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ABSTRACT

During the last years, the media reported about several timber roof collapses all across
Europe, especially during rough winters. This is a serious problem that bears the risk
of many fatal incidents and needs to be encountered in order to improve the safety of
structures. One solution could be to estimate the axial loads in the structural members
using resonance frequency analysis. The results could then be used to assess the safety
of timber structures and to decide about their continued use or temporary closure.
While this method had already been reported for steel structures, only little research
had been carried out in the area of timber structures.

The aim of this project was therefore to investigate if it is possible to estimate the
axial loads in timber beams using resonance frequency analysis and if yes, what are
the precision requirements for the material properties and the measured frequencies.
This was achieved by performing transversal frequency measurements on 32 timber
specimens and an aluminium bar under tension. The latter hereby served as
homogeneous reference for better interpretation of results. The two first frequencies,
together with different values for the E-modulus were then used to estimate the axial
load and the rotational stiffness at the boundaries. The numerical model behind the
calculations was based on Timoshenko beam theory, allowing to include effects of
shear deformations and rotary inertia. The material properties of the specimens were
previously determined by static and dynamic tests. Finally, a sensitivity analysis was
carried out to investigate the influence of errors in input parameters on the final
results.

The best results were obtained using the E-modulus derived from transversal vibration
tests and showed a mean error ranging from 7.6% to 46.6%, where the results
generally improved for higher loads. When using the E-moduli from longitudinal
vibration tests, the mean errors increased to 12.4% to 89.5%. It was also attempted to
use the static E-modulus for the calculations, which led however to incorrect results.
Dynamic values should be used for the parameter estimation with the presented
resonance frequency method. The results of the sensitivity analysis showed that the
sensitivity of the estimated axial load decreases for higher load levels, which could
also be observed in the test results. The most influential parameters on the quality of
the results were the measured frequencies and the clear beam length, followed by the
density and the E-modulus.

Key words:  resonance frequency analysis, timber beams, axial load, non
destructive testing, Timoshenko beam theory, dynamic E-modulus,
modal analysis, parameter estimation
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Notations

In the notation table, all variables occurring in the report are listed alphabetically.

Roman upper case letters

A Area of cross section
A Equation coefficient
B Equation coefficient
C Equation coefficient
C; Equation coefficients
C/ Equation coefficients
D Equation coefficient
D; Equation coefficients
E E-modulus
Eomean  Mean E-modulus parallel to the grain for timber
Eip Dynamic E-modulus from transversal vibration tests
Ei, Dynamic E-modulus from longitudinal vibration tests
Egtatic Static E-modulus
G G-modulus
G; Dynamic G-modulus from transversal vibration tests
Gmean Mean G-modulus for timber
H Factor in the continuous numerical model
I Moment of inertia
L, Polar moment of inertia
K; Load levels for the static four-point bending test
K; Torsional constant
Beam length or clear span length
Lonax Maximum clear length for the beam in the tensile machine
Loin Minimum clear length for the beam in the tensile machine
M Bending moment
M, Torsional moment
N Number of terms in the Rayleigh-Ritz method
S Axial load (positive in tension)
Sg Euler buckling load for a simply supported beam
Sest Estimated axial load
Smax Maximum tensile load
T Reference kinetic energy
Tnax Maximum Kinetic energy
% Shearing force
Vinax Maximum potential energy
X Normal function or modal shape of a vibrating beam
X; Modal shapes of a vibrating beam
Y Modal shape of a transversally vibrating beam
Z Factor in the continuous numerical model
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Roman lower case letters

fi
fiv
fit
fu
fok

ft,O,max

fu

~

T -

VE/p
Distance from the support to the first load (four-point bending test)
Coefficients in Rayleigh-Ritz method

(G k/(p-1)
Beam height

Factor in the continuous numerical model
Coefficients in Rayleigh-Ritz method
Factors in continuous numerical method
Resonance frequency
Resonance frequencies for different vibration modes
Transversal resonance frequencies for different vibration modes
Torsional resonance frequencies for different vibration modes
Longitudinal resonance frequencies for different vibration modes
Characteristic tensile strength parallel to the grain
Maximum tensile strength parallel to the grain from tensile tests
Ultimate tensile strength
Beam height
Natural integer
Rotational stiffness at boundary
w/a
Translational and rotational stiffness at boundary
Jwi/a
Estimated rotational stiffness at boundary
Shear factor, in general k; = 5/6
Beam length, span or finite element length
Natural integer
Factor in the continuous numerical model
Factor in the continuous numerical model
Time
Longitudinal displacement
Transversal displacement
Moisture content or deflection
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w; Moisture content or deflection in different points
X,y Main directions in coordinate system

Greek letters

Factor in the continuous numerical model

YorV¥

Modal shape of a transversally vibrating beam
Angle of shear

Strain

Rotation angle

y or 1

Factor in the continuous numerical model

Factor in the continuous numerical model
Density

Density

Stress level

k,GA for the continuous numerical model
12E1/(k,GAl?) for the discrete numerical model
Angle of rotation of cross section

Angular resonance frequency

Angular resonance frequencies for different vibration modes

€ o>

SO P DM
[aN

ER€SSAD 3

£

Signs and mathematical symbols

% Percentage
| Integral
[ ] Matrix/vector parentheses
cos Cosinus function
sin Sinus function
T

Transponation of a matrix
First derivate of a function
Second derivate of a function

Gk i™ order derivate in multiple calculi
d Infinite small increment
d Derivate in multiple calculi

Matrix notations (bold style)

c Coefficient vector

C Damping matrix

CM Matrix for continuous numerical model

K Stiffness matrix

K° Element stiffness matrix

K} Part of element stiffness matrix accounting for the axial load

K¢ Part of element stiffness matrix accounting for the strain

M Mass matrix

M¢ Element mass matrix

My Part of element mass matrix accounting for effects of rotary inertia
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M7 Part of element mass matrix accounting for effects of translatory inertia

f® Time dependent force vector
v Vector of displacement
(0] Eigenvector to the eigenvalue problem

Abbreviations

°C Degree Celsius

CEN Comité Européen de Normalisation
E-modulus  Modulus of elasticity

FE(M) Finite element (method)

FFT Fast Fourier Transformation
FRF Frequency response functions
G Giga-

Glulam Glued-laminated timber
G-modulus  Shear modulus

M Mega-

N Newton

0SB Oriented Strand Boards

Pa Pascal

TC Technical Committee

k kilo-

m Meter

m milli-

S Second
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1 Introduction
1.1 Background

Over the last years, the media reported about several roof collapses across Europe that
occurred mostly during winter times after high snow precipitations. The fact that roof
structures failed under the loads of snow and ice cost several human lives and caused
many injuries. In January 2006, the Bad Reichenhall Ice Rink in Bavaria, Germany
collapsed after continuing snowfalls. The failure of the 36-year-old roof claimed 15
lives and caused 34 injured. In February of the same year, the collapse of a market
hall in Moscow claimed the lives of 50 Caucasian guest workers. These are only a few
examples of collapses that occurred during this particularly strong winter. In February
2009, the roof of a three-year-old school sports hall in St. Gallen, Switzerland
collapsed just two hours before start of classes. In January 2012 a one-year old roof
structure of an ice-hockey hall in Slovakia collapsed during a match. All these
examples show the severity of this safety issue that exists in many different countries
and damages the public confidence in the construction sector.

The main reasons for the collapses consist in general of high snow loads, combined
with moisture effects or wrong assumptions considering the structural behaviour.
Branco (2010) stated that the “assessment of constructed timber trusses shows various
differences in their structural model” and that “visual inspections are the basis of any
analysis of timber structures” to ensure the detection of decay or mechanical damages.
In the case that a snow removal does not occur, it is therefore important to assess the
real behaviour of the structure that can considerably derive from the assumed model.
Also a condition assessment of the structural members should be carried out to assure
a realistic evaluation, especially for older structures. An example for this is further
shown in Branco (2010), where two timber trusses from a construction situated near
Caldonazzo Lake, Italy were analysed. The over 70 year old trusses were
disassembled and reconstructed in the laboratory, where their real structural behaviour
was assessed by visual grading as well as dynamic and static testing. Both trusses
showed asymmetric behaviour even under symmetric loading, which is a clear
deviation from the structural model. All this indicates that a lack of information about
the structural behaviour of roofs can lead to incorrect or even unnecessary
reinforcements or replacements.

The problem of uncertainties in structural integrity is furthermore enhanced by
uncertainties in future snowfall development affected by climate change. Strasser
(2008) indicates that climate change could have a harmful effect on snow loads, at
least in colder regions. Even if higher temperatures will result in less frequent
snowfall, extreme weather events and precipitations are likely to become more
frequent. In regions that will remain cold enough these precipitations will occur in
form of strong snowfalls, which most likely will exceed today’s design values. In
other words, instead of many moderate snowfalls it is probable that there will be
fewer snowfalls with higher peaks. It is therefore important to know if today’s
structures can bear these increased loads.

The solution to these problems could lie in non-destructive testing (NDT) methods,
namely frequency based identification methods. In contrast to strain gauges, these
methods allow to estimate actual stress levels at any time and without the need of a
reference state. This means that stresses inside the structural members caused by self-
weight, creep or changes in temperature or moisture are included in the results, which
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allows a realistic assessment of the structural behaviour and the detection of the most
loaded, hence most vulnerable members. With this information, a better computer
model can be created from which a more realistic assessment of the load bearing
capacity can be drawn. This gives for example answers to the questions “What snow
load levels can the roof bear?” and “When should a structure be temporary closed and
reinforced for safety reasons?”.

Livingston (1994) was one of the first to introduce a method based on frequency
measurements to estimate the axial load in members. His model furthermore allowed
identifying the rotational restraint at the supports of prismatic beams. The principle is
to transversally excite a beam under axial force and to determine the first frequencies
with the help of an accelerometer linked to a computer software. Resonance frequency
analysis then allows deriving the axial loads and boundary conditions from these
frequencies. The method was tested on a square steel rod under tension to verify the
results. Even though it could be observed that the axial loads were in general
overestimated, the method showed promising results, especially for high-tension
forces. The same technique was also used by Amabili (2010)to determine the in-situ
tensile forces in steel rods being part of ancient masonry buildings in Italy. The results
could then be used as a basis to decide whether the bars needed to be replaced or not.
In Maille (2008) the method was used to assess the safety of an old breeding barn’s
roof structure. The testing led to the axial loads in the steel members of the truss
construction, which were then compared to the ones predicted by different computer
models. The most accurate model could then be used to determine the bearing
capacity of the structure. As these works show, the technique has been approved for
steel, which is a homogeneous material with isotropic properties. However it seems
that no experiments have yet been carried out to verify the method for inhomogeneous
materials like timber, on which is the focus in this thesis.

Since one of the main application fields of timber products are roof structures and
since the exact material behaviour is not entirely clear, a reliable non-destructive
testing method would represent a major contribution to the safety assessment of
existing structures.

1.2  Aim of the thesis

The aim of this thesis was to investigate the possibility of estimating axial loads in
timber members by means of resonance frequency analysis. For promising results, this
method could be used in the future to assess the safety of timber structures by
determining the actual stress of state in the loaded members. The main difference to
steel structures is that the material properties of timber are subject to a large spread
given by its inhomogeneity and natural growth. It is therefore important to analyse
what precision is required for the use of this method and what parameters have the
highest influence on the estimation of the axial load.

1.3 Method

Based on a literature study carried out on resonance frequency testing for the
determination of axial forces, the framework for the specimen dimensions and the test
setup was elaborated. Static and dynamic testing was then performed on 32 timber
specimens of Norway spruce to determine their material properties. Furthermore, the
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same tests were carried out on an aluminium bar serving as reference for
homogeneous material. Finally, transversal frequency measurements were performed
on the specimen under different load levels. The collected data was then evaluated
using Timoshenko beam theory to estimate boundary conditions and axial load. A
sensitivity study was carried out to analyse the influence of the different input
parameters on the estimation of the axial load and the boundary conditions.

1.4 Limitations

The main limitations in this research were a lack of time and available laboratory
space and equipment. This led to small-scale experiments on 32 timber specimens of
identical dimensions and an aluminium bar. No moisture variation or long-term
effects could be considered. The available machine limited the research to tensile
loads only.

1.5 Outlines

In the following, the contents of the different chapters and their chronological order
are presented.

1. Introduction: This chapter gives the necessary background information as
well as the aims of the thesis. Moreover, the methods to the respective aims
are explained.

2. Building material timber: In this chapter, the material properties of timber
are discussed. Furthermore, non-destructive methods for timber grading are
explained.

3. Determination of axial load and boundary conditions in slender beams:
A literature review is presented on resonance frequency analysis for the
purpose of parameter estimation. Conclusions are drawn on how to chose the
specimen size and test framework.

4. Vibration theory
The theory behind different types of beam vibrations is explained and the
according assumptions are listed. The difference between Euler and
Timoshenko theory is explained.

5. Numerical modelling and parameter_estimation: In this chapter, different
numerical models are presented and compared. The parameter estimation used
in later data processing is explained. Finally, a sensitivity analysis is carried
out to analyse the sensitivity of the axial load and the boundary conditions
with regard to measured input parameters.

6. Modal analysis: This chapter explains the difference between theoretical and
experimental modal analysis. The most important aspects of data acquisition
and data processing are illustrated.
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7.

10.

Determination of material properties: The specimens are presented along
with information on the test equipment and the data processing. The material
properties of each beam are determined using static and dynamic testing.

Tension tests: The tensile machine and setup of the final tests are explained.
The results of the frequency measurements as well as the according estimation
of axial loads and boundary conditions are presented. This is followed by a
comparison and discussion of the results for timber and aluminium. Finally,
tensile tests on some specimens are presented to determine their ultimate
tensile strength.

Conclusions and further research: This chapter presents the final
conclusions made from the data acquisition and the parameter analysis. In
addition, suggestions for further research are made.

References: An alphabetical summary of the used literature is listed in this

chapter.

11. Appendices: This chapter contains a summary of all test results, frequency

response function plots and Matlab codes used in this paper.
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2 Building material timber

The demand for construction timber has been rising considerably during the last
decades. One main reason is the new awareness with regard to the environment
caused by the climate change and resource scarcity. Timber meets this new
requirement by being a naturally regrowing material with low energy consumption
during the whole life cycle. Another reason for the raising use of timber materials is
the high level of prefabrication. The different parts can be produced in indoor
workshops prior to construction. This ensures high quality standards and weather
independence. After the prefabrication, the different parts can then be transported on
site and assembled in a quick and precise way.

A major disadvantage of timber is however its anisotropy. Unlike steel or other
homogeneous materials, timber has different material properties in different
directions, which requires much care and consideration during the design phase. This
is given by its cell structure, which is illustrated in more detail in the next paragraph,
together with the material properties of timber.

2.1 Characteristics of timber

When analysing the cell structure of wood, one has to distinguish softwood
(coniferous wood) and hardwood (deciduous wood). From the cell structure
illustrations in Figure 2-1, it can be seen that softwood has a more uniform
composition parallel to the grain than hardwood, where the grain is penetrated by
vessels variable in size and shape. This leads to a higher variation in material
properties.

1aky

Figure 2-1 SEM images showing the difference between softwood (left) and hardwood
(right), Wikipedia.org (2006)

It is however true for all types of clear wood, that the stiffness and strength properties
generally increase with higher densities. Also the stiffness and strength properties are
always considerably higher in grain direction than perpendicular to the grain. Figure
2-2 shows the variation of tensile and compression strength with the angle variation
from the grain direction for strength class C24 according to SIA (2003). It is obvious
that the strength perpendicular to the grain is very low, even negligible for tension,
compared to the one in grain direction. This is also one of the most common failure
modes observed in practice. The E-modulus for the same strength class is around 35
times higher in the grain direction than perpendicular to it SIA (2003).
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Figure 2-2 Tensile and compression strength of C24 for different angles a to the grain
direction SIA (2003)

The strength of a timber beam also depends on the loading mode, i.e. moment,
tension, compression or shear. The according strengths are usually determined by
direct testing methods under the assumption of elastic behaviour. Beams under
tension generally show a brittle failure, while some plastic deformations are possible
for compression forces, due to the buckling of the fibres.

The good properties of clear wood in grain direction are significantly reduced by
random defects such as knots, oblique fibre orientation and resin pockets. The varying
number and location of these defects cause a large spread in properties shown in
Figure 2-3.

Frequency Difference in Difference in
5" percentile mean value

T

Strength

Figure 2-3 Probability density functions for solid wood and glulam Thelandersson and
Larsen (2003)

This spread let to the development of Engineered wood products (EWP), which in
general aim to reduce the high variability of timber. For glue-laminated timber for
instance, several lamellas of solid wood are glued together. This improves the
material properties since local weak zones can redistribute stresses to adjacent
stronger regions. Another approach is to shred the wood to smaller pieces and
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reassembling it with the use of adhesives as it is done for OSB panels. Figure 2-4
shows some examples of EWPs.

Figure 2-4 Examples of Engineered wood products Buyleedlumber.com (2012)

According to Thelandersson and Larsen (2003), these are some of the main
advantages of EWPs:

e Size is not limited by tree dimensions.

¢ Reduced effect of defects by distributing them over the whole beam.
¢ Reduced anisotropy

e Higher dimensional stability and tolerances

One should however also note that EWPs are generally more expensive than solid
wood and that adhesives like glue are necessary for their production. The latter
somewhat decrease the ecological character of the timber use.

Another consideration, that needs to be taken into account when dealing with timber,
Is that it interacts with the humidity in the environment until it reaches the equilibrium
moisture content. This change in moisture can result in internal stresses causing
deformations or even cracks, for example perpendicular to the grain. Also it has to be
considered that the material properties vary with the moisture content. For high
moisture contents, strength and stiffness values need to be reduced, while values
around 12% at an ambient temperature of 20°C are optimal SIA (2003).

Another important aspect is that timber has a low shear modulus compared to
homogeneous materials like steel. This means that shear deformations need to be
taken into account for timber structures since they can be of the same order as
deformations from bending. This effect becomes even more important for a high
presence of knots since the reduction they cause in G-modulus is more important than
the one in the E-modulus. The deformations of timber beams increase furthermore
over time, since the strength decreases under permanent loading.

All these illustrations show that there are various uncertainties related to timber
construction and that there is a need for non-destructive methods to estimate the
material properties and make sure they are within desirable limits. The next paragraph
gives an overview of methods used in practice for the grading of timber and the
determination of some important properties of timber beams, namely the density,
strength and stiffness.
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2.2 Non-destructive methods for timber grading

According to Thelandersson and Larsen (2003), two types of strength grading can be
distinguished:

eVisual grading: it is based on visual inspections to determine number and
distribution of defects like knots, grain slope, compression wood, resin pockets etc.
According to specific rules, the specimen can then be assigned to a strength class.

e Machine grading: there are different methods that can be used to measure several
parameters including knots, ring width, density etc. The resulting information can
then be combined to predict the strength and stiffness of the specimen.

The most numerous, yet also harmful defects are knots since they considerably reduce
the stiffness and are in general also the cause for failure in ultimate bending or tensile
tests.

One should keep in mind that even after timber grading there are still uncertainties
concerning the material properties and that these values can only be considered as
estimates based on more or less accurate correlations between different parameters.
There is for example a good correlation between E-modulus and strength, even in
presence of knots. The correlation between density and E-modulus on the other hand
is only strong for clear wood specimens, which are not the general case Thelandersson
and Larsen (2003).

Determination of density

The easiest way to determine the global density of a specimen is to calculate its
weight-to-volume ratio. Since this is however not possible for existing structures
without taking a probe, there is a need for other non-destructive methods that can be
used on-site.

Accurate results can is this case be achieved by means of radiation techniques (x-ray
or gamma rays). They allow to determine not only the global density, but even the
density distribution of a beam. Furthermore it is possible to find the location as well
as size of hidden knots since they have a higher density then the surrounding material
(cf. Figure 2-5). An application of this technique can be found in Oja (2001) and
(Schajer, 2001) where it was used to determine the density of logs and lumber from
which it was then attempted to derive strength and stiffness.

‘:\
Signal from one N\ ./ signal from one
- Y e ) .
cross section ™ ‘wﬁ{,ross section

Signal from one
log, detector 1

Signal from one
log, detector 2

Source 1 Source 2

Figure 2-5 Illustration of the determination of wood density using x-rays Oja (2001)
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Determination of E-modulus

One of the most widely used methods to determine the static E-modulus is to perform
continuous flatwise-bending tests. This is in fact a three-point loading test carried out
along the beam length (cf. Figure 2-6). The result is the E-modulus distribution over
the beam length, excluding the ends since it is not possible to carry out the
measurements there.

-

Deflection B8
measurement

4]

Figure 2-6 Bending type machine for continuous timber grading, based on
(Performancepanels.com, 2012)

A more recent approach to determine the E-modulus are dynamic testing methods.
They have gained much importance during the last decades, since they provide a
quick assessment of wood quality with relatively low means of equipment. In the
following, some of these non-destructive dynamic grading methods are described in
more detail.

Resonance frequency measurements are based on the fact that for free boundary
conditions, the frequencies depend only on the density, the E-modulus and the
geometry of the specimen. With known density it is then possible to estimate the E-
modulus. The free boundary conditions can be simulated by suspending the specimen
on rubber bands or by using soft foam pieces as support. The specimen is excited with
a hammer and the response can be recorded using an accelerometer or a microphone.
The frequencies can then be calculated by performing a Fast Fourier Transformation
(FFT) on the raw time data, which can be done using a computer software Haines
(1996). From these frequencies, longitudinal and transversal E-moduli can then be
derived. The test setups for both kinds of frequency measurements are illustrated in
Figure 2-7.

<«

Hammer\_| |DL
Accelerometer
Hammerﬁ
L Accelerometer
Figure 2-7 Illustration of the test-setup for longitudinal (top) and transversal (bottom)

frequency measurement
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The E-moduli calculated from dynamic testing are usually higher then the ones
obtained from static testing. The reason for this is the difference in duration of the
tests. Static tests are carried out during several minutes where the timber starts to
creep, giving its viscoelastic material behaviour. This results in lower stiffness values.
Dynamic tests only last seconds and therefore represent a short-time stiffness that is
higher in value (Haines, 1996). The correlation between the different E-moduli is
however quite strong, depending on the number of defects and the type of wood. In
general it can be said that the correlation is higher for clear wood since defects like
knots cause a local reduction of the stiffness and reduce the accuracy of the dynamic
tests.

Ohlsson and Perstorper (1992) carried out both, flexure and longitudinal tests on a
clear piece of Norway spruce to determine its E- and G-modulus using different
numbers of frequencies together with Timoshenko theory. The test setup comprised
several accelerometers to be able to determine the vibrations modes also for higher
frequencies. The excitations were made using an instrumented hammer. The best
results for the E-modulus could be achieved using only the two lowest longitudinal
frequencies and the lowest flatwise bending frequency. The use of additional
information from higher frequencies did not improve the results, but rather lowered
the accuracy. For non-defect-free specimens it seems therefore reasonable to only use
the lowest frequency.

Another possibility to determine the E-modulus from a known density is the
ultrasonic test developed by Sandoz (1989), also known as Sylva-test. The test is
based on the velocity of stress wave propagation in materials. In simple words, an
impulse is induced at one end of a beam and the response is measured at the other
end. The time delay of the impact over the length of the beam can then be used to
compute the wave velocity from which the E-modulus can eventually be derived. The
results presented in Sandoz (1989) show very good correlation between dynamic and
static E-modulus. The general test-setup as well as the application in practice are
illustrated in Figure 2-8.

Timex "
Seart J L Sup
harwmer .
Acosipipmeer \AH_[ ’z' =i
Spocimnen (o m | (o 1
Figure 2-8 Schematic model of the Sylva-test (left) and application on a stress-laminated

timber deck (right), Ross (1994)
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Determination of G-modulus

The G-modulus can be determined in the same way as the E-modulus using torsional
instead of bending vibrations Ohlsson and Perstorper (1992). To record the torsional
modes, the accelerometer needs to be placed at the edge of the cross section at some
distance from the neutral axis (cf. Figure 2-9). The beam then needs to be excited in an
eccentric point to cause torsional vibrations. An additional accelerometer can be
placed in the neutral axis to simplify the detection of the torsional frequencies.
Comparison of the frequency plots for both accelerometers will then show that the
torsional frequencies are only recorded by the eccentric accelerometer. As already
mentioned, Ohlsson and Perstorper (1992) also presents good results for the
measurement of the G-modulus, for which only the first two lowest torsional
frequencies were used.

Figure 2-9 Test setup for transversal and torsional frequency measurement

Apart from the transversal excitation, all these methods can, at least in theory, be also
applied to loaded structures. This means that material properties like density, E- and
G-modulus can theoretically be determined on existing structures.
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3 Determination of axial load and boundary
conditions in slender beams

This chapter analysis research that was carried out in the past concerning the
determination of axial loads and boundary conditions using of transversal frequency
analysis. The different case studies are examined regarding the overall test setup, the
testing equipment, the theoretical models and the accuracy of the results. Based on
this analysis, conclusions are drawn on how to plan the laboratory tests and to process
the data collected within this research.

3.1 Determination of axial loads

One of the first frequency based laboratory tests to determine the axial load in a
prismatic Euler beam under tension was carried out by Livingston (1994). The setup
consisted of a square steel rod subjected to loading and unloading cycles in a vertical
Tinius Olsen tensile machine. A single accelerometer was attached at a distance of 4/5
of the specimen length, which was then excited with an impact hammer equipped with
a soft tip. From the resulting frequency response function (FRF), the first three
frequencies were then extracted for each loading and unloading cycle. Using a non-
linear least square parameter technique described in Béliveau (1987) together with a
continuous model, the axial force and the boundary conditions represented by
rotational springs were then estimated, considering at first only the first two, then the
first three frequencies. Even though the axial loads were in general overestimated, the
results were promising, especially for higher forces. It can be said that the additional
data provided by the third frequency did not improve the results of the experiment.
The estimated boundary conditions varied over the loading and unloading of the rod
and were not discussed in further detail.

A different approach was used by Tullini and Laudiero (2008). Instead of using
several frequencies to determine the axial loads and boundary conditions, only the
mode shape and frequency of the first mode were used. The necessary information
was gathered by three accelerometers situated in each quarter point of the specimen.
The displacements of the accelerometers were used to determine the shape of the first
mode, whereas the frequency was again derived from the FRF. An impact hammer
was used to measure the force function. This method was applied on both, a steel rod
under tension and a slender box beam under compression. For both test setups, the
results for the axial loads showed very good accordance with the real values. The
estimation of the end constraint stiffness however was rather far away from the
analytical values for the limit conditions pinned-pinned and fixed-fixed and was
therefore not convincing.

Maille (2008) carried out in-situ experiments on an old breeding barn to assess its
structural integrity for a full snow load. For this purpose, transversal frequency testing
was carried out on the structural steel members to determine the axial tensile forces
under different load combinations. The results of these measurements were then
compared with different computer models to find out which one comes closest to the
actual behaviour of the structure. Based on this model, the axial forces under a full
snow load were then computed which could then be used for the structural
assessment.
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The tests were performed by striking every steel member in three different ways to
excite as many frequencies as possible. These three methods included a steel hammer,
a rubber mallet and plucking the members by hand. One single accelerometer was
used to detect the frequencies. However, since in many cases not all of the frequencies
could be detected, the author suggests for further research to use an additional
accelerometer situated close to the end of the members. As the members were
assumed to be pinned at both ends, the axial loads could be determined by a single
parameter estimation using the first 6 measured frequencies and the formula for Euler
beams Eqg. (3.34) in Maille (2008). In addition, a dual parameter estimation was
carried out by means of least square linear regression to also verify the E-modulus of
each member. Even though most of them coincided well with the assumed value,
there were still some outliers. For the testing of inhomogeneous materials with a high
variation in material properties like timber, it is therefore reasonable to always verify
the assumed parameters with additional measurements and estimations.

