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Abstract. The penetration dynamics of the resonant magnetic perturbation (RMP) field is sim-
ulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments.
The physics associated with several aspects of the RMP penetration - the plasma response
and rotational screening, the resonant and non-resonant torques and the toroidal momentum
balance - are highlighted. In particular, the plasma response is found to significantly amplify
the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating
plasma, in response to static external magnetic fields, experiences a more distributed electro-
magnetic torque due to the resonance with continuum waves inthe plasma. At fast plasma
flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over
the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow,
the NTV torque can play a significant role in the toroidal momentum balance, thanks to the
precession drift resonance enhanced, so called superbanana plateau regime.

PACS numbers: 52.35.Py, 28.52.Av, 52.55.Fa, 52.65.Kj

1. Introduction

It is expected that large scale, low frequency type-I edge localized modes (ELMs) may not be
tolerable for the plasma facing components in ITER, due to the large heat load [1]. Extensive
experimental results from recent years, on several existing tokamak devices, have demon-
strated that the externally applied resonant magnetic perturbation (RMP) fields can signifi-
cantly affect the behavior of ELMs [2, 3, 4, 5]. It appears that the ELM mitigation/suppression,
and the accompanying density pump-out effect observed in experiments, require detailed in-
vestigations due to complex physics. One important aspect is to understand the RMP field
penetration dynamics during ELM mitigation.

The RMP penetration is an essentially non-linear process. In the fluid approximation, this
involves two key effects coupled to each other. One is the plasma response to the applied RMP
field, where the plasma flow normally plays a role of screeningthe external field. The other
is the flow damping by torques created by the applied (often static) RMP field acting on the
plasma. Extensive theory and modeling work has been carriedout to study each of these effects
separately: the plasma response at a given rotation [6, 7, 8,9, 10, 11] and the electromagnetic
as well as the neoclassical toroidal viscous (NTV) torque produced by the plasma response to
3D external field [12, 13, 15, 14]. The non-linear coupling between the plasma response and
the j ×b torque induced momentum damping has been analytically investigated in a cylinder
[16], and numerically modeled in a cylindrical geometry assuming various fluid models [17,
18]. Reference [19] considered the rotation braking also bythe NTV torque, but again for a
cylindrical plasma, and with several other simplified assumptions.

In this work, we apply the recently developed MARS-Q code [20] to simulate the RMP pen-
etration dynamics for a MAST plasma. The MARS-Q code employsa full MHD, single
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fluid model for the plasma response, but in a full toroidal geometry. The MHD equations are
solved, in time domain, together with the momentum balance equation for the toroidal flow of
the plasma. Both the fluidj ×b torque and the NTV torque, as the solution of the bounce av-
eraged drift kinetic equation in a generic torus, are incorporated into the momentum equation
as the sink terms.

We shall present the work in the following order. We first showphysics results concerning each
individual aspect of the four important ingredients for theRMP penetration: the linear plasma
response, thej ×b torque, the NTV torque, and the toroidal momentum balance. Finally we
shall present the non-linear simulation results for MAST.

2. Plasma response to RMP fields

In this Section, we consider a linear plasma response to an externally applied RMP field.
We seek a steady state response as the stationary solution ofthe perturbed single fluid full
MHD equations in the presence of a source term, i.e. the RMP coil current. Either an ideal
or a resistive plasma response is computed in the presence ofa toroidal plasma flow. The
full description of the formulation is found in Ref. [10]. Figure 1(a) shows one example
of the RMP coil geometry, for a MAST single-null discharge 25075, in which the plasma
is shifted downwards, being closer to the lower set of coils.For the modeling, the plasma
edge near the separatrix is slightly truncated to yield a finite edge safety factorqa = 5.32. This
creates 12 rational surfaces (with 12 resonant poloidal harmonicsm= 4,5, . . . ,15) for ann= 3
perturbation as shown in Fig. 1(b). Heren is the toroidal mode number.
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Figure 1: (a) The plasma boundary shape for the MAST lower SNDdischarge 25075 and the
RMP coils; (b) the radial profile of the safetyq, with dashed lines indicating the location of
rational surfaces for then = 3 field. ψp is the normalized equilibrium poloidal flux.

It has been previously found [11] that a resistive plasma response, in the presence of a fast
toroidal flow, can provide a strong screening to the resonantharmonics of the RMP field. For
this MAST plasma, the initial flow speed (before applying theRMP field) is about 4.8% of the
Alfvén speed at the plasma centre. The amplitude of the resonant harmonics is reduced by 1-2
orders of magnitude, at the radial location of the corresponding rational surfaces, compared
to that of the vacuum field components. This is indicated by the deep valley in the plasma
response field spectrum shown in Fig. 2(b), where the radial field is defined asb1 ≡ qb ·
∇ψp/(R2

0Beq · ∇φ) and Fourier decomposed in a straight-field-line flux coordinate system.
HereR0 is the major radius of the magnetic axis,Beq the equilibrium magnetic field, andφ the
geometric toroidal angle.

