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Multi criteria H o, optimal PID controllers
from an under graduate per spective

Bengt Lennartson *
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Abstract: A simple design method for robust PID controllers is presénit is based on a multi criteria
H ., optimal control formulation, which is shown to be easilywadl by a few lines of MATLAB code.
This optimal solution for PID controllers including low afdtering, is complemented by a simple paper
and pen solution that can be used to obtain nearly optimatieak. The presented approach is shown
to give significantly better results compared to ordinary ok solutions based on frequency domain
loop shaping. The paper also includes a discussion on hoestiofbrmulate PID controllers for design,
and how additional filtering may easily improve high freqagrobustness.
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1. INTRODUCTION compensation implies normally either reduced pass-band ro
bustness (stability margins) or reduced HF robustness alue t
] ] increased lead action in the controller, Persson and Astrém
In basic text books on feedback COI’]tI‘Ol, cf. Franklin et aklggz) Based on these observationsy asét(gf performance
(2006); Ogata (2002), general design of PID controllers ignd robustness criteria are used in this paper for genedal an
mainly based on loop shaping in the frequency domain. Thisyjective evaluation of PID controllers, see also Lenmarend

is complemented by tuning rules, often Ziegler Nichol'sss)l  Kristiansson (1997); Kristiansson and Lennartson (2006a)
Ziegler and Nichols (1942), and root locus design for sgecia

plant models. In loop shaping the controller is typicallyate The evaluation procedure is formulated as a constrained op-
mined to obtain a specific gain cross over frequency and phaéaization problem, and for a given controller structurere
margin, to match desired demands on performance and robu§tan optimal solution to this multi criteria{ optimal con-
ness. Most often the low pass filter on the derivative actiotiol problem. Based on this design procedure, optimal Pl and
is neglected in the design. In e.g. Kristiansson and Lesoart PID controllers have recently been extensively evaluakeds
(2006a) it is shown that to avoid too much sensitivity to sens includes a set of simple tuning procedures, Kristianssah an
noise, the low pass filter will influence the stability marginkennartson (2006b) and the introduction of a new Robustinte
significantly, and therefore must be a part of the design. nal Model Control (RIMC) strategy, Lennartson and Kristian
son (2009). Alternative optimization strategies for Pl &D

A systematic design method including this filtering of thezontrollers have also been presented by e.g. Panagopdalos e
derivative action is not very common in basic text books.iBut (2002); Larsson and Hagglund (2011).

e.g. Glad and Ljung (2006) it is observed that a PD controller o _ ) )
including low pass filter is equivalent to a lead filter, while The presentation in this paper is made from a basic educa-
PI controller can be interpreted as a lag filter with infinag | tion and engineering perspective, where the multi critefia

ratio. To reduce the complexity of this PIPD design inclggin Optimal control problem is explicitly formulated as a short
four parameters, the maximum phase lift of the PD controlld!!/ATLAB program. Based on the generation of optimal PID
is recommended to be placed at the desired gain cross ogé@ntrollers for some typical plant models in this paperpree
frequency, the standard recommendation for lead filtergesi Mendations on suitable values for gain cross over frequamdy
The zero in the PI controller is typically chosen a decadewel Phase margin are also obtained. Furthermore, for desitedwva
this frequency, which is the standard recommendation fgr 122f these parameters, itis shown how a simple paper and pen PID
filter design to avoid too much influence on the stability mardesign solution can be formulated. This solution, whicteisesl
gins. This classical lead/lag based design method, where N & Bode plot of the plant model and two graphs, generates a
two remaining parameters are determined to achieve a specfilD controller that can be used to estimate suitable intefoa

gain Cross over frequency and phase margin' is evaluated SS}'@ control parameters in the search for an Optlmal solution

tematically in this paper. The resulting controller is cargtl , o introductory course on feedback control, this PID giesi
with a general PID controller formulated in Bode form, Wherestrategy has been used successfully for a number of years.
also complex zeros can be allowed, as well as additional lo@,seq on the multi criteria optimization method, this optim
pass filtering to further improve high frequency robustness  gqytion is also compared with the ones that can be achieved

To make a fair evaluation of any type of feedback contrdpy including the standard simplifications for PIPD desige-pr
system it is important to consider the coupling between lowsented above. These simplifications, which are presented to
frequency, mid_frequency and high_frequency performm most students gIobaIIy for the r_elated Iead/lag and. PIPI]L)des
robustness. For instance, improvement of load disturbanb@sed on frequency loop shaping, are shown to give significan



deterioration of load performance compensation. Som@nsas properties of the control gain are considered, the paraméte
for this performance loss are also discussed in the paper.  may be replaced by the criterion