A somewhat different model was used in Italy to assess the safety of tie-rods in
ancient masonry buildings, Amabili (2010). Using finite elements, the rods were
modelled as Timoshenko beams, taking into account shear deformations and effects of
rotary inertia. The equipment for the in-situ tests consisted of a single accelerometer
situated at 2/5 of the span and an impact hammer to determine the first 6 resonance
frequencies. The portion of the beam inside the wall at both sides was assumed to be
elastically founded. The calculated values were found by applying Rayleigh-Ritz
method (cf. Chapter 5). The unknown parameters were estimated by minimizing the
weighted difference between the computed and measured frequencies. This was done
in several ways, from first using only the two first modes from the estimation, then the
first three and so on till finally all six modes. The advantage of this method is that
measurement and modelling errors are minimized through the use of redundant data
given by the several frequencies. It is however questionable if this could be done in
the same way for timber since the accuracy requirements might not be fulfilled for
higher frequencies.

As it can be seen, this literature study only yielded research that has been done on
steel structures. It seems that not much research has been done on the possibility to
determine the axial loads in timber members using resonance frequency analysis.
There are however investigations on the boundary conditions of timber elements in
frames or trusses.

3.2 Determination of boundary conditions

Crovella and Kyanka (2011) made use of vibration techniques to determine the
rotational stiffness of timber joints. The main incentive for his research was the little
amount of research available investigating the member joint properties, even though
the failures usually occur in the joints. Transversal vibration tests were carried out on
timber beams and frames of softwood and hardwood for different boundary
conditions. The beams were unloaded, so that no axial tension needed to be taken into
account. Furthermore the beams were modelled as Euler beams meaning that effects
of shear deformations or rotary inertia were neglected. Shear deformations can
however have a big influence on the vibration of timber beams, especially for the
present span-to-depth ratios, that are 16 and 36. Chui and Smith (1990) suggests that
shear deformations need to be taken into account for values below the region of 32 for
simply supported beams. For stiffer boundary conditions, this limit value is even
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lower. Here, the use of Timoshenko theory could have been further investigated to see
if there is an improvement in results. A single accelerometer was used to record the
beam vibrations that were then used to derive the first resonance frequency. With the
above-mentioned assumptions a simple relation between the frequency and the joint
stiffness could be used for the estimation. When looking at the continuum of joint
stiffness plot in Figure 3-1, one can see that the ratio of the joint rotational stiffness
and the beam flexural stiffness is of importance. If one of them is considerably higher
than the other one, a change of the joint stiffness has a minimal effect on the
frequency.
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Figure 3-1 Plot of continuum joint stiffness against the normalised minimum natural
frequency, McGuire (1995)

According to Leichti (2000), a 50% rigid connection is the maximum that can be
achieved for timber joints. This theory seems to be supported by the results of
Crovella and Kyanka (2011) that were all below that value, even for stiff connectors.
To be able to assess the accuracy of the results, the rotational stiffness at the beam-
ends was derived from deflection tests. The conclusion was that the results were good
for semi-rigid joints, but rather poor for joints of low stiffness. This can possibly be
explained by the small slope of the formula plot in low frequency regions, where
small changes in frequency result in rather high changes for the estimated rotational
stiffness. All these considerations can lead to the conclusion that it could be possible
to determine also the rotational stiffness for beams under axial tension, at least if the
boundary conditions are stiff enough and if Timoshenko theory is used.
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3.3 Conclusion

For the determination of axial loads, most of the investigated members were steel bars
with a high length compared to their sectional dimensions. The span-to-depth ratios
ranged from around a 100 in Livingston (1994) to over 300 in Maille (2008). The
reason for this is that for a given change in axial load, a change in frequency increases
for a higher slenderness of the loaded member. This needs to be considered when
choosing a sample size for the experiments in this research, since changes in axial
load might not even be possible to detect for beams with a low slenderness. The
tension machine used in this research is similar to the vertical one used in Livingston
(1994). Since the friction grips at both ends of the beam are the same, it is reasonable
to assume equal boundary conditions. The static system consequently is a simply
supported beam with identical rotational springs at both ends. This leads to two
unknown parameters, namely the axial force S and the rotational stiffness k. This
means that at least two bending frequencies are necessary to determine the
parameters. It will however be investigated if additional information from higher
frequencies can be used for error minimisation, even if this is doubtful given the
inhomogeneous properties of timber and their influence on the precision of frequency
measurement. In this case, a least linear regression is necessary to solve the over-
determined system. It is necessary to keep the number of unknown parameters to a
minimum to make sure not too much accuracy is lost, even if it would theoretically be
possible to include more parameters, like for example material properties. For the
actual tests, the use of one single accelerometer seems appropriate since the vibration
modes are well known for the given system. The accelerometer needs to be placed
away from modal nodes to make sure the desired frequencies can be recorded. A
distance of 20% of the length is a good position to enable measurements of the first
five frequencies. If necessary, an additional accelerometer placed closer to one end,
can be used to record more frequencies. The beams should be excited on the weak
axis, since the lower moment of inertia causes a higher variation of frequency for a
change in axial force. Since the results seem to be sensible to the stress level, the
specimen should be tested for a wide range of axial loads. As mentioned above, shear
deformations have a big influence on the frequencies of timber beams, even if they are
rather slender. It is therefore necessary to include them according to Timoshenko
theory. This can be done in different ways, either by using an exact continuous model
or using approximations through discrete modelling (finite elements) or Rayleigh-Ritz
theory.
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4 Vibration theory

The following paragraphs present derivations and applications of differential
equations for several kinds of beam vibrations. All derivations were made according
to Timoshenko (1974) and Howson and Williams (1973).

4.1 Derivations
4.1.1 Longitudinal vibrations

B R %
(@) ‘% }y N
i \
p-A-dx-(8%u)/(at)
—— d_x ———
Figure 4-1 Illustration of a beam subjected to longitudinal vibration (a) and the

according forces acting on an infinitesimal element (b)

Figure 4-1 (a) shows a prismatic beam of length [ and the cross-section A subjected to
longitudinal vibration. An according infinitesimal segment of length dx, in a distance
x from the left end of the beam, is illustrated in Figure 4-1 (b). Forming equilibrium of
the acting forces yields

0%u

as
S+p-A-dx-§—S—a-dx—0 (41)

where S is the internal force acting on the beam, p the density and u the longitudinal
displacement of the segment, which makes 0%u/dt? its acceleration.

Applying Hooke’s law on the axial force S, we obtain
S=A-c=E-A-e=E A2 (4.2)

where E is the modulus of elasticity, o the axial stress and € = du/dx the axial strain.
Substitution of Eq. (4.2) into Eq. (4.1) yields

o°u  p 9%u
9x2 E 0tz (4.3)

If we introduce the wave velocity a = /E/p, Eq. (4.3) can be rewritten as

9%2u _ 1 0%u

dx2 a? 0t?

(4.4)
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which is called the one-dimensional wave equation. For the natural vibration modes of
the beam, the solution to Eq. (4.4) can be written as

u=X-(A-cos(w-t)+ B -sin(w"t)) (4.5)
where X is called the normal function that defines the shape of the natural modes.

Substitution of Eq. (4.5) into Eq. (4.4) yields the time-independent differential
equation for longitudinal vibration

d2x w?
etz X=0 (4.6)

which is the differential equation of motion for beams subjected to longitudinal
vibrations according to Euler theory.

The solution to Eq. (4.6) is of the kind:
= (C- cos( ) + D - sm( )) 4.7)

The constants C and D are determined by applying the boundary conditions of the
beam. Examples are presented in Chapter 4.2.

4.1.2 Torsional vibrations

< X
(a) 7
!
(b)
Figure 4-2 Illustration of a beam subjected to torsional vibration (a) and the according

moments acting on an infinitesimal element (b)

Considering the same beam subjected to torsion (Figure 4-2 (a)), the moment
equilibrium can be derived according to Figure 4-2 (b):

My +p-1, dx- atZ—Mt—% dx =0 (4.8)

where M, is the torsional moment acting on the beam, I,, the polar moment and 6 the
angular displacement of the segment, which makes 028,/dt? its acceleration.

Elementary torsion theory gives

a0
Mt:G'Kt'a (49)
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where G is the modulus of shear, and K; is the torsional constant that varies with the
shape of the cross-section. For circular sections K is equal to the polar moment I,,.
For other cross-sections refer to Roymech.co.uk (2010).

Substitution of Eq. (4.9) into Eq. (4.8) yields

%6 _ plp 020

ax2  G'Ky Ot2 (4.10)
Introducing b = J(G -K.)/(p - I,), EQ. (4.10) can be rewritten as
9%6 _ 1 9% (4.11)

ax2 ~ b? at?

which has the same form than the one-dimensional wave equation from before, which
is why the same solution as in Eq. (4.5) can again be used:

0 =X-(A-cos(w-t)+ B-sin(w-t)) (4.12)

Substitution of Eq. (4.12) into Eq. (4.11) yields the time-independent differential
equation for torsional vibration

d?x w?

ezt X=0 (4.13)
which is the differential equation of motion for beams subjected to torsional
vibrations according to Euler theory.

Since Eqg. (4.13) is of the same kind as Eqg. (4.6), its solution has also the same form as
Eq. (4.7):

X = (C - cos (%) + D - sin (%)) (4.14)

which can again be solved for different boundary conditions.

4.1.3 Transversal vibrations — Euler beam theory

The Euler beam theory is based on the assumptions that the cross-sections of a
prismatic beam remain plane during vibration. This means that deformations caused
by shear forces as well as rotary inertia effects are not taken into account when using
this theory. The consequence is that it only gives accurate results if the deformations
from shear are small compared to the ones from bending. This is in general the case
for slender beams.
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Figure 4-3 Illustration of a beam subjected to an axial load and transversal vibration (a)

and the according forces and moments acting on an infinitesimal element
according to Euler beam theory (b)

Figure 4-3 (a) shows a vibrating beam subjected to a tensile force S and transversal
vibration. Forming the equilibrium on an infinitesimal element (Figure 4-3 (b)) for
both, vertical forces and moments, yields

a%v ov _
V—p-A-dx-a?—V—a-dx—O (4.15)
and
oM _
V-dx—a-dx—o (4.16)

where V is the shearing force acting on the beam, and v the transversal displacement
of the segment, which makes 02v/dt? its acceleration.

Solving Eq. (4.16) with respect to V and substituting into Eq. (4.15) yields

IM_ e A-dx 22 (4.17)

dx2

The differential equation for the deflection of a beam subjected to a tensile force and a
transverse load is

_ g 2y _s.
M=El——~Sv (4.18)
Substitution of Eq. (4.18) into Eq. (4.17) leads to
0*v 0%v e &
El'ﬁ—S'ﬁ——p A 9e2 (419)

If a beam vibrates in one of its natural modes, a solution to this equation is given by
v=X-(A-cos(w-t)+ B-sin(w-t)) (4.20)
Substitution of Eq. (4.20) into Eq. (4.19), yields:

A S, S
El o S oz = P A-w*-X (4.21)

which is the differential equation of motion for beams under axial load subjected to
transversal vibrations according to Euler theory.
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4.1.4 Transversal vibrations — Timoshenko beam theory

This paragraph gives a derivation of the transversal vibrations of prismatic beams
under axial load according to Timoshenko beam theory. In general, shear
deformations can be neglected for flexural vibrations if a beam’s cross-sectional
dimensions are small compared to its length. For timber, however, shear deformations
can be of the same order as deformations from bending, even for slender beams. The
reason is that the shear stiffness of the material is small compared to other materials.
For this reason, it is important to include shear effects in the calculation, especially
when studying the vibration modes of higher frequencies where they gain more and
more of importance Timoshenko (1974), Howson and Williams (1973).

p-A-dx-(8%y)/ (1)

M| prdx(@)/(@0)

— M+0M/ox-dx

LN
dy

V+aV/ox-dx

D

Figure 4-4 Illustration of forces and moments acting on an infinitesimal element of a
transversally vibrating beam under axial load according to Timoshenko
beam theory, based on Howson and Williams (1973)

Figure 4-4 shows a deformed infinitesimal element to a transversally vibrating beam in
the x-y plane. To include the shear deformations, it must be considered that the beam
not only performs a translatory movement, but also rotates. The angle of rotation
dM /0x is the deflection slope and can be expressed as the sum of the angle of shear
and a parameter 1 that represents the angle of rotation of the cross-section:

Z=y+p (4.22)

2
The rotation of the beam produces a moment p - I - %- dx, that needs to be taken

into account when forming the dynamic moment equilibrium on an infinitesimal
element of length dx:

de M g — -2 g — 5.9 gy =
V-dx ™ dx—p-1 TS dx —S P dx =20 (4.23)
The dynamic equilibrium for the forces in the vertical direction is
A-dy- 22 W gy =
—V—-p-A-dx 6t2+V+6x dx=20 (4.24)

The differential equation for the deflection of a beam subjected to a tensile force and a
transverse load is

— _p;. 9%
M= —EI-2* (4.25)
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Furthermore, consideration of the shearing yields
V=(kAGC+S) Z—ks-A-G-1p (4.26)

Eliminating V, M, and either ¥ or y by combining Eq. (4.22) - (4.26), leads to the
complete differential equation for transverse vibrations of prismatic beams under axial
load:

El <1+ > )649 S 629+ A %6
ko A-Glaxt " axz T P8 e
S E 040 p%1 046
—pl (1 + ks-A-G + ks-G) “oxzorz T koG Ot* 0 (4.27)
where
0=y ory
If a beam vibrates in one of its natural modes, a solution to this equation is given by
0 =0-(A-cos(w-t)+ B sin(w-t)) (4.28)
Substitution of Eq. (4.28) into Eq. (4.27), leads to
s Y\ o%*e 2%0
El- (1 +kS-A-G)W_S oz P A w0
2
tplw? (1+kAG+kE-) Z;ﬁ"’ ' 0=0 (429
where
O=Yor¥

and which is the differential equation of motion for beams under axial load subjected
to transversal vibrations according to Timoshenko theory.

4.2 Applications

In the following, the equations of motion derived in Chapter 4.1 are used to determine
the mode shapes and resonance frequencies for different boundary conditions.

4.2.1 Longitudinal vibrations
Beam with free ends

For a free-free beam, the axial force, which is proportional to dX/dx, has to be zero
at both ends.

() =0 (@)ey =0 (4.30)

The first condition is only fulfilled if D = 0. To obtain a non-trivial solution, the
second condition requests C # 0, which leads to

sin (“; ) =0 (4.31)
This is only fulfilled if
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2 (4-32)

where i is an integer. Substituting w; = 2w - f; and a = /E/p into Eq. (4.32) results
in

1 E

fi=5 0500 (4.33)
which for i = 1,2,3 ... yields the natural frequencies of the longitudinal vibration
modes of the beam. Together with Eq. (4.7), the first three frequencies with the
corresponding modes can be determined to

=1. |E =C, - X
fi=7 > X1 =0 cos( l ) (4.34)
fo = % % X, = (C, - cos (me) (4.35)
fz = % % X3 = (3 cos (MTx) (4.36)

The shape of the three first modes is illustrated in Figure 4-5.

Figure 4-5 Three first longitudinal vibration modes of a beam with free boundary
conditions

Beam with fixed ends
For a beam with fixed ends, the displacement has to be zero at both ends.
X(x:O) =0 X(le) =0 (437)

The first condition is only fulfilled if C = 0. To obtain a non-trivial solution, the
second condition requests D # 0, which brings us again to

sin (“’71) =0 (4.38)
and the according frequencies

1 E

fiZZ' ;'i (4.39)
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which are the same as for the free-free condition. The modal shapes change however.

1 E . (X
fl = z . ; Xl - Dl = Sin (T) (440)
h=1 X, = D, - sin (2%) (4.41)
3 |E . (3m
fz = 2> X3 = D3 -sin (%) (4.42)

The shape of the three first modes is illustrated in Figure 4-6.

Dy

Figure 4-6 Three first longitudinal vibration modes of a beam with fixed boundary
conditions

4.2.2 Torsional vibrations
Beam with free ends
The bending moment has to disappear at the ends:

(=0 (@)yuy =0 (4.43)

The first condition is only fulfilled if D = 0. To obtain a non-trivial solution, the
second condition requests C # 0, which leads to

sin () = 0 (4.44)
This is only fulfilled if
Sl=i-m (4.45)

where i is an integer. Substituting w; = 2+ f; and b = \/(G -K.)/(p-1,) into Eq.
(4.45) results in
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1 ,G-K .

which for i = 1,2,3 ... yields the natural frequencies of the torsional vibration modes
of the beam. Together with Eq. (4.14), the first three frequencies with the
corresponding modes can be determined to

_ 1. |G - C. - X
fi=2 /p-l,, Xy = C; - cos (5) (4.47)
_ l G'K¢ — . 27X
fz = l /—p_lp X, =C, - cos (_1 ) (4.48)
3 G'K 3m:
fr=2 /p.—,,f Xy = ;- cos (%) (4.49)

The shape of the three first modes is illustrated in Figure 4-7.

Figure 4-7 Three first torsional vibration modes of a beam with free boundary
conditions

Beam with fixed ends
For a heam with fixed ends, the rotation has to be zero at both ends.
X(x:O) =0 X(le) =0 (450)

The first condition is only fulfilled if C = 0. To obtain a non-trivial solution, the
second condition requests D # 0, which leads again to

sin (‘”Tl) =0 (4.51)

and the according frequencies

1 GK, .
fi=21 /p_z,:l (4.52)

which are the same as for the free-free condition. The modal shapes however are
different again.

1, [6k (T
fi=5 p_—lpt Xy =D, -sin (#) (4.53)
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1 ’G'K . 27

f2 = 7 . p_[; Xz = Dz - Sin (nTx) (4'54)
3 GK, . 31

peb [ neoea () 59

The shape of the three first modes is illustrated in Figure 4-8.

Dy

Figure 4-8 Three first torsional vibration modes of a beam with fixed boundary
conditions

As it can be seen, the modes and frequencies have the same shape for longitudinal and
rotational vibrations for the same boundary conditions.

4.2.3 Transversal vibrations — Euler beam theory
Beam with free ends, S=0
The following boundary conditions apply for free-free beams:

2 3
() =0 () =0 (4.56)
2 3
)y =0 @)y =0 (457)
The conditions in Eq. (4.56) are satisfied by the solution
X =C-(cos(k-x)+ cosh(k-x))+ D - (sin(k - x) + sinh(k - x)) (4.58)
while the other two conditions in Eq. (4.57) yield the equations
C-(—cos(k-1)+cosh(k-1)) +D:(—sin(k-1) +sinh(k-1)) =0 (4.59)
C - (sin(k-1)+sinh(k-1))+D-(—cos(k-1)+ cosh(k-1))=0 (4.60)

A solution for this system different from zero only exists if the determinant of Eq.
(4.59) and Eq. (4.60) disappears:

(= cos(k - 1) + cosh(k - 1))? — (sin(k - 1)? — sinh(k - 1)?) =0 (4.61)
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With the equations

cosh(k - 1)? —sinh(k- )2 =1
cos(k-D? +sin(k-1)?=1
Eq. (4.61) can be rewritten as

cos(k-1)-cosh(k-1) =1 (4.62)
for which the solution can be approximated to
ki-l=({+1/2)'n (4.63)

Substitution of k' = (:—;z ,a=+/(E-D/(p-A)and w; = 21 - f;, yields

ﬁ:#-\/%-(z-iﬂ)z (4.64)

The shape of the three first modes is illustrated in Figure 4-9.

P /|
V4 ~__

SN N
2N

Figure 4-9 Three first transversal vibration modes of a beam with free boundary
conditions

Beam with clamped ends, S=0
For clamped ends, the boundary conditions are

X(x=0) = 0 (Z—i‘)(xzo) =0 (4.65)
Xxepy = 0 (Z—i‘)(le) =0 (4.66)
The first two conditions in Eq. (4.65) are satisfied by the solution

X =C-(cos(k-x)—cosh(k-x))+ D - (sin(k - x) — sinh(k - x)) (4.67)
while the other two conditions in Eq. (4.66) yield the equations

C - (cos(k-1)—cosh(k-1))+ D-(sin(k-1l) —sinh(k-1)) =0 (4.68)
C - (sin(k-1)+sinh(k-1))+D-(—cos(k-1)+ cosh(k-1))=0 (4.69)
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A solution for this system different from zero only exists if the determinant of Eq.
(4.68) and Eq. (4.69) disappears:

(= cos(k - 1) + cosh(k - 1))? — (sin(k - 1)? — sinh(k - 1)?) =0 (4.70)

from which the same equation as in Eq. (4.62) can be deduced, which results in the
same frequencies as for the free-free beam:

ﬁ=£'\/§:i'<2'i+1>2 (471)

The shape of the three first modes is illustrated in Figure 4-10.

~_

TN T
N4

Figure 4-10  Three first transversal vibration modes of a beam with fixed boundary
conditions

Beam with simple supports under axial load, S#0

For a simply supported beam, the boundary conditions are

X(x:O) = 0 X(le) = O (472)
which are satisfied for

X; = sin (%) (4.73)

where i is an integer. Substituting Eq. (4.73) into Eq. (4.21) and replacing w; = 27 -
f; yields

— 2., /ﬂ / _St
ﬁ =1 212 p-A 1 + i2-E-]'r2 (474)
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The three first mode shapes are illustrated in Figure 4-11.

\/

N N
N~

Figure 4-11  Three first transversal vibration modes of a beam under axial load with
simply supported boundary conditions

For other boundary conditions there are no simple expressions, which states the need
for numerical solutions. These can for example be found in Shaker (1975).

4.2.4 Transversal vibrations — Timoshenko beam theory

No simple expressions for an exact solution are available to solve Eq. (4.29). This
makes it necessary to use numerical methods to determine the frequencies for beams
with different boundary conditions, like for instance clamped-clamped or elastic
supports, cf. Chapter 5.
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5 Numerical modelling and parameter estimation

This chapter contains an overview of different means to calculate the resonance
frequencies for a beam under axial load subjected to transversal vibrations for
different boundary conditions using Timoshenko theory. The end conditions are
modelled using translational and rotational springs (cf. Figure 5-1), based on the
assumption that the supports show linearly elastic behaviour.

.?T
”, ko k4
S «<— /_\—E —_—sS —>x
ky )

ks

Figure 5-1 Illustration of an axially loaded beam with translational and rotational
spring supports, Livingston (1994)

The according boundary conditions can be written as:

Vi=o = k1" (Y)x=0o (5.1)
Vit = —kg - (V)x= (5.2)
My—o = —kz* (Y )x=0 (5.3)
My = ky - (Y’)le (5.4)

A dual parameter estimation method is furthermore presented that can be used to
estimate axial load S and boundary conditions k, assuming rigid transversal supports
and identical rotational supports (cf. Figure 5-2).

k k
S—(% 8)~*
Figure 5-2 Ilustration of a simply supported beam under axial load with rotational

spring supports, Livingston (1994)

At the end of the chapter, a sensitivity analysis is carried out to determine the
sensitivity of the output parameters S and k with regard to errors in different input
parameters.

5.1 Rayleigh-Ritz method

Since the exact determination of the first frequencies of a vibrating system is not
always possible or even necessary, it can be reasonable to use approximation methods
for this purpose. Such methods are for example Rayleigh’s method or its further
development according to Ritz Harris (2002). While Rayleigh’s method gives only
good results for the fundamental frequency, Ritz’s method can also be used to
estimate some of the higher frequencies. Rayleigh’s method is based on the fact that
the total energy in a vibrating system without damping is constant. When a beam
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reaches its maximal deflection from its neutral state, the global potential energy is
maximal and the Kinetic energy is zero. When it passes through its equilibrium
position, the opposite is true. For conservation of energy, these two energies therefore
have to be equal, which is from where the fundamental frequency can be computed.
Ritz’s method is based on the same principle with the difference that the deflection
functions contain several undetermined parameters, which are adjusted in a way to
minimize the frequency. It can be shown that frequencies found by using inexact
shapes are always higher than the actual frequencies Den Hartog (1985). The accuracy
of the result therefore depends largely on the choice of the deflection function. For the
exact deflection function the computed frequency is the exact solution. Rayleigh-Ritz
method is appropriate to determine the lower frequencies of simple systems.

In the case of the Timoshenko beam presented in Figure 5-1, the maximal potential
and Kkinetic energies can be expressed as follows, according to Harris (2002):

e =2 [ (1 (22) + ko6 (2= 0) Jax 42 [ [s (22) ]
max 2, dx ST \ox T3 o | \ox X

2k (ym0)? + 2 ks (Ue=)? + 5 ko (Bx=0)? +5ka(8,-)%  (5.5)
Tax = w? - T* = w? -%fol[pAiJ(x)z + pl6(x)?] dx (5.6)

where T*is the reference kinetic energy of the system.

For conservation of energy Eg. (5.5) and Eqg. (5.6) have to be equal, which leads to the
following equation, where V,,,,, and T* are functions of v and 6.

Vinax(0,0) — w? -T*(v,0) =0 (5.7)

If we are only interested in the first resonance frequency, we can assume functions for
v(x) and 6(x), substitute into Eq. (5.7) and solve for w. The accuracy of the result
will improve the more boundary conditions are fulfilled and the closer the functions
are to the actual deflection shapes. However good results can already be obtained for
rather poor input functions.

If we are however interested in resonance frequencies of higher order, Ritz’s
improvement needs to be used to find accurate results. In this case the input functions
are expressed as sums of functions multiplied by unknown parameters, as for example
in:

v(x) =¥N, a; - sin(inx/1) (5.8)
0(x) = XN b;-i-cos(imx/l) (5.9)

Substituting Eqg. (5.8) and Eq. (5.9) into Eq. (5.7) and minimizing with regard to each
unknown parameter yields a system of 2N equations with 2N unknowns. Written in
matrix form, this system has a trivial solution only if the determinant equals to zero.
The according equation can then be solved for the resonance frequencies. The
accuracy will improve with a higher number of terms N, so will however also the
computational effort.
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5.2 Discrete model

The discrete model is in fact a finite element approach, which means that the results
are only approximations to the actual behaviour of a system. It is most suitable to
determine the dynamic characteristics of complicated structures that are modelled
using discrete mass, stiffness and damping matrices. These matrices have different
shapes, depending on which element theory is used and how many degrees of freedom
are included. In this paper, all the presented matrices were formed using Timoshenko
beam elements.

5.2.1 Element mass matrix

The element mass matrix can be calculated using cubic polynomial shape functions
and the principle of virtual work Friedman and Kosmatka (1993). The results are two
element matrices, one accounting for effects of translatory, the other one for rotary
inertia. The final element mass matrix is then obtained by forming the sum of these
two matrices:

M€ = M§ + M§ (5.10)
where
13 7 o Ly (11+11 i 2)1 9 34 len (13 3 1(1)2)[
35 10 3 210 120 24 70 10 6 20 40 24
(1+1d>+1d>2)12 (13+3c1>+1c1>2)l (1+1d>+1c1>2)12
e = pAl 105 60 120 420 40 24 140 60 120
1+ )2 13 7 1, (11 11 1 2)
35+1O¢+3(I> 210 120 24¢ !
symmetric ( 1 + 1 o+ c[)z)lz
105 60 120
6 (1 1<I>)l 6 (1 1<I>)l 7
5 10 2 5 10 2
Elorlo)e (-Eile) —(Eilo-lon)e
me = P! 156 3 10 2 30 6 6
R= T+ d)2l 6 (_i+l¢)l
5 10 2
symmetric (i 1 1 2) 2
15+6(I>+3<I> l ]

@ = 12E1/(k,GAI?)

If shear effects and rotary effects can be neglected, these matrices can be reduced to
Euler theory by setting @ = 0 and Mg = 0. The reduced matrices are then the same as
in Livingston (1994).

5.2.2 Element stiffness matrix

In a similar way, the element stiffness matrix can be formulated using again the
principle of work. Two element matrices are obtained, one accounting for the strain of
the beam, cf. Friedman and Kosmatka (1993), the other one for its axial load Paz
(1997). The sum of these matrices yields the element stiffness matrix:

Ke = K& + K¢ (5.11)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 33



where

12 6l —12 6l
ke El 6l  (4+d)2 -6 (2—D)2
s= (1+d)3|—12 —6l 12 -6l

6l 2-o)* -6l (4 + D)2

36 31 -36 3l
S {3t a2z -3 -2

e
Ki 300/|-36 -3l 36 =3l
31 —12 =31 412

® = 12E1/(ksGAI?)