On the other hand, computations show that this MAST plasma amplifies significantly the non-
resonant harmonics that have the same sign of the field pitch as the resonant harmonics, i.e.
the m> 0 harmonics shown in the figure. The amplitude of the resonantharmonics outside
the rational surface is also amplified. The peak amplification factor is about 3 compared to the

2



Figure 2: Comparison of the computed spectra of (a) the free space radial magnetic field pro-
duced by the RMP coil currents, and (b) the field including theplasma response.m numbers
the poloidal Fourier harmonic decomposed in a straight-file-line flux coordinate system, with
the flux surface labeled byψp. The color coding shows the amplitude of the radial fieldb1

(as defined in the text) in Gauss/kAt. The symbol “+” indicates the location of theq = m/n
rational surfaces, withn = 3.

vacuum field. Similar effect has been reported for DIII-D plasmas [21]. For the non-resonant
harmonics with the opposite pitch (m < 0), the amplification is minor. This is typical for
plasmas in RMP experiments.

Another important aspect of the plasma response is the formation of helical plasma surface dis-
placement. These low−n 3D displacements, with sufficient amplitude, may modify thelocal
stability of high-n MHD modes [22, 23]. The MARS-Q computed plasma surface displace-
ment is about 10mm for the MAST plasma-coil configuration (n = 3 at 5.6kAt coil current)
shown in this example, quantitatively comparable to the experimental measurements [24]. We
notice though that the steady state plasma displacement is sometimes sensitive to the equilib-
rium and in particular to the plasma flow speed.

The computed poloidal distribution of the amplitude of the plasma surface displacement also
serves as a good indicator of the density pump-out effect observed in the MAST RMP experi-
ments [11]. A detailed investigation showed that, at least in the fluid approximation, the den-
sity pump-out is associated with the excitation of the peeling-tearing like plasma response by
the RMP fields, whilst in cases where no pump-out effect was observed, the plasma response
exhibits more core-localized kink mode characteristics [11]. Extensive MARS-Q modeling
also suggests that the poloidal distribution of the plasma surface displacement is sensitive to
the plasma edge rotation.

3. Electromagnetic torque due to plasma response to static RMP fields

The electromagnetic torque is usually an important sink term in the toroidal momentum bal-
ance equation. The physics of the fluid electromagnetic resonant torque is well studied in the
literature [16]. In addition to conventional understanding, recent toroidal modeling reveals
two interesting regimes. One occurs at very slow plasma rotation frequencyΩ ≡ ω/ωA <
min{S−1/3|DR|2/3, S|DR/∆′

0|4} as reported in Ref. [25], whereω denotes the angular fre-
quency of the toroidal flow of the plasma,ωA = VA0/R0 the Alfvén frequency at the plasma
center, withVA0 being the Alfvén speedVA at the plasma center.S is the magnetic Lundquist
number,DR the resistive interchange index, and∆′

0 the tearing index calculated from the outer
(ideal) region [26]. In this slow rotation case, the presence of a finite local pressure gradient at
the rational surface introduces a strong screening effect of the external field, withmorescreen-
ing of amplitude of the resonant harmonics atdecreasingtoroidal rotation speed. This is due
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to the favorable average curvature effect - the same effect studied by Glasser, Greene and John
[26] that leads to the enhanced tearing mode stability in a torus. This GGJ-term also results in
a qualitative modification of thej ×b torque at slow plasma flow, namely by producing a net
accelerating force to the plasma flow (instead of a dragging force) [25].

In the other limit, of a fast plasma flow, the toroidal modeling results show a resonant splitting
effect [27]. One example is shown below. For a clear illustration, we assume a large aspect
ratio (R/a = 10) circular plasma with a parabolic radial profile for the equilibrium toroidal
current density. The safety factor at the plasma center isq0 = 1.05, andqa = 2.62 at the
plasma surface. There is only one rational surfaceq = 2 inside the plasma for the n=1 plasma
response that is investigated here. The plasma has a finite pressure, such that both Alfvén and
sound continuum waves are present in the plasma. In this case, the plasma response to an
external static magnetic field (produced by the dc RMP coil currents) rotates in the plasma
frame. The resonance conditions between the plasma rotation ω and the shear Alfvén wave
ω2 = ω2

a ≡ ω2
A(m/q−n)2/(ρ̂FPS), the sound waveω2 = ω2

h ≡ ω2
aV

2
s /(V2

s +V2
A/FPS), respec-

tively, create resonant surfaces that are located near the rational surface but are usually splitted
into two surfaces (for each continuum resonance). Hereρ̂ ≡ ρ/ρ0 is the plasma densityρ nor-
malized by the central valueρ0. Vs is the sound speed. Note that the Pfirsch-Shlutter inertial
enhancement factorFPS= 1+q2/(m−1−nq)2+q2/(m+1−nq)2 is explicitly included here
to re-normalize the Alfvén speed.

