)

(b)
= I

�

e

j✓k
(sk + zk); ✓k�1 | sk

�

= I

�

|sk + zk| , sk + zk + ✓k; ✓k�1 | sk
�

(c)
= I( sk + zk + ✓k; ✓k�1

�

� |sk + zk| , sk)
= h( sk + zk + ✓k

�

� |sk + zk| , sk)
� h( sk + zk + ✓k

�

� |sk + zk| , ✓k�1, sk)

(d)
= log(2⇡)

� h( sk + zk + �

�

� |sk + zk| , sk). (11)

Here, (a) follows because vH
kyk ⇠ e

j✓k
sk + zk is a sufficient

statistics for ✓k�1; (b) follows because zk is circularly sym-
metric; (c) holds because |sk + zk| and ✓k�1 are independent;
finally, (d) holds because ✓k ⇠ U [0, 2⇡] and because of (2).
Substituting (11) into (10), then (10) into (9), and using that
{✓k} is a stationary process, we get

C(⇢)  sup

Qs

n

I(s,v;y)

+ log(2⇡) � h( s + z + �

�

� |s + z| , s)
o

(12)

where

y = e

j✓
sv + w (13)

with ✓ ⇠ U [0, 2⇡], v uniformly distributed on the unit sphere in
CM , z ⇠ CN (0, 1), and � distributed as in (3); the supremum
in (12) is over all distributions Qs on s � 0 that satisfy
E
⇥

s

2
⇤

 ⇢. We further upper-bound the first term on the RHS
of (12) (which corresponds to the mutual information achievable
on a memoryless channel with uniform phase noise) by using
duality [14, Thm. 5.1] and obtain that for every Qs and for every
↵ > 0 and � > 0 (see Appendix)

I(s,v;y)  ↵ log

⇢+ M

↵
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2
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M
X

j=2

|zj |2
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E
⇥

s

2
⇤

+ M

⇢+ M

. (14)

Here, d�,↵ is the constant defined in (8) and z, z1, . . . , zM are
i.i.d. CN (0, 1)-distributed random variables. Substituting (14)

into (12), we obtain

C(⇢)  ↵ log

⇢+ M

↵

+ d�,↵ + log(2⇡)

+ sup

Qs

(

(M � ↵)E

2
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1
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)

 ↵ log

⇢+ M

↵

+ d�,↵ + log(2⇡)

+ max

⇠�0
g�,↵(⇠, ⇢) (15)

where g�,↵(⇠, ⇢) was defined in (7). In the last step, we upper-
bounded the supremum over Qs with the supremum over all
deterministic ⇠ � 0. The resulting upper bound can be tightened
by minimizing it over ↵ and �, which yields (6). This concludes
the proof.

It is instructive to note that if we further lower-bound the last
term on the RHS of (12) as

h( s + z + �

�

� |s + z| , s)
� h( s + z + �

�

� |s + z| , s, s + z)

= h(�)

we obtain

C(⇢)  sup

Qs

�

I(s,v;y)

 

+ log(2⇡) � h(�) (16)

where sv is the input to the memoryless phase-noise channel with
uniform phase noise (13). The inequality (16) can be interpreted
as follows: the capacity of a Wiener phase-noise channel is upper-
bounded by the capacity of a memoryless phase-noise channel
with uniform phase noise, plus a correction term that accounts for
the memory in the channel and does not depend on the SNR ⇢.

If we now specialize (16) to single antenna systems and we
add the additional constraint on Qs that |s|2 = ⇢with probability
one (which holds, for example, if a PSK constellation is used),
the first term on the RHS of (16) vanishes and we recover the
upper bound previously reported in [9, Theorem 2].

V. LARGE-SNR REGIME

In Theorem 3 below, we present an asymptotic characteriza-
tion of C(⇢), which generalizes to the MIMO case the asymptotic
characterization reported in [4] for the single-antenna case.

Theorem 3: In the large-SNR regime, the capacity of the
Wiener phase-noise channel (1) behaves as

C(⇢) =

✓

M � 1

2

◆

log

2⇢

2M � 1

+ log

�(M � 1/2)

�(M)

+

1

2

log ⇡ � h(�) + o(1) (17)

where o(1) indicates a function of ⇢ that vanishes in the limit
⇢! 1.



Proof: The asymptotic characterization (17) is obtained
by proving that an appropriately modified version of the upper
bound presented in Section IV matches the lower bound we shall
report in this section up to a o(1) term.

Upper bound: We exploit the property that the high-SNR
behavior of C(⇢) does not change if the support of the input dis-
tribution is constrained to lie outside a sphere of arbitrary radius.
This result, known as escape-to-infinity property of the capacity-
achieving input distribution [14, Def. 4.11], is formalized in the
following lemma.