The according Euler element stiffness matrix can again be obtained by setting @ = 0,
Livingston (1994).

5.2.3 Element damping matrix

The damping matrix can be taken into account in different ways, depending on the
damping properties of the system (for example viscous or hysteretic), cf. Harris
(2002) for more information. In this thesis, damping is considered as a negligible
parameter.

5.2.4 Global matrix formulation

According to Livingston (1994), there are three steps in the formulation of the global
matrices:

1. Divide the system in a number of elements

2. ldentify nodes between the elements and number consequently the degrees of
freedom

3. Determine the mass and stiffness matrices for each element and add them into
the global mass and stiffness matrices

This procedure is called the direct method.

As an example, consider the beam from Figure 5-1 with L=3, E=1, I =1 and
S =0, modelled with three elements, each having a length of [ = 1. Neglecting
effects from shear and rotary inertia, the global mass and stiffness matrices are:
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- 13 11 9 13
35 210 70 420
11 1 13 1
210 105 420 140
9 13 26 . 9  -13
70 420 35 70 420
13 1 . 2 13 1
M| 420 140 105 420 140
9 13 26 . 9 13
70 420 35 70 420
13 1 . 2 13 1
420 140 105 420 140
9 13 13 11
70 420 35 210
13 1 11 1
420 140 210 105 A
12+k, 6 —12 6 .
6 4+k, -6 2
~12 6 24 0 -12 6
Kk—| 6 2 0 8 -6 2
~12 -6 24 0 —12 6
6 2 0 8 —6 2
-12 -6 12+k; —6
6 2 —6  4+k,

As it can be seen, the element matrices overlap and the first and last element stiffness
matrices contain the boundary conditions of the beam.

The so obtained global matrices can be used to formulate the equation of motion for
an undamped system under free vibration:

Mv+Kv=0 (5.12)

where v and ¥ are vectors of transversal displacement and acceleration respectively,
and M and K the global mass and stiffness matrices. The solution of the eigenvalue
problem to Eq. (5.12) yields the natural frequencies of the examined system.

There are several FE softwares available that are based on the above or similar
calculations. In this thesis, the Matlab based FE software SFVIBAT Akesson and O.
(1980) is used in Chapter 5.4 for validation of the models.
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5.3 Continuous model

The continuous model is most suitable for simple systems, like for example single
bars or beams. For complex systems, the computational effort is too large, resulting in
an inefficient use of memory. The advantage of the continuous model is however that
it yields an exact solution since the differential Eq. (4.29) is solved directly.
According to Howson and Williams (1973), this equation can be solved with the
following functions:

Y = C; cosh (Al %) + C, sinh (Al %) + C5 cos (Az %) + C, sin (Az %) (5.13)

¥ = (,'sinh (Al %) + C,' cosh (Al %) + C5'sin (Az %) + C,' cos (Az %) (5.14)

where

M= b —-A+ |A% + i(1 —52p?)(1 — b?r?s2)
V2(1 —5?%p?) b?

Ay = L A+ |AZ+ i(1 —s2p2)(1 — b?r2s?)
V2(1 —s2p?) b?

with

b? = pAl?w?/EI

r? =1/Al?

¢ = k,GA

s? = El/¢pl?

p? = PI2/EI

A= (P?/b?) +1r2(1 — s?p?) + s
Furthermore it can be shown that Howson and Williams (1973):

Cl = HC, (5.15)
Cs = HC, (5.16)
Cl = —7C; (5.17)
C, = HC, (5.18)
where
. (1 —s%p?)A% + b2s?

A1
. (1 —s?p?)A3 — b2s?

1,1

Substituting Eq. (4.25) and Eq. (4.26) together with Eq. (5.13)-(5.18) into the
boundary conditions (5.1)-(5.4) yields a system of four equations with four unknowns
that can be written in the following matrix form:
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CM-C=0 (5.19)
where

< —k; > <—¢H+¢T+S5T>

A A M A
< ksc, — ¢pHcy + ¢clT+SclT > < ksc; —¢Hc, + ¢CZT+SCZT >

CM = 1
< —EIHT1 > < Hk, >
Al Al
< —EIHCZT—H](461 > < —EIHclT—Hk4cz >
A A
< —k; > <—¢Z+¢T+ST>
A2 A2 A2 A2
< kscy + PpZcs — ¢C3T—SC3T > < kscz—PZcy, + ¢C4T+SC4T >
A2
<EIZT> < Zky >
A A2
<EIZC4T+Zk4c3 > <EIZC3T—Zk4c4>
Gy
C
c=|/2?
Cs
Ca
and

c; = sinh(4,)
¢, = cosh(1,)
c3 = sin(4,)
¢, = cos(4,)

A non-trivial solution to this system can only be found if the determinant of CM
vanishes, leading to

ICM| = 0 (5.20)

This equation can be solved for the angular eigenfrequencies w,,, from which the
corresponding frequencies f,, can be computed. This can be done for different
boundary conditions k,-k,. In this thesis, the k; are set to zero to model free support
conditions, or they are set to values of 10> to simulate rigid supports.

5.4 Model comparison

Table 5-1 and Table 5-2 shows the frequencies for different boundary conditions with
and without axial load, calculated using the discrete and continuous model, cf.
Appendix A, as well as the above-mentioned SFVIBAT software. Furthermore the
frequencies according to Euler theory are presented to show the difference in the
results compared to the Timoshenko theory. The chosen parameters are: E = 13000
MPa, G = 760 MPa, p = 400 kg/m®, L = 1.5m, h = 75mm and b = 35mm.
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Table 5-1 Comparison of transversal frequencies of a beam with different boundary
conditions calculated with different numerical models

5=0 Timoshenko Euler
. Discrete Model SFVIBAT Discrete Model

Beam Freq [Hz] Continucus Model (n=50) (n=50) (n=50)
free-free fl 90.54 90.64 80.19 91.16

f2 245.49 246.06 243.51 251.28
pinned-pinned fl 40.02 40.03 39.99 40.21

f2 157.84 157.97 157.37 160.85
rotational springs fl 59.49 59.50 59.44 60.11
(k=10000 Nm) f2 181.34 181.49 180.81 186.03
fixed-fixed fl 89.10 89.17 89.02 91.16

f2 239.19 239.49 238.45 251.28
Table 5-2 Comparison of transversal frequencies of an axially loaded beam with

different boundary conditions calculated with different numerical models
5=20000 Timoshenko Euler
. Discrete Model SFVIBAT Discrete Model

Beam Freq [Hz] Continuous Model (n=50) (n=50) (n=50)
free-free fl 135.85 136.00 135.34 136.56

f2 288.11 288.78 285.83 293.71
pinned-pinned fl 60.97 60.98 60.92 61.10

f2 182.66 182.82 182.11 185.30
rotational springs fl 75.45 75.47 75.39 75.96
(k=10000 Nm) f2 203.46 203.65 202.87 207.70
fixed-fixed fl 102.52 102.54 102.43 104.54

f2 258.44 258.65 257.65 270.16

The discrete models calculate with n = 50 finite elements while the continuous models
yield exact solutions for the respective model assumptions. Rigid supports are
modelled setting k = 10 Nm. The Euler model assumes a much stiffer behaviour of
the system since shear deformations are neglected, leading to higher frequencies.
They derive already considerably for the second bending mode. The comparison of
the Timoshenko models shows good accordance for the first mode, while the
differences are already higher for the second mode. The reason is the limited number
of finite elements and leading to the fact that these models always yield approximate
solutions. It can furthermore be observed that the continuous solution always lies in
between the two discrete solutions, indicating a good validation of this model.

5.5 Parameter estimation

For the actual parameter estimation, the continuous model based on Timoshenko
theory is used in the following. In most practical cases, as well as in the tests in
Chapter 8, it is reasonable to assume that the translational supports can be modelled as
rigid, while the rotational supports are modelled as springs. In some cases, it is even
acceptable to assume identical support conditions at both sides. These considerations
yield to the two systems illustrated in Figure 5-3 (a).

The first system in has two unknown parameters for which the solution requires
therefore at least two resonance frequencies. In theory, also more frequencies could be
used for error minimisation. The measurement of higher vibration modes might
however be more likely to contain errors, which makes the error minimisation
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unsuitable for some materials. This is for example the case for inhomogeneous timber,
especially in presence of knots. Homogeneous materials like steel do not show these
problems and allow also the accurate measurement of higher frequencies. If only two
resonance frequencies are used, a plot similar to the one in Figure 5-3 (c) is the result.
For a known rotational stiffness k, there exists only one axial load S for which the
beam vibrates in a given frequency. This way, a so-called contour curve can be
depicted for each frequency by varying one of the parameters k and S.

The second system in Figure 5-3 (b) has three unknown parameters for which the
solution requires therefore at least three resonance frequencies. Instead of curves, each
frequency is determined by a surface (cf. Figure 5-3 (d)). The intersections of these
surfaces are the solutions to the system. Here, there are two solutions since k; and k,
are exchangeable for symmetry reasons.

k k /\’1 }82
R AR s At
(a) (b)

? " F\otaliona]st‘i:?nessk[kNm]20 “ ?
(© (d)
Figure 5-3 Simply supported beam under axial load with spring supports of identical

stiffness (a), simply supported beam under axial load with spring supports of
different stiffness (b), illustration of dual parameter estimation (c) and
illustration of triple parameter estimation (d).

5.6 Sensitivity analysis for continuous model with k; = k;

In the following, the sensitivities of the parameters S and k are investigated for
different load levels and under the assumption of equal boundary conditions with
regard to the following input parameters:

e Clear length L

e Density p

e E-modulus E

e G-modulus G

e Measured frequencies f;

The errors of S and k are standardised to 25%, which allows a direct comparison of
the values. A steep curve means a high sensitivity to the according parameter.
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5.6.1

Sensitivity of S

e
P
.
/
[
(== I}

,
.
,
A
D un

P
Fiv
%
n-G

i
LY

E

i
N

o o
7

-1

Erroron S [%]

i
Y
(=]
s

A
v
i

[

=2

n o

Figure 5-4

=]

Error on L [%]

load levels

-10

Erroron S [%]

Figure 5-5

e
=LJ

Error on p [%]

levels

5 10

Error on S [%)]

Figure 5-6

Error on E [%]

load levels

=
;

It
.‘"l =
N

——5=5000N
————— 5=15000N

== § = 30000 N

Sensitivity of the axial load S with regard to the clear length L for different

——S=5000N
***** 5=15000N

e § = 30000 N

Sensitivity of the axial load S with regard to the density p for different load

——5=5000N

----- 5=15000N

""""""" 5=30000N

Sensitivity of the axial load S with regard to the E-modulus E for different

40

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60



[%]

——S5S=5000N

P
S50 o $=15000 N
] =5 =30000 N
Error on G [%]
Figure 5-7 Sensitivity of the axial load S with regard to the shear modulus G for different
load levels
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Figure 5-8 Sensitivity of the axial load S with regard to the first measured frequency for
different load levels
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Figure 5-9 Sensitivity of the axial load S with regard to the second measured frequency

for different load levels
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5.6.2 Sensitivity of k

Error on k [%]

Figure 5-10

Error on k [%]
o
o

Figure 5-11

Error on k [%]

Figure 5-12

——5=5000N

1 1 5 T $=15000N

------------- S =30000 N

Error on L [%]

Sensitivity of the rotational stiffness k with regard to the clear length L for
different load levels

——5=5000N

5 w0 $=15000N

""""""" 5=30000 N

25
Error on p [%]

Sensitivity of the rotational stiffness k with regard to the density p for
different load levels

——5=5000N

5 10 7 5=15000 N

Error on E [%]

Sensitivity of the rotational stiffness k with regard to the E-modulus E for
different load levels

42

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60



[%]

——S5=5000N

***** S=15000N

Erroron k
N
(]

""""""" 5=30000N

Error on G [%)]

Figure 5-13  Sensitivity of the rotational stiffness k with regard to the shear modulus G for
different load levels
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Figure 5-14  Sensitivity of the rotational stiffness k with regard to the first measured
frequency for different load levels
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Figure 5-15  Sensitivity of the rotational stiffness k with regard to the second measured
frequency for different load levels
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5.6.3 Discussion

In Figure 5-4 - Figure 5-9, it can be seen that the sensitivity of S with regard to other
parameters decreases for high loads. The highest sensitivity can be observed for the
measured frequencies, which shows the importance of a high measurement quality.
The second highest sensitivity is associated with L. It is therefore important to choose
a reasonable restraint length at the supports, which is not always easy, especially for
complicated connections or when the load is transferred over more than one
connection part. The next highest sensitivity is related to p and E, followed by the
shear modulus G. While the density can usually be determined with good accuracy,
the estimation of E and G is not so straightforward.

The sensitivity of k is less influenced by the size of the axial load. Figure 5-14 and
Figure 5-15 show however that its sensitivity with regard to the measured frequencies
increases for high axial loads, contrary to the sensitivity of S. Figure 5-10 - Figure 5-15
illustrate, that just as for the axial load, the sensitivity of k is highest for the
frequencies, followed by the length L and finally the material properties p, E and G. In
general, one can say that the sensitivity of k is higher than the one of S.
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6 Modal analysis

Modal analysis is used to describe a structure’s dynamic properties, like resonance
frequencies, mode shapes and damping. Those are specific for every system and do
not depend on the excitation, but only on the nature of the system and its components.

This chapter gives a short summary of different aspects from theoretical and
experimental modal analysis with a main focus on data acquisition and processing.

6.1 Theoretical modal analysis (TMA)

In theoretical modal analysis, the modal parameters are determined by solving the
differential equation of motion.

Every vibrating system can be described by using the equation of motion
M-v+C-v+K-v=f(t) (6.1)

where M is the mass matrix, € the damping matrix and K the stiffness matrix. f(t) is
a vector containing a time-dependant excitation force. The vector u describes the
displacement of the system over time, v and ¥ the velocity and acceleration,
respectively.

If we only consider the free vibration of Eq. (6.1) and neglect the damping

M-9P+K-v=0 (6.2)
and chose a solution of the form
v=¢- -cos(w-t— @) (6.3)

where ¢ is a vector, w the angular frequency and ¢ the phase angle, we obtain the
following Eigenvalue problem:

(—w?> M+K)-¢=0 (6.4)
For a non-trivial solution, the determinant of Eq. (6.4) must vanish
|—w?-M+K|=0 (6.5)

By solving Eqg. (6.5) for w, we obtain the angular resonance frequencies w; of the
system. Substitution of each eigenfrequency into Eq. (6.4) then vyields the
eigenvectors ¢; of the system. Each eigenvector ¢; represents a deflection over time
at a frequency w; and defines a specific modal shape of the free vibration. The
deflection pattern of a structure subjected to any excitation force can in theory be
expressed as the linear summation of its modal shapes.

While the solution of the eigenvalue problem is simple for harmonic force functions,
it is not adaptable for pulses or other non-harmonic excitations. In this case, the
resonance frequencies can be determined using a Fourier transformation.
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6.2 Experimental modal analysis (EMA)

In practice, it is often not possible to use the analytical model because of different
uncertainties. In this case the modal parameters can be determined experimentally.
According to Dossing (1988) there are two different approaches in experimental
modal analysis:

e Signal analysis (operational data)
e System analysis (modal data)

In signal analysis, only the response signal of the system is detected, while in system
analysis also the force function is measured. As an example, consider the bridge in
Figure 6-1. During service, it is subjected to wind forces that can cause undesirable
vibrations. These vibrations can be measured and the obtained operational data can be
used to study the bridges’ behaviour and to see what resonance frequencies are
excited during operation and if there is need for adjustments. If one is however
interested for example in specific resonance frequencies of the bridge, it is necessary
to subject it to a force able to excite these frequencies. In this case the force can also
be measured and considered in the modal analysis of the structure. The main
difference is that the force has to be taken as given in the first case, while it is actively
controlled in the second case.

Response

Output
Input

Figure 6-1 Illustration of a bridge with measurement of operational data (left) and
modal data (right)

For a given force function it is possible to detect which resonance frequencies are
actually excited by having a look at the frequency response function (FRF). The FRF
is defined as the ratio of response function (Output) to the force function (Input):

FRF = 2424 (6.6)

Input

The force and response functions can be measured using accelerometers and force
transducers. The collected data are time signals. Since however the frequencies are of
interest, it is necessary to convert the signals from the time domain into the frequency
domain (cf. Figure 6-2), which is done by performing a Fast Fourier Transformation
(FFT).
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Figure 6-2 Illustration of the Fast Fourier Transformation (FFT) from the time into the
frequency domain

6.3 Data acquisition

According to Avitabile (2001), there are two ways in system analysis to find the
frequencies and mode shapes of a vibrating system (cf. Figure 6-3):

e Measure in one point and excite in several points
e Excite in one point and measure in several points

If only the frequencies are of interest and if the mode shapes can be predicted (or are
actually known) since it is a simple structure like a beam with known boundary
conditions, it is also possible to determine the according frequencies by only making
one measurement and one excitation in the same point (drive point measurement).
When doing this it is however very important that the point being measured is not a
node for any of the desired mode shapes, since in this case the mode and its
corresponding frequency are not being excited.

i

g

]

TR

A8 er
T

Figure 6-3 Two different approaches for the determination of resonance frequencies:
measuring in one point and exciting in several points (left) or measuring in
several points and exciting in one point (right), Avitabile (2001)

Accelerometers can be used for the measurement of the response signal. According to
Dossing (1988), the main advantages are their low weight, wide frequency range and
the simple mounting using either magnets, steel studs or bee-wax. The system can be
excited either using a shaker or a hammer equipped with a piezoelectric transducer.
While shakers are suitable to excite a system over longer time periods, hammers are
used for short impulses. The hammers come in different sizes and tips, depending on
what frequency range is of interest. The essential parameters are the weight of the
hammer and the stiffness of the tips. The heavier a hammer is, the lower are the
excited frequencies. The stiffer the tip, the higher are the excited frequencies. Soft tips
(rubber, plastic) can therefore excite lower frequencies while hard tips (steel) are
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better to excite higher frequencies. It is important to choose an adequate hammer and
tips so that the energy of the hammer blow excites the desired frequency range and a
good response is obtained. Figure 6-4 shows impulse shapes for different hammer tips.

Force, N
A
| Hard _n Medium
2k +
1k 4+ Soft
O—JK
-+ Time
| B e m— —t—t —»
0 2ms 4ms

Figure 6-4 Impulse shape for different hammer tips, Kjaer (2012)

When using accelerometers and additional equipment to acquire the modal data of a
structure, it is also important that their weight is small compared to the one of the
structure and its components. If this is not the case, they have to be considered as
additional masses that change the mass properties of the system. The same applies for
suspensions that can have a stiffening effect to the structure, which means a change in
the stiffness properties. Furthermore it has to be investigated if the damping has to be
taken into account to determine the frequencies or if it can be neglected.

The results acquired by accelerometers and force transducers represent timeline data
that need to be further processed to obtain the eigenfrequencies. The advantage of
measuring the input function is that errors originating for example from noise can be
reduced.

6.4 Data processing

The time data acquired during measurements can be transformed to the frequency
domain by performing a FFT.

Steps of the FFT according to Figure 6-5:

1. Analog signals must be filtered to remove high frequency signals that might be
detected during testing without having any connection to the actual test
(background noise)

2. The analog signals are approximated by conversion into digital signals

Weighting functions called Windows are used to reduce leakage (cf. below)

4. The actual FFT is performed to create linear spectra of the input and output data,

transfer from time domain to frequency domain

The input, output and cross power spectra are computed.

6. These functions are then averaged and used to compute the FRF and the
coherence function. While the FRF can be used to read out the resonance
frequencies, the coherence function can be used for quality assessment of the
data.

w

o
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Figure 6-5 Illustration of the different steps of an FFT Analyser, Avitabile (2001)

Figure 6-6 shows an example of a FRF and the according coherence function. Peaks in
the coherence function at a resonance frequency indicate a poor quality of the
measurement. In this case, the quality of the results decreases for frequencies higher
than approximately 4000 Hz. This is the maximum range of the hammer tip in use.
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Figure 6-6 Example of a frequency response function and the according coherence
function
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Leakage is a signal processing error causing the distortion of data (cf. Figure 6-7). It is
one of the most serious errors when processing data and has to be treated with special
care. It occurs during the FFT transformation, which in theory requires a
representation of data for all times or at least a periodic repetition. In practice, this is
of course not possible since every signal has a finite observation period. There are
however ways to reduce the leakage effect already during the data acquisition phase.
On the one hand, the observation period should be chosen long enough so that the
signal is not truncated before it has decayed to zero. One the other hand, it should not
be longer than necessary since during the additional time only background noise can
be recorded. In both cases, the result can be a blurry power spectrum with too low and
unclear peaks.

x(1) 7 li|-'||
FEN
1
- — T -
True Data Freq ()
. 7 41kl
N
]
T -
Freq («)
Truncated Daln Spectrum with Leakage
Figure 6-7 Illustration of the effect of truncation during data acquisition on result for the

frequency response function, Dossing (1988)

After data acquisition, it is possible to further increase the resolution by applying the
already mentioned window functions. While there are different window functions,
they all have more or less the same effect on the signal, by improving its periodicity
and forcing it to zero. A popular example for a window is the Hanning function,
which is good to improve the periodicity of the sample. It is bell-shaped and heavily
reduces the beginning and end of the sample function to zero. Another example is the
transient window that can for example be used to remove noise following an impact
pulse. Exponential windows can in addition be used to process truncated data. It
should be noted however that windows cause some data distortion themselves and
should be avoided, if possible. They have a negative influence on the accuracy of
peak amplitudes and the damping ratios. If only the frequencies are of interest, these
effects can however be considered of secondary importance and are therefore
acceptable.
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7 Determination of material properties

7.1 Specimen dimensions and properties

The material for the specimen comes from previous experiments on glulam beams
from Norway spruce (Picea abies). These beams were first sorted to make sure only
intact timber was used to produce the new specimens. Further requirements were to
minimize the amount of knots, finger joints and other natural defects like resin
pockets. A total of 32 beams, each consisting of two lamellas with the dimensions
42x45 mm?, were then cut out to a length of 1.5 m from the original glulam beams.
The thereby obtained pieces were then evenly planed to the following final
measurements of the samples: LxHxB = 1500x75x35 mm?®. Figure 7-1 shows one of
the final specimens.

The choice of the sample size is based on the following conditions:

¢ The tensile machine limited the cross-sectional dimensions to a size smaller than
77x45 mm?, which is why a height of 75 mm was chosen.

¢ The height-to-width ratio had to be high enough to facilitate the measurement of
torsional vibrations and to be able to distinguish the frequencies from the different
vibration modes. The torsional frequencies are important to determine the shear
modulus that is needed to take into account the effect of shear deformation on the
bending modes. Also the proportions had to be realistic with regard to real-life
constructions.

¢ The length-to-width ratio was chosen high enough to make sure that frequency
changes for different stress levels are in a detectable range.

All these considerations yielded a bar-like timber beam of realistic proportions, such
as they can be found for instance in roof structures, bridges or supports.

Figure 7-1 Ilustration of timber specimen with body dimensions (left) and the according

cross section composed of two lamellas (right)

The original glulam beams were graded CE L40c according to European standards.
This class is constituted of a combination of lamellas of different strength, the weaker
ones situated on the inside, the stronger forming the outside layers (at least two strong
lamellas per side). The specimens were cut out from the outer lamellas and can thus
be considered as part of the higher quality timber. The mean values for the material
properties of L40c are listed in Table 7-1.
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Table 7-1 Material properties of the timber specimens according to SIA (2003)

Material properties of L40c

Mean modulus of elasticity parallel to the grain Eo.mean 13000 MPa
Mean modulus of shear Grmean 760 MPa
Tensile strength parallel to the grain fiok 17.6 MPa
Density Pk 400 kg/m®

The specimens were packed in plastic after being cut. Over the whole testing period,
they were kept in a room with an average temperature of 20°C and a relative humidity
of ranging from 30 to 40%. The moisture content of each specimen was measured in
three places. The registered average moisture contents are shown in Appendix B. The
mean moisture content of all the specimens was determined to 12.5%.

The actual densities for each sample were determined by weighing them. The results
are also shown in Appendix B. The mean value of 488.6 kg/m® is well above the one
given in Table 7-1. The reason could be that only higher quality lamellas were cut out
of the initial beams, which in general have higher densities.

The tests carried out on the inhomogeneous timber specimen were also conducted on
an aluminium bar, representing a homogeneous reference. The comparison of the final
results should eventually allow identifying the material-related deviations. The
aluminium bar had the dimensions 1495x50x10 mm®. The general material properties
of industrial aluminium are presented in Table 7-2 and the bar itself is illustrated in
Figure 7-2.

Figure 7-2 Ilustration of reference aluminium specimen with body dimension
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Table 7-2 Material properties of the reference aluminium specimen according to
Wikipedia.org (2012)

Material properties of Aluminium

Modulus of elasticity E 70000 MPa
Modulus of shear G 26000 MPa
Tensile strength fu 45 MPa
Density Pk 2700 kg/m?

7.2 Test equipment and data processing

For all the dynamic tests carried out throughout this study, the same equipment was
used. The beams were tapped with an instrumented hammer shown in Figure 7-3 (a). It
was equipped with a piezoelectric force transducer PCB 208B05 that allowed
measuring the impulse function. These hammers come with different exchangeable
tips, depending on the desired frequency range. The response signal from the beams
was recorded using uniaxial accelerometers PCB 303A02, cf. Figure 7-3 (b). Their
weight of 2.8 g was small enough to exclude effects on the beam vibration. The
accelerometers were attached to the beams with bee-wax. Hammer and
accelerometers were connected over PCB 478A01 power suppliers to an HP 8-
channel system linked to the computer.

(@) (b)

Figure 7-3 Impact hammer equipped with piezoelectric force transducer and steel tip (a)
and uniaxial accelerometer (b)

The software DAC Express from VTI Instruments was used for the acquisition of the
raw signal data. The actual data processing was carried out using the software Matlab
from the company MathWorks to transform the signal data from the time into the
frequency domain by means of a Fast Fourier Transformation (FFT). The result of this
transformation is the Frequency Response Function (FRF) from which the resonance
frequencies of a beam can be extracted.
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7.3 Determination of static E- and G-modulus

Four-point bending tests according to CEN/TC (2007) were carried out to determine
the static E-modulus of each specimen. The beams were tested with two sets of
weights for which the deflection at mid-point was measured. Furthermore, the
deflections over the supports were measured and subtracted from the mid-deflection
to take into account local compressions. The E-moduli were then calculated using
(7.2):

_ Bx2-K1) [(3a)  (a)3
E= bh3(w2-w1) (4L) (L) ] (7.1)
where h and b are the cross-sectional dimensions, L is the span, a is the distance

between the loading and the nearest support, K are the total loads and w the according
deflections (cf. Figure 7-4). The test setup is shown in Figure 7-5.