One example is shown in Fig. 3(a), where several resonant surfaces are analytically predicted
by the above resonant conditions, for a given (uniform) rotation frequencyω = 10−3ωA. The
MARS-Q computedj ×b torque density is plotted in Fig. 3(b), for the Lundquist number
S= 109 and S= 106, respectively. A finite torque density is obtained at radiallocations
matching well the analytically predicted resonant surfaces. The torque density is well local-
ized near these resonant surfaces atS= 109, though numerically well resolved by utilizing a
strongly packed radial mesh. (Ana-posterioricriterion based adaptive radial mesh refinement
procedure is introduced into MARS-Q, in order to dynamically pack the mesh.) This resonant
splitting effect also results in several surface-like plasma current sheets near a single rational
surface, as shown by Fig. 3(c). At sufficiently small Lundquist number, these multiple current
sheets tend to spread and form a more global radial distribution. The structure of the localized
current sheets atS= 109, generated by the Alfvén continuum resonances and shown inFig.
3(d), is qualitatively similar to that obtained in a cylindrical computation [17]. More detailed
results of the continuum resonance inducedj ×b torque will be reported elsewhere [27].

With a larger plasma resistivity (which is often the case in the plasma edge region), the distri-
bution of the torque density can become more global as shown in Fig. 3(b) forS= 106, even
though only a single rational surface is present in this plasma. For a more realistic plasma
equilibrium, where many rational surfaces exist inside theplasma, and are closely located to
each other (typically near the plasma edge), one can expect arather global distribution of the
j ×b torque density. One example will be shown in Fig. 6 for the MAST plasma.

4. NTV torque due to plasma response to 3D magnetic fields

The NTV torque is computed in MARS-Q, based on the analytic formulas that smoothly con-
nect different collisionality regimes [12]. These analytic formulas are obtained by solving the
bounce-averaged drift kinetic equation in a generic toroidal geometry, in various collisionality
limits. Both non-resonant contribution and resonant contributions are included. The non-
resonant NTV torque occurs at fastE×B flow. The resonant NTV contribution occurs when
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Figure 3: (a) The shear Alfvén (ωa) and sound (ωh) continua induced resonant surfaces (indi-
cated by vertical dashed lines) appearing near a single,q = 2, rational surface in the presence
of a finite, uniform toroidal rotation (ω). The computed electromagnetic torque density (b),
and the poloidal component of the perturbed current inside the plasma (c), with the Lundquist
numberS= 109 (thin line) andS= 106 (thick line). (d) the radial distribution of the perturbed
poloidal current density near the Alfvén resonance region, atS= 109. The vertical lines in (d)
indicate the radial location of analytically estimated resonant surfaces.

theE×B flow speed is comparable to the precessional drift velocity of bulk plasma species.
Three collisionality regimes are identified in each of non-resonant and resonant contributions.
These are the so calledν−,

√
ν−,1/ν− regimes for the non-resonant NTV torque, and the

superbanana, superbanana plateau, 1/ν− regimes for the resonant NTV torque. Normally
the

√
ν− or the superbanana plateau regime gives the largest NTV torque, depending on the

plasma flow speed.

In order to validate the NTV module in MARS-Q, we have performed systematic computations
for a DIII-D plasma, where the non-axisymmetric magnetic field is generated by the I-coils
(shown in Fig. 4(a)) in the n=3 configuration and dedicated experiments are carried out to
measure the NTV torque [28]. An odd parity between the upper and lower sets of coils is
chosen in experiments, producing almost purely non-resonant field components (consequently,
the electromagnetic torque, produced by these coils on the plasma, is negligibly small, as also
confirmed by MARS-Q computations).
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Figure 4: (a) The plasma boundary shape for a DIII-D plasma from discharge 138593. Shown
are also the resistive wall shape and the I-coils mounted on the wall. (b) The radial profile
of the safety factorq for this plasma is plotted, together with all rational surfaces (n = 3)
indicated by dashed lines.

We compute the net NTV torques acting on the plasma for about 200 time slices, using the
same coil configuration as in the experiment, and a plasma equilibrium reconstructed some-
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where in the middle of the time period. The experimental plasma equilibrium radial profiles
(the plasma density, toroidal rotation, the thermal ion andelectron temperatures) are used as
the input to the NTV module at each time slice. An additional input is theE×B rotation fre-
quencyωE. Either the experimentally measured valueωEXPT.