Ju = m3X|qu(jw)| = [|Gwu(8)]|oo 2

For controllers with higher gain in the HF range (the critica
A set of important}{, criteria was introduced in Lennartson©ones), these two measures give most often the same result. So
and Kristiansson (1997); Kristiansson and Lennartsongapo far we have focused on sensor noise, but also note that the
for design and evaluation of robust PID controllers. Thease c initial control amplitude, after a unit step in the refereisignal,
teria are briefly presented in this section from an undergatel becomesi., i. e.u(0) = Ko, whenr(t) = unit step. Thus,
perspective. First, consider a system with a ptaft), where Ju = Ko andJ, are both relevant measures and need to be
the load disturbance is added to the control signaland the ~constrained to avoid too large control activity and sevisjtito
sensor noise is added (with minus sign) to the plant output Sensor noise in the HF range.

This plant is controlled by a one-degree of freedom coreroll \y/hen the controller has a roll off with an HE behaviets) ~

K(s), resulting in a loop transfek(s) = G(s) K (s). Further- K. /s, itis also of interest to consider the HF criterion
more, the controller is assumed to include integral actigrich

2. MULTIPLE CRITERIAH, OPTIMIZATION

means that it can be formulated &%s) = K(s)K;/s where Inr = mj‘XMqu(jw” = [lsGuwu(s)llo ®3)

K(0)=1. Note thatJyr ~ max,wKs/w = K, while J, then
measures the peak gain@f,,,, which typically occurs slightly

2.1 Low frequency range above the mid frequency range. Hendg may then be consid-

i ered as a mid to high frequency measure, wlilg- is the HF
A fundamental goal of a feedback system is to compensate IQWterion.

frequency (LF) load disturbances. The transfer functiamfr

the disturbance to the controlled outpuj is 2.3 Mid-frequency range
<)
vy(s) = 1+ G(s)K(s) In the pass band, robustness is achieved by ensuring good sta

When the controller includes integral action we obtain it Pility margins. Generally, the loop transfét(jw) K (jw) must
rangel + L (jw) ~ L(jw)) and|G., (jw)| ~ w/K;. Obviously, be kept at an acceptable distance from the critical poin0)-1
the compensation of LF disturbances is improved when t{@ the Nyquist plot. To ensure this, different measures have

integral gaink;; in the controller increases. Hence, a simpl@€en introduced like the classical phase margin and the
LF performance criterion to minimize is gain marginG,,. More recently, the shortest distance to the

point (-1,0),min,, |1 + G(jw)K (jw)|, has been introduced as

. Jo = 1/K; ] _a stability measure. Consider the sensitivity function
To include a broader frequency range concerning load distur 1
bances, we also consider the more compiex criterion S(s) = —————
1 ) 1 . . - 1+ G(s)K(s)
Jy = max $|Gvy(jw)| = ||gGvy(s)||OO (1) andits maximum gain
The frequency weight /w is included to still emphasize more Ms = max 1S = 115()l| (4)
on LF load disturbances. It is also motivated by the LF asympypyiously, this #. criterion is the inverse of the shortest
totic behavior of G (jiw)| given above. distance to the point (-1,0) in the Nyquist plot, and hence a

In MATLAB this criterion is easily computed, assuming thatower value of\/s means a larger stability margin. For unstable
a model Gvy is available in terms of a transfer functionPlants, including those with integral action, it is also onfant
or a state space model. Then the, norm is computed as t© consider the complementary sensitivity function
H ot 1 L G K
norm(Gvy/s,inf) , wheres=tf(’s") T(s) =1 — S(s) = (s)K(s)
. 1+ G(s)K(s)
2.2 High frequency range and its maximum gain
In the high frequency (HF) range, it is important to avoid too My = m§XT(j“)| =T ()l ®)
much sensor noise in the control signal. Hence, consider therestriction onMy also controls the damping of the system,
transfer function from the sensor noisg) to the control jithout reducing)s too much. In this paper we will include
signalu(t) the demandg/s < 1.7 andMr < 1.3.
G (5) K(s)
14+ G(s)K(s) 2.4 Controller design by multi criteria optimization
The plantG(s) is assumed to have low gain in the HF range
(lims_, o0 G(s) = 0), which means that?,,,(jw) =~ K(jw) In all controller design, independent of method, the user ha
in this range. Furthermore, assuming ti#é¢s) is proper but to adjust a set of tuning parametexsThis set may include the
not strictly proper, we make the additional approximation tparametersin a PID controller or weighting function parterse
consider the controller gain at = co. By the notationkK,, = in e.g. an LQG optimization criterion. The user has to adapt o
lims_,~, K (s) we then achievé&,,,(jw) ~ K. Areasonable tune these parameters to obtain a desired closed loop loghavi
HF criterion is therefore to consider the HF controller gain  in our case measured by th criteria suggested in this
J, = Ko section.