Lemma 4: Fix an arbitrary ⇠0 > 0 and let K(⇠0) = {x 2
CM

: kxk � ⇠0}. Denote by C

(⇠0)
(⇢) the capacity of the

channel (1) when the input signal is subject to the average-power
constraint (5) and to the additional constraint that xk 2 K(⇠0)

almost surely for all k. Then

C(⇢) = C

(⇠0)
(⇢) + o(1), ⇢! 1

with C(⇢) given in (4).
Proof: The lemma follows directly from [15, Thm. 8]

and [14, Thm. 4.12].
Fix ⇠0 > 0. By performing the same steps leading to (15), but

accounting for the additional constraint that x 2 K(⇠0) almost
surely and also setting↵ = � = M�1/2, we obtain: C(⇠0)

(⇢) 
U

(⇠0)
(⇢), where

U

(⇠0)
(⇢) ,

✓

M � 1

2

◆

log

2(⇢+ M)

2M � 1

+ log

�(M � 1/2)

�(M)

+ log(2⇡) +

1

2

+ max

⇠�⇠0

�

g̃(⇠)

 

. (18)

with g̃(⇠) , g�,↵(⇠, ⇢) | �=↵=M�1/2. As lim⇠!1 g̃(⇠) =

�(1/2) log(4⇡e)�h(�) (see [4, Eq. (9)] and proceed similarly
to the proof of [14, Lemma 6.9]), we can make (18) to be
arbitrarily close to (17) by choosing ⇠0 sufficiently large.

Lower bound: Take {xk} i.i.d. and isotropically distributed
with

kxkk2
= ⇢

t⇢,⇢0

(M � 1/2)

(19)

where, for a given ⇢0 > 0, the random variable t⇢,⇢0 has pdf

ft⇢,⇢0
(a) =

8

<

:

f

(⇢,⇢0)
(a)

Pr{z > ⇢0/⇢}
, if a > ⇢0/⇢

0, otherwise.

Here, f

(⇢,⇢0) denotes the pdf of a random variable that follows
a Gamma((M � 1/2) · Pr{z > ⇢0/⇢}, 1) distribution. Let t ⇠
Gamma(M � 1/2, 1) and denote its pdf by ft. Note that for
all ⇢0 the pdf ft⇢,⇢0

converges point-wise to ft as ⇢! 1. As

E[t⇢,⇢0 ]  M � 1/2

the average-power constraint (5) is satisfied. A key feature of the
distribution of kxkk in (19) is that Pr{kxkk < ⇠0} = 0 where

⇠

2
0 , ⇢0

M � 1/2

. (20)

Note that ⇠0 ! 1 as ⇢0 ! 1, a property that will be useful in
the remainder of the proof.

To obtain the desired lower bound, we use chain rule for
mutual information and that mutual information is nonnegative

I(xn
;yn

) =

n
X

k=1

I(xk;y
n |xk�1

)

�
n
X

k=2

I(xk;y
k |xk�1

). (21)

Fix now k � 2 and set

✏k , I(xk; ✓k�1 |yk,yk�1,xk�1).

We have

I(xk;y
k |xk�1

)

(a)
= I(xk;y

k
,xk�1

)

(b)
� I(xk;yk,yk�1,xk�1)

= I(xk;yk,yk�1,xk�1, ✓k�1) � ✏k

(c)
= I(xk;yk, ✓k�1) � ✏k

(d)
= I(xk;yk | ✓k�1) � ✏k

(e)
= I(x2;y2 | ✓1) � ✏2. (22)

Here, (a) follows because {xk} are independent; in (b) we used
chain rule for mutual information and that mutual information is
nonnegative; (c) follows because xk and the pair (yk�1,xk�1)

are conditionally independent given (✓k�1,yk); (d) holds be-
cause xk and ✓k�1 are independent; finally (e) follows from
stationarity. Substituting (22) into (21), we obtain

C(⇢) � I(x2;y2 | ✓1) � ✏2. (23)

We next investigate the two terms on the RHS of (23) separately.
Specifically, we shall show that the first term has the desired
asymptotic expansion, while the second term can be made
arbitrarily close to zero by choosing ⇢0 in (19) sufficiently large.

A. The first term on the RHS of (23)
We write

I(x2;y2 | ✓1) = h(y2 | ✓1) � h(y2 |x2, ✓1) (24)

and bound the two terms separately. For the first term, we have
that

h(y2 | ✓1) � h(y2 |w2, ✓1)

= h(e

j✓2x2 | ✓1)
(a)
= h(x2)

(b)
= h(kx2k2

) + log

⇡

M

�(M)

+ (M � 1)E
⇥

logkx2k2
⇤

(c)
= M log

⇢

M � 1/2

+ log

⇡

M

�(M)

+ h(t⇢,⇢0) + (M � 1)E[log t⇢,⇢0 ] .