E (dashed line in Fig. 5(a)) or that
derived from neoclassical theoryωNEO.

E (dash-dotted line in Fig. 5(a)) are used. The MARS-Q
computed NTV torque quantitatively agrees with experiments at later time of the discharge,
as shown in Fig. 5(a). (The NTV torque is indirectly measuredin experiments, involving
the TRANSP runs.) The agreement is less satisfactory at the early time of discharge, when
the plasma flow is fast, and the computed NTV torque is small compared to the experiment.
Similar results are obtained by the IPEC code for this discharge [28].

The plasma rotation speed significantly drops at the later time of the discharge. At the slow ro-
tation regime, the MARS-Q computed NTV torque agrees reasonably well with experiments.
The computations show that the plasma enters into the superbanana plateau regime at this
stage, as shown by the detailed analysis for the time at 3410ms (Fig. 5(b)). Note that the
plasma collisionality above curve (3) corresponds to the 1/ν-regime; below (6) we have the
ν-regime; below (5) we have the superbanana regime; between (6) and (3) is the

√
ν-regime

for the non-resonant NTV torque; and between (5) and (3) is the superbanana plateau regime
for the resonant NTV torque. Curve (1) corresponds to the upper limit for the validity of the
NTV theory used in these computations. The fact that curve (3) is largely below curve (2)
indicates the significant resonance between theE×B flow and the thermal particle precession
drifts which enhances the NTV torque. The resulting total torque mainly comes from the reso-
nant contribution as shown by Fig. 5(c). The fact that the curve (4) is largely located between
curve (3) and (5) indicates that this DIII-D plasma, at 3410ms, is in the superbanana plateau
regime for the NTV torque.
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Figure 5: (a) Comparison between the computed NTV torque (dashed and dash-dotted lines)
and the experiment (solid line), for the DIII-D discharge 138593. These are the plasma volume
integrated net torques. (b) Various frequencies and boundaries between different collisional-
ity regimes for the NTV torque for this DIII-D discharge at 3410ms: curve (1) represents√

εωti , whereε is the inverse minor radius,ωti is the thermal ion transit frequency; curve (2)
representsωD0/ε, whereωD0 is the magnetic precession drift frequency of deeply trapped par-
ticles at thermal velocity; curve (3) represents theE×B frequency|ωE|; curve (4) represents
the collision frequencyν/ε; curve (5) representsωD0(δB/ε)3/2, with δB being the amplitude
of the surface-averaged perturbed magnetic field; curve (6)represents|ωE|(δB/ε)2. (c) The
computed non-resonant, resonant and total NTV torque at 3410ms. The curve for the resonant
contribution nearly overlaps with that of the total torque.

The above results show the sensitive dependence of the NTV torque magnitude on the plasma
rotation speed. This may be essential in interpreting the experimentally observed toroidal
momentum damping, in particular in cases where both the electromagneticj ×b and the NTV
torques contribute to the momentum sink. One example is shown in Fig. 6 for a MAST
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plasma. In this case, the RMP coils produce both resonant andnon-resonant field components.
At fast flow (Fig. 6(a)), which corresponds to the initial plasma flow ofΩ = 4.8%ωA at the
plasma centre before applying the RMP field, the electromagnetic torque density amplitude is
1-2 orders of magnitude larger than the NTV torque density. [We also notice a rather global
distribution of thej ×b torque density, as a combined result of the presence of multiple rational
surfaces for this MAST plasma, and the resonant splitting effect reported in Section 3. This
globalization of thej ×b torque density, with further enhancement from the radial diffusion
of the toroidal momentum during the RMP field penetration, can potentially lead to a rather
global damping of the toroidal flow.] The computed net totalj ×b torque is about -0.67Nm,
compared to the net NTV torque of -0.03Nm. However, with a 10 times reduced plasma flow
speed (Fig. 6(b)), the NTV and thej ×b torques become comparable, with the netj ×b torque
of -2.42Nm and the net NTV torque of -1.36Nm. Note also that the dominant contribution (to
the total NTV torque) comes from the non-resonant torque in the fast rotation case. Detailed
analysis shown in Fig. 7(a) indicates that, in this case, theMAST plasma collisionality is
mainly in the