as a control activity measure. To guaranteee that posstlallesp  An objective method to evaluate different design methods is
in K(s) in the HF range are not neglected when the HRninimize one criterion with respect to the tuning paranseter



while constraints are introduced on the other criteria.his t A standard suggestion is to chodse; a decade lower than,..
paper the LF performance is minimized, while constrainés arThis leads to a slow compensation of load disturbances. &jenc
included on the mid and high frequency range criteria, he. t we moderate that suggestion by evaluating; = 0.2w,,
controllers are designed by solving the following consteai which results in a phase lag of approximately atw..

timizati bl . . . . L
Optimization problem This classical PIPD design strategy will be evaluated is thi

min J, (p) paper. The PD controller is then designed such that a desired
P phase margirp,, and cross over frequeney. are achieved,
Ms(p) < 1.7 Mr(p) <13 Ju(p) < Cy (6) by placing the maximum phase lift at.. The phase lag in the

where the constant’, depends on the plant modél(s). It Pl controller is compensated by adding extra phase lifgéar

is chosen to give a reasonable control activity, while only,,,.) atw,, = w, in the PD controller.

marginally deteriorate the LF performance compared to k hig

gain solution. The HF criterion;; is considered as an op- 3.2 PID controller in Bode form

tional measure for controllers with additional low pasfilig

and roll off. In e.g. Kristiansson and Lennartson (2006b) it has beenishow
. . S L _ that a PID controller, optimized with the filter included aaitl

By this constrained multi criteria optimization proceduué- arameters free, often implies complex zeros in the cdetrol

ferent controllers may be designed and evaluated undet quﬂis has been verified for a large number of plants with poles

conditions. For a paper and pen solution, including a Simplgricily on the negative real axis. Hence, a suitable adtire
calculator and Bode plots, the following alternative ¢rdaean parametrization of the PID controller is

be applied. 2
.z - 1+ 2(rs+ (19)
> 45° > < K = K; 9
minJy(p)  pm(p) 2 45° Gm(p) 23 Julp) < Cu PID(5) S0+ 57/8) )
Then a manual iterative search can be performed to achievewith the four parameters thentegral gain K;, the high-
least a semi optimal solution. frequency gaink ., = Kprp(oo) = K;73, thezero damping

¢ and thenatural frequencyl /7. The notations is short for
Ko /(K;7), but may also be used as a design parameter, an
alternative tak ..

The expressiomptimal controlleris from now on used for a
controller, which is optimized according to (6) with all dva
able controller parameters included in the tuning vegtoin

this paper the routinémincon from Matlab’s Optimization Since this representation of the PID controller is written i

Toolbox is used for the optimization. Bode form, the parameters have a clear relation to the fresyue
function Kp; p(jw). It means that they have a natural physical
3. PID CONTROLLERS meaning, especiallys; and K, that define the low and high

) ) ] ] . frequency behavior of the controller. Fr> 1 it is related
In this section different formulations of PID controllersivbe  to the PIPD formulation as; = ¢r and7y = 7/c, where

discussed, and as a basis for further tuning, it is shown how_ =

a desired phase margin,, and gain cross over frequency, ¢ CHve-L

can be achieved for the different controller formulatiofse To achieve a desired phase margip, and cross over fre-
intention is mainly to efficiently compensate load disturt@s. quencyw, for this controller, we first observe generally that
When good servo properties are required, the controller cdf\ p;p (jw.)||G(jw.)| = 1 and ZKprp(jw.) = —180° +
always be augmented by a filter in the feed-forward path. ¢, — ZG(jw.). The gain and phase expressions for (9) then

" . . result in the following nonlinear relations
The traditional PID controller, with a low-pass filter on the 9

derivative part, is often formulated as 1— 2
1 ST ZKprp(jwe) =—90° + arccos
Kprp(s) = Kp(l+ o+ 7 7) ) V=) + (260)°
! ! —arctan(z/3)

28T+ /B
V=2 + (%)

erex = w.r. Corresponding relations are illustrated in
g. 1 for different values of for the specific choice = 1. By
selecting a desireH ., the second plot gives a suitaldewhich
(8) by the first plot then determines and finallyK; = Ko /(70).