6h | 6h .

| K.-‘E_L ._EHZ
5 a1 g

‘ 18h |

Figure 7-4 Illustration of test setup for the four-point bending test according to CEN/TC
(2007)

Figure 7-5 Test setup for the determination of the static E-modulus according to
CEN/TC (2007)

The test results are shown in Table 7-3.
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Table 7-3

Measured deflections and computed E-moduli from the four-point bending

test
Deflection 1 Deflection 2
Beam N® Suppl Mid Supp 2 Tot Supp 1 Mid Supp 2 Tot Load 1 Load 2 E
[mm] [rmm] [mm] [mim] [mm] [rm] [mm] [mm] [N] [N] [MPa]
1 0.366 1.295 0.321 0.952 0.408 1.852 0.444 1.426 412.0 606.3 14526
2 0.235 1.372 0.340 1.085 0.272 1.963 0.450 1.602 412.0 606.3 13319
3 0.141 1.4567 0.335 1.229 0175 2.106 0.429 1.804 412.0 606.3 11987
4 0.138 1.393 0.321 1.164 0172 2.011 0.411 1.720 412.0 606.3 12387
5 0.181 1.359 0.369 1.084 0.216 1.937 0.482 1.578 412.0 606.3 13853
[ 0.290 1.364 0.360 1.033 0.359 1.949 0.466 1.537 412.0 606.3 13855
7 0.217 1.495 0.413 1.180 0.259 2.141 0.520 1.752 412.0 606.3 12061
8 0.217 1.448 0.370 1.155 0.278 2.069 0.473 1.694 412.0 6063 12788
] 0.276 1.401 0.345 1.091 0.320 1.991 0.496 1.583 412.0 6063 13885
10 0.163 1.323 0.363 1.060 0.199 1.893 0.467 1.560 412.0 606.3 13785
11 0.230 1.261 0.310 0.991 0.272 1.812 0.399 1.477 412.0 6063 14197
12 0.192 1.342 0.332 1.080 0.234 1.911 0.432 1.578 412.0 6063 13841
13 0.242 1.398 0.374 1.090 0.285 1.999 0.495 1.609 412.0 6063 13281
14 0.226 1.400 0.362 1.106 0.268 2.006 0.482 1.631 412.0 608.3 13129
15 0.206 1.385 0.348 1.108 0.247 1.976 0.458 1.624 412.0 608.3 13371
18 0.248 1.381 0.401 1.057 0.292 1.966 0.546 1.547 412.0 606.3 14052
17 0.398 1.687 0.163 1.407 0.437 2.413 0.356 2,017 412.0 608.3 11300
18 0.145 1375 0.324 1139 0.188 1979 0.418 1,676 412.0 608.3 12824
19 0.185 1814 0.386 1529 0.255 2.569 0.488 2,198 412.0 606.3 10303
20 0.303 1.563 0.397 1.213 0.344 2.245 0.547 1.800 412.0 B606.3 11752
21 0.1%3 1.477 0.326 1.218 0.270 2.115 0.425 1.768 412.0 606.3 12532
22 0.229 1.408 0.357 1.115 0.278 2.019 0.470 1.645 412.0 B606.3 13005
23 0.175 1.433 0.364 1.164 0.214 2.068 0.473 1.725 412.0 B606.3 12286
24 0.128 1.400 0.359 1.157 0171 2.017 0.462 1.701 412.0 B606.3 12670
25 0.168 1321 0.341 1.067 0.210 1.902 0.443 1.576 412.0 606.3 13542
6 0.226 1.481 0.361 1.188 0.288 2.121 0.462 1.746 412.0 606.3 12341
7 0.167 1.689 0.315 1.448 0.218 2431 0.416 2.114 412.0 606.3 10345
8 0.217 1.423 0.346 1.142 0.260 2.038 0.453 1.682 412.0 606.3 12764
9 0.179 1.370 0.289 1.136 0.21% 1.985 0.407 1.672 412.0 606.3 12860
30 0.191 1.696 0.428 1.387 0.220 2416 0.551 2.031 412.0 B606.3 10703
31 0.217 1.528 0.363 1.238 0.268 2.193 0.479 1.820 412.0 B606.3 11853
32 0.145 1.548 0.346 1.303 0.178 2.220 0.441 1.911 412.0 B06.3 11337
Mean value 12717
Std. dewv. 1117

The mean value of 12717 MPa shows good accordance with the mean E-modulus
given in Table 7-1. The slightly lower values probably result from the fact that only
two lamellas are left from the original beam, which increases the negative influence of
local defects on material properties. Figure 7-6 shows a good correlation between E-
moduli and densities of the samples. In general, it can be said that material properties
improve with an increasing density. In this case, outliers from this rule result from
extreme concentrations of knots and other defects.
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Figure 7-6 Correlation between the density and the static E-modulus for the timber

specimens

7.4 Determination of longitudinal E-modulus

The longitudinal E-moduli were determined trough dynamic tests on the beams under
free boundary conditions. For this purpose, the beams were supported on foam pieces
as shown in Figure 7-7. The beams were then tapped five times in one end with the
instrumented hammer and the vibration was measured over a time period of 7 seconds
using the uniaxial accelerometer situated on the other end. For this test, a steel tip was
chosen that is suitable to excite higher frequencies.

Figure 7-7 Test setup for the determination of the dynamic longitudinal E-modulus

The results for each experiment were the timelines for the accelerometer and the force
transducer, upon which a Fast Fourier Transformation (FFT) was then carried out via
the software Matlab. The results of this transformation were the input and output
power spectra, the Coherence Function and finally the Frequency Response Function
(FRF), cf. Figure 7-8.
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Figure 7-8 Frequency plots and coherence function resulting from the data processing of

the different signals recorded during the longitudinal tests
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It can be seen that the input power spectrum shows a break at around 4.2 kHz. The
coherence function shows also high fluctuations from this point on. This is the
maximum frequency range for the chosen hammer-tip combination. The first two
longitudinal frequencies could be read out from the FRF and subsequently be used to
calculate the longitudinal E-modulus with help of the following formula derived from
(4.33):

E, = Lp (7.2)

=
The E-moduli were calculated using either the first or the second frequencies.
Furthermore the mean value was computed (cf. Table 7-4).

Table 7-4 Measured frequencies and computed E-moduli from the longitudinal tests
Beam N° iy fa Ey E; E.

[-] [Hz] [Hz] [MPa] [MPa] [MPa]
1 1851 3746 16983 16661 16822
2 1793 3528 14805 14330 14568
3 1767 3547 13646 13746 13696
4 1788 3579 14286 14310 14298
5 1788 3555 14818 14644 14731
6 1832 3641 15012 14825 14519
7 1786 3574 13883 13899 13891
8 1779 3539 13288 13146 13217
El 1836 3613 15518 15023 15271
10 1858 3668 15703 15299 15501
11 1793 3573 15416 15304 15360
12 1814 3603 15465 15253 15359
13 1824 3615 15322 15046 15184
14 1846 3707 14255 14371 14313
15 1871 3725 15778 15635 15707
16 1882 3729 15716 15425 15571
17 1749 3436 12320 11887 12104
18 1842 3666 15085 14938 15012
15 1750 3544 12734 13056 12895
20 1776 3536 13078 12961 13020
21 1756 3531 13560 13707 13634
22 1781 3546 13820 13696 13758
23 1789 3603 13262 13448 13355
24 1831 3676 15310 15427 15369
25 1833 3632 15159 14879 15019
26 1784 3534 13319 13067 13193
27 1698 3388 12429 12371 12400
28 1742 3511 14123 14342 14233
29 1902 3778 14570 14371 14471
30 1688 3386 11789 11859 11824
31 1826 3600 13870 13478 13674
32 1786 3578 13533 13579 13556
Mean value 14308 14187 14247
Std. dev. 1203 1128 1161
Aluminium 1710 3421 69106 69146 69126

The best correlation with the static E-moduli from the bending tests could be obtained
using only the first frequency. The mean value was found to be 14308 MPa, which
means that the longitudinal E-moduli are on average 12.5% higher than the static
ones. This is in accordance with previous studies Ilic (2001).

A summary of the correlation as well as the FRF plots can be found in Appendix B.
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7.5 Determination of transversal E- and G-modulus

Transversal vibration tests were carried out to determine the E- and G-moduli of the
beams. The determination of the G-moduli was necessary to include effects of shear
deformations that become more important for higher modes. Just as for the
longitudinal tests, the beams were tested under free boundary conditions. The setup is
however different from the one in Chapter 7.4. The free-free conditions were achieved
by hanging the beams vertically on soft rubber strings. These elastic strings are
necessary to reduce the overall stiffness of the system to get as close as possible to a
state of the free boundary conditions. The beams were tested in a vertical position to
minimize the influence of the supports on the transversal waves. The support is
illustrated in Figure 7-9 (a).

€) (b)

Figure 7-9 Support conditions for the determination of the transversal E-modulus (a)
and the according test setup (b)

The equipment used for the tests consisted of two uniaxial accelerometers attached to
the beam with bee-wax. For a free-free beam, the ends are antinodes that allow the
measurement of frequencies for different vibration modes. This is why the
accelerometers were placed on the end of the beam in two different spots according to
Figure 7-9 (b). The specimens were excited five times with the instrumented hammer,
equipped this time with a plastic tip, since the expected frequencies were in a lower
range than for the longitudinal tests. The specimens had to be tapped on the edge to
also excite torsional frequencies. The response signals were recorded for 15s and then
transmitted to the computer where they could finally be processed to calculate the
FRFs (cf. Figure 7-10).
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Figure 7-10  Frequency plots and coherence function resulting from the data processing of
the different signals recorded during the transversal tests
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Since Al was placed in the neutral axis of the beam, it could only detect vibrations
corresponding to bending modes. A2 however was placed on the edge and would
therefore also record torsional vibrations. By comparing the FRFs of Al and A2 it
was then possible to distinguish bending and torsional frequencies (cf. Figure 7-11).
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Figure 7-11 ~ Comparison between the frequency response funciton from the accelerometer
situated in the neutral axis of the beam (left) and the one situated on the edge

of the beam (right)
The G-moduli were calculated using Eq (7.3) derived form of Eq (4.46)
_4f%1%ply
Gr = T (7.3)

with the either the first or second frequency. Also the mean value of both G-moduli is
presented (cf. Table 7-5).
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Table 7-5 Measured torsional frequencies and computed G-moduli from the transversal

tests
Beam N° fi fa G, G, G,
[-] [Hz] [Hz] [MPa] [MPa] [MPa]
1 289.8 587.0 789 809 799
2 309.7 632.6 873 911 892
3 303.9 606.6 798 795 797
4 305.0 617.1 822 841 832
5 304.3 615.9 848 869 859
6 300.1 610.4 796 824 810
7 304.3 614.8 797 813 805
8 301.3 610.1 753 772 763
9 296.9 601.5 802 823 813
10 303.8 611.0 830 839 835
11 297.1 598.4 837 849 843
12 301.4 610.0 844 864 854
13 299.0 602.2 814 825 820
14 296.3 594.7 726 731 729
15 292.0 592.1 760 781 771
16 290.0 587.5 738 757 748
17 3229 652.9 830 848 839
18 293.9 588.5 759 761 760
19 267.2 587.9 587 710 649
20 287.9 584.4 679 700 680
21 303.9 616.1 803 825 814
22 310.2 628.6 829 851 840
23 301.7 600.7 746 739 743
24 298.1 605.7 802 828 815
25 310.2 626.5 858 875 867
26 306.5 621.3 777 798 788
27 319.4 648.8 869 897 883
28 300.2 612.0 829 861 845
29 288.4 586.3 662 684 673
30 3329 666.0 906 907 907
31 300.9 611.3 745 768 757
32 307.9 621.6 795 810 803
Mean value 791 811 801
Std. dewv. 65 59 61
Aluminium 374.7 / 24676 / /

The transversal E-moduli were calculated using Timoshenko theory as well as Euler
theory for comparison. Since no simple expression is available for a free-free beam,
the self-developed Matlab code in Appendix A was used for the calculations. Again,
the E-moduli were calculated for different frequencies, as shown in Table 7-6.
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Table 7-6 Measured transversal frequencies and computed E-moduli from the
transversal tests

Euler Timoshenko
Beam N* fip fap fap Ew Ex Es Ey Ex Ess Epms Ratio Ey, Ratio Ey, Ratio Ey,

[l [Hz] [Hz] [Hz] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [l [l [l
1 89.5 240.5 455.4 16533 15711 14658 16805 16616 16415 16612 0.98 0.95 0.89
2 85.4 226.6 438.7 14596 13524 13190 14794 14139 14472 14468 0.99 0.96 0.91
3 84.0 226.7 442.0 13401 12846 12706 13584 13451 14008 13681 099 0.96 0.91
4 84.4 229.4 441.0 13833 13449 12933 14022 14092 14242 14119 0.99 0.95 0.91
5 84.6 227.1 437.0 14416 13672 13172 14615 14316 14489 14473 0.9% 0.96 0.91
6 87.0 234.8 452.7 14713 14104 13642 14931 14830 15147 14969 0.99 0.95 0.90
7 84.5 227.3 435.5 13505 12861 12284 13681 13468 13503 13554 0.99 0.95 0.91
8 84.3 2259 436.5 12966 12254 11905 13147 12836 13116 13033 0.99 0.95 0.91
9 86.5 2325 439.1 14969 14232 13209 15182 14967 14609 14923 099 0.95 0.90
10 87.7 237.7 455.2 15204 14699 14026 15427 15455 15552 15478 0.99 0.95 0.90
11 84.7 229.7 433.0 14950 14470 13379 15165 15198 14756 15040 0.9% 0.95 0.91
12 85.6 2316 437.2 14966 14418 13369 15179 15135 14731 15015 0.99 0.95 0.91
13 84.3 229.1 429.4 14223 13824 12637 14423 14509 13899 14277 0.99 0.95 0.91
14 85.7 2347 441.4 13352 13179 12129 13548 13873 13433 13618 0.99 0.95 0.90
15 87.4 2341 450.3 14962 14127 13601 15196 14883 15170 15085 0.98 0.95 0.90
16 87.5 235.9 449.3 14763 14122 13329 14997 14904 14882 14928 0.98 0.95 0.90
17 82.1 218.7 424.5 11797 11017 10800 11937 11452 11708 11699 0.9% 0.96 0.92
18 85.7 2343 439.6 14191 13959 12786 14402 14704 14173 14426 0.99 0.95 0.90
19 82.2 224.1 433.1 12209 11943 11607 12409 12645 13091 12715 0.98 0.94 0.89
20 83.8 225.2 420.9 12654 12026 10931 12842 12646 12064 12517 0.99 0.95 0.91
21 82.0 2220 423.1 12850 12385 11715 13018 12956 12815 12930 099 0.96 0.91
22 83.4 222.7 430.5 13170 12358 12016 13341 12900 13138 13126 0.99 0.96 0.91
23 83.9 226.8 438.1 12676 12150 11835 12850 12772 13043 12888 0.9% 0.95 0.91
24 85.6 229.3 445.8 14541 13732 13506 14753 14417 14970 14713 0.99 0.95 0.90
25 86.6 2321 4419 14704 13900 13111 14908 14559 14400 14622 0.99 0.95 0.91
26 82.7 2233 433.2 12439 11935 11688 12601 12473 12819 12631 0.99 0.96 0.91
27 79.4 216.5 426.4 11811 11557 11664 11946 12013 12674 12211 099 0.96 0.92
28 80.8 2234 427.9 13204 13284 12681 13376 13907 13929 13737 0.99 0.96 0.91
29 89.1 240.7 457.7 13895 13345 12556 14124 14123 14094 14114 098 0.94 0.89
30 78.9 219.2 422.5 11193 11369 10951 11311 11796 11853 11653 0.99 0.96 0.93
31 87.4 233.2 446.2 13809 12938 12325 14014 13592 13637 13748 0.99 0.95 0.90
32 84.2 226.8 437.2 13071 12481 12068 13246 13055 13247 13183 0.99 0.96 0.91
Mean value 13736 13185 12577 13931 13834 13877 13881 0.99 0.95 0.91

Std. dev. 1195 1090 925 1223 1185 1084 1152

Aluminium 23.2 63.9 125.2 67267 67158 67084 67289 67223 67211 67241 1.00 1.00 1.00

The difference between Euler and Timoshenko theory becomes more important with
higher modes. Nevertheless, the difference is already very significant for the second
and third mode. The best correlation with the static E-moduli was obtained using only
the first frequency. The mean value was calculated to 13931 MPa, 9.5% higher then
the static one.

Appendix B presents a summary of the correlation and FRF plots.

7.6 Summary of results

In conclusion, one can say that the first frequencies are most suitable for the
estimation of material properties since they are least influenced by material defects
and hence can be measured with higher precision. The negative effect of defects
increases with the number of modes, which excludes the use of higher frequencies for
error minimisation.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 63



Table 7-7 Summary of the determined material properties for each specimen

Beam N° P Estatic Ey Eyp Gy,
[-] [kg/m3] [MPa] [MPa] [MPa] [MPa]
1 527.7 14526 16983 16760 788
2 511.7 13319 14805 14763 873
3 485.6 11887 13646 13604 797
4 496.5 12397 14286 14015 822
5 515.0 13853 14818 14646 849
6 497.0 13855 15012 14889 796
7 483.6 12061 13883 13753 797
8 466.5 12788 13288 13172 753
9 511.5 13895 15518 15213 802
10 505.4 13785 15703 15466 830
11 532.8 14197 15416 15161 837
12 522.2 13841 15465 15190 843
13 511.7 13281 15322 14451 814
14 464.8 13129 14255 13526 726
15 500.8 13371 15778 15231 761
16 493.0 14052 15716 14997 738
17 447.5 11300 12320 11964 831
18 494.0 12824 15085 14379 758
19 462.0 10303 12734 12406 587
20 460.7 11752 13078 12827 679
21 488.6 12532 13560 12979 802
22 484.1 13005 13820 13354 828
23 460.4 12286 13262 12804 745
24 507.4 12670 15310 14763 802
25 501.3 13542 15159 14894 858
26 465.0 12341 13319 12589 778
27 479.0 10349 12429 11940 869
28 517.1 12764 14123 13369 829
29 447.5 12860 14570 14112 662
30 459.7 10703 11789 11314 906
31 462.2 11853 13870 14046 745
32 471.4 11337 13533 13304 795

Mean value 488.6 12717 14308 13934 791

Std. dewv. 24.2 1117 1203 1222 65

Table 7-7 summarizes the results from the material properties estimation. As already
mentioned, the dynamic E-moduli are higher then the static ones. Also, the mean of
the estimated G-moduli is higher than the one in Table 7-1. This difference is mainly
due to creeping that occurs during static testing. While the dynamic tests are carried
out over a short time period of just a few seconds, the static tests last several minutes
during which the timber starts to creep, resulting in the lower values for the static E-
modulus.

Nevertheless, good correlations could be observed between the different E-moduli (cf.
Figure 7-12 - Figure 7-14). The correlation between longitudinal and translational E-
moduli is even nearly perfect.
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Figure 7-15 gives a summary of the estimated E-moduli and their mean values.
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8 Tension Tests
8.1 Setup and equipment

The tensile tests were carried out using the Aktiebolaget Alpha Sundbyberg machine
shown in Figure 8-1. The beams were fixed at both ends with friction grips illustrated
in Figure 8-2. The beams were chosen to stand out 10 mm on both sides to prevent
them from sliding out of the grips for higher loads. The grips had a length of 120 mm
which reduced the minimum possible clear length of the beams to L,,;;, = 1500 — 2 -
10 — 2-120 = 1240 mm. Since the surface of these grips is not flat, but curved in
both directions with a global maximum at approximately 60% of their length, the
maximum possible clear length results in L. = Lipin + 2 - 50 = 1340 mm. This
caused difficulties in assessing the actual clear length of the beams, which is further
discussed in Chapter 8.3.

Figure 8-1 Tensile machine and setup of the accelerometer (left) and scale for the
determination of the axial load (right)

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 67



Figure 8-2 Illustration of the curved surface of the friction grips (left) and the position of
the beams between the grips with according dimensions (right)

The scale chosen for the tensile machine was 10000 kg, which allowed a precision of
10 kg. The accelerometer was attached with bee-wax at a distance of 250 mm from
the lower grip, which equals approximately 20% of L,,;,,. This ensured the recording
of the first three bending frequencies. The excitation was performed with 5 hammer
blows right next to the accelerometer using an instrumented hammer equipped with a
plastic tip. The technical equipment used for the modal testing is described in more
detail in Chapter 7. The data acquisition settings are shown in Table 8-1. These
settings allowed a resolution of the frequencies of approximately 0.1 Hz.

Table 8-1 Settings for data acquisition
Measurement function Setting
Trigger type Accelerometer
Trigger level 0.1V
Trigger delay 001V
Sampling rate 2560
Recording time 78
Blocksize 1024
Frequency range 1280 Hz
NFFT 216

The frequency measurements were carried out for 6 different load levels between 5
kKN and 30 kN with an interval of 5 kN. These levels were chosen on the assumption
that the maximum tensile load was around 40 kN, corresponding to a tensile strength
of 15 MPa. Later ultimate tensile tests described in Chapter 8.4 showed however that
the mean tensile strength is considerably higher, namely 25.9 MPa for the tested
beams.
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8.2 Test results

The FRF plots and results from the frequency measurements are shown in Appendix
C. Figure 8-3 shows the FRFs for the aluminium bar and one timber specimen for
different load levels. It can be seen that the geometry of the aluminium bar was
chosen in a way that the frequency increase do to a higher load is of a comparable
magnitude as for a timber specimen. This is important for the comparison of
parameter estimation results since the sensitivity study showed that the axial load is
very sensitive to errors in frequency (cf. Chapter 5). Moreover one can see that the
peaks are much more clear for the aluminium than for the timber specimen, which is
mainly due to the differences in material homogeneity.

Reference Alumniniutn Specimen : FRFs Specimen hN*31: FRFs
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Figure 8-3 Comparison of frequency plots for aluminium (left) and timber (right)

Table 8-2 lists the first three bending frequencies of the above specimen for the
different load levels.

Table 8-2 Comparison of measured frequencies for aluminium (left) and timber (right)
Applied load S o o fa Applied load S fio fo fa
[N] [Hz] [Hz] [Hz] [N] [Hz] [Hz] [Hz]
1962 36.0 93.1 177.0 4905 1113 291.3 542.3
4022 40.0 98.9 184.0 9221 118.2 307.8 569.1
6671 44.5 106.6 1939 13930 123.6 319.0 584.7
7750 46.4 109.6 197.6 19031 128.1 327.1 596.2
9810 49,5 114.9 204.4 23642 131.6 3319 600.8
11576 52.2 119.6 210.0 27959 134.2 336.6 604.2
13538 55.0 124.3 216.6
15696 57.8 129.4 2233

Figure 8-4 - Figure 8-6 show plots of the squares of the three first measured
frequencies f* against the applied load S under the assumption of equal boundary
conditions k at both ends of the beams. Since different friction grips were used for
timber and aluminium, the respective restraint lengths are also different, namely 1260
mm and 1245 mm respectively. For the aluminium bar, the measured frequencies are
all more or less arranged in a line, which shows that the boundary conditions remain
nearly constant for different load levels. The assumption of equal restraints at both
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ends is valid for the aluminium bar as the friction grips are identical and the
aluminium is homogeneous. For the timber specimen only the frequencies of the three
highest loads are situated on a line. The main reason for this is that the clear length
changes over different load levels. The problem is that the pressure from the grips
applied on the timber is not constant, but increases with the strain applied on the
beam. Thereby, the grips penetrate deeper and deeper into the soft wood and through
their curved surface, more and more reduce the clear length. In the next chapter, this
will be taken into account by setting different lengths for the lower load levels.
Another observation when comparing the figures is that the graph of the third
frequency does not correspond well with the other two graphs. Already during data
acquisition, it became clear that the peak of the third frequency is not clear enough to
fulfil the precision requirements, at least not for the applied measurement method.
The same conclusion could already be drawn in Chapter 7 during the estimation of the
material properties. The higher the frequency modes, the lower are their accuracies
and thus their use for parameter estimation. This is further discussed in the next
paragraph.
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boundary conditions together with measured third frequencies for different
load levels for aluminium (left) and timber (right)

8.3 Estimation of tensile force S

The bending frequencies resulting from the data processing in Chapter 8.2 are in the
following used to estimate the axial load S and the boundary conditions at the
restraints. In the first step, this is done using only the two first frequencies under the
assumption of equal boundary conditions. In the second step, it is attempted to use
also the third frequency either for error minimisation or to expand the model by a
third parameter by dropping the assumption of equal boundary conditions. Since the
stiffness of the timber specimen is much smaller compared to the steel grips, the
rotational stiffness at the supports is mainly influenced by the E-modulus of the
specimen. For the inhomogeneous timber, the E-modulus is however not constant
over the whole specimen length, which can consequently lead to a difference in
boundary conditions. This means that the use of an extra frequency should have a
positive effect on the results, provided that it could be determined with an appropriate
precision.

For the parameter estimation, Timoshenko theory was used to include effects of shear
deformations and rotary inertia since they can have a rather high influence on the
results (cf. Chapter 5). The Matlab code illustrated in Appendix B was used for this
purpose.

While the material properties and the sectional dimensions had already previously
been determined, the choice of the clear specimen length L was still unknown. As
explained above, this length changes for different load levels due to characteristics of
the tensile machine. This effect is illustrated in Figure 8-7 and Figure 8-8 for
aluminium and timber, respectively.
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The plots show the variation of the rotational stiffness k for different lengths L and
load levels S. When comparing the two graphs, it is obvious that the effect of the grips
iIs much less pronounced for aluminium than for timber. In Figure 8-8, the curves
associated with the two lowest load levels show strong deviations from the pattern of
the other levels. In Figure 8-7, the curves are much closer together and the deviation
therefore less obvious. The conclusion was that the clear length could be assumed
constant for the aluminium bar while it had to be varied for the timber beam, at least
for the two lowest load levels, where the clear length turned out to be bigger
compared to the other levels. For the timber specimen, the length for the lowest load
was chosen to the maximum length L., = 1295 mm. Under the assumption of
constant boundary conditions, the length for the second highest load was then
determined to L = 1275 mm, and the length for the remaining levels to L =
1255 mm. For aluminium, L was assumed to be 1245 mm for all load levels. The
difference in length for the two materials is related to the fact that different grips with
different surface properties had to be used.

After all the input parameters were now determined, the parameter estimation could
be initiated. Figure 8-9 shows the graphical estimation for aluminium and timber,
previously explained in Chapter 5.
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The use of two frequencies gave reasonable results of the axial load S for both
materials. The comparison of the graphs shows however that the third frequency is
only of use for aluminium, while it is far off the crossing point of the two first
frequencies for the timber specimen. As previously mentioned, the third frequency
could not be determined with the required precision. This is why the parameter
estimation was limited to the two first frequencies, which makes the assumption of
equal boundary conditions indispensible and therefore excludes the expansion of the
model to a third parameter. Table 8-3 and Table 8-4 show the according results for the
aluminium bar and a timber specimen using the transversal as well as the longitudinal
E-moduli to investigate the difference in results. It was also attempted to use the static
E-modulus, but the results were far from accurate for both materials, showing that the
estimation requires dynamic values for the material stiffness.

Table 8-3 Results from the dual parameter estimation for the reference aluminium
specimen using the transversal and longitudinal E-modulus

Aluminium using E, using E,

Applied loadS % of yield s/s. i fo L L Set ErroronS Kyt Set Erroron 5
[N] (%] [l [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] [%]
1962 8.7 11 36.0 93.1 1.245 11831 2261 15.2 9365 2356 20.1
4022 17.9 22 40.0 98.9 1.245 10447 4568 136 8323 4712 17.2
6671 29.6 3.6 44.5 106.6 1.245 15288 6884 3.2 11517 7042 5.6
7750 34.4 4.2 46.4 108.6 1.245 14510 8181 5.6 10979 8363 79
9810 43.6 5.3 49.5 114.9 1.245 16907 10161 3.6 12418 10367 5.7
11576 51.4 6.2 52.2 119.6 1.245 19800 11982 3.5 14059 12208 55
13538 60.2 73 55.0 1243 1.245 18378 14241 5.2 13167 14508 72
15696 69.8 8.5 57.8 129.4 1.245 24670 16228 3.4 16532 16508 5.2

Table 8-4 Results from the dual parameter estimation for the timber specimen N°6

using the transversal and longitudinal E-modulus

T6 using E, using E,

AppliedloadS 9% of yield S/S: fin for L Keer Ser Erroron § [ Sect ErroronS

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] [%]
5396 7.9 0.25 110.2 290.1 1.295 149030 6841 26.8 141410 7063 30.9
10006 147 0.44 116.3 300.6 1.275 103310 16825 68.1 98620 17198 71.9
14813 218 0.64 1213 3111 1.255 93768 21630 46.0 89528 22083 49.1
18737 276 0.81 125.0 318.9 1.255 144740 21782 16.3 137220 22101 18.0
23152 34.0 1.00 129.1 3258 1.255 171770 27198 175 161950 27504 183
27959 41.1 1.20 132.3 33L.5 1.255 213350 30845 10.3 199480 31127 11.3

The results for aluminium are very good, with absolute errors ranging from 15.2% to
3.2% for the transversal E-modulus. As expected, the results tend to improve for
higher loads since the sensitivity of the system with regard to the input parameters
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decreases. There is however a small error spread that can be explained by the choice
of a constant mean clear length and probably also some measurement errors. The
results using the longitudinal E-modulus turned out to be less accurate than the ones
using the transversal E-modulus. The same conclusions can be drawn for the timber
specimens, where the results for this particular sample range from 68.1% to 10.3%
when using the transversal E-modulus. The results for the other specimens are listed
in Appendix C.