√
ν-regime. In the slow rotation case (Fig. 7(b)), the dominantcontribution

comes from the resonant NTV torque, and the plasma collisionality is in the boundary between
the superbanana plateau and the 1/ν-regime.
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Figure 6: Comparison of the computedj ×b and NTV torque densities for the MAST plasma
from discharge 25075 at (a) initial flow speed before applying the RMP field, and (b) 10 times
smaller flow speed. The linear, steady state plasma responseto the lower set of 12 RMP coils
at 5.6kAt in then = 3 configuration is computed.
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Figure 7: Various frequencies and boundaries between different collisionality regimes for the
NTV torque, for the MAST plasma from discharge 25075 at (a) initial fast rotation before
applying the RMP field, and (b) 10 times reduced rotation speed. The curves represent the
same physical quantities as in Fig. 5. The linear, steady state plasma response to the lower
set of 12 RMP coils at 5.6kAt in then = 3 configuration is used to estimate the boundaries
between theν- and the

√
ν-regimes, as well as between the superbanana and the superbanana

plateau regimes.
5. Toroidal momentum balance
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In the MARS-Q modeling of the RMP field penetration, the toroidal flow speed is determined
self-consistently from solving the toroidal momentum balance equation

∂L
∂t

=
G
s

∂
∂s

s
G

[

χM < |∇s|2 >
∂L
∂s

+Vpinch < |∇s| > L

]

+Tj×b +TNTV(ωE)+Tsource, (1)

whereL = ρ < R2 > Ω is the toroidal moment,G≡ F < 1/R2 > a geometrical factor.s labels
the radial coordinate,F is the equilibrium poloidal current flux function,χM the (anomalous)
toroidal momentum diffusion coefficient, andVpinch the pinch velocity. The quantitiesχM and
Vpinch are chosen in anad-hocmanner in our model. For the non-linear simulations presented
in this work, we choose theχM value corresponding to several m2/s, which is the value for a
typical MAST plasma. We neglected the pinch term in the modeling.

The momentum balance equation is subject to an initial condition, and two boundary condi-
tions at the plasma center and surface. If we start the simulation at the time (t = 0) when the
RMP coil current is switched on (neglecting the transit current ramp-up phase), and if the mo-
mentum source termTsourcedoes not change during the application of the RMP field, we can
solve for the change of the toroidal rotation,∆Ω = Ω−Ω(t = 0), instead of the total rotation
Ω. In this case, the momentum source term, which is assumed to be balancing the momentum
diffusion and pinch terms before applying the RMP field, drops out of the equation.

We assume the Neumann boundary condition∂(∆Ω)/∂s = 0 at the plasma center, and the
Dirichlet boundary condition∆Ω = 0 at the plasma boundary surface. In principle, the bound-
ary condition at the plasma edge should also involve the momentum exchange in the scrape-off
layer. However, the Dirichlet condition is normally a reasonable approximation [16].

The toroidal momentum balance equation is solved using a finite element method along the
minor radius. The details of the formulation, numerical implementation, as well as the bench-
mark results are reported in Ref. [20].

6. Non-linear modeling of RMP penetration

6.1. MARS-Q formulation

The MARS-Q formulation couples the perturbed MHD equationswith the toroidal momentum
balance equation (1) [20]. The MHD equations assume the single-fluid approximation with
a generic toroidal plasma flow, and are solved together with the vacuum equation, the coil
current equation (the source term for the RMP field), as well as the magnetic flux diffusion
equation for the resistive wall (when applicable). In the following, these coupled equations
are symbolically written as

B
∂X
∂t

= A1X +YA2X +X0,

C
∂Y
∂t

= DY +T(Y)X2,

where the first equation denotes the MHD equations. the second equation denotes the momen-
tum balance (Y ≡ ∆Ω). The source term (RMP coil current) is denoted byX0.

We have implemented a semi-implicit, adaptive time stepping scheme to solve the above cou-
pled system of equations [20]. The first equation (MHD operators) is treated fully implicitly.
The linear operator of the second equation (momentum diffusion and pinch terms) is also
treated implicitly, whilst the quadratic terms (thej ×b and the NTV torques) are evaluated
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using the values from the previous time step. These two coupled equations are solved on a
staggered time-mesh.

6.2. Modeling results for a MAST plasma

The full toroidal simulation of the RMP field penetration, within the MARS-Q model, brings
together all the ingredients discussed in previous Sections. We show the modeling results on
an example of the MAST plasma described by Fig. 1. In this case, we consider only the
lower set of 12 coils in then = 3,4,6 configurations (the upper coils are far from the plasma,
and hence have much smaller effect on the plasma). The coil current is 5.6kAt, the same as
in experiments. A resistive plasma model is assumed, with the magnetic Lundquist number