2

3.1 PIPD controller
K00|G(jWC)| =

To get a better understanding of the PID controller in the
frequency domain the controller can alternatively be fdated
as a Pl and PD controller connected in series, from now call
a PIPD controller

1+s7, 1+ s1y

Kprpp(s) = Ky st 14 s14/b

Note that the PD controller written in this form can also/Vhen it comes to implementation it is straightforward toga
be considered as a lead filter with a lead rdtjovhere the |ate these design parametersin Bode formto the traditimmesd

maximum phase liftp,,q, = arcsin((b — 1)/(b + 1)) occurs N (7)-

at the mid frequencys,, = Vb/74. In the literature, see A PI controller can be considered as a special case of the PID
e.g. Franklin et al. (2006), it is recommended to choose thgntroller (9) with3 = 1 (low high-frequency gain) ang = 1

lead filter, here the PD controller, such that the gain cress o (double zero).

frequencyw, is equal to or at least in the region of the mid (14 7s)? 1+ 7s

frequencyw, = vb/74. Bpi(s) = Ky = K= (10)

At the same time it is recommended to choose the integral tiniesired values of the phase margirp, and the cross over
constant; large enough to not disturb the phase too mueh.at frequencyw,. are then directly obtained by selecting =
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ZKprp(jwe)

return

function [C,Ceqg]=confun(x,G,MS_max,MT_max,Kinf)
Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki
K=tf(Ki =*[tau™2 2 =*zeta *tau 1],[tau/beta 1 0]);
MS=norm(feedback(1,G *K),inf);
MT=norm(feedback(G *K,1),inf);
stab=norm(feedback(G  *K,1));
if stab<inf, C=[MS-MS_max; MT-MT_max];
else C=[1; 1]; end
Ceq=[I;

return

*tau);

Control parameter intervals In this routine lower and upper
limits on the three control parameters are defined, &nds
computed by including the integral weightings in the loop.
Generally, it is recommended to start with wider control pa-

Koo|G(jwe)l

rameter intervals, and then tighten when the optimal patame
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Fig. 1. wer and Koo|G(jwe)| as functions of the desired PID
controller phase/ Kprp(jw.) for ¢ = 1 and different values

of 3.
tan(gm,m — 90° — LZG(jwe))/we and K; = w./(|G(jw.)]

V1+ (wer)?).

4. OPTIMIZATION AND EVALUATION

The PID controller (9) will now be optimized by solving the
constrained optimization problem (6). Sindg is most often
equal toJ,, = K, = K;7f for the reasonable control activities
we are interested in, it is enough to specify a desired HF
control gain K., which then determineg$ = K. /(K;7).
The remaining parameterk&;, 7, and(, are optimized by the

4 region has been identified. Initial parameter intervalpaeger-
ably estimated by making a manual/¢,, design, based on
LN the gain and phase @(jw.) and the curves in Fig. 1. This
design depends in its turn on a suitable choicesofind p,,,
which will be further discussed below based on experieraa fr
typical plant models. If the control parameter intervaldile

N a feasible solution, which satisfies the given constraithis,
convergence of the optimization is very fast (<5 sec. for the
ARS given MATLAB example above on a standard LAPTOP-PC).

Plant models and their complexity Optimal controllers for
the following plant models are evaluated in this paper.

1
Gi(s) = (I1+s)(1+0.58)(1+0.259)
1
Ga(s) = m
670.35
o) = T e T T 08s)
1

B (14 2s)
Cs8) = 7 02s + 91 1 0.025)
Ge(s) = m

following MATLAB program, based on the routirfenincon

and applied ta(s) = (l+s)(1+0.;3)(1+0.258)'

s=tf(’s’); G=1/(1+s)/(1+0.5 *S)/(1+0.25
MS_max=1.7; MT_max=1.3; Kinf=15;
min_x=[3 0.4 0.6]; % Lower and upper limits
max_x=[5 0.9 1]; % on Ki, tau, zeta
x=(min_x+max_x)/2; % Initial value = mean value
options = optimset('Algorithm’,’active-set’);
x=fmincon(@(x) objfun(x,s,G,Kinf),x,[I,0.0.0,---
min_x,max_x,@(x) confun(x,G,MS_max,MT_max,Kinf),
options);