Here, (a) follows because x2 is isotropically distributed, and,
hence, ej✓2x2 ⇠ x2; in (b) we computed the differential entropy
in polar coordinates [14, Lemma 6.15 and 6.17]; finally, (c)
follows from (19). For the second term on the RHS of (24), we



proceed as follows. Let x2 = s2v2, with s2 = kx2k and, hence,
s

2
2 ⇠ ⇢ t⇢,⇢0/(M�1/2). Furthermore, let z2 ⇠ CN (0, 1). Then

h(y2 |x2, ✓1) = h(y2 | s2,v2, ✓1)

= h(e

j✓2
s2 + z2 | s2, ✓1) + log(⇡e)

M�1
.

Now note that

h(e

j✓2
s2 + z2 | s2, ✓1)

= h(e

j✓2
(s2 + z2) | s2, ✓1)

(a)
= h(e

j�
(s2 + z2) | s2)

(b)
= h(|s2 + z2|2

�

�

s2)

+ h( s2 + z2 + �

�

� |s2 + z2| , s2) � log 2

(c)
 1

2

E


log

✓

2⇡e



1 +

4⇢

2M � 1

t⇢,⇢0

�◆�

+ h(� + s2 + z2 | s2) � log 2.

Here, in (a) we used (2) and denoted by � a random variable
distributed as in (3); in (b) we evaluated the differential entropy in
polar coordinates [14, Lemma 6.15 and 6.16]. Finally, (c) follows
because the Gaussian distribution maximizes differential entropy
under a variance constraint and because conditioning reduces
entropy. Note finally that

h( s2 + z2 + � | s2)  max

⇠�⇠0
h( ⇠ + z2 + �)

= h( ⇠0 + z2 + �).

This term can be made arbitrarily close to h(�) by choosing ⇢0

in (20) sufficiently large. Summarizing, we have shown that

I(x2;y2 | ✓1) � M log

2⇢

2M � 1

+ log

⇡

M

�(M)

+ h(t⇢,⇢0)

+ (M � 1)E[log t⇢,⇢0 ]

� 1

2

E


log

✓

2⇡e



1 +

4⇢

2M � 1

t⇢,⇢0

�◆�

� h( ⇠0 + z2 + �) � log

⇥

2(⇡e)

M�1
⇤

(a)
=

✓

M � 1

2

◆

log

2⇢

2M � 1

+ log

�(M � 1/2)

�(M)

+

1

2

log ⇡ � h( ⇠0 + z2 + �) + o(1).

Here, (a) follows because

h(t⇢,⇢0) = h(t) + o(1)

E[log(t⇢,⇢0)] = E[log t] + o(1)

E[log(1 + c⇢t⇢,⇢0)] = log(c⇢) + E[log t] + o(1), 8c > 0

where t ⇠ Gamma(M � 1/2, 1) and because

E[log t] =  (M � 1/2)

h(t) = (3/2 � M) (M � 1/2)

+ M � 1/2 + log �(M � 1/2)

with  (·) denoting Euler’s digamma function.

B. The second term on the RHS of (23)

Let x1 = s1v1 and z1 ⇠ CN (0, 1). Proceeding similarly as
in [14, App. IX], we obtain

I(x2; ✓1 |y2,y1,x1)

= h(✓1 |y2,y1,x1) � h(✓1 |y2,x2,y1,x1)

 h(✓1 |y1,x1) � h(✓1 |y2,x2,y1,x1, ✓2)

= h(✓1 |y1,x1) � h(✓1 |y1,x1, ✓2)

= I(✓1; ✓2 |y1,x1)

= h(✓2 |y1,x1) � h(✓2 |y1,x1, ✓1)

= h(✓2 | ej✓1(s1 + z1), s1) � h(✓2 | ✓1)
 max

⇠�⇠0
h(✓2 | ej✓1(⇠ + z1)) � h(✓2 | ✓1)

= h(✓2 | ej✓1(⇠0 + z1)) � h(✓2 | ✓1). (25)

As claimed, the RHS of (25) can be made arbitrarily close to
zero by choosing ⇢0 in (20) sufficiently large.

VI. SIMULATION RESULTS

In this section, we numerically evaluate the upper bound U(⇢)

in (6) and the asymptotic capacity expression (17)—the o(1)

term is neglected—for a single-antenna Wiener phase-noise
channel with standard deviation of the phase-noise increment
equal to 6

� (Fig. 1) and 20

� (Fig. 2). In the figures, we also show
the capacity

Cawgn(⇢) , log(1 + ⇢) (26)

of an AWGN channel with SNR equal to ⇢, which is a tight upper
bound on C(⇢) at low SNR. We also display

˜

U(⇢) , min

�

Cawgn(⇢), U(⇢)

 

. (27)

The information rates achievable using QAM constellations of
different cardinality, which are lower bounds on C(⇢), are also
depicted. As in [9], [2], [10], we evaluate these rates using the
algorithm for the computation of the information rates for finite-
state channels proposed in [11]. Specifically, we use 200 levels
for the discretization of the phase-noise process, and a block of
2000 channel uses.