S= 3.5×107 in the plasma center, and the radial profile determined byS∝ T3/2
e (theSvalue

at the plasma edge is about 106). The fully implicit scheme for the MHD operators allows us
to take large time steps. The adaptivity in time, shown in Fig. 8, follows the rate of the change
of the full solution of the coupled equations. In the initialstage, when the solution changes
rapidly, the scheme tends to reduce the time step. The time step is progressively increased
(decreased) as the solution starts to evolve slowly (rapidly). An upper limit, of 500τA for this
simulation, is posed to the time step as a numerical parameter, whereτA is the Alfvén time,
which is 0.795µs for this MAST discharge.
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Figure 8: Adaptive time stepping obtained during the RMP field penetration simulation with
then = 3,4 and 6 coil configurations, respectively.
Figure 9 compares the simulated evolution of the radial profiles for the toroidal rotation. Only
profiles at 21 selected time slices are shown in each case, with the interval between each time
slice of about 2ms, 5.5ms and 6ms, for then = 3,4,6 configurations, respectively. With the
n = 3 configuration, at about 40ms after switching on the RMP coils, the toroidal rotation is
nearly fully damped across a significant portion of the plasma column. On the other hand, the
n = 4 and 6 coil configurations result only in a partial braking ofthe toroidal flow. Note that
the Dirichlet boundary condition prevents the plasma edge rotation to vanish in these simu-
lations (the initial rotation has a finite but small rotationfrequency at the plasma edge). The
time traces of the rotation frequency at rational surfaces are compared in Fig. 10 between
the simulations and the MAST experiments. The simulation saturates at finite rotation fre-
quencies for then = 4 and 6 configurations, whilst a full braking of the rotation at rational
surfaces is obtained with then = 3 coils. Similar observations (and time scales) have been
made in experiments. For then = 3 case, further time stepping leads to unphysical results
without additional non-linear physics (e.g. the magnetic island saturation). We notice a slight
discrepancy between the assumed initial rotation frequency in MARS-Q modeling, and the
experimental value at 0.27s. This is largely due to the fact that the RMP current ramp-up
phase is not modeled in MARS-Q, whilst the experimental datashown here correspond to the
flat RMP current phase.

The computed final rotation profiles after the RMP field penetration are compared in Fig. 11(a)
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Figure 9: The simulated radial profile evolution of the toroidal rotation frequency during the
RMP field penetration, for then = 3,4 and 6 coil configurations, respectively. Only selected
profiles are plotted, at the time interval of about 2ms, 5.5msand 6ms forn = 3,4 and 6,
respectively.
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Figure 10: Comparison between the simulated time traces (upper panels) of the rotation brak-
ing and the MAST experiments (lower panels). Plotted are thetoroidal rotation frequencies at
rational surfaces during the RMP field penetration, for then = 3,4 and 6 coil configurations,
respectively.

between then = 3,4 and 6 coil configurations. Due to the diagnostic limitation(the charge
exchange recombination spectroscopy, which measures the toroidal rotation speed, is located
at the mid-plane of the vacuum chamber, whilst the plasma is shifted downwards in these
experiments), no core rotation data are available from experiments, forψp < 0.16. The initial
rotation profile atψp < 0.16 is also obtained by a free boundary cubic spline extrapolation
based on experimental data.

On the other hand, the simulation predicts that, with then = 3 RMP field, a finite central
plasma rotation still remains at the time of the full brakingof the rotation elsewhere. The radial
profile evolution of the plasma rotation depends on the choice of the profile for the momentum
diffusion coefficientχM. Figure 11(b) compares the simulated rotation profiles after the RMP
field penetration for then= 3 configuration, with three different momentum diffusion profiles
χM(s) = χM0sp, with the power factorp = 0,−1,−2, respectively (the default choice isp =
−1). The value ofχM0 is chosen to match the neoclassical prediction, which is about 3m2/s
for the MAST plasmas [29]. As expected, increasing of momentum diffusion in the plasma

10



0 0.2 0.4 0.6 0.8 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

(a)

ψ
p

Ω
/ω

A

initial

n=3
n=4

n=6

0 0.2 0.4 0.6 0.8 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

(b)

ψ
p

Ω
/ω

A

initial

p=0

−1

−2

Figure 11: (a) Comparison of the final rotation profiles afterthe RMP field penetration, be-
tween then = 3,4,6 cases. The simulations start with the same initial rotation for n = 3,4,6.
(b) The simulated final rotation profiles after then = 3 RMP penetration, with three choices
of the momentum diffusivity profile.

core region helps to brake the core rotation.

It is interesting to compare the time traces of the netj ×b and NTV torques, shown in Fig.
12, during the field penetration. For then = 3 configuration, at the initial stage (with fast
plasma flow), the electromagnetic torque plays the dominantrole in the momentum sink. As
the simulation approaches the full rotational braking, theNTV torque becomes the dominant
factor whilst thej ×b torque vanishes. The latter observation can be analytically demonstrated
in a cylinder, with or without a finite equilibrium pressure [16, 25]. For then= 4 configuration,
the j × b and NTV torques become comparable at saturation. For then = 6 configuration,
however, the net NTV torque is still much smaller than thej ×b torque even at the steady
state. Generally, the combined total torque with then = 4 and 6 configurations is smaller than
that of then= 3 configuration, which explains a weaker momentum damping with the former.
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Figure 12: The simulated time traces of the net electromagnetic and NTV torques during the
RMP field penetration, for then = 3,4 and 6 coil configurations, respectively.