Table 8-5 shows the mean errors and deviations for the estimated axial load S using
different E-moduli for all 32 timber specimens. The variation of the mean error for
different load levels is illustrated in Figure 8-10. A complete illustration of the
individual errors and deviations for all specimens is listed in Appendix C.

Table 8-5 Mean errors of the estimated axial load S for all timber specimens using the
transversal and longitudinal E-moduli

using E, using E,
Applied load S % of yield 5/S. Mean erroron S  Std. dev. onerror MeanerroronS  Std. dev. on error
[N] [%6] [l [%4] [%] [%] [%]

5000 7.4 0.25 46.6 89.5 68.4 102.5
10000 14.7 0.48 343 45.0 48.1 526
15000 22.1 0.70 27.8 39.9 415 48.3
20000 29.4 0.94 16.2 26.9 24.1 30.4
25000 36.8 117 9.4 237 14.4 26.2
30000 44.1 1.40 7.6 20.2 12.4 22.1
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Mean percentage error [%]
£
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(=)
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Applied axial load S [N]

Figure 8-10  Graphical representation of the mean errors from Table 8-5 for the different
load levels

The results show that the estimation of S improves for higher load levels. Again, the
best results could be obtained using the transversal E-modulus. It can be seen that the
differences for the two E-moduli decrease for higher loads. The axial loads are in
general overestimated, with mean errors ranging from 7.6% to 46.6%. The standard
deviations are of the same order, which results in a very high spread for the results.
The main reason is probably the clear lengths L that was chosen the same for every
specimen, even though there might be differences caused by varying material
properties. This parameter was the most difficult to assess since the restraint length
cannot be visually determined, but has a big influence on the results. Other errors
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result from the assumption of equal boundary conditions and frequency measurement
errors. Also, the applied model assumes that material properties are constant over the
specimen length, which is clearly not the case for the inhomogeneous timber.
Considering all these model uncertainties, the estimated axial loads appear quite
reasonable and give an incentive for further research.

In addition to the estimated axial loads, the boundary conditions were analysed in
more detail. Figure 8-11 shows the estimated rotational stiffness ke for different load
levels of two timber specimens. The plots show rather random variations of the
rotational stiffness. The only trend that can be recognized is that it seems to increase
in the range of higher loads. This could however also be related to the choice of the
varying clear length that has a high influence on the estimation for the rotational
stiffness. Overestimated values of the clear length L lead to higher values of k (cf.
Figure 5-10).

450000 450000

400000 400000
350000 = / 350000

300000 300000

£ 250000 j /—b_‘/ E 250000
N 3 . e=bm=\Jsing transversal £
¥ 200000 S —y P 200000 - B
150000 150000 /ﬂ,ﬁ—‘ =ili=\J5ing longitudinal E
e — ]

100000 100000
50000 50000
[ 0

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Axial load § [N] Applied load § [N]

Figure 8-11 Plots of the estimated rotational stiffness ke for different load levels and two
different timber specimens using the transversal and longitudinal E-moduli

Figure 8-12 illustrates the correlation of the mean estimated rotational stiffness over
different load levels for one specimen and its static E-modulus. The respective values
are listed in Appendix C.
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Figure 8-12 Plot of the estimated rotational stiffness ke averaged over different load
levels against the E-moduli of the according timber specimens

It was expected that k would increase for a higher the specimen stiffness since the
boundary conditions were believed to be mainly determined by the material
properties. However no such trend could be verified from the data. Maybe this is due
to the fact that the range of the E-moduli is rather small and that the errors to k are
rather high. The distribution of the boundary conditions seems rather constant with a
mean value of 207695 Nm and a standard deviation of 169567 Nm when using the
transversal E-moduli. For comparison, the mean value was 9358 Nm for the
Aluminium bar. The difference is due to the smaller dimensions of the bar and the
resulting much lower polar moment and bending stiffness.

8.4 Determination of ultimate tensile strength

Tensile tests according to CEN/TC (2007) were carried out on some of these
specimens to determine an approximate tensile strength and to put it in relation to the
E-moduli and the applied loads. The results are shown in Table 8-6 and Figure 8-13.
Even though a small correlation between E-moduli and tensile strength is
recognisable, the amount of data is too small to make final conclusions on this
subject. The mean tensile strength was found to be 25.9 MPa with a standard
deviation of 4.7 MPa for this amount of data.
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Table 8-6 Results from the ultimate tensile tests

Beam N° E, Simax Fe 0,max
[-] [MPa] [N] [MPa]
30 11311 66000 25.1
20 12842 61000 23.2
28 13376 55000 21.0
5 14615 86000 32.8
11 15165 60000 229
1 16805 80000 30.5
Mean value 14019 68000 25.9
Std. dev. 1927 12280 4.7
90000
= 85000 v
T 80000 L 4
i 75000
E 70000
E 65000 ~
g 60000 “ L 4
2 55000 &
50000

11000 12000 13000 14000 15000 16000 17000 18000
Static E-modulus [MPa]

Figure 8-13  Plot of the static E-modulus against the maximum tensile load for the tested
specimens

Figure 8-14 illustrates the failure mode of the timber beams. The pressure caused by
the friction grips induced local compression at the restraints, leading to a reduced
section and hence stress peaks in this area. Resulting cracks at the restraint section of
one lamella then relocated the tension on the remaining intact one, which in turn
yielded at a knot or otherwise weakened section leading to ultimate failure.

Figure 8-14  Timber specimen after ultimate tensile test: local compression at the restraint
(left) and final failure mode (right)
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9 Conclusions and further research
9.1 Conclusions

The results of the dual parameter estimation showed that it is possible to estimate the
axial loads in timber beams using resonance frequency analysis. The sensitivity
analysis showed however that the quality of the results is very sensitive to errors in
the input parameters, especially the measured frequencies, the clear length and the E-
modulus.

It was therefore very important to ensure a high measurement quality and to only use
a minimum of resonance frequencies since the precision decreased quickly for higher
vibration modes. An error minimisation through additional frequency information was
hence not possible in this research. The length of the measurement time and number
of excitations was just too small to obtain clear peaks for the higher resonance
frequencies of the timber specimens. For the reference aluminium specimen, these
factors were however sufficient. This shows that the inhomogeneous character of
timber, in association with its natural defects, requires more sophisticated
measurement techniques than a homogeneous material. One possibility of improving
the frequency resolution would be to use a modal vibration shaker instead of an
instrumented hammer. This way more measurements can be made over a longer
period of time, resulting in more clear frequency peaks.

The clear length of the beams was another factor that had a strong influence on the
test results and caused a high standard deviation from the mean value. The problem
was that the available tensile machine was not designed to apply a constant grip
pressure on the beam ends. In fact, the grip pressure increased for higher load levels,
leading to a varying clear length and also rotational stiffness at the restraints. In
addition, these parameters varied for each specimen caused by the difference in
material properties. It was therefore not possible to identify the exact clear length for
each measurement. Hence, a mean clear length had to be chosen that caused the high
spread in results for the parameter estimation. Note that the determination of the
restraint length will also be of high importance when applying this method on real
structures and therefore needs to be treated with special care.

The best results for the axial load were obtained using the E-modulus obtained from
transversal vibration tests with a mean error ranging from 7.6% to 46.6%. When using
the longitudinal E-moduli, the mean errors increased to 12.4% to 89.5%. Note, that in
both cases the results consistently improved for higher loads. This was in accordance
with the results from the sensitivity analysis. It was furthermore attempted to use the
static E-modulus for the calculations, which led however to unusable results. This
shows that dynamic values need to be used for the estimation of parameters when
using the presented resonance frequency method. For the application of the method on
real structures, it would therefore be possible to determine the E-modulus using
longitudinal frequency measurements or maybe even time of flight measurements.

The model used for the parameter estimation was based on Timoshenko theory. This
allowed to include effects of shear deformations and rotary inertia that had a major
influence on results, especially for higher vibration modes.
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9.2 Suggestions for further research

The results of the presented research were promising and hence raise the need for
further research in this area. In the following, some suggestions are listed.

Influence of specimen geometry

One of the limitations of this research was the geometry of the specimen. It would
be interesting to see how the sensitivity of the results changes for other specimen
dimensions, especially bigger sizes. It is hereby important to use a machine that
applies constant grip pressure to the specimen ends, so that the restraint length does
not vary for different load levels and can be determined with more precision.

Testing of specimens under compression

Only specimens under tension were analysed in this thesis. The research could be
expanded to specimens under compression to see if similar results can be obtained
or if there are maybe additional effects that need to be taken into account in this
case.

Tests on real structure

Finally, in-situ tests could be carried out on an existing structure to analyse the
applicability of the method under real-life conditions. For this purpose, a modal
vibration shaker might be necessary to improve the frequency resolution by
increasing the measurement time. Also the frequency plots will probably be more
complicated since other structural members might participate in vibration. One
solution to this problem could be to attach additional accelerometers in different
points of the structure to be able to allocate the frequencies to the respective
members.
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11  Appendices

11.1 Appendix A — Matlab codes
11.1.1 Calculation of transversal frequencies

Discrete model — Euler beam theory

The program uses the input parameters to define element mass and stiffness matrices
for each finite element, which are then put together to one global matrix. The solution
of the according eigenvalue problem then yields the resonance frequencies.

%%Remove all variables from the workspace and clear command window
clear all
clc

%%Enter input data

E = 13000*1076; %%E-modullus In N/m2

G = 760*10"6; %%G-modullus In N/m2

p = 400; %%Specimen density in kg/m3

L=1.5; %%Clear length in m

H = 0.075; %%Specimen height in m

B = 0.035; %%Specimen width in m

S = 20000; %%Axial load in N

ki = 10715; %%Value for translational support in x=0 in N/m
k3 = 10715; %%Value for translational support in x=L in N/m
k2 = 10000; %%Value for rotational support in x=0 in Nm

k4 = 10000; %%Value for rotational support in x=L in Nm

n = 50; %%Number of finite elements

nnf = 2; %%Number of resonance frequencies

%%Calculation

A = B*H;

Iz = B"3*H/12;

el = L/n;

if (kI ==0) && (k2 == 0) & (k3 == 0) && (k3 == 0);
nnf = nnf + 2;
end

%%Connection matrix
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for ie = 1:n

ktr = 2*ie;

cn(ie,:) = [ktr-1:1:ktr+2];
end

%Consistent element mass matrix

em = zeros(4);

em = [ 156 22*el 54 -13*el;
22*el 4*elN2 13*el -3*elN2;
54 13*el 156 -22*el;
-13*el -3*elN2 -22*el 4*elN2];

em = p*A*el/420 * em;

%%Element stiffness matrix

ek = zeros(4);

ek = [ 6 3*el -6 3*el;
3*el 2*eln2 -3*el el”2;
-6 -3*el 6 -3*el;
3*el eln2 -3*el 2*el™2];

ek = (2*E*1z/el™3)*ek;

gk = [ 36 3*el -36 3*el;
3*el 4*e N2 -3*el -eln2;
-36 -3*el 36 -3*el;
3*el -el”2 -3*el 4*eln2];

kg = (5/(30*el))*gk;

ek = ek + kg;

%%Global matrix
k = zeros(ktr+2);
m = zeros(ktr+2);
for ie = 1:n
index = cn(ie,:);

m(index, index) = m(index, index) + em;

k(index, index) k(index, index) + ek;

end
k(1,1) = k(1,1) + ki;
k(2,2) = k(2,2) + k2;

k(ktr+1,ktr+1) = k(ktr+1,ktr+1) + k3;
k(ktr+2,ktr+2) = k(ktr+2,ktr+2) + k4;
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%%Solve eigenvalue problem

[v.nu] = eig(k,m);

[w2,ie] = sort(diag(nu));

v = v(:,ie);

%%Print natural frequencies (Hz)

for ie = 1:nnf

fcalc(ie) = sqrt(w2(ie))/(2*pi);

fcalc(ie)

end

Discrete model — Timoshenko beam theory

The program uses the same principles as for the Euler theory, except that the mass and
stiffness matrices are composed of additional terms to take into account effects from
shear deformations and rotary effects.

%%Remove all variables from the workspace and clear command window

clear all

clc

%%Enter input data

E = 13000*1076;

G = 760*10"6;

p = 400;

L =1.5;

H = 0.075;
B = 0.035;
S = 20000;
k1l = 10715;
k3 = 10715;
k2 = 10000;
k4 = 10000;
n = 50;

nnf = 2;
%%Calculation

%%E-modullus in N/m2

%%G-modullus In N/m2

%%Specimen density in kg/m3

%%Clear length in m

%%Specimen height in m

%%Specimen width in m

%%Axial load in N

%%Value for translational support in x=0 in N/m
%%Value for translational support in x=L in N/m
%%Value for rotational support in x=0 in Nm
%%Value for rotational support in x=L in Nm
%%Number of finite elements

%%Number of resonance frequencies
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A = B*H;

ks = 5/6;

Iz = BA3*H/12;

el = L/n;

fi = 12*E*1z/(ks*G*A*el™2);

if (k1 ==0) & (k2 == 0) && (k3 == 0) & (k3 == 0);
nnf = nnf + 2;

end

%%Connection matrix

for ie = 1:n
ktr = 2*ie;
cn(ie,:) = [ktr-1:1:ktr+2];

end

%Consistent mass matrix

em = zeros(4);

emt = [13/35+7/10*Fi+1/3*Fi"2  (11/210+11/120*Fi+1/24*Fi~2)*el
9/70+3/10*Fi+1/6*Fi~2  -(13/420+3/40%Fi+1/24*Fi~2)*el;
(11/210+11/120*Fi+1/24*Fi~2)*el
(1/105+1/60*Fi+1/120*Fir2)*e 172
(13/420+3/40*Fi+1/24*Fi~2)*el
-(1/140+1/60*Fi+1/120*Fir2) *e1"2;
9/70+3/10*Fi+1/6*Fi~2  (13/420+3/40*Fi+1/24*Fir2)*el
13/35+7/10*Fi+1/3*Fi~2  -(11/210+11/120*Fi+1/24*Fi~2)*el;
~(13/420+3/40*Fi+1/24*Fi~2)*el
—(1/140+1/60*Fi+1/120*Fi2)*e 172
-(11/210+11/120*Fi+1/24%Fi~2)*el
(1/105+1/60*Fi+1/120*Fi~2)*el~2] ;

emr = [6/5 (1/10-1/72*Fi)*el -6/5 (1/10-1/2*Fi)*el;
(1/710-172*Fi)*el ~ (2/15+1/6*Fi+1/3*Fi~2)*el 2

(-1/10+1/72*Fi)*el  —(1/30+1/6*Fi-1/6*Fir2)*el 2;

~6/5 (-1710+1/2*Fi)*el  6/5 (-1/10+1/2*Fi)*el;
(1/10-1/72*Fi)*el  -(1/30+1/6*Fi-1/6*Fi~2)*el’2

(-1/10+1/72*Fi)*el  (2/15+1/6*Fi+1/3*Fi~2)*el"2];

em = p*A*el/(1+Fi)"2*emt + p*A*lz/((1+Fi)"2*el)*emr;
%%Stiffness matrix

ek = zeros(4);

kb = [12 6*el -12 6*el;

6*el (4+fi)*el"2 -6*el -fi)*el"2;

-12 -6*el 12 -6*el;

6*el Q-fi)*el”2 -6*el (4+fi)*el™2];
kg = [36 3*el -36 3*el;

3*el 4*elN2 -3*el -eln2;

-36 -3*el 36 -3*el;

3*el -eln2 -3*el 4*el"2];
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ek = (E*1z/((A+Fi)*el”"3))*kb + (S/(30*el))*kg;
%%Global matrix
k = zeros(ktr+2);
m = zeros(ktr+2);
for ie = 1:n
index = cn(ie,:);
m(index, index) = m(index, index) + em;

k(index, index) k(index, index) + ek;

end
k(1,1) = k(1,1) + ki;
k(2,2) = k(2,2) + k2;

k(ktr+1,ktr+1) = k(ktr+1,ktr+1) + k3;

k(ktr+2,ktr+2)

k(ktr+2,ktr+2) + k4;
%%Solve eigenvalue problem

[v,nu] = eig(k,m);

[w2,1e] = sort(diag(nhu));

v = v(:,ie);

%%Print natural frequencies (Hz)
for ie = 1:nnf
fcalc(ie) = sqrt(w2(ie))/(2*pi);
fcalc(ie)

end

Continuous model — Timoshenko beam theory

For the entered input parameters, the program determines the lowest transversal
frequency for the chosen frequency range by finding the first root of equation (5.20).
If no root exists for the entered frequency range, the output will be ‘change frequency
range’. For higher frequencies, the range needs to be adjusted.

%%Remove all variables from the workspace and clear command window
clear all
clc

%%Enter iInput data
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E = 13000*1076; %%E-modullus In N/m2

G = 760*1076; %%G-modullus In N/m2

p = 400; %%Specimen density in kg/m3

L=1.5; %%Clear length in m

H = 0.075; %%Specimen height in m

B = 0.035; %%Specimen width in m

S = 20000; %%Axial load in N

ki = 107M15; %%Value for translational support in x=0 in N/m
k3 = 10715; %%Value for translational support in x=L in N/m
k2 = 10000; %%Value for rotational support in x=0 in Nm

k4 = 10000; %%Value for rotational support in x=L in Nm

%%Define frequency range of interest
fmin = 20; %%Minimum frequency
fmax = 77; %%Maximum Frequency
%%l teration

A = B*H;

ks = 5/6;

Iz = B"3*H/12;

step = 0.01;

for fO = fmin:step: fmax

w = 2*pi*f0;

b2 = A*L~4*p*wn2/(E*1Z);
r2 = 1z/(A*L"2);

fi = ks*A*G;

s2 = (E*1z)/(Fi*L"2);

p2 = -((L"2*S)/(E*12));

delta = p2/b2+r2*(1-p2*s2)+s2;

ml = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta”2)-
delta))/sqrt(2*(1-p2*s2));

m2 = (sqrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta”2)+
delta))/sqrt(2*(1-p2*s2));

H = (b2*s2+m1"2*(1-p2*s2))/(L*ml);

Z = (m2"2*(1-p2*s2)-b2*s2)/(L*m2);

cl = sinh(ml);
c2 = cosh(ml);
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c3

sin(m2);
c4 = cos(m2);

M= [-ki -Fi*H+Fi*ml/L+m1*S/L -k1 -Fi*Z+Fi*m2/L+m2*S/L;

k3*c2-fi*H*cl+fi*ml*cl/L+m1*S*c1/L

-fFi*H*c2+fFi*ml*c2/L+m1*S*c2/L+k3*cl
k3*c4+Fi*Z*c3-Fi*m2*c3/L-m2*S*c3/L
-Fi*Z*c4+fFi*m2*c4/L+m2*S*c4/L+k3*c3;

-E*1z*H*m1/L H*k2 E*1z*Z*m2/L Z*k2;

-E*1z*H*ml1*c2/L-H*k4*c1 -E*1z*H*ml1*c1/L-H*k4*c2
E*1z*Z*m2*c4/L+Z*k4*c3 E*1z*Z*m2*c3/L-Z*k4*c4] ;

Det = det(M);

=i+1;

result(i,l) T0;
result(i,2) = Det;
sig(i) = sign(Det);
end
sig = sig";
for i=1:length(sig)-1
diff = sig(i)-sig(i+l);
if diff==0
continue
else break
end
end
%%Print output in [Hz]
if i == (fmax-fmin)/step
output = “"change frequency range-
elseif abs(result(i,2)) < abs(result(i+l,2))
f

result(i,l)

else F result(i+l,1)

end

11.1.2 Calculation of longitudinal E-moduli

After the data from the measurements is imported, the time signals are transformed
into frequency data from which the first two resonance frequencies are extracted.
These are then used to calculate the dynamic longitudinal E-moduli for the according
specimen. The input and output power spectra are plotted along with the frequency
response function and the coherence function. The output of the program is the two
frequencies and the according E-moduli.
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%%Remove all variables from the workspace, clear command window and
close i
%%%%open windows

clc

clear all

close all

%%Fille import

[filename, pathname] = uigetfile("*.txt", "Pick an Input File");
infile=[pathname filename];

importfile(infile)

clear("colheaders®);

clear("textdata®);

%%Variable declaration

s=data(:,1); %%time vector
V=data(:,2); %%imput signal
Vl=data(:,3); %%output signal

specnum = sscanf(Filename, "T%f"); %%specimen number for density
SR = 10240; %%Sampling rate
%%Densities of the 32 specimen in kg/m3

M = [527.7
511.7
485.6
496.5
515.0
497.0
483.6
466.5
511.5
505.4
532.8
522.2
511.7
464.8
500.8
493.0
447.5
494.0
462.0
460.7
488.6
484.1
4604
507.4
501.3
465.0
479.0
517.1
447.5
459_7
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462.2
471.4];

%%Density extraction

p = M(specnum);

%%Geometry

L=1.5; %%Length in m
%%FFT Into spectra

[x0,f] = pwelch(V,[ 1.[ 1.[ 1.SR);

[x1,f] = pwelch(V1,[ 1.[ 1.[ 1.SR);

%%Estimation of FRF

[x2,f] = tfestimate(V,V1,[ 1.[ 1.[ 1.SR);
%%Estimation of Coherence function

[x3,f] = mscohere(V,V1,[ 1.L 1.L 1.SR);
%%Logging for semi-logarithmic plot
PO=10g(x0) ;

P1=log(x1);

P2=real (10g(x2));

P3=real (10g(x3));

%%Delleting of initial peaks

P0(1:20)=0;

P1(1:20)=0;

P2(1:20)=0;

P3(1:20)=0;

%%Plotting of input and output spectra, FRF and Coherence function
figure("Color-,[1 1 1]);

plot(f,P0);

xIim([0 4200]);

title(['Specimen N=', num2str(specnum),”: Input Power Spectrum®]);
xlabel ("Frequency [Hz]");

ylabel ("Amplitude [dB]");
figure("Color-,[1 1 1]);

plot(f,P1);
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xlim([0 4200]);

title(['sSpecimen N=',num2str(specnum),”: Output Power Spectrum®]);
xlabel ("Frequency [Hz]");

ylabel ("Amplitude [dB]");

figure("Color",[1 1 1]D);

plot(f,P3);

xlim([0 4200]);

title(['specimen N=',num2str(specnum),”: Coherence Function"]);
xlabel ("Frequency [Hz]");

ylabel ("Magnitude [-]");

%%Peak identification for First two frequencies
%%For some specimens, the Minpeakdistance needs to be adjusted

[PKS,LOCS] = Findpeaks(P2, "SORTSTR", "descend"” , "MINPEAKDISTANCE" ,400);

for i=1:2
peaks(i,1) = LOCS(i);
peaks(i,2) = PKS(i);

end

peaks_sort = sortrows(peaks,1);
fll=F(peaks_sort(1,1));
b1=P2(peaks_sort(1,1));
f21=F(peaks_sort(2,1));
b2=P2(peaks_sort(2,1));
%%Printing frequencies
fll=roundn(f1l1,0)
f21=roundn(f21,0)

%%Marking of the identified frequencies
figure("Color-,[1 1 1]);
plot(f,P2);

x1im([0 4200]);

title(['Specimen N«',6num2str(specnum),”: Frequency Response
Function®]);

xlabel ("Frequency [Hz]");

ylabel ("Amplitude [dB]");
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hold on;
plot(fil,bl1+0.05, "k~", "markerfacecolor”®, "r");
plot(f21,b2+0.05, "k™", "markerfacecolor™, "r");
text(f11-40,b1+0.3,num2str (f1l));
text(f21-40,b2+0.3,num2str(f21));

hold ofT;

%%Calculation of E-modullus using Euler theory
E1l Euler=round(4*f1I1"2*L"2*p/(1"2)*10"(-6));
E2_Euler=round(4*f2172*L"2*p/ (272)*10"(-6)) ;
%%Print E

E1 Euler

E2_Euler

%%Create output Ffile

fid = fopen("Output.out®,"w");

fprintf(fid, “%g\n-",specnum);

fprintf(fid, “%g\n",f1l);

fprintf(fid, “%g\n",F21);

fprintf(fid, “%g\n",E1_Euler);

fprintf(fid, “%g\n",E2_Euler);

%%Plot FRF and Coherence

plotyy(f,P2,T,P3)

[AX,H1,H2] = plotyy(f,P2,T,P3, plot™);
set(get(AX(1), "Ylabel "), "String”", "Amplitude [dB]")
set(get(AX(2), "Ylabel "), "String", "Magnitude [-]7)
xlabel (*Frequency [Hz]");

title(['specimen N=',num2str(specnum),”": FRF and Coherence
Function®]);

set(AX(1), "XLim",[0 4200]);

set(AX(2), "XLim",[0 4200]);

hold on;
plot(f1l,b1+0.05, "k™", "markerfacecolor™, "r");

plot(f2l,b2+0.05, "k"", "markerfacecolor™,"r=);
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text(f11-40,b1+0.3,num2str (f1l));
text(f21-40,b2+0.3,num2str(f21));

hold off;

11.1.3 Calculation of transversal E-moduli

This script works very similar than the one for longitudinal frequencies. It is however
distinguished between transversal and torsional frequencies. Also additional functions
need to be used to calculate the different material properties. The output is the
measured transversal and torsional frequencies as well as the calculated E- and G-
moduli according to Euler and Timoshenko theory.

