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Abstract

An alternative compact formula in terms of input network parameters for cal-
culation of envelope correlations is provided. The main advantage of this formula
is that it can be simply modified to include cases of lossy structures and general
cases of correlated nonuniform multipath environments. This formula is based on
the open-circuit covariance matrix of the multiport antennas. The latter can be
either estimated or quickly measured in a reverberation chamber, which removes
the need for costly measurements of the embedded far field patterns.
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1 Introduction

In a multipath environment, spatial correlation is a measure of similarities between the
received signals at different antenna ports. It plays a significant role in diversity perfor-
mance of a multi-element antenna system, and its multiple-input-multiple-output (MIMO)
multiplexing capacity. In general, as the separation between radiation elements shrinks,
e.g., in compact array antennas, coupling among them increases. Coupling is one of the
main sources to cause spatial correlation which is a function of both embedded patterns
and spatial properties of the incoming waves. The embedded pattern of a radiation el-
ement in the presence of coupling depends on the terminating impedances at the other
ports as well. This causes some limitations in compact formulation of correlation.

In addition, in recent MIMO communication systems, the number of RF chains is not
necessarily the same as the number of antenna ports. Sometimes, two or more ports
are connected passively through a combiner/divider to share a single RF chain, which
in turn changes the associated embedded pattern [1, 2]. By reciprocity, the latter case
corresponds to exciting more antenna ports in transmit mode. Dependency of embedded
pattern upon terminating impedances and excitation schemes can be consolidated into a
single metric which is the associated current vector at different antenna ports. In this
letter, we recast correlation in multiport antenna systems in terms of current vectors at
their input ports. By this consideration, the proposed formula becomes flexible against
terminating impedances in comparison with [3, Equation (11)], [4, Equation (31)], and
robust against excitation schemes compared with [5, Equation (73)]. The open-circuit
covariance matrix of embedded patterns plays a central role in our formulation rendering
a symmetrical form to the presented formula. Another major feature of this novel formula
is its robustness against any change in the properties of multipath environments. Indeed,
with a slight modification the formula withstands against general cases of lossy structures
in nonuniform correlated multipath environments.

To set the notations, matrices are denoted by bold capital letters, whereas the column

vectors are shown by an overbar sign. The dagger sign shows Hermitian transpose and I

denotes the identity matrix. E stands for expectation operator, ℜ for real part, and the
superscript ·T goes for transpose.

2 Correlation in Isotropic Multipath Environments

It is well known that the embedded patterns can be recast in terms of their open-circuit
counterparts at any arbitrary solid angle Ω(θ, ψ) [4], [5]. For an n-port antenna system, let
us denote the matrix of open-circuit embedded patterns by G2×n(Ω), whose rows are the
associated patterns’ θ and ψ components. We assume that this multiport antenna with
impedance matrix of Zn×n is excited by an arbitrary source of certain internal impedances
given by Zs. Should we stack the source voltages at different ports in a vector, v̄n×1, the
currents weights at the ports can also be given in a vector form governed by

īx = (Z+ Zs)
−1 v̄x . (1)

The embedded pattern associated to this current weights vector is obtained by Ḡx(Ω) =

G(Ω) · īx. When a single-port excitation occurs, the corresponding embedded pattern
is referred to as embedded element pattern. The latter achieves considerable interest in
receive-mode diversity antenna analysis.
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On the other hand, random incoming waves in a multipath environment can be mod-
elled by their amplitude and phase distributions, their angle of arrival (AoA) distribution
and cross polarisation distinction (XPD) [5]. Let us denote an incident wave by a vector
Ē2×1 whose entries are its Eθ and Eψ components, respectively. For simplicity, we assume
that the random incoming waves in each polarisation are zero-mean complex Gaussian
random variables. If we denote the AoA in spherical coordinate system by Ω(θ, ψ), the
random incoming waves can be mathematically represented by polarisation matrix for
incident waves

Γ(Ω,Ω′) = E[Ē(Ω) · Ē(Ω′)
†
] , (2)

wherein the expectation operates upon different realisations or time [5]. Note that the
above expression is quite general including the case of correlated incoming waves of differ-
ent AoAs and polarisations. Regarding the AoA distribution, the joint probability density
function of different waves coming from Ω and Ω′ directions is designated by P(Ω,Ω′).

For the time being, we restrict ourselves to a special case of uncorrelated isotropic
multipath environments and defer the more general cases to Section 3. Recall that mul-
tipath environments wherein incoming waves from different AoAs and polarisations are
independent are referred to as uncorrelated multipath environments. If the AoA distri-
bution in a multipath is uniform and XPD = 0 dB, it is called isotropic. Since it can be
quickly created in a well-stirred reverberation chamber, the uncorrelated isotropic mul-
tipath environment is of considerable interests. The goal in this part is to achieve a
compact formula for envelope correlation, ρe. For this particular multipath environment,
after power normalisation we have

Γ(Ω,Ω′) = I2×2 δ(Ω
′ − Ω) ,

P(Ω,Ω′) =
1

4π
δ(Ω′ − Ω) .