Figure 13 plots the amplitude of the radial component of the resonant harmonics at the cor-
responding rational surfaces for then = 3,4,6 cases separately. The vacuum RMP field, the
linear steady state response with the initial plasma flow (before applying the RMP field), and
the final solution after the simulated RMP penetration are compared for each case. The pene-
trated field is still smaller than the vacuum field, but largerthan that from the linear response
with initial flow (the screened field). In particular, a significant penetration of the resonant
field into the plasma core is achieved for then = 3 case, which probably explains the full
damping of the toroidal flow. The penetration of then = 4 and 6 fields is still limited to the
plasma edge region after the saturation, explaining the partial braking of the plasma rotation.

During the RMP field penetration, the plasma surface displacement is also recorded and shown
in Fig. 14. Similar to the results of the linear response computations, the progressively increas-
ing X-point peaking seems to correlate with the field penetration.

7. Summary and discussion
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Figure 13: Comparison of the amplitude of the resonant harmonics of the radial magnetic
field at corresponding rational surfaces, for the vacuum field (dashed), the linear steady state
plasma response with the initial plasma flow (dash-dotted),and the final magnetic field from
the non-linear penetration simulations. Shown are for then = 3,4 and 6 coil configura-
tions,respectively.

Figure 14: Evolution of the amplitude of the plasma surface displacement (the normal com-
ponent) along the poloidal angle (defined in an equal-arc fluxcoordinate system), during the
non-linear simulation of then = 3,4 and 6 RMP field penetration, respectively.

The RMP field penetration process involves several important aspects: the plasma response to
the RMP field in the presence of flow shielding from the plasma;the damping of the plasma
flow due to momentum sinks such as the electromagnetic and theneoclassical toroidal viscous
forces; the axisymmetric momentum balance; and finally the non-linear interplay between
these components.

We have separately investigated the physics involved in each of the components, before pre-
senting a full toroidal modeling of the RMP field penetrationin a MAST plasma, under real-
istic experimental conditions.

When the plasma response is treated perturbatively (i.e. linear, steady state solution of a
driven system), we found a strong screening of the resonant harmonics of external fields by a
fast toroidal flow of the plasma. This screening is perfect byan ideal plasma - the amplitude
of resonant harmonic vanishes at the corresponding rational surface. For a toroidal, resistive
plasma under realistic conditions, the screening often provides 1-2 orders of magnitude reduc-
tion of the resonant harmonics with sufficiently fast plasmaflow. At very slow plasma flow,
on the other hand, the favorable average curvature term, which is responsible for the tearing
mode stabilization in a torus, can provide a strong screening effect on the RMP field.

Contrary to the screening of resonant harmonics (at rational surfaces), the toroidal plasma re-
sponse often amplifies the non-resonant harmonics, as well as the resonant harmonics outside
rational surfaces. This is demonstrated in a MAST plasma from the RMP experiments, where
an amplification factor of about 3 is obtained for the non-resonant harmonics with the same
sign of magnetic pitch (i.e.m > 0 assumingn > 0,q > 0) as the resonant ones. The non-
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resonant harmonics with the opposite pitch (m< 0,n > 0,q > 0) experiences only a moderate
amplification in these RMP plasmas.

Another interesting aspect associated with the linear, steady plasma response to helical ex-
ternal fields, is the generation of a 3D plasma displacement.The computed amplitude of the
plasma surface displacement is of order of 10mm for MAST plasmas at 5.6kAt RMP coil cur-
rent with the n=3 configuration. These values are quantitatively comparable to experimental
measurements in MAST. An earlier study for MAST also found that the poloidal distribu-
tion of the plasma displacement has an intrigue correlationwith the density pump-out effect
observed in the RMP experiments.

The MARS-Q modeling also reveals interesting physics of theelectromagnetic torque, de-
pending on the plasma rotation regime. At a slow plasma rotation, the so called GGJ-term
qualitatively alters the fluidj × b torque, by reversing the sign of the net torque. On the
other hand, the response of a fast rotating plasma to a staticexternal field produces the reso-
nant splitting effect, as a result of the resonance between the rotating response, in the plasma
frame, and the continuum waves in the plasma. Both shear Alfvén wave and sound wave con-
tribute to the resonant splitting. As a result, the surface-like perturbed parallel current, which
is responsible for the screening, occurs at several radial locations near the (single) rational sur-
face. This splitting effect also effectively re-distributes the electromagnetic torque along the
plasma minor radius, resulting in a more globally distributed j ×b torque density, as opposed
to the conventional understanding of the rational-surface-localized electromagnetic torque.
This torque spreading becomes more pronounced with increasing the plasma resistivity.