%%Remove all variables from the workspace, clear command window and
%%close open windows

clc

clear all

close all

%%Fille import

[filename, pathname] = uigetfile("*.txt", "Pick an Input File");
infile=[pathname filename];

importfile(infile)

clear("colheaders®);

clear("textdata®);

%%Variable declaration

s=data(:,1); %%time vector

V=data(:,2); %%imput signal

V2=data(:,4); %%output signal at the edge
specnum = sscanf(Ffilename, "T%f") %%specimen number for density
SR=2560; %%Sampling rate

NFFT=2"16; %%Number of FFT points

%%Densities of the 32 specimen

M = [527.7
511.7
485.6
496.5
515.0
497.0
483.6
466.5
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511.5
505.4
532.8
522.2
511.7
4648
500.8
493.0
447.5
494.0
462.0
460.7
488.6
4841
460.4
507.4
501.3
465.0
479.0
517.1
447.5
459.7
462.2
471.4];

%%Density extraction

p = M(specnum);

%%Geometry

L=1.5; %%Length in m
H=0.075; %%Height in m
B=0.035; %%Width in m
A=B*H;

ks=5/6;

ly=B*H"3/12;

1z=B"3*H/12;

Ip=ly+lz;
Kt=H*B"3/3*(1-0.630*B/H+0.052*B"5/H"5) ;
%%FFT Into spectra

[x0,f]
[x2,f]

%%Estimation of FRF

pwelch(V,[ 1.[ 1,NFFT,SR);

pwelch(V2,[ 1,[ 1,NFFT,SR);

[x4,F] = tfestimate(V,V2,[ 1.[ 1.NFFT,SR);
%%Estimation of Coherence function
[xX5,F] = mscohere(V,V2,[ 1.[ 1,.NFFT,SR);

%%Logging for semi-logarithmic plot
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PO=10g(x0) ;
P2=10g(x2);
P4=real (1og(x4));

P5=10g(x5);

%%Reducing data to the deserved range

PO(1:20)=0;
P2(1:20)=0;
P4(1:50)=0;
P4(18049:32769)=0;

P5(1:20)=0;

%%Plotting of input and output spectra, FRF and Coherence function

figure("Color-,[1 1 1]);
plot(f,P0);
xIim([O0 700]);

title(['Specimen N«',num2str(specnum), " :

xlabel (*Frequency [Hz]");
ylabel ("Amplitude [dB]");
figure("Color-,[1 1 1]);
plot(f,P2);

xIim([O0 700]);

title(['Specimen N«=',num2str(specnum), " :

xlabel ("Frequency [Hz]");
ylabel ("Amplitude [dB]");
figure(“Color”,[1 1 1]);
plot(f,P5);

xIim([O0 700]);

title(["Specimen N«',num2str(specnum), " :

xlabel ("Frequency [Hz]");
ylabel ("Magnitude [-]17);

Input Power Spectrum®]);

Output Power Spectrum®]);

Coherence Function®]);

%%Peak identification for first four bending frequencies
%%For some specimens, the Minpeakdistance needs to be adjusted

[PKSb,LOCSb] =

findpeaks(P4, "SORTSTR", "descend” , "MINPEAKDISTANCE",300) ;
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for i=1:6

peaksb(i,1) = LOCSb(i);

peaksb(i,2)

PKSb(1);

end

peaksb_sort = sortrows(peaksb,1);
flb=F(peaksb_sort(1,1));
b1=P4(peaksb_sort(1,1));
f2b=F(peaksb_sort(2,1));
b2=P4(peaksb_sort(2,1));
f3b=F(peaksb_sort(4,1));
b3=P4(peaksb_sort(4,1));

%%Peak identification for first two torsional frequency
%%For some specimens, the Minpeakdistance needs to be adjusted

[PKSt,LOCSt] =
findpeaks(P4, "SORTSTR", "descend” , "MINPEAKDISTANCE " ,500) ;

for i1=1:6
peakst(i,1l) = LOCSt(i);
peakst(i,2) = PKSt(i);

end

peakst _sort = sortrows(peakst,1l);
flt=F(peakst_sort(3,1));
t1=P4(peakst_sort(3,1));
f2t=F(peakst_sort(5,1));
t2=P4(peakst_sort(5,1));
%%Printing frequencies
flb=roundn(flb,-1)
f2b=roundn(f2b,-1)
T3b=roundn(f3b,-1)
flt=roundn(flt,-1)
f2t=roundn(f2t,-1)

%%UCalculation of G-modullus using Euler theory

G1_Euler=round(4*f1t"2*L"2*p*Ip/ (Kt*172)*10"(-6));
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G2_Euler=round(4*f2t"2*L"2*p* 1 p/ (Kt*272)*10"(-6)) ;
Gm=(G1_Euler+G2_Euler)/2;

%%Calculation of flexural E-modulus using Euler theory
E1 Euler=Euler_ b(flb,p,A,l1z,L);

E2 Euler=Euler_b(f2b,p,A,1z,L);

E3 _Euler=Euler b(f3b,p,A,1z,L);

%%Calculation of flexural E-modulus using Timoshenko theory with Gm
E1l Timo=Timo_b(flb,p,G1 Euler,A,ks,l1z,L);

E2 Timo=Timo_b(f2b,p,G1_Euler,A,ks,l1z,L);
E3_Timo=Timo_b(f3b,p,G1 Euler,A,ks,l1z,L);

%%Print G and E

G1 _Euler

G2 _Euler

E1 Euler

E2_Euler

E3 Euler

E1 Timo

E2 Timo

E3_Timo

%%Plot of FRF and Coherence

figure("Color-,[1 1 1]);

plotyy(f,P4,f,P5)

[AX,H1,H2] = plotyy(Ff,P4,f,P5, plot");
set(get(AX(1), "Ylabel "), "String", "Amplitude [dB]")
set(get(AX(2), "Ylabel "), "String", "Magnitude [-]°)
xlabel ("Frequency [Hz]");

title(['Specimen N«',num2str(specnum),”: FRF and Coherence
Function®]);

set(AX(1), " XLim",[0 700]);
set(AX(2),"XLim",[0 700]);
hold on;

%%Marking of the identified frequencies

08 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60



plot(flb,b1+0.05, "k™", "markerfacecolor™, "r");
plot(f2b,b2+0.05, "k, "markerfacecolor”, "r");
plot(f3b,b3+0.05, "k™", "markerfacecolor®,"r");
plot(flt,t1+0.05, "k™", "markerfacecolor®,"g");
plot(f2t,t2+0.05, "k~ , "markerfacecolor®, "g");
text(flb-40,b1+0.3,num2str(flb));
text(f2b-40,b2+0.3, num2str(f2b));
text(f3b-40,b3+0.3,num2str(f3b));
text(f1t-40,t1+0.3,num2str(flt));
text(f2t-40,t2+0.3,num2str(f2t));

hold off

%%%0%%%%%6%%%6%%6%%%6%%%%%6%% 6% %6 %% %% % %% %6 %% %6%% %% %% % %% %
%%%0%%%%%6%%%6%%6%%%6%%%%%6%% 6% %6%%%6%% %% %6 %% %6%% % %% %% %% %

function E = Euler_b(f,p,A,l1z,L)

%%Definition of the range for E

Emin = 8000;

Emax = 20000;

%%Calculation

w = 2*pi*f;

i =0;

for EO = Emin:Emax
EO = E0*1076;
a = EO*lz;
b = 0;
Cc = -A*p*w/2;
11 = sqrt(sart((-(b/(2*a)))"2-c/a)-b/(2*a));

12 sgrt(sgrt((-(b/(2*a)))"2-c/a)+b/(2*a));
cl = sinh(L*I11);

c2 = cosh(L*11);

c3 = sin(L*12);

c4 = cos(L*12);

M = [-(@*127"3-b*12) 0 a*1173+b*I1 0;

0 —-a*12/72 0 a*1172;
-c4*(@*12°3-b*12) c3*(@*1273-b*12) c2*(a*11"3+b*11)
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cl*(a*11"3+b*11);
—a*c3*I2"2 —a*c4*12"2 a*cl*1172 a*c2*1172];

Det = det(M);

i=i+1;

result(i,l) EO*10"N(-6);
result(i,?2)

sig(i) = sign(Det);

Det;

end
sig = sig”;
for i=1:length(sig)-1
diff = sig(i)-sig(i+l);
if diff==
continue
else break
end

end

if abs(result(i,2)) < abs(result(i+l,2))

E result(i,l);

else E = result(i+1,1);

end
06%%%%%%%6%6%%%%% % %6%6%6%%% %% %%6%6%%% %% % %6%6%% %% % % % %% %% %%
96%%%%%%%6%6%%%% %% %6%%%%% %% %%6%%% %% % % %6%6%% %% % % % %% %% %%
function E = Timo_b(f,p,G,A,ks,1z,L)

%%Definition of range for E

Emin = 8000;
Emax = 20000;
%%Calculation
G = G*1076;

S = 0;

ka = 0;

k = 0;

w = 2*pi*f;
i=0;

for EO = Emin:Emax
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EO = E0*1076;

b2 = A*LM*p*wA2/(E0*1Z2);
r2 = 1z/(A*L"2);

fi = ks*A*G;

s2 = (EO*1z2)/(Fi*L"2);

p2 = -((L"2*S)/(E0*12));

delta = p2/b2+r2*(1-p2*s2)+s2;

ml = (sart(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-b2*r2*s2))/b2+delta™2)-
delta))/sqrt(2*(1-p2*s2));
m2 = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-

b2*r2*s2))/b2+delta”2)+delta))/sqrt(2*(1-p2*s2));

H = (b2*s2+m1"2*(1-p2*s2))/(L*ml);

N
|

= (m27"2*(1-p2*s2)-b2*s2)/(L*m2);

cl sinh(ml);

c2 = cosh(ml);
c3 = sin(m2);

c4 = cos(m2);

M= [-ka -Fi*H+Fi*ml/L+m1*S/L -ka  -Fi*Z+fi*m2/L+m2*S/L;

ka*c2-fi*H*cl+fi*ml*cl/L+m1*S*c1/L
—-Fi*H*c2+Fi*ml*c2/L+m1*S*c2/L+ka*cl
ka*c4+fi*Z*c3-Fi*m2*c3/L-m2*S*c3/L
-Fi*Z*c4+fFi*m2*c4/L+m2*S*c4/L+ka*c3;
-EO*1z*H*m1/L H*k EO*1z*Z*m2/L Z*K;
-EO*1z*H*ml1*c2/L-H*k*c1 -EO*1z*H*m1*cl/L-H*k*c2
EO*1z*Z*m2*c4/L+Z*k*c3 EO*1z*Z*m2*c3/L-Z*k*c4] ;

Det = det(M);

i=i+l;
result(i,l) = EO*10"(-6);
result(i,2) = Det;

sig(i) = sign(Det);

end

sig = sig”;

for i=1:length(sig)-1
diff = sig(i)-sig(i+l);
if diff==0

continue
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else break
end
end
if abs(result(i,2)) < abs(result(i+l,2))

E

result(i,l);
else E = result(i+1,1);

end

11.1.4 Dual parameter estimation
Extraction of frequencies

This program extracts the frequencies from the tensile tests. It works in the same way
as the one for the free-free tests. Furthermore the input and output spectra as well as
the frequency response and coherence function are depicted.

%%Remove all variables from the workspace, clear command window and
%%close open windows

clc

clear all

close all

%%Fille import

[filename, pathname] = uigetfile("*.txt", "Pick an Input File");
infile=[pathname filename];
importfile(infile)

clear("colheaders™);

clear("textdata®);

%%Variable declaration

s=data(:,1); %%time vector

V=data(:,2); %%imput signal
Vl=data(:,3); %%output signal at the edge

testnumber = sscanf(filename, "T%f %f"); %%specimen number and load
level

specnum = testnumber(l)
level = testnumber(2)

SR=2560; %%Sampling rate
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NFFT=2716; %%Number of FFT points
%%FFT into spectra and Windowing using Welch method
[x0,f]

[x1,f]
%%Estimation of FRF

pwelch(V,[ 1.[ 1.NFFT,SR);

pwelch(V1,[ 1,[ 1,NFFT,SR);

[x2,f] = tfestimate(V,V1,[ 1.[ 1.NFFT,SR);
%%Estimation of Coherence function

[x3,F] = mscohere(V,V1,[ 1.[ 1.NFFT,SR);
%%Logging for semi-logarithmic plot
PO=log(x0);

P1=log(x1);

P2=real (10g(x2));

P3=l1og(x3);

P2(1:20)=0;

P2(18049:32769)=0;

P3(18049:32769)=0;

%%Plotting of input and output spectra
figure("Color",[1 1 1]);

plot(f,P0);

xIim([O0 700]);

title(['Specimen N«',num2str(specnum),”: Input Power Spectrum®]);
xlabel (*Frequency [Hz]");

ylabel ("Amplitude [dB]");
figure("Color",[1 1 1]);

plot(f,P1);

xIim([O0 700]);

title(['Specimen Ne',num2str(specnum),”: Output Power Spectrum®]);
xlabel (*Frequency [Hz]");

ylabel ("Amplitude [dB]");

%%Peak identification for first three bending frequencies
%%For some specimens, the Minpeakdistance needs to be adjusted

[PKSb,LOCSb] =
findpeaks(P2, "SORTSTR", "descend” , "MINPEAKDISTANCE" ,1700) ;
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for i=1:5

peaksb(i,1) = LOCSb(i);

peaksb(i,2)

PKSb(1);

end

peaksb_sort = sortrows(peaksb,1);
flb=F(peaksb_sort(1,1));

b1=P2(peaksb_sort(1,1));

f2b=F(peaksb_sort(2,1));

b2=P2(peaksb_sort(2,1));

f3b=F(peaksb_sort(4,1));

b3=P2(peaksb_sort(4,1));

%%Printing frequencies

flb=roundn(flb,-1)

f2b=roundn(f2b,-1)

T3b=roundn(f3b,-1)

%%Plot of FRF and Coherence

figure("Color",[1 1 1]D);

plotyy(f,P2,f,P3)

[AX,H1,H2] = plotyy(f,P2,T,P3, plot™);
set(get(AX(1), "Ylabel "), "String”, "Amplitude [dB]")
set(get(AX(2), "Ylabel "), "String", "Magnitude [-]°)
xlabel ("Frequency [Hz]");

title(['sSpecimen N=',num2str(specnum),”: FRF and Coherence Function
S = ",num2str(level),” N"1);

set(AX(1), “"XLim",[0 700]);

set(AX(2), "XLim",[0 700]);

hold on;

%%Marking of the identified frequencies
plot(flb,b1+0.05, "k, "markerfacecolor®, "r");
plot(f2b,b2+0.05, "k™", "markerfacecolor™, "r");
plot(f3b,b3+0.05, "k~*, "markerfacecolor®,"r");

text(flb-40,b1+0.3,num2str(flb));
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text(f2b-40,b2+0.3, num2str(f2b));
text(f3b-40,b3+0.3,num2str(f3b));

hold offT

Parameter estimation

This script uses the entered frequencies to estimate the axial load S and the rotational
stiffness k at the supports assuming equal boundary conditions. This is done by using
each frequency to calculate S for a range of different k. The results are two curves of
which the crossing point is searched, which finally yields the result for the two
unknown parameters. The two curves together with the solutions are depicted.

%%Remove all variables from the workspace, clear command window and
%%close open windows

clear all
close all
clc

%%Enter iInput data

fl = 134.3; %%First measured frequency

2 = 336.7; %%Second measured frequency

E = 16805*1076; %%E-modullus In N/m2

G = 789*1076; %%G-modullus In N/m2

p = 527.7; %%Specimen density in kg/m3

L = 1.255; %%Clear length in m

H = 0.075; %%Specimen height in m

B = 0.035; %%Specimen width in m

ka = 107M15; %%Value for translational support in x=0 in N/m

%%uDefinition of range for S and k

Smin = O;
Smax = 1000000;
kmin = 0;
kmax = 750000;

%%l teration
A = B*H;

ks = 5/6;
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Iz = BA"3*H/12;

iii=1;

n = 150;
diffk = kmax-kmin;
kount = O;

while diffk > 0.1
%%Approximation of S1
dk = (kmax-kmin)/n;
for j = 1:(n+l)
kO = kmin+dk*(j-1);
resultk(j) = kO;
count = O;
dS = (Smax-Smin)/n;

for i=1:(n+l)

SO = Smin+dS*(i-1);

b2 = A*L 4*p*(2*pi*F1) 2/ (E*12);
r2 = 1z/(A*L"2);

fi = ks*A*G;

s2 = (E*1z2)/(Fi*L"2);

p2 = -((L"2*S0)/(E*12));

delta = p2/b2+r2*(1-p2*s2)+s2;

ml = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+delta”2)-delta))/sqrt(2*(1-p2*s2));
m2 = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+deltan2)+delta))/sqrt(2*(1-p2*s2));
H = (b2*s2+m1"2*(1-p2*s2))/(L*ml);

N
|

= (m27"2*(1-p2*s2)-b2*s2)/(L*m2);

cl = sinh(ml);

c2 = cosh(ml);

c3 = sin(m2);

c4 = cos(m2);

M= [-ka -Fi*H+Fi*m1l/L+m1*S0/L -ka

-Fi*Z+Fi*m2/L+m2*S0/L ;
ka*c2-fi*H*cl+Fi*ml*cl/L+m1*SO0*cl/L
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-fFi*H*c2+fFi*ml*c2/L+m1*S0*c2/L+ka*cl
ka*c4+Fi*Z*c3-Fi*m2*c3/L-m2*S0*c3/L -
Fi*Z*c4+fFi*m2*c4/L+m2*S0*c4/L+ka*c3;
-E*1z*H*m1/L H*kO E*1z*Z*m2/L Z*k0;
-E*1z*H*m1*c2/L-H*k0*c1 -E*1z*H*m1*c1/L-H*k0*c2
E*1z*Z*m2*c4/L+Z*k0*c3 E*1z*Z*m2*c3/L-Z*k0*c4] ;

Det = det(M);
sig = sign(Det);
if count == 1

change = sig/prevsig;

if change <= 0

force(l,1) = prevsS;
force(1,2) = SO;
break
end
end
prevS = SO;

prevsig = sig;

count = 1;

end

error = 0.1;

Sminl = force(l,1);
Smax1l = force(1,2);

diff = Smax1-Sminl;
while diff > error
count = O;
dS1 = (Smax1-Sminl)/n;
for i=1:(n+l)
SO0 = Sminl+dS1*(i-1);
b2 = A*LM*p*(2*pi*f1) 2/ (E*12);
r2 = 1z/(A*L"2);
i = Kks*A*G;
s2 = (E*X1z)/(Fi*L"2);
p2 = -((L"2*S0)/(E*12));

delta = p2/b2+r2*(1-p2*s2)+s2;
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ml = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+delta”2)-delta))/sqrt(2*(1-p2*s2));
m2 = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-

b2*r2*s2))/b2+deltar2) +delta))/sqrt(2*(1-p2*s2));

H = (b2*s2+m1"2*(1-p2*s2))/(L*ml);

N
I

(m272*(1-p2*s2)-b2*s2)/(L*m2) ;
cl = sinh(ml);
c2 = cosh(ml);
c3 = sin(m2);
c4 = cos(m2);

M= [-ka -Fi*H+Fi*m1/L+m1*S0/L -ka

-Fi*Z+Fi*m2/L+m2*S0/L ;

ka*c2-fi*H*cl+Fi*ml*c1l/L+m1*SO0*cl1l/L
-Fi*H*c2+Fi*ml*c2/L+m1*S0*c2/L+ka*cl

ka*c4+fFi*Z*c3-Fi*m2*c3/L-m2*S0*c3/L -
Fi*Z*c4+Fi*m2*c4/L+m2*S0*c4/L+ka*c3;

-E*1z*H*m1/L H*kO E*1z*Z*m2/L Z*k0;

-E*1z*H*m1*c2/L-H*k0*c1 -E*1z*H*m1*c1/L-H*k0*c2
E*1z*Z*m2*c4/L+Z*k0*c3 E*1z*Z*m2*c3/L-Z*k0*c4] ;

Det = det(M);
sig = sign(Det);
if count == 1

change = sig/prevsig;

if change <= 0

force(1,1) = prevsS;
force(1,2) = SO;
break
end
end
prevS = SO;

prevsig = sig;

count = 1;

end

Sminl = force(l,1);

Smax1l = force(1,2);

diff = Smax1-Sminl;
end

resultS1(j) = Sminl;
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end
resultk = resultk-;
resultS1 = resultS1-;
figure(l);
scatter(resultk,resultSl,"0");
hold on;
%%End of Approximation of S1
Y%%Approximation of S2
dk = (kmax-kmin)/n;
for j = 1:(n+l)

kO = kmin+dk*(j-1);

resultk@) = kO;

count = O;

dS = (Smax-Smin)/n;

for i=1:(n+l)

SO0 = Smin+dS*(i-1);

b2 = A*LA4*p*(2*pi*F2) 2/ (E*1Z);

r2 = 1z/(A*L"2);

fi = ks*A*G;

s2 = (E*X12)/(fi*L"2);

p2 = -((L"2*S0)/(E*12));

delta = p2/b2+r2*(1-p2*s2)+s2;

ml = (sqrt(b2)*sqgrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+delta”2)-delta))/sqrt(2*(1-p2*s2));
m2 = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-

b2*r2*s2))/b2+delta”2)+delta))/sqrt(2*(1-p2*s2));

H = (b2*s2+m1/"2*(1-p2*s2))/(L*ml);

N
I

(m272*(1-p2*s2)-b2*s2)/(L*m2) ;
cl = sinh(ml);

c2 = cosh(ml);

c3 = sin(m2);

c4 = cos(m2);
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M= [-ka -Fi*H+Fi*m1/L+m1*S0/L -ka
—Fi1*Z+fi*m2/L+m2*S0/L ;
ka*c2-fi*H*cl1+Fi*ml*c1l/L+m1*S0*c1l/L
-Fi*H*c2+Fi*ml1*c2/L+m1*S0*c2/L+ka*cl
ka*c4+Fi*Z*c3-Fi*m2*c3/L-m2*S0*c3/L -
Fi*Z*c4+Fi*m2*c4/L+m2*S0*c4/L+ka*c3;
-E*1z*H*m1/L H*kO E*1z*Z*m2/L Z*k0;
-E*1z*H*m1*c2/L-H*k0*c1 -E*1z*H*m1*c1/L-H*k0*c2
E*1z*Z*m2*c4/L+Z*k0*c3 E*1z*Z*m2*c3/L-Z*k0*c4] ;
Det = det(M);
sig = sign(Det);
if count ==
change = sig/prevsig;
if change <= 0
force(l,1) = prevs;
force(1,2) = SO;
break
end
end
prevS = SO;
prevsig = sig;

count = 1;

end
error
Sminl

Smax1

0.1;
force(l1,1);

force(1,2);

diff = Smax1-Sminl;

whille diff > error

count = O;

dS1 = (Smax1-Sminl)/n;

for i=1:(n+l)

SO
b2

r2

s2

p2

Sminl+dS1*(i-1);
A*LAG*p*(2*pi*F2)"2/ (E*1Z);
12/ (A*L"2);

KsS*A*G;

(E*12)/(Fi*L"2);

—((L"2*S0)/ (E*12));
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delta = p2/b2+r2*(1-p2*s2)+s2;

ml = (sqrt(b2)*sqgrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+delta”2)-delta))/sqrt(2*(1-p2*s2));
m2 = (sgrt(b2)*sqrt(sqrt((4*(1-p2*s2)*(1-
b2*r2*s2))/b2+delta”2)+delta))/sqrt(2*(1-p2*s2));
H = (b2*s2+m1/"2*(1-p2*s2))/(L*ml);

N
|

= (m27"2*(1-p2*s2)-b2*s2)/(L*m2);
cl = sinh(ml);
c2 = cosh(ml);
c3 = sin(m2);
c4 = cos(m2);

M= [-ka -Fi*H+Fi*m1/L+m1*S0/L -ka

-Fi*Z+fi*m2/L+m2*S0/L ;

ka*c2-fi*H*cl1+Fi*ml1*c1/L+m1*S0*c1/L
-Fi*H*c2+fFi*ml*c2/L+m1*S0*c2/L+ka*cl

ka*c4+fi*Z*c3-Fi*m2*c3/L-m2*S0*c3/L -
Fi*Z*c4+Fi*m2*c4/L+m2*S0*c4/L+ka*c3;

-E*1z*H*m1/L H*kO E*1z*Z*m2/L Z*k0;

-E*1z*H*m1*c2/L-H*k0*c1 -E*1z*H*m1*c1/L-H*k0*c2
E*1z*Z*m2*c4/L+Z*k0*c3 E*1z*Z*m2*c3/L-Z*k0*c4] ;

Det = det(M);
sig = sign(Det);
if count ==

change = sig/prevsig;
if change <= 0

force(l,1) = prevsS;

force(1,2) = SO;
break
end
end
prevS = SO;

prevsig = sig;
count = 1;
end

Sminl = force(1,1);

Smax1 force(1,2);

diff = Smax1-Sminl;
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end

resultS2(j) = Sminl;
end
resultk = resultk®;
resultS2 = resultS2-;
scatter(resultk,resultS2, "x");
%%End of Approximation of S2
%%Determination of crossing point
diffS = resultS2-resultS1;
signdiff = sign(diffS);
[Y,1] = min(abs(diffS));

if diffS ==
kfin = resultk(l);
SFfin = resultSi(l);
end

it signdiff(l) == signdiff(l+1)
kmin = resultk(l-1);
kmax = resultk(l);
Smin = resultS2(1+1);
Smax = resultS2(1-2);
else
kmin = resultk(l);
kmax = resultk(l+1);
Smin = resultS2(1+2);
Smax = resultS2(1-1);
end
diffk = kmax-kmin;
it kount ==
resultkplot = resultk;
resultSiplot = resultSl;

resultS2plot

resultS2;
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end

kount = kount+1;

end

%%Plot of iteration curves

figure(2)
plot(resultkplot.*0.001,resultS1plot.-*0.001, "Color®,[O0 O 1])
hold on

plot(resultkplot.*0.001,resultS2plot.*0.001, "Color™, [0
0.498039215803146 0])

scatter(kmin.*0.001,Smax.-*0.001, " filled", "red")
plot(0:0.1:kmin.*0.001,Smax.*0.001)
plot(kmin.*0.001,0:0.1:Smax-*0.001)
title(["Reference Aluminium Specimen S = 1245 N"]);
xlabel ("Rotational stiffness k [kNm]®);

ylabel ("Axial load S [kN]);

legend(" 1", "12%);

%%Print results

kmin

Smax
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11.2 Appendix B — Material properties
11.2.1 Density measurements

Data

Table 11-1 Weights and densities of the specimen

Beam N° Weight P
[ [ke] [kg/m’]
1 2.078 527.7
2 2.015 511.7
3 1.912 485.6
4 1.955 496.5
5 2.028 515.0
6 1.957 497.0
7 1.904 483.6
8 1.837 466.5
9 2.014 5115
10 1.990 505.4
11 2.098 532.8
12 2.056 522.2
13 2.015 511.7
14 1.830 464.8
15 1.972 500.8
16 1.941 493.0
17 1.762 447.5
18 1.945 484.0
19 1.819 462.0
20 1.814 460.7
21 1.924 488.6
22 1.906 484.1
23 1.813 460.4
24 1.998 507.4
25 1.974 501.3
26 1.831 465.0
27 1.886 479.0
28 2.036 517.1
29 1.762 4475
30 1.810 459.7
31 1.820 462.2
32 1.856 471.4

Mean value 488.6
Std. dev. 24.2
Aluminium 1.976 2643.5
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11.2.2 Moisture measurements

Moisture measurements in three different point and mean moisture contents

Data
Table 11-2
of the specimen
Beam N° w, W, W w
[l (%] [%] (%] [%]
1 12.8 13.2 12.6 12.9
125 13.0 125 12.7
3 11.9 12.9 12.3 12.4
4 12.8 13.5 125 12.9
5 12.4 13.8 12.6 12.9
6 115 131 12.9 125
7 12.0 13.0 11.8 12.3
8 125 13.1 12.0 12.5
9 125 13.3 12.1 12.6
10 125 13.6 12.6 12.9
11 125 14.0 12.6 13.0
12 12.2 14.0 12.8 13.0
13 13.2 13.6 12.0 12.9
14 12.0 12.6 11.5 12.0
15 121 13.5 13.0 12.9
16 13.0 13.2 12.0 12.7
17 12.2 12.5 11.8 12.2
18 13.0 13.1 12.6 12.9
19 129 12.5 12.2 12.5
20 11.6 12.4 11.5 11.8
21 13.2 13.1 11.2 12.5
22 13.1 13.5 12.6 13.1
23 13.1 13.2 11.8 12.7
24 13.0 13.3 11.8 12.7
25 12,6 12.9 11.6 12.4
26 11.7 12.1 11.1 11.6
27 9.8 11.0 9.6 10.1
28 13.4 13.6 12.5 13.2
29 121 13.1 12.1 124
30 11.9 12.7 11.8 12.1
31 12.2 12.5 11.9 12.2
32 11.8 12.4 12.1 12.1
Mean value 12.5
Std. dev. 0.6
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11.2.3 Four-point bending tests

Data

Table 11-3 Results of four-point bending tests

Deflection 1 Deflection 2
Beam N Supp 1 Mid Supp 2 Tot Supp 1 Mid Supp 2 Tot Load 1 Load 2 E

[mm] [ram] [rma] [mim] [mm] [mm] [mm] [mirn] [M] [M] [MPa]