*s);

Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki *tau);
K=tf(Ki =*[tau™2 2 =*zeta *tau 1],[tau/beta 1 0]);
function Jv=objfun(x,s,G,Kinf)

Ki=x(1); tau=x(2); zeta=x(3); beta=Kinf/(Ki *tau);

Fd=tf(Ki =*[tau™2 2 =*zeta *tau 1],[tau/beta 1]);
Jv=norm(feedback(G/s,Fd),inf);

The complexity of a plant model can be characterized by its
k number,x = |G(jwisos)|/G(0), cf. Hang et al. (1991),
wherew; g, is the frequency where the plant has a phase lag
of —180°. From Table 2 it is clear that a minimum phase plant
with one dominating pole hasraclose to zero, while Table 3
shows that a plant which is close to a pure time delay process
has ax =~ 1. For plants with integral action, the number is
modified asx = w180G|G(jw180G)|/(limwﬁo w|G(jw)|)

Zero damping factor,  For the plant model&; (s)-G5(s),
optimal H . criteria based on (6), including optimal PID pa-
rameters, are presented in Table 1. The damping fgdtothe

PID controller (9) is clearly less than one, which motivates
introduction of the complex zeros iR p;p(s). For the plant
G5(s), which has a resonance with a damping factor 0.1, the
optimal J,, is achieved for( = 0.28, which unfortunately
results in a negative overshoot of 40% in the load step respon
This is avoided by introducing a min value ¢f= 0.5 in the



Table 1.0ptimal . criteria and PID parameters for differ Table 3.Load performance comparing optimal PID and PI

ent plant models. controllers forGs(s), including additional loop transfer prop-
erties for the PID controllers/,, = 5G¢(0) for the PID and

Model | J, Ju | Mg | Mp | K; r ¢ 8 Ju~Ge(0) for the PI controllers.

Gi(s) | 0.24| 15 | 1.70 | 1.30 | 4.46 | 0.62 | 0.73 | 5.4 )

Ga(s) | 057 | 15 | 1.70 | 1.30 | 1.97 | 1.17 | 0.69 | 65 T | n | PN | welursog | em | £Kpip(we)

Gs(s) | 0.46 | 10 | 1.70 | 1.30 | 2.32 | 0.60 | 0.82 | 7.2 1 | 044 0.69 0.38 50.3 477

Ga(s) | 074 | 20 | 1.70 | 1.30 | 1.38 | 1.35 | 0.77 | 10.7 0.3 | 0.80 0.74 0.32 57.5 62.6°

Gs(s) | 114 | 20 | 1.43| 1.30 | 1.03 | 1.38 | 0.50 | 14.1 0.1 | 0.96 0.84 0.27 59.5° 7Le
0.05 | 0.99 0.88 0.26 59.8° 74.1°

optimization, but at the cost of an increasédby 43%. This
solution is shown in Table 1 and 2. means that a highk; is desirable. For models with larger kappa
numbers this results in a very large negative controllerspha

Gain cross over frequency. From Table 2 and 3 it can shift atw,, which is clearly demonstrated in Table 3.

also be concluded that the ratiQ /wiso¢ is clearly less than

one for the stable plants, typically aroufid for plants with PID or PIPD control Results from the optimization of the

lower x numbers, and even lower ratios whenncreases. In  PIPD controller (8) are given in Table 4. Comparing with the

Kristiansson and Lennartson (2006a) the following estmaioptimal PID controllers in Table 1 whete< 1, corresponding

was given to complex zeros, the best PIPD controllers are obtained by
we/wisog = 0.6 — 0.35k (11) choosing a double zerg = 74. The performance deterioration

For plants with integral action this ratio is clearly higherin Table 4 is then varying between 10% and 40%, compared to

around one for the simple integral plag(s). A more system- the corresponding optimal PID controller.

atic evaluation for different models gives the followingigh oy plants without integral action the produgt, is around one

estimate and the ratiau. /w,, < 0.5 for the optimal PIPD controller. To
we/wisog = 1.4 — K (12)  force the integral time constant to be 5 times larger than.