(3)

The voltage at the, say, xth port of antenna is obtained through

vx = Q

∮
4π

Ē(Ω)T · Ḡx(Ω) dΩ , (4)

with Q being a constant complex factor given in [6, Equation (4-2)], and Ḡx the associated
port’s embedded element pattern. The incoming waves create voltage at the other ports
too. The covariance between the signals at port x and y in this multipath environment
becomes

covxy = E[v∗yvx] = |Q|2
∮
4π

Ḡ†
y · Ḡx dΩ , (5)

in which we exchanged the E and integral operators and used the expressions in (3). To
achieve correlation coefficient ρxy, the expression in (5) needs to be normalised. Doing so,
for the envelope correlation (i.e., ρexy = |ρxy|

2) we can write

ρexy =
|̄i†x ·C · īy|

2

(̄i†x ·C · īx) · (̄i
†
y ·C · īy)

, (6)

in which the open-circuit covariance matrix of the antenna system is

Cn×n =
1

η

∮
4π

G†(Ω) ·G(Ω) dΩ , (7)
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with η being the intrinsic impedance of the propagation medium. The latter is also known
as pattern overlap matrix. Works of Wasylkiwskyj and Kahn [7], [8] as well as Vaughan
and Andersen [5] showed that for certain type of multiport antennas known as minimum
scattering antennas the open-circuit covariance matrix in watt represents the resistive
part of Z-matrix of the system times 1 A2. That is

C = ℜ[Z] (Minimum Scattering Antennas) . (8)

Lossless single-mode multiport antennas approximate minimum scattering antennas well
[9]. Thus, exclusively for this group of antennas, the expression in (6) can be recast as

ρexy =
|̄i†x · ℜ[Z] · īy|

2

(̄i†x · ℜ[Z] · īx) · (̄i
†
y · ℜ[Z] · īy)

. (9)

This is the only case in which correlation can completely be calculated by input network
parameters. Indeed, the expression in (9) is an alternative expression for [3, Equation
(11)], [4, Equation (31)], and [5, Equation (73)]. In Fig. 1 comparisons between correla-
tions achieved in different ways are illustrated, which show agreement.

A few points about the presented formula merit further discussion. First of all, note
that in case correlation for only 50 ohm terminations is desired, the formula presented in [3,
Equation (11)] is the most suitable one. However, as soon as other terminating impedances
are of concern, expressions in (9) and [5, Equation (73)] are handier. In addition, recall
that all previously published compact formulas are based on single-port excitation scheme,
i.e., embedded element pattern. Nevertheless, in practice there are some cases (e.g.,
beamforming) in which a number of ports in an array are excited simultaneously. In
these cases, the concern is the spatial correlation between the two resultant embedded
patterns created by different excitation schemes. In such a circumstance, using the above
formula saves computation resources and is quite advantageous at the expense of two
steps in calculation: first, evaluation of current weights by (1), and subsequently envelope
correlation by (9). To clarify the point, the absolute values of complex correlations at
the ports of an ideal cascaded Butler network to four horizontal dipoles at 0.15λ◦ (λ◦ at
1 GHz) height above a perfect electric conductor (PEC) are plotted in Fig. 2. The element
separation in this example is d = 0.2λ◦ and terminations are all 50 ohm . Let us assume
that the current weights for different excitations are known through (1). Calculation of a
correlation using (9) requires 50 multiplications plus 36 additions at each frequency point.
In contrast, if we use [3, Equation (1)] for the same purpose, with known open-circuit
embedded patterns (5◦×5◦) and known current weights given by (1), the necessary number
of multiplications and additions are around 60000 and 50000, respectively. Expressions
in [3, Equation (11)] and [5, Equation (73)] cannot be directly used in the aforementioned
example.

3 Correlation in Correlated Multipath Environments

Pursuing a similar path to Section 2, one can formulate correlation in a general case of
non-uniform multipath environments of correlated incoming waves. Using (2), the general
expression in (6) can still be held with slight changes in C as correlated pattern overlap
matrix given by

C =
1

η

∫
4π

∫
4π

G†(Ω′) · Γ(Ω,Ω′) ·G(Ω) P(Ω,Ω′) dΩ′dΩ . (10)
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Figure 1: Envelope correlations based on different formulas for (a) two lossless cross dipoles
with an angle of α between them and (b) two lossless parallel horizontal dipoles
above a PEC plane with element separation d.
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Figure 2: Spatial correlation in the presence of a cascaded ideal Butler network for four hori-
zontal dipoles above a PEC plane. The element separation is d = 0.2λ◦ (λ◦ ≈ 0.3m).