1 0.366 1.295 0321 0,952 0.408 1.852 0444 1426 412.0 606.3 14526
2 0.235 1.372 0.340 1.085 0.272 1.963 0.450 1.602 412.0 606.3 13319
3 0.141 1.457 0,335 1.229 0.175 2,106 0.429 1.804 412.0 606.3 115987
4 0.138 1.393 0321 1.164 0.172 2.011 0.411 1720 412.0 606.3 12357
5 0.181 1.359 0.369 1.084 0.216 1.927 0.482 1.578 412.0 606.3 13553
6 0.220 1.354 0.360 1.039 0.358 1.949 0.466 1.537 412.0 606.3 13855
7 0.217 1.495 0.413 1.180 0.258 2.141 0.520 1752 412.0 606.3 12061
8 0.217 1.448 0.370 1.155 0.278 2.069 0.473 1.694 412.0 606.3 12738
9 0.2786 1.401 0.345 1.091 0.320 1.991 0.496 1.583 412.0 606.3 13585
10 0.163 1.323 0.363 1.060 0.159% 1.893 0.467 1.560 412.0 606.3 13785
11 0.230 1.251 0.310 0,991 0.272 1.812 0.399 1.477 412.0 606.3 14197
12 0.1%2 1.342 0.332 1.080 0.234 1511 0.432 1.578 412.0 606.3 13841
13 0.242 1.398 0.374 1.090 0.285 1.999 0.495 1.609 412.0 606.3 13281
14 0.226 1.400 0.362 1.106 0.268 2.006 0.482 1631 412.0 606.3 13129
15 0.206 1.385 0.348 1.108 0.247 1.976 0.458 1624 412.0 606.3 13371
18 0.248 1.381 0.401 1.057 0.292 1.966 0.546 1.547 412.0 606.3 14052
17 0.328 1.687 0.163 1.407 0.437 2.413 0.356 2,017 412.0 606.3 11300
18 0.145 1.375 0324 1.139 0.188 1.979 0.418 1676 412.0 606.3 12824
19 0.185 1814 0.386 1.529 0.255 2.569 0.488 2,138 412.0 606.3 10303
20 0.303 1563 0.397 1.213 0.344 2.245 0.547 1.800 412.0 606.3 11752
21 0.1%3 1477 0.326 1.218 0.270 2,115 0.425 1768 412.0 606.3 12532
22 0.229 1.408 0.357 1.115 0.278 2.019 0.470 1.645 412.0 606.3 13005
23 0.175 1.433 0.364 1.164 0.214 2.068 0.473 1725 412.0 606.3 12286
24 0.128 1.400 0.359 1.157 0171 2.017 0.462 1701 412.0 606.3 12670
25 0.168 1321 0,341 1.067 0.210 1.902 0.443 1576 412.0 606.3 13542
26 0.226 1.481 0.361 1.188 0.288 2121 0.462 1.746 412.0 606.3 12341
27 0.167 1.589 0.315 1.448 0.218 2.431 0.416 2114 412.0 606.3 10349
28 0.217 1.423 0.346 1.142 0.260 2.038 0.453 1.682 412.0 606.3 12764
29 0.179 1.370 0.289 1.136 0.218 1.985 0.407 1672 412.0 606.3 12860
30 0.151 1.596 0.428 1.387 0.220 2.416 0.551 2,031 412.0 606.3 10703
31 0.217 1528 0.363 1.238 0.268 2,193 0.479 1.820 412.0 606.3 11853
32 0.145 1.548 0.346 1.303 0.178 2.220 0.441 1.911 412.0 606.3 11337
Mean value 12717

Stol. dev. 1117
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11.2.4 Longitudinal vibration tests

Data
Table 11-4 Results of the longitudinal tests
Beam N* fu fa Ey E, E..
[-] [Hz] [Hz] [MPa] [MPa] [MPa]
1 1891 3746 16983 16661 16822
2 1793 3528 14805 14330 14568
3 1767 3547 13646 13746 13696
4 1788 3579 14286 14310 14298
5 1788 3555 14818 14644 14731
6 1832 3641 15012 14825 14919
7 1786 3574 13883 13899 13891
8 1779 3539 13288 13146 13217
9 1836 3613 15518 15023 15271
10 1858 3668 15703 15299 15501
11 1793 3573 15416 15304 15360
12 1814 3603 15465 15253 15359
13 1824 3615 15322 15046 15184
14 1846 3707 14255 14371 14313
15 1871 3725 15778 15635 15707
16 1882 3729 15716 15425 15571
17 1749 3436 12320 11887 12104
18 1842 3666 15085 14938 15012
19 1750 3544 12734 13056 12895
20 1776 3536 13078 12961 13020
21 1756 3531 13560 13707 13634
22 1781 3546 13820 13696 13758
23 1789 3603 13262 13448 13355
24 1831 3676 15310 15427 15369
25 1833 3632 15159 14879 15019
26 1784 3534 13319 13067 13193
27 1698 3388 12429 12371 12400
28 1742 3511 14123 14342 14233
23 1902 3778 14570 14371 14471
30 1688 3386 11789 11859 11824
31 1826 3600 13870 13478 13674
32 1786 3578 13533 13579 13556
Mean value 14308 14187 14247
Std. dev. 1203 1128 1161
Aluminium 1710 3421 69106 69146 69126
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Figure 11-1  Correlation between longitudinal E-modulus found using f;. and static E-
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FRF plots
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Specimen M*: FRFand Coherence Function
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Specimen N*T: FRFand Coherence Function
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Specimen N*10: FRF and Coherence Function
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SpecimenM®13: FRF and Coherence Function
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Specimen N*16: FRF and Coherence Function
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Specirnen M*19: FRF and Cohergnce Function
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Specimen M*22: FRF and Coherence Function
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SpecimenM®25: FRF and Coherence Function
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Specimen M*28: FRFand Coherence Function
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SpecimenM®31: FRFand Coherence Function
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11.2.5 Transversal vibration tests

Data
Table 11-5 Results of transversal tests
Beam N° fiu fou fa fi fa G, G, Gy, Ew Ex Esx Ers
[ [Hz] [Hz] [Hz] [Hz] [Hz] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
1 89.5 240.5 455.4 289.8 587.0 789 809 799 16805 16616 16415 16612
2 85.4 226.6 438.7 309.7 632.6 873 911 892 14734 14139 14472 14468
3 84.0 226.7 442.0 303.9 606.6 798 795 797 13584 13451 14008 13681
4 84.4 229.4 441.0 305.0 617.1 822 841 832 14022 14092 14242 14119
5 84.6 227.1 437.0 304.3 615.9 848 869 859 14615 14316 14489 14473
6 87.0 234.8 452.7 300.1 610.4 796 824 810 14931 14830 15147 14969
7 84.5 227.3 435.5 304.3 614.8 797 813 805 13691 13468 13503 13554
8 84.3 225.9 436.5 301.3 610.1 753 772 763 13147 12836 13116 13033
9 86.5 232.5 439.1 296.9 601.5 802 823 813 15192 14967 14609 14923
10 87.7 237.7 455.2 303.8 611.0 830 839 835 15427 15455 15552 15478
11 84.7 229.7 433.0 297.1 598.4 837 849 843 15165 15198 14756 15040
12 85.6 231.6 437.2 301.4 610.0 844 864 854 15179 15135 14731 15015
13 84.3 229.1 429.4 299.0 602.2 814 825 820 14423 14509 13899 14277
14 85.7 234.7 441.4 296.3 594.7 726 731 729 13548 13873 13433 13618
15 87.4 234.1 450.3 292.0 592.1 760 781 771 15196 14889 15170 15085
16 875 235.9 449.3 290.0 587.5 738 757 748 14997 14904 14882 14928
17 82.1 218.7 424.5 3229 652.9 830 848 839 11937 11452 11708 11699
18 85.7 234.3 439.6 293.9 588.5 759 761 760 14402 14704 14173 14426
19 82.2 224.1 433.1 267.2 587.9 587 710 649 12409 12645 13081 12715
20 83.8 225.2 420.9 287.9 584.4 679 700 690 12842 12646 12064 12517
21 82.0 222.0 423.1 303.9 616.1 803 825 814 13018 12956 12815 12930
22 83.4 222.7 430.5 310.2 628.6 829 851 840 13341 12900 13138 13126
23 839 226.8 438.1 301.7 600.7 746 739 743 12850 12772 13043 12888
24 85.6 229.3 445.8 298.1 605.7 802 828 815 14753 14417 14970 14713
25 86.6 232.1 441.9 310.2 626.5 858 875 867 14908 14559 14400 14622
26 82.7 2233 433.2 306.5 621.3 777 798 788 12601 12473 12819 12631
27 79.4 216.5 426.4 319.4 648.8 869 897 883 11946 12013 12674 12211
28 80.8 223.4 427.9 300.2 612.0 829 861 845 13376 13907 13929 13737
29 89.1 240.7 457.7 288.4 586.3 662 684 673 14124 14123 14094 14114
30 789 219.2 422.5 3329 666.0 906 907 907 11311 11756 11853 11653
31 87.4 233.2 446.2 300.9 611.3 745 768 757 14014 13592 13637 13748
32 84.2 226.8 437.2 307.9 621.6 795 810 803 13246 13055 13247 13183
Mean value 791 811 801 13931 13834 13877 13881
Std. dewv. 65 59 61 1223 1185 1094 1152
Aluminium 23.2 63.9 125.2 374.7 / 24676 / / 67289 67223 67211 67241
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Figure 11-4  Correlation between transversal E-modulus found using f;, and static E-
modulus
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Figure 11-5 Correlation between transversal E-modulus found using f,, and static E-
modulus
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Figure 11-6  Correlation between transversal E-modulus found using fs, and static E-
modulus
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Figure 11-7  Correlation between transversal E-modulus found using all frequencies and
static E-modulus
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FRF plots
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Specirnen M*: FRF and Coherence Funclion
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Specimen N*T: FRF and Coherence Function
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Specimen M*10: FRF and Coherence Function
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Specimen M*13: FRF and Coherence Function
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Specimen h*16: FRF and Coherence Function
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Specimen MN*19: FRF and Coherence Function
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Specimen MN*22: FRF and Coherence Function
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Specimen MN°25: FRF and Coherence Function
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SpecimenM®28: FRF and Coherence Function

5 T ] Y T IY T — T T 1]
208 2234 3002
E12
427.9

iy =
. l 2
o 10 g
-
i 7

_5 1 1 1 1 1 1 D

1] 100 200 300 400 s00 500 ?Ul%

Frequency[Hz]

Specitnen M*29: FRF and Coherence Function

5 TT T T — T W T
[T 8.1 Vl[m.?

28584 556.3

iy =
o L]
o 0
3o 102
T
E ¢

- 1 1 1 1 1 1

50 100 200 300 400 500 600 ?Dﬁm

Frequency [Hz]
Specimen MN*30: FRF and Coherence Function
0
g r T —Wr i fY ! kst
4 7.9
&

2
o o
=z o
L] =)
i 2
T
E 4

2+ <8

4+ =10

-B 1 1 1 1 1 1 12

0 100 200 300 400 S00 600 Too

Frequency[Hz]

142 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60



Specimen M3 1: FRF and Coherence Function
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11.3 Appendix C - Tension tests
11.3.1 Results for each specimen

T1

Data

Table 11-6 Results of frequency measurements and dual parameter estimation for
specimen N°1 using the transversal and longitudinal E-modulus for different
load levels

T using E, using E,
AppliedloadS % of yield S/S. fin fo L Kact Seat Erroron S Keer Sect Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5494 8.1 0.24 115.4 302.2 1.295 293030 6385 16.2 254060 6715 222
10301 15.1 0.44 120.6 3121 1.275 209300 13086 27.0 186260 13590 318
14813 21.8 0.61 1243 320.7 1.255 182890 15242 29 164040 15848 7.0
20111 29.6 0.82 128.6 326.9 1.255 178430 23908 18.9 159880 24607 224
24819 365 1.02 1319 3323 1.255 199280 29058 171 177230 29751 198
29234 43.0 1.20 134.3 336.7 1.255 243740 31557 7.9 213650 32188 10.1
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FRF plots

Specimen M*1: FRFand Coherence Function S=5494 N
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Specimen M1 FRFand Coherence Function 5= 201118
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T2

Data
Table 11-7 Results of frequency measurements and dual parameter estimation for
specimen N°2 using the transversal and longitudinal E-modulus for different
load levels
T2 using E, using E,

Applied foad s % of yield S/5¢ [ fap L Ko Sex Errorons Kot Sect Erroron S
[N] [%] ] [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
5199 7.6 0.25 111.9 291.8 1.295 168930 11412 119.5 167610 11440 120.0
10301 15.1 0.48 117.5 302.4 1.275 133310 18580 80.4 132380 18620 80.8
15009 22.1 0.67 121.2 308.9 1.255 82973 27006 79.8 82458 27074 80.4
19620 289 0.88 1245 3171 1.255 152040 23740 21.0 150890 23780 212
23838 35.1 1.07 128.1 3210 1.255 113290 34770 45.9 112520 34828 46.1
28940 42.6 1.29 131.5 325.8 1.255 104530 42756 47.7 104220 42823 48.0
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FRF plots
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Specimenh®2: FRF and Coherence Function 5= 19620N
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T3

Data
Table 11-8 Results of frequency measurements and dual parameter estimation for
specimen N°3 using the transversal and longitudinal E-modulus for different
load levels
T3 using E, using E,

Appliedloads % of yield 5/5. [ fap L Kest Seat Erroron$ Kest Seat Erroron S
[N] [%] -] [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] [%]
5592 8.2 0.30 110.7 289.3 1.295 216710 8745 56.4 204350 8866 58.5
10301 151 0.53 1155 298.9 1275 171170 13397 301 162740 13564 317
15009 221 0.75 120.2 306.0 1.255 86747 24396 62.5 83441 24747 64.9
21582 317 1.07 124.7 3138 1.255 105440 29396 36.2 101150 29717 37.7
25997 38.2 1.29 128.1 320.6 1.255 149050 31055 195 142010 31312 204
29724 43.7 1.48 131.0 324.3 1.255 127320 38347 29.0 121630 38661 30.1
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FRF plots

SpecimenM®3: FRFand Coherence Function 5= 5552N
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Specimen M*3: FRFand Coherence Function 5= 21582M
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T4

Data

Table 11-9

Results of frequency measurements and dual parameter estimation for
specimen N°4 using the transversal and longitudinal E-modulus for different
load levels

T4 using E,, using E,
Applied load S % of yield S/5. fio fap L Kest Sear Erroron$ [ Seat Erroron §

[N] [%] S| [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5297 7.8 0.27 105.6 278.8 1.295 101710 7747 46.2 87250 8761 65.4
9712 143 0.48 1114 291.1 1.275 108430 11542 188 92573 12613 29.9
14126 20.8 0.68 116.6 301.3 1.255 90174 17759 257 77283 19202 35.9
20307 299 0.98 1216 310.1 1.255 116420 22708 11.8 98514 23956 18.0
23740 349 1.14 124.7 314.0 1.255 101230 30358 27.9 85890 31896 34.4
28841 42.4 1.39 128.0 320.5 1.255 137020 32173 11.6 114240 33431 15.9
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FRF plots

Specimen M*: FRFand Coherence Function 5=529TN
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Specimen M FRFand Coherence Function 5= 20307N
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T5

Data

Table 11-10  Results of frequency measurements and dual parameter estimation for
specimen N°5 using the transversal and longitudinal E-modulus for different
load levels

5 using E, using E,
Applied load S % of yield /5. [ fo L Ko Sear Erroron$ K., Sect Erroron S

IN] [%] [l [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
5494 8.1 0.25 108.5 282.8 1.295 99134 13633 148.2 88456 14515 164.2
9810 14.4 0.43 1143 294.0 1.275 86171 20905 113.1 76910 22058 1249
14225 208 0.61 119.3 304.8 1.255 83255 25033 76.0 74189 26343 85.2
18737 276 0.80 123.7 3120 1.255 92738 31369 67.4 82321 32652 743
23642 34.8 1.01 127.4 3204 1.255 162980 30157 276 141220 30989 311
27959 41.1 1.19 130.4 325.2 1.255 173520 35208 259 149420 36063 29.0
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FRF plots

SpecimenM®S: FRFand Coherence Function 5= 5494N
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Specimen M*S: FRF and Coherence Funclion 5= 18737H
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T6

Data
Table 11-11  Results of frequency measurements and dual parameter estimation for
specimen N°6 using the transversal and longitudinal E-modulus for different
load levels
T6 using E, using E,
Appliedload S % of yield S/s. [N fop L Kest Seat Erroron § [ Se ErroronS
[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5396 7.9 0.25 110.2 290.1 1.295 149030 6841 26.8 141410 7063 30.9
10006 14.7 0.44 116.3 300.6 1.275 103310 16825 68.1 98620 17198 71.9
14813 218 0.64 1213 3111 1.255 93768 21630 46.0 89528 22083 49.1
18737 276 0.81 125.0 318.9 1.255 144740 21782 16.3 137220 22101 18.0
23152 340 1.00 129.1 325.8 1.255 171770 27198 175 161950 27504 18.8
27959 41.1 1.20 1323 331.5 1.255 213350 30845 10.3 199480 31127 11.3
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FRF plots

Specitnen M6: FRFand Coherence Function S5=5396M
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Specimen M6 FRF and Coherence Function S=158737TH
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T7

Data

Table 11-12  Results of frequency measurements and dual parameter estimation for
specimen N°7 using the transversal and longitudinal E-modulus for different
load levels

7 using E, using E,
Appliedloads % of yield 5/Se [N fo L [ Sest ErroronS Kes Sext Erroron S

IN] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5592 8.2 0.29 109.6 289.4 1.295 287260 4259 -23.8 233840 4546 -18.7
9908 14.6 0.50 115.1 300.9 1.275 279210 8065 -18.6 228300 8409 -15.1
14323 21.1 0.71 119.9 309.0 1.255 147170 15894 11.0 128230 16558 15.6
19130 28.1 0.94 124.6 318.5 1.255 279750 18234 -4.7 228240 18692 -2.3
23544 34.6 1.16 1283 324.8 1.255 374620 22881 -2.8 291200 23318 -1.0
28743 42.3 1.42 131.7 329.5 1.255 326870 29724 3.4 259430 30256 5.3
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FRF plots

Specimen MN*F: FRFand Coherence Function  5=5592M
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Specimen N*7: FRFand Coherence Function S=19130K
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T8

Data

Table 11-13  Results of frequency measurements and dual parameter estimation for
specimen N°8 using the transversal and longitudinal E-modulus for different
load levels

T8 using E, using E,
TAppliedload 5 % of yield 5/5. 1o fu L Keet Seat Erroron S [ Sea Erroron §

[N] [%] [ [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5494 8.1 0.27 109.0 282.3 1.295 79109 15349 179.4 72501 16055 192.2
10104 149 0.49 115.4 296.7 1.275 104500 17163 69.9 95073 17764 758
15009 221 0.70 120.7 307.3 1.255 89357 22872 52.4 81499 23649 57.6
19620 289 0.91 125.1 313.6 1.255 84086 31319 59.6 76565 32230 64.3
24329 35.8 1.13 128.7 322.0 1.255 154730 29639 21.8 137800 30213 24.2
29332 43.1 1.37 132.9 329.0 1.255 180530 35532 21.1 158870 36104 23.1
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FRF plots

Specimen M®3: FRFand Coherence Function 5= 5494 N
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Specimen M*S: FRFand Coherence Function 5= 196200
10 T i T

Arnplity de [4E]
htagnitnde [-]

1 1 1 1 1
100 200 300 400 500 600 ?002
Frequency [Hz]

=

Specimen M*S: FRFand Coherence Function 5= 243249M

10 v T r( T V\‘
322 j
588.3
126.7

o =
v 2
BT T2 2
s
£ Z

0 1 1 1 1 1 1 AI

1] 100 200 300 400 500 600 o0

Frequency[Hz]

Specimen M*8: FRF and Coherence Funclion S=29332N

10 U . — T ey
329
597.8
1329

arnplityde [4E]
T
+
hbagnituds []

1 1 1 1 1 4
100 0 300 400 S0 :1101] Ta0
Frequency [Hz]

=

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 167



T9

Data
Table 11-14  Results of frequency measurements and dual parameter estimation for
specimen N°9 using the transversal and longitudinal E-modulus for different
load levels
T9 using E, using E;
Appliedload S % of yield S/S. iy foy L [ Seee Error on S Ker St Erroron S
[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5396 79 0.24 108.4 287.7 1.295 187880 2787 -48.3 150930 3535 -34.5
9810 14.4 0.43 1143 299.3 1.275 168150 8589 -12.5 136480 9554 -2.6
14519 214 0.62 119.5 309.6 1.255 137750 14400 -0.8 113470 15709 8.2
19424 286 0.83 1241 318.6 1.255 225610 17059 -12.2 176150 18011 -7.3
23838 35.1 1.01 127.4 325.2 1.255 380910 19052 -20.1 269650 19785 -17.0
28155 41.4 1.20 130.4 329.3 1.255 340460 25394 -9.8 246260 26267 -6.7
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FRF plots

Specimen M®3: FRFand Coherence Function S=5396M
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Specimen N*3: FRF and Coherence Function 5= 19424 K
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T10

Data

Table 11-15

Results of frequency measurements and dual parameter estimation for
specimen N°10 using the transversal and longitudinal E-modulus for different
load levels

T10 using E, using E,
Appliedloads % of yield S/S. fio fo L Keet St Erroron S Kesr Sear Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5396 7.9 0.25 1121 295.4 1.295 207760 5692 55 170990 6306 16.9
10006 14.7 0.45 117.9 306.4 1.275 164850 12583 25.8 138530 13460 345
14617 215 0.63 122.8 317.2 1.255 159650 15749 7.7 134410 16740 145
19130 281 0.83 126.6 3238 1.255 203540 19853 38 167280 20741 8.4
23838 351 1.03 130.4 329.6 1.255 207510 26762 12.3 169700 27736 16.4
28743 423 1.24 133.8 335.7 1.255 271040 30673 6.7 213870 31558 9.8
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FRF plots

SpecinenM*10: FRFand Coherence Function 5=5336K
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Specimen M*10: FRF and Coherence Function S=19130N

‘ﬂﬂ—-rr-'r T N T ¥

i) =
o b
_g 0
E £
T
E tf
- 1 1 1 1 1 1
wU 100 200 300 400 500 600 ?Dﬂm
Frequency[Hz]
Specimen M*10: FRF and Coherence Function 5= 23838M
10 1 . ——— TT . 7
[in) b
= o
_g b=
2 2
b
E 4
-5 1 1 1 1 1 1 15
] 100 200 300 400 s00 600 Jo0
Frequency[Hz]
Specitnen M*10: FRF ahd Coherence Function 5= 258743
10 ™ T e T T- T 0
[y =
= L
3 g
2 =
b
E 4
-5 1 1 1 1 1 1 15
0 100 200 300 400 S0 600 oo

Frequency[Hz]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 173



T11

Data

Table 11-16  Results of frequency measurements and dual parameter estimation for
specimen N°11 using the transversal and longitudinal E-modulus for different
load levels

T11 using E, using E_
Appliedload S % of yield S/S: [ [ L Kest Sest ErroronS [ Set Erroron S

IN] [%] [l [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
5396 79 0.24 106.4 2843 1.295 288050 -384 -107 230580 -25 -100.5
10006 14.7 0.43 112.7 296.4 1.275 248730 6040 -39.6 203080 6542 -34.6
14813 21.8 0.62 117.2 305.5 1.255 188660 10724 -27.6 158740 11437 -22.8
19620 289 0.82 1216 312.0 1.255 162060 19295 -1.7 193640 18495 -5.7
24231 35.6 1.02 124.6 3193 1.255 338090 17875 -26.2 462720 17399 -28.2
28940 42.6 1.21 127.6 324.2 1.255 585890 21945 -24.2 402830 22425 -22.5
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FRF plots

Specimenh®11: FRFand Coherence Function  5=5396M
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SpecimenM®11: FRFand Coherence Function 5= 19620N
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T12

Data
Table 11-17  Results of frequency measurements and dual parameter estimation for
specimen N°12 using the transversal and longitudinal E-modulus for different
load levels
T12 using E, using E,
Applied load S % of yield S/S. iy [ L [ Seet ErroronS [ Seet Erroron S
IN] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5396 7.9 0.25 106.7 283.7 1.295 159830 3237 -40.0 133860 3973 -26.4
10497 154 0.47 113.4 297.1 1.275 165010 9078 -13.5 137570 9920 -5.3
15009 221 0.65 117.5 306.3 1.255 149120 11769 -21.6 125290 12772 -14.9
19424 286 0.84 1221 3135 1.255 165150 18848 -3.0 137190 19883 24
24133 355 1.04 126.3 3216 1.255 260750 21974 -8.9 205070 22781 -5.6
28057 413 1.21 128.8 327.0 1.255 463540 22755 -18.9 325500 23370 -16.7
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FRF plots

Specimen M*12: FRF and Coherence Function S=5396MN
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Specimen M 2: FRFand Coherence Function 5= 15009M
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SpecimenM*12: FRFand Coherence Function 5= 19424 M

arnplituds [HE]
o
hagnituds [-]

1 1 1 1 1 1
] 100 200 300 400 500 600 Ton
Frequency[Hz]

SpecimenM*12: FRFand Coherence Function 5=24133M

T T ~

A plitade [4E]
hbagnitude [-]

1 1 1 1 1 1 4
0 100 200 300 400 So0 G0 EL L
Frequency[Hz]

SpecimenMN*12: FRFand Coherence Function 5= 28057H

10 e I — Y- . . —=g’
327
593
126.8
) =
5 e
) 12 2
-
£ g
D 1 1 1 1 1 1 1
1] 100 200 300 400 500 600 you

Frequency [Hz]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60

179



T13

Data
Table 11-18  Results of frequency measurements and dual parameter estimation for
specimen N°13 using the transversal and longitudinal E-modulus for different
load levels
Ti3 using E, using E,
AppliedloadS % of yield S/S. fo Kot Sest ErroronS K., Sect Erroron S
IN] [%] [l [Hz] [Nm] [N] %] [Nm] [N] [%]
4709 6.9 0.22 282.1 252970 -811 -117.2 134500 388 -91.8
10006 14.7 0.46 296.9 / ! / /
14715 216 0.66 305.4 197430 9955 -32.3 108950 12920 -12.2
19816 29.1 0.89 3128 246300 15869 -19.9 126570 18722 -5.5
25212 371 1.13 322.2 2217100 14807 -41.3 302390 16193 -35.8
30313 44.6 1.36 327.2 1286700 22243 -26.6 267150 24057 -20.6

The results for the second load levels were not calculated since the according

coherence function showed strong irregularities.
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FRF plots

SpecimenM®13: FRFand Coherence Function S=<4709H
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Specimenh*13: FRFand Coherence Function S= 19816M

10 T T T T o 0
s 5744
121.6
[y -
2 N
] b=
A 12
T
g Il 2
D 1 1 1 1 1 1 AI
] 100 200 300 400 500 600 Jo0
Frequency[Hz]

SpecinenM*13: FRFand Coherence Function 5= 25212M

10 I — -NKF. T T 0
322.2
584.3
8 1254 !
£y

3 12
4t -3
2 14

1

100

1 1 1 1 1
200 300 400 500 600 700
Frequency[Hz]

arnplitude [4E]
Magnitads -]

=

SpecimenMN*1 3 FRFand Coherence Function 5= 30313M

WA \( DR

& =
o b
8 g
2 =
=3
15
i 4 -3 g
2 -+
U 1 1 1 1 1 1 C
] 100 200 300 400 500 600 700

Frequency [Hz]

182 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60



T14

Data

Table 11-19  Results of frequency measurements and dual parameter estimation for
specimen N°14 using the transversal and longitudinal E-modulus for different
load levels

T14 using E, using E_
Appliedload s % of yield 5/S. fio fap L Ko Seet ErroronS Kot Sest Erroron S