The NTV module in MARS-Q, based on the analytic formulas thatsmoothly connect all colli-
sionality regimes in the NTV theory, produces results that,at relatively slow plasma flow, are
in quantitative agreement with experimental measurementsin one of the DIII-D non-resonant
magnetic field discharges. The dominant contribution of theNTV torque in this case comes
from the so called superbanana plateau regime, in which the torque is significantly enhanced
by the resonance between theE×B flow and the precessional drifts of bulk plasma species.
At fast plasma rotation, however, the MARS-Q computed NTV torque is smaller than the
experimental measurements in DIII-D. Further investigation is needed, from both the theory
and the experimental sides, in order to resolve this discrepancy. Despite this discrepancy at
fast plasma flow, a reasonably good quantitative agreement is obtained between the MARS-Q
modeling and the MAST experiments, for the toroidal rotation braking. This is partly due to
the fact that the NTV contribution is relatively small at fast plasma flow, as also shown by the
DIII-D experiments.

The fast plasma rotation in MAST often excludes the possibility of the superbanana plateau
regime. In stead, the collisionality condition of the MAST plasma considered here results in
the so-calledν−√

ν regime. The net torque is still 1-2 orders of magnitude smaller than the net
j ×b torque. However, with the progressive braking of the plasmaflow with the application of
the RMP fields, it is possible to enter the superbanana plateau regime also for MAST plasmas.
In this case, the resulting NTV torque can be comparable to the fluid j ×b torque.

MARS-Q employs an adaptive, semi-implicit time stepping scheme to solve the coupled
MHD-momentum balance equations. The latter includes both the momentum source and sink
terms (i.e. the electromagnetic and the NTV torques), as well as the momentum diffusion and
pinch terms. The toroidal momentum balance equation is solved using a finite element method
along the plasma minor radius.
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A simulation of the RMP field penetration, with the inclusionof all the above elements, is
performed for a MAST RMP plasma. With 5.6kAt of the lower set of 12 coils in the n=3
configuration, the MARS-Q simulation predicts a full damping of the toroidal rotation, at
about 40ms after application of the RMP fields. These resultsre-produce well the experimental
observations. The modeling also reveals that the predominant damping force is produced by
the electromagnetic torque in the initial phase of the RMP field penetration. However, after
the RMP field is well penetrated, and the plasma flow is well damped, the electromagnetic
torque diminishes, and the predominant role of the toroidalmomentum damping is played by
the NTV torque in this MAST discharge.

The above results imply that, for the ELM mitigation using the RMP field, such as that envis-
aged in ITER, it may be important to choose a proper toroidal spectrum of the applied field.
On one hand, we need to choose lown number(s) to have sufficiently large field in the plasma
region; on the other hand, too lown field (e.g. n=3 in MAST) may completely suppress the
plasma flow. A finite flow is often essential for both stabilityand confinement of the tokamak
plasma. The MAST experiments demonstrate that, with highern (n=4 or 6) RMP fields, it is
possible to mitigate ELMs while still maintaining a finite plasma rotation. Quantitative pre-
diction of the RMP penetration and the flow damping for ITER plasmas will be carried out
using MARS-Q.

We emphasize that the plasma response, that we considered inthis work, refers to theper-
turbedresponse. In other words, the MARS-Q computed final 3D state in the presence of the
RMP field does not correspond to the truly steady state, dynamically accessible 3D equilib-
rium. The validity of the perturbative results lies in the assumption that the applied 3D field is
much smaller than the plasma equilibrium field. However, even in this case, the perturbative
approach may be questionable near plasma rational surfaces(or the splitted resonant surfaces)
where a large surface current is generated.

In this work, only toroidal flow is considered, which is responsible for the RMP field screening
observed in the modeling. It has also been pointed out that the poloidal flow (more precisely
the flow perpendicular to the equilibrium field lines) can play a crucial role for the RMP field
screening [18]. This effect will be investigated in a full toroidal geometry, with an updated
version of MARS-Q in the future. Since the electron flow seemsto be important in the field
screening [7], it may also be important to consider the two-fluid approximation for the RMP
penetration problem. The results presented here largely follow the single-fluid approximation,
except for the NTV torque, which is derived by solving the bounce-orbit averaged drift kinetic
equation.

Finally, the magnetic field line stochastisation (say, after the full penetration of the RMP field)
can enhance the particle radial transport and give rise to anadditional radial current [30]. The
resultingj ×b torque presents additional momentum sink/source term, which is not included
in this study.
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