As a point of caution, note that the expression in (10) is fixed and depends partly upon
the open-circuit embedded patterns. Meanwhile, the input current weights in (1) are still
dependent on the input network parameters. Therefore, in this general case, correlations
can only partially be obtained based on the input network parameters. The optimum
terminations rendering minimum correlations can be achieved through the expression in
(6). Indeed, this expression is highly advantageous for optimisation purposes restricted
to a certain set of multipath properties, i.e., Γ and P.

Moreover, as an interesting point, if we can estimate the open-circuit embedded pat-
terns properly within the desired range of AoA distribution, we are able to approximate
correlation in nonuniform multipaths solely in terms of the input network parameters.
This is rewarding since except elements’ positions (or their phase centres), there would
be no need to have precise knowledge of their far-field patterns. In this case, the ex-
pression in (10) can be obtained numerically. It is also worth mentioning that, in many
practical cases, the open-circuit embedded patterns within a small AoA range can be well
approximated by a uniform or sinusoidal function. This important observation cannot
be made based on the previous formulas available in the literature. To further elaborate
the point, Fig. 3 illustrates how we can estimate correlations between different ports of a
four-port quarter-wavelength monopoles above a PEC plane without accessibility to the
simulated embedded patterns. In this simulation, we arbitrarily assume an uncorrelated
multipath of balanced polarisation with uniform AoA distribution in azimuth plane but
truncated Gaussian AoA in elevation plane [10, Equation (10)]. The mean elevation AoA
is 20◦ from horizon with standard deviation of σ = 10◦. There are 50 ohm terminations at
different ports. Note that in this example, we approximate the open-circuit pattern of a
monopole by a sinusoidal function, e.g., Gθ(Ω) = sin θ (0 ≤ θ ≤ π/2). Based on this figure,
around the resonance frequency (i.e., f◦ = 1 GHz), correlation between nearby elements
decreases. This can best be attributed to the associated increase in coupling between
them. Furthermore, the correlations are in general considerably higher than their coun-
terparts in a uniform multipath environment. This is due to a reduced angle of spread
for the incoming waves.
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Figure 3: Estimation of correlation for a four-port antenna in an uncorrelated nonuniform mul-
tipath environment (d = 0.2λ◦ at λ◦ ≈ 0.3m). The solid curves show the simulated
correlations, whereas the dotted ones illustrate the estimated ones.

4 Correlation in Lossy Structures

Recalling the fact that losses in a multiport radiating structure affect both the resistive
and reactive parts of its self-/mutual impedances, we stress that correlation cannot be
achieved through the input network parameters. Yet, if by any chance the open-circuit
covariance matrix can be measured, the corresponding correlation is given by (6) as a
partial function of the input network parameters.

The open-circuit covariance matrix for uncorrelated isotropic multipath environments
in (7) can be most quickly measured in a well-stirred reverberation chamber by virtue of
two independent sets of known terminating impedances. The price paid for this purpose
is that we need to measure the covariance matrix with the both sets of impedances and
then derive the entries in C from them. Furthermore, fast measurement of antennas by
reverberation chamber in non-isotropic Rayleigh multipath environments is shown to be
possible [11]- [13]. This achievement, by all means, alleviates the burden of embedded
pattern measurements for different terminating impedances. As an example, in Fig. 4(a),
correlations for a two-port antenna in uncorrelated isotropic multipath have been achieved.
These are obtained by use of (6) and the simulated embedded patterns based on the
method of moments. Note that the losses are introduced arbitrarily over these wire
antennas whose simulated embedded radiation efficiencies are given in Fig. 4(b). A quick
comparison to those of the lossless case shows that the total radiation efficiencies do not
affect the corresponding correlations considerably.

5 Conclusion

In this letter, an alternative compact formula is introduced to stand beside the available
formulas from [3] and [4]. A modified version of the compact formula is discussed to
hold in general correlated nonuniform multipath environments. The stress of this letter
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Figure 4: (a) Envelope correlations for the case of two lossy cross-dipoles with variant angles,
α, between them. The corresponding correlations for the lossless case are also plotted
for comparison purpose. (b) Embedded radiation efficiencies of these antennas are
also shown.
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is on the open-circuit embedded covariance of the multiport antennas in isotropic or
nonuniform multipath environments. The reverberation chamber is recommended for
quick measurements of the latter parameter, which results in considerable alleviation in
cumbersome measurements of embedded far-field patterns. Moreover, it is shown that by
a proper estimation of open-circuit embedded patterns and knowledge of elements’ phase
centres, in a lossless case, one can approximate correlations solely based on the input
network parameters.
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