[N] [%] ] [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] 1%]
6082 8.9 0.29 110.8 293.2 1.295 432000 2041 -66.4 192430 3049 -49.9
10693 15.7 0.50 116.5 305.6 1.275 546540 4866 -54.5 217110 5507 -44.8
15009 221 0.68 1213 3139 1.255 226240 11536 -23.1 128100 13600 9.4
19522 287 0.89 126.0 3233 1.255 584960 14202 -27.3 222910 15584 -20.1
23152 34.0 1.05 1287 328.8 1.255 3306700 15795 -31.8 355010 16855 -27.2
29038 42.7 1.32 132.7 334.1 1.255 1238300 23595 -18.7 289740 25062 -13.7
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FRF plots

Specimen N®14: FRF and Coherence Function S=60582N
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SpecimenM*14: FRFand Coherence Function 5= 195224
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T15

Data

Table 11-20  Results of frequency measurements and dual parameter estimation for
specimen N°15 using the transversal and longitudinal E-modulus for different
load levels

T15 using E, using E,
Appliedloads % of yield 5/5. [ fap L Kest Sest Erroron$ Kest Seat Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
5788 8.5 0.27 110.8 286.3 1.295 65496 20152 248.2 46958 25173 3349
10693 15.7 0.49 115.8 298.0 1.275 76306 20984 96.2 55064 25552 139.0
14715 21.6 0.66 120.4 306.1 1.255 48963 33279 126.2 31403 42606 189.5
20405 30.0 0.91 125.7 317.0 1.255 85542 31379 53.8 60929 36229 776
25898 38.1 1.15 130.3 3235 1.255 77102 42345 63.5 53693 48368 86.8
30607 45.0 1.36 133.3 329.3 1.255 97838 43716 42.8 68711 48616 58.8
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FRF plots

Specimen MN*15: FRF and Coherence Function S=5788M
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SpecirnenM®15: FRFand Coherence Function 5= 20405 M
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T16

Data

Table 11-21

Results of frequency measurements and dual parameter estimation for
specimen N°16 using the transversal and longitudinal E-modulus for different
load levels

T16 using E, using E,
Applied foad S % of yield 5/5¢ fuy [ L Koot Se ErroronS [ Set Erroron S

[N] [%] -] [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] (%]
6082 8.9 0.27 111.6 290.5 1.295 112470 12035 978 75586 15508 155.0
10202 15.0 0.45 116.6 3014 1.275 113420 15234 49.3 75729 19035 86.6
15009 221 0.64 121.3 3114 1.255 101830 19495 29.9 67748 24165 61.0
19326 28.4 0.82 125.7 320.4 1.255 167610 20447 5.8 106100 23600 221
23054 339 0.8 128.5 3253 1.255 199860 23591 23 121900 26521 15.0
28940 42.6 1.23 132.2 331.0 1.255 208670 30022 3.7 125120 33150 14.5
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FRF plots

Specimen M*16: FRF and Coherence Function S=6082M
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Specimen M*1 6 FRFand Coherence Function 5= 19326M
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T17

Data

Table 11-22  Results of frequency measurements and dual parameter estimation for
specimen N°17 using the transversal and longitudinal E-modulus for different
load levels

T17 using E, using E,
Applied load S % of yield §/s. i [N L Ker Seet Erroron S k... Sear Erroron S

[N] [%] [] [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5101 7.5 0.29 105.5 276.0 1.295 78229 11450 124.5 61031 13238 159.5
10399 153 057 1123 289.6 1.275 80616 16946 63.0 62483 18933 82.1
15009 221 0.79 117.1 299.6 1.255 71751 21283 41.8 55576 23738 58.2
19228 283 101 1216 307.0 1.255 80504 26803 39.4 61827 29206 519
23446 345 1.24 125.1 313.0 1.255 91633 30780 313 69664 33071 41.1
29430 43.3 1.55 128.8 320.5 1.255 129860 32992 12.1 95318 34851 18.4
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FRF plots

Specimenh*17: FRFand Coherence Function S=5101N
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SpecimenM*17: FRFand Coherence Funclion 5= 19228N
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T18

Data

Table 11-23  Results of frequency measurements and dual parameter estimation for
specimen N°18 using the transversal and longitudinal E-modulus for different
load levels

T18 using E, using E,
Appliedload s % of yield S/5. fio . L Keet Seat Erroron S Keet Seat Erroron S
[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]

5199 76 0.26 110.5 295.6 1.295 / / / / / /
10301 15.1 0.49 117.0 307.7 1.275 / / / / / /
15304 225 071 1216 317.4 1.255 / / / / ! /
20503 30.2 0.95 125.7 323.2 1.255 / / / / / /
24623 36.2 1.14 128.1 328.1 1.255 / / / / / /
29136 42.8 1.35 1313 332.0 1.255 / / / / / /

The results for this specimen were very erroneous for undeclared reasons, which is
why they were not considered in following calculations.
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FRF plots

Specimen M*18: FRF and Coherence Function S=5%199K
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Specimen M*18: FRFand Coherence Function 5= 20503M
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T19

Data

Table 11-24  Results of frequency measurements and dual parameter estimation for
specimen N°19 using the transversal and longitudinal E-modulus for different
load levels

T19 using E, using E,
Applied load 5 % of yield 5/5. 1o fu L Keet Sent ErroronS [ Seet ErroronS

[N] [%] [ [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5592 8.2 034 106.1 277.8 1.295 216190 4859 -13.1 155940 5521 -1.3
10889 16.0 0.65 113.7 292.7 1.275 253510 10741 -1.4 176280 11479 54
14617 215 0.84 117.1 299.7 1.255 162820 14086 -3.6 122670 15180 39
19228 28.3 111 121.6 307.4 1.255 220640 18914 -1.6 157250 19922 36
24035 35.3 1.39 1253 313.4 1.255 260200 23897 -0.6 178260 24921 37
28547 42.0 1.65 128.6 320.5 1.255 906830 24803 -13.1 388940 25503 -10.7
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FRF plots

Specirnen M*19: FRF and Coherence Function S=5592N
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Specimenh*19: FRFand Coherence Function  S= 19228M
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T20

Data

Table 11-25  Results of frequency measurements and dual parameter estimation for
specimen N°20 using the transversal and longitudinal E-modulus for different
load levels

T20 using E, using E,
Applied load S % of yield S/S. [N fa L [ Sear ErroronS Kes Sext Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
4905 7.2 0.26 108.2 284.1 1.295 195480 5541 13.0 157540 6034 23.0
10693 15.7 0.56 115.9 298.7 1.275 191620 12724 19.0 154470 13348 24.8
15696 231 0.80 120.9 308.5 1.255 144550 17986 14.6 119930 18863 20.2
19326 28.4 0.98 124.8 313.5 1.255 120830 26385 365 101210 27526 42.4
24133 355 122 1285 3214 1.255 216640 27019 12.0 170720 27820 153
28449 41.8 1.44 131.3 326.1 1.255 251560 30742 8.1 193290 31536 10.9

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 201



FRF plots

Specimen M*20: FRFand Coherence Function S=4905H
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Specimen M*20: FRFand Coherence Funclion S=19326N
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Specimen M*20: FRFand Coherence Function 5=24133M
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T21

Data

Table 11-26

Results of frequency measurements and dual parameter estimation for
specimen N°21 using the transversal and longitudinal E-modulus for different
load levels

T21 using E, using E
Appliedload s % of yield 5/S. fio fap L Ko Seet ErroronS Kot Sest Erroron S

[N] [%] ] [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] 1%]
5003 7.4 0.25 105.7 278.0 1.295 145350 7332 46.5 99544 8933 78.5
10104 14.9 0.50 1113 289.7 1.275 147710 11291 11.7 100630 13084 29.5
15696 231 0.75 117.9 301.5 1.255 109870 20299 293 77163 23027 46.7
19620 289 083 1213 308.6 1.255 169600 21291 85 111790 23324 189
23642 348 L1z 125.4 317.4 1.255 389600 22619 -4.3 201010 23980 14
28253 41.5 1.34 128.2 321.8 1.255 432760 27026 -4.3 212940 28459 0.7
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FRF plots

SpecimenM®*21: FRF and Coherence Function S=5003M
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Specimen M2 1: FRFand Coherence Function 5= 19620M
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T22

Data

Table 11-27  Results of frequency measurements and dual parameter estimation for
specimen N°22 using the transversal and longitudinal E-modulus for different
load levels

T22 using E, using E,
Appliedload s % of yield S/5. fio . L Keet Seat Erroron S [ Set Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5297 7.8 0.26 107.1 280.7 1.295 110570 9975 88.3 82239 11805 122.8
9614 141 0.45 112.7 290.5 1.275 79331 18802 95.6 59602 21725 126.0
14421 21.2 0.66 118.1 300.7 1.255 62527 26903 86.6 46204 31142 116.0
19424 286 0.89 122.9 309.8 1.255 87276 29635 52.6 64623 32869 69.2
24035 353 1.10 126.1 317.7 1.255 162090 27256 13.4 113350 29246 217
28940 42.6 1.33 129.5 3221 1.255 137550 35229 21.7 97810 37700 30.3
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FRF plots

Specimenh®*22: FRFand Coherence Function S5=5297H
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Specimen M*22: FRF and Coherence Function S=9614M
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Specimen 22 FRFand Coherence Function 5= 19424 N
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T23

Data

Table 11-28  Results of frequency measurements and dual parameter estimation for
specimen N°23 using the transversal and longitudinal E-modulus for different
load levels

T23 using E, using E,
AppliedloadS % of yield 5/S. fin far L Kast Sest ErroronS [ Seat Erroron §

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5101 7.5 0.26 107.0 280.7 1.295 106580 8649 69.5 81515 10197 99.9
10202 15.0 0.51 114.3 294.6 1.275 101940 15877 556 77761 17782 743
14813 21.8 0.72 119.6 305.2 1.255 87557 21415 446 66997 23875 61.2
19718 29.0 0.96 1239 313.1 1.255 116200 24782 25.7 87000 26842 36.1
24133 35.5 1.17 127.5 320.6 1.255 187150 25900 73 131040 27431 13.7
28057 41.3 1.36 131.1 326.3 1.255 201590 31444 12.1 138530 33052 17.8
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FRF plots

Specimen MN*23: FRFand Coherence Function S=5101H
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Specimen h*23: FRFand Coherence Function S=10202M
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Specimen M*23: FRF and Cokerence Function S=19718N
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T24

Data

Table 11-29

Results of frequency measurements and dual parameter estimation for
specimen N°24 using the transversal and longitudinal E-modulus for different
load levels

T24 using E, using E,
Appliedload s % of yield S/5. fio . L Keet Seat Erroron S [ Set Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5788 8.5 0.29 111.4 287.6 1.295 94778 17641 204.8 69711 20706 257.7
9908 14.6 0.48 116.1 297.7 1.275 89645 21619 118.2 65642 25179 154.1
15304 22.5 0.72 1209 308.4 1.255 89401 24740 61.7 65109 28636 87.1
19718 29.0 0.93 125.9 3175 1.255 121180 29133 47.7 86727 32309 63.9
24623 36.2 1.16 129.2 3228 1.255 129240 34490 40.1 91513 37716 53.2
28940 42.6 1.36 132.5 328.3 1.255 143060 39510 36.5 99770 42694 47.5
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FRF plots

Specimen M*24: FRF and Coherence Function S=5788N
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Specimen M*24: FRF and Coherence Function S=19718N

TTT v
3T
i 125,
G
iy
o,
o
E 4
o
1=
£
2
0
_2 1 1 1 1 1 1 =3
1} 100 200 300 400 500 600 Hilil
Frequency [Hz]
SpecinenM*24: FRFand Coherence Function 5= 24623M
n 0
322.8
129.2
591
i
o,
o
3 st -2
T
=
o
n 1 1 1 1 1 1 4
0 100 200 300 400 sad :1101] 700
Frequency [Hz]
Specimen M*24: FRFand Coherence Function 5= 28940M
10 1]

Arnplity de [AE]

¥

NEaman

1
1] 100

1
200

1 1 1 1 4
300 400 500 GO0 700
Frequency [Hz]

htagnitde []

Magnituds []

Mtagnitnde [-]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60

215



T25

Data

Table 11-30  Results of frequency measurements and dual parameter estimation for
specimen N°25 using the transversal and longitudinal E-modulus for different
load levels

T25 using E, using E,

Applied foad s % of yield S/5¢ [ fap L Ko Sex Errorons K Sect Erroron S
[N] [9%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]

5494 8.1 0.26 108.3 287.0 1.295 133170 5503 0.2 114880 6266 14.1
10202 15.0 0.46 1141 298.2 1.275 115140 12002 17.6 99877 13013 275
15009 221 0.66 118.7 3079 1.255 100560 16432 9.5 87850 17698 179
19620 28.9 0.86 1226 3173 1.255 204540 14199 -27.6 169880 14900 -24.1
24721 36.4 1.09 127.4 323.5 1.255 170310 24850 0.5 143370 25796 4.3

28645 42.1 1.26 129.8 328.7 1.255 251660 25309 -11.6 203020 26055 -9.0
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FRF plots

Specirnen M*25: FRF and Coherence Function 5=5494 N
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Specimen M*25: FRFand Coherence Function 5= 19620H
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T26

Data

Table 11-31  Results of frequency measurements and dual parameter estimation for
specimen N°26 using the transversal and longitudinal E-modulus for different
load levels

126 using E, using E,
Appliedload s % of yield S/5. fio . L Keet Seat Erroron S [ Set Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5396 7.9 0.28 106.2 2715 1.295 90729 11075 105.3 58087 14604 170.7
10595 15.6 0.53 113.3 291.6 1.275 95042 17034 60.8 59988 20943 97.7
15009 22.1 0.72 117.9 300.2 1.255 69279 24077 60.4 43110 30101 100.5
19914 293 0.96 1226 308.8 1.255 91681 27723 39.2 56856 32628 63.8
25016 36.8 1.21 126.8 317.9 1.255 164600 28060 12.2 94086 31305 251
29921 44.0 1.44 131.0 323.9 1.255 150250 36279 213 86548 40137 34.1
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FRF plots

Specimen MN*26: FRF and Coherence Function 5= 53968
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Specimen N*26: FRFand Coherence Function 5= 199140
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T27

Data

Table 11-32  Results of frequency measurements and dual parameter estimation for
specimen N°27 using the transversal and longitudinal E-modulus for different
load levels

T27 using E, using E,
Applied foad S % of yield 5/5¢ fuy [ L Koot Se ErroronS [ Set Erroron S

[N] [%] -] [Hz] [Hz] [m] [Nm] [N] (%] [Nm] [N] (%]
5199 7.6 0.32 105.4 273.0 1.295 91265 14771 184.1 66117 16923 225.5
10104 14.9 0.60 111.8 285.8 1.275 91160 20447 102.4 65672 22908 126.7
15009 221 0.86 117.4 296.0 1.255 67947 28891 92.5 48971 32573 117.0
20012 29.4 1.15 1219 304.5 1.255 92657 32125 60.5 65857 35109 75.4
24819 36.5 1.43 125.5 3109 1.255 111210 36119 45.5 77413 38883 56.7
29038 42.7 1.67 128.3 314.9 1.255 103870 41990 44.6 72371 45108 55.3
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FRF plots

SpecimenM*27: FRFand Coherence Function S=5199M
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SpecimenM®2T: FRFand Coherence Function 5= 20012H
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T28

Data

Table 11-33

Results of frequency measurements and dual parameter estimation for
specimen N°28 using the transversal and longitudinal E-modulus for different
load levels

T28 using E, using E,
Appliedload S % of yield S/S. [N fo L [ St ErroronS [ Seet Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
5690 8.4 0.28 105.4 2778 1.295 247590 5658 -0.6 132740 7247 27.4
9908 146 0.48 1113 289.2 1.275 208080 11577 16.8 117250 13699 383
15107 22 0.70 115.2 298.3 1.255 196410 13251 -123 112500 15630 35
20111 296 0.4 118.6 305.4 1.255 234880 19436 -3.4 126900 21828 8.5
24721 36.4 1.15 123.0 3118 1.255 388610 22356 -9.6 172930 24347 -1.5
30019 44.1 1.40 127.7 320.2 1.255 814050 28182 -6.1 240180 29981 0.1
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FRF plots

Specimen M*2&: FRF and Coherence Function 5=5630M
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Specimen M*28: FRF and Coherence Function S5=20111M
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T29

Data

Table 11-34  Results of frequency measurements and dual parameter estimation for
specimen N°29 using the transversal and longitudinal E-modulus for different
load levels

T29 using E, using E,
AppliedloadS % of yield 5/S. fin far L Kast Sest ErroronS [ Seat Erroron §

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5199 7.6 0.26 114.2 300.4 1.295 289490 3313 -36.3 189670 4107 -21.0
10104 14.9 0.48 120.6 312.2 1.275 210400 10303 20 147540 11527 141
14813 21.8 0.69 125.7 323.8 1.255 230300 12187 -17.7 158610 13444 9.2
19522 28.7 0.90 130.4 331.9 1.255 336480 17243 -117 210120 18368 -5.9
23838 35.1 1.10 133.7 337.6 1.255 474000 20998 -119 263440 22048 -1.5
29234 43.0 1.35 137.1 343.3 1.255 679870 25426 -13.0 323590 26454 -9.5
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FRF plots

Specimen M*29: FRF and Coherence Function S=5199M
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SpecimenM*29: FRFand Coherence Funclion 5= 19522N
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T30

Data

Table 11-35

Results of frequency measurements and dual parameter estimation for
specimen N°30 using the transversal and longitudinal E-modulus for different
load levels

T30 using E, using E,
Appliedload S % of yield S/s. fio fap L Kegt Set Erroron S K. Seat Erroron$

[N] [%] [ [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
5101 75 0.30 106.5 280.8 1.295 485920 6040 18.4 214330 6626 29.9
9614 141 0.55 113.0 293.8 1.275 482230 10968 14.1 214020 11707 218
13930 205 0.78 117.3 302.5 1.255 277790 14582 a7 155890 15660 12.4
19130 28.1 1.06 1221 3109 1.255 496570 19727 31 216990 20712 83
23544 346 131 125.6 318.0 1.255 / / 426080 22905 2.7
28940 42.6 1.61 129.1 322.8 1.255 2363500 28457 -1.7 354330 29427 1.7
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FRF plots

SpecimenM*30: FRFand Coherence Function S5=5101M
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Specimen M*30: FRF and Coherence Function 5= 19130K

8 T l \Wr T T Yr —T T ]
S .
122,

4
I 2f =
E b
_g el
z 2
=3
gop g

-2 —-10

4 412

_S 1 1 1 1 1 1 14

L] 100 200 ann 400 sS0n EO0 oo

Frequency[Hz]

SpecimenM®*30: FRF and Coherence Function 5= 23544

arnpiitude [4E]
hbagnitades -]

1 1 1 1 1 1
0 100 200 300 400 500 600 o0
Frequency[Hz]

Specimen W*30: FRF and Coherence Function S=28940K
10 T — T T
| (AR

iza.

A plitde [HE]

htagnituds [-]

1 I I I I I mn
100 200 300 400 500 001] To0

Frequency [Hz]

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:60 233



T31

Data

Table 11-36  Results of frequency measurements and dual parameter estimation for
specimen N°31 using the transversal and longitudinal E-modulus for different
load levels

T31 using E, using E,
Applied load s % of yield S/5. fio fap L Kest Seat Erroron$ [ Seat Erroron S

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] [%]
4905 7.2 0.26 111.3 291.3 1.295 116600 9414 918 128350 8962 82.7
9221 136 0.48 118.2 307.8 1.275 212770 9360 1.5 244480 9068 -1.7
13930 205 0.70 123.6 319.0 1.255 189440 13596 -2.4 215300 13230 -5.0
19031 28.0 0.96 128.1 3271 1.255 282880 17844 -6.2 337210 17535 -7.9
23642 34.8 1.19 1316 331.9 1.255 253560 24631 4.2 298400 24252 2.6
27959 41.1 1.40 134.2 336.6 1.255 329760 27349 -2.2 404410 26999 -3.4
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FRF plots

SpecimenM*31: FRFand Coherence Function S=4905H
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Specimen M3 1: FRF and Coherence Function S=19031H
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T32

Data

Table 11-37  Results of frequency measurements and dual parameter estimation for
specimen N°32 using the transversal and longitudinal E-modulus for different
load levels

T32 using E, using E,
Applied load S % of yield 5/s. [ foe L Kaee Seat Errorons [ Seat Erroron §

[N] [%] [ [Hz] [Hz] [m] [Nm] [N] %] [Nm] [N] %]
5494 8.1 031 1116 293.2 1.295 414340 5857 6.6 277440 6228 13.4
10006 14.7 0.54 116.4 302.2 1.275 239450 11170 116 181590 11796 178
14715 216 0.77 120.9 309.2 1.255 114460 20173 371 94453 21471 45.9
20208 29.7 1.06 125.2 3175 1.255 170800 22960 136 135630 23981 187
24133 35.5 1.27 127.9 321.3 1.255 161960 28156 16.7 129000 29304 21.4
28449 41.8 1.49 130.9 325.7 1.255 157020 33802 18.8 125120 35073 233
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FRF plots

Specimen M*32: FRF and Coherence Function 5=5494M
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SpecimenM®32: FRFand Coherence Function S5=20209M
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Aluminium

Data

Table 11-38  Results of frequency measurements and dual parameter estimation for the
reference aluminium specimen using the transversal and longitudinal E-
modulus for different load levels

Aluminium using E, using E,
Applied load S % of yield s/s. o fop L Keet Se: ErroronS Ko Seat Erroron§

[N] [%] [l [Hz] [Hz] [m] [Nm] [N] [%] [Nm] [N] [%]
1962 8.7 1.1 36.0 93.1 1.245 11831 2261 15.2 9365 2356 20.1
4022 17.9 2.2 40.0 98.9 1.245 10447 4568 13.6 8323 4712 17.2
6671 29.6 36 44.5 106.6 1.245 15288 6884 3.2 11517 7042 5.6
7750 34.4 4.2 46.4 109.6 1.245 14510 8181 5.6 10979 8363 7.9
9810 43.6 53 49.5 114.9 1.245 16907 10161 3.6 12418 10367 5.7
11576 51.4 6.2 522 119.6 1.245 19800 11982 3.5 14059 12208 5.5
13538 60.2 73 55.0 124.3 1.245 18378 14241 5.2 13167 14508 7.2
15696 69.8 8.5 57.8 129.4 1.245 24670 16228 3.4 16532 16508 5.2
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FRF plots
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Reference Aluminium Specimen : FRF - S=T7750N
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Reference Aluminium Specimen : FRF - 5= 13538M
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11.3.2 Summary of results

Table 11-39  Error on the estimated axial load S for each specimen and different load
levels using the transversal E-modulus

E, S[N]

Beamn N° 5000 10000 15000 20000 25000 30000
1 16.2 27.0 2.9 18.9 17.1 79
2 119.5 80.4 79.9 21.0 45.9 47.7
3 56.4 30.1 62.5 36.2 19.5 23.0
4 46.2 18.8 257 11.8 27.9 116
5 148.2 113.1 76.0 67.4 276 25.9
6 26.8 8.1 46.0 16.3 17.5 10.3
7 -23.8 -18.6 11.0 4.7 -2.8 3.4
8 179.4 9.9 524 59.6 218 211
9 -48.3 -125 -0.8 -12.2 -20.1 -5.8
10 5.5 25.8 7.7 38 123 6.7
11 -107.1 -39.6 -27.6 -1.7 -26.2 -24.2
12 -40.0 -13.5 -21.6 3.0 -89 -18.9
13 -117.2 / -32.3 -19.8 -41.3 -26.6
14 -66.4 -54.5 -23.1 -27.3 -31.8 -18.7
15 248.2 96.2 126.2 53.8 63.5 42.8
16 97.9 49.3 29.9 58 23 37
17 124.5 83.0 41.8 39.4 313 121
18 / / / / / /
13 -13.1 -14 -3.6 -16 -0.6 -13.1
20 13.0 19.0 146 36.5 12.0 8.1
21 46.5 1.7 29.3 85 4.3 -4.3
22 88.3 95.6 86.6 52.6 13.4 217
23 69.5 55.6 44.6 25.7 73 12.1
24 204.8 118.2 61.7 47.7 40.1 36.5
25 0.2 176 9.5 -27.6 0.5 -116
26 105.3 60.8 60.4 39.2 122 213
27 1841 102.4 92.5 60.5 45.5 44.6
28 0.6 16.8 -12.3 3.4 9.6 -6.1
25 -36.3 20 -17.7 -11.7 -11.9 -13.0
30 18.4 141 47 31 / -1.7
31 919 15 -2.4 6.2 4.2 -2.2
32 6.6 11.6 37.1 13.6 16.7 18.8

Mean value 46.6 343 27.8 16.2 8.4 7.6
Std. dev. 89.5 45.0 39.9 26.9 23.7 20.2

Table 11-40  Error on the estimated axial load S for each specimen and different load
levels using the longitudinal E-modulus

E. S[N]

Beam N* 5000 10000 15000 20000 25000 30000
1 222 319 7.0 224 19.9 10.1
2 120.0 80.8 80.4 212 46,1 43.0
3 58.5 317 64.9 37.7 204 30.1
4 65.4 239 359 18.0 344 15.9
5 164.2 124.9 85.2 74.3 311 29.0
[ 308 719 49.1 18.0 18.8 1.3
7 -18.7 -15.1 15.6 -2.3 -1.0 53
8 192.2 75.8 576 64.3 24.2 231
9 -34.5 -2.6 82 73 -17.0 £.7
10 16.9 34.5 14.5 8.4 16.4 9.8
11 -100.5 -34.6 -22.8 5.7 -28.2 -22.5
12 -26.4 -5.5 -14.9 2.4 5.6 -16.7
13 -91.8 ! -12.2 -5.5 -35.8 -20.6
14 -49.9 -44.8 94 -20.1 -27.2 -13.7
15 3349 138.0 189.5 77.6 86.8 58.8
16 155.0 86.6 61.0 221 15.0 14.5
17 159.5 821 58.2 518 411 18.4
18 / / / / / /
13 -13 5.4 39 3.6 3.7 -10.7
20 23.0 24.8 20.2 42.4 15.3 10.9
21 78.5 235 46.7 18.9 14 0.7
22 1228 126.0 116.0 69.2 217 303
23 %9.9 74.3 61.2 36.1 137 17.8
24 257.7 154.1 87.1 63.9 53.2 475
25 4.1 275 17.9 -24.1 4.3 [0
26 170.7 97.7 100.5 63.8 251 341
27 2255 126.7 117.0 75.4 56.7 55.3
28 274 383 3.5 85 -1.5 0.1
29 -21.0 14.1 5.2 5.9 7.5 9.5
30 299 218 124 83 2.7 17
31 827 -17 5.0 -19 2.6 -34
32 134 17.9 45.9 18.7 214 233

Mean value 68.4 481 415 24.1 14.4 12.4
Std. dev. 1025 52.6 48.3 30.4 26.2 22.1
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Table 11-41

Ko USING By Ky USING B, E tetic

[Nm] [Nm] [MPa]

1 217778 182520 14526
2 125912 125013 13319
3 142740 135887 11987
4 109164 92625 12397
5 116300 102086 13853
6 145995 138035 13855
7 282480 228207 12061
8 115385 103718 12788
9 240127 182157 138995
10 202392 165797 13785
11 301913 275275 14197
12 227233 177413 13841
13 840100 187912 13281
14 1055790 234217 13129
15 75208 52793 13371
16 150643 95364 14052
17 88766 67650 11300
18 / / 12824
19 336698 196557 10303
20 186780 149527 11752
21 232482 133846 12532
22 106557 77305 13005
23 133503 97141 12286
24 111217 79745 12670
25 162630 136480 13542
26 110264 66446 12341
27 93018 66067 10349
28 348270 150417 12764
29 370090 215495 12860
30 821202 263607 10703
31 230835 271358 11853
32 209688 157206 11337
Mean value 254554 148963 12717
Std. dev. 233373 64211 1117
Alu 16479 12045 70000

Mean estimated rotational stiffness k for each specimen using the transversal
and longitudinal E-modulus and comparison with the static E-modulus
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