In both scenarios Cawgn is a tighter upper bound than U(⇢)

at low SNR values where the additive noise is the main impair-
ment. In the high-SNR regime, however, U(⇢) is tighter. For
medium/high SNR values, the large-SNR capacity approxima-
tion (17) follows U(⇢) closely. In this regime, QAM constella-
tions incur a penalty of more than 3 dB. The gap to the capacity
upper bound might be reduced by replacing QAM with suitably
optimized constellations.

APPENDIX

We follow an approach similar to the one pursued in [8] for
the single-antenna block-constant phase-noise case. Let qy(y)

denote an arbitrary pdf on y. By duality [14, Thm. 5.1], for every
probability distribution Qs on s we have that

I(s,v;y)  �E[log qy(y)] � h(y | s,v). (28)
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Fig. 1. The upper bound U(⇢) in (6), the asymptotic capacity approxima-
tion (17), the AWGN capacity (26), the tighter upper bound Ũ(⇢) in (27), and
the rates achievable with 16, 64, and 256 QAM. In the figure, �� = 6�.
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Fig. 2. The upper bound U(⇢) in (6), the asymptotic capacity approxima-
tion (17), the AWGN capacity (26), the tighter upper bound Ũ(⇢) in (27), and
the rates achievable with 16, 64, and 256 QAM. In the figure, �� = 20�.

The expectation on the RHS of (28) is with respect to the
probability distribution induced on y by the distribution on s

(which we need to optimize over) and the uniform distribution on
v through (13). Note also that for every probability distribution
Qs satisfying E

⇥

s

2
⇤

 ⇢, we have that

1 �
h

E
⇥

s

2
⇤

+ M

i

/

h

(⇢+ M)

i

� 0. (29)

Fix now � � 0 and an arbitrary pdf qy(y) on y. Using (28)
and (29), we conclude that for every probability distribution Qs

on s

I(s,v;y)  � E[log qy(y)] � h(y | s,v)

+ �

 

1 �
E
⇥

s

2
⇤

+ M

⇢+ M

!

. (30)

Let y =

p
r · u, where r = kyk2 and u = y/kyk. To evaluate

the first term on the RHS of (30), we take qy(y) so that

qr(r) =

r

↵�1
e

�r/�

�

↵
�(↵)

, r � 0 (31)

with ↵ to be optimized later, and � = (⇢+ M)/↵. Furthermore,
we take u uniformly distributed on the unit sphere in CM and
independent of r. By using polar coordinates,

�E[log qy(y)] = � E
⇥

log qy(

p
r · u)

⇤

(a)
= � E[log qr(r)] + log

⇡

M

�(M)

+ (M � 1)E[log r]

(b)
= (M � ↵)E[log r] + ↵

E[r]

⇢+ M

+ log

✓

⇡

M �(↵)

�(M)

◆

+ ↵ log

⇢+ M

↵

. (32)

Here, in (a) we used that

qr,u(r,u) = qy

�p
r · u

�

· rM�1
/2

as a consequence of the change of variable theorem, and that

qr,u(r,u) = qr(r) · �(M)/(2⇡

M
)

by construction; (b) follows from (31) with � = (⇢+M)/↵. We
next compute the conditional differential entropy term in (30).
Let z ⇠ CN (0, 1). We have that

h(y | s,v) = h(se

j✓
+ z | s) + log(⇡e)

M�1

= h(e

j✓
(s + z) | s) + log(⇡e)

M�1

= h(|s + z|2
�

�

s) + log ⇡

M
+ M � 1. (33)

The last step follows by using [14, Lem. 6.16] and that ✓ ⇠
U [0, 2⇡]. Let d�,↵ be defined as in (8). By substituting (32)
and (33) into (30) and by using that

E[r] = E
⇥

s

2
⇤

+ M

and that

E[log r] = E

2

4

log

0

@|s + z1|2 +

M
X

j=2

|zj |2
1

A

3

5

where z1, . . . , zM are independent CN (0, 1)-distributed random
variables, we obtain

I(s,v;y)  ↵ log

⇢+ M

↵

+ d�,↵

+ (M � ↵)E

2

4

log

0

@|s + z1|2 +

M
X

j=2

|zj |2
1

A

3

5

� h(|s + z|2
�

�

s) + (↵� �)

E
⇥

s

2
⇤

+ M

⇢+ M

.
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