for plants with integral action without resonances. Thesté e is more costly, simply because we want to compensate the load

mates are based on a reasonable choice of control acfiyjty disturbance down to zero as fast as possible. In other woeds w

see further details in Kristiansson and Lennartson (2006b) want the integral action to become active as fast as posaitde

s . . this occurs from the frequendy/r;. Thus a smallet; results
The model5(s) is highly resonant with a damping factor 0.1, a faster complete compensation of a step load disturbance

and e kappa moer gives o elevantinformaton. 84t pca ot book recommendtions e 10, which o
quite flat around -180for nearly a decade, and for this mode(CCUrSE glvesa Itional performance deterioration.

we = 3.1wigoa- The second demand to foreg at the maximum phase lift for
the PD controller . = w,;,) results in even worse behavior.
Indeed, for the plant mode&Fs(s) it is not even possible to
obtain a feasible solution demanding. = 5 andw. = wy,.
However, the constraintsw. = 5 andw, = 0.37w,, give a
feasible solution that satisfy the stability demand < 1.7.

The load disturbance step responses for the different PIPD
Phase marginp,,  The optimal phase margip,, is slightly  controllers and the optimal PID controller are shown in Big.
above 48, except for plants with high kappa numbers, segor G;(s) and Gs(s). They confirm our conclusion that stan-
Table 3, wherep,,, increases even up to 80The reason is dard text book recommendations for PIPD loop shaping, more
that the phase of: is decreasing much faster than its gainspecificallyr;w. = 5 — 10 andw,. = w,y, result in quite bad
which implies a shorter distance to the point (-1,0) (largegserformance or does not even give a feasible solution. Tris ¢
Ms). However, sincél/s is restricted, it is not allowed and to be compared to what is possible with an optimal PID controlle
compensate for this, the loop gain has to be reduced, negulti

The general recommendation is therefore to relate the etodic
w, to the shape of the plant phase curve around1&bere a
larger negative phase shift in this region results in a redug.
For stable non-oscillating plants the estimate (11) candee u
and (12) is useful for corresponding plants with integrailcac

in a large phase margin. Table 4.0ptimal criteria and parameters for PIPD controllers
with specific equality constraints denoted in bold numbers,
Controller phase/ Kprp (jwc) In lead lag compensation the compared with optimal PID controllers. The same control ac-
controller is expected to add a positive phase shiftatThis tivity J,, and stability constraints as in Table 1.
is also often the case, see Table 2, but the optimizatioh, pf
which is approximately the same as optimizifg = 1/K;, Model | JPTPP/JPIP | i | 7i/7a | Tiwe | we/wm | b
Table 2.Plantx number and additional loop transfer proper 128 064 1 1431 053 74
. K -
ties for the optimal PID controllers presenrt)ed in Tablz f Gi(s) 2.34 2.04 1 5.34 > 0.46 4.2
3.28 1.83| 1.95 5 1 6.5
Model K We we /w1804 ©m ZKprp(jwe) 1.12 0.55 1 0.79 0.26 9.4
Gi(s) | 0.09 | 2.28 061 6.2 " Gs(s) 3.13 313 | 110 | 5 021 | 46
Ga(s) | 013 1.11 0.64 45.9° 102 5.23 3.60 | 5.21 5 0.37 6.7
Gs(s) | 0.17 | 151 0.50 45.1° -14.2 1.39 1.51 1 3.01 0.81 13.7
Ga(s) | 0.37 | 2.09 0.94 46.1° 433 Gal(s) 1.59 238| 204 | 5 078 | 9.9
Gs(s) | 421 | 3.88 3.08 49.5 58.2 1.89 227 | 142 5 1 12.4




(a) 5. CONCLUSIONS

y(t)
0.2 | A simple design method for four parameter PID controllers
FiWe =5, We=twnm including low pass filtering is presented. Itis based on nouk
teriaH, optimization, and is shown to be easily implemented
o1l Tiwe =5 | by a few lines of MATLAB code. The framework also includes
' mi=7a (¢ a simple paper and pen solution that can be used for eduahtion
purposes. This manual approach also gives good initialegalu
0 for the final nonlinear constrained optimization. The sisjgé
optimal method is compared with typical text book recommendations
‘ on frequency domain loop shaping. Such recommendations,
0 5 10 ¢ 15 which are introduced to simplify the four parameter design
procedure, are shown to deteriorate the control perforemanc
o(t) ‘ (b) ‘ significantly compared to a true optimal solution. What igin
ested from an educational point of view is also that both e p
0.3 FiWe =5, we=0.3Twm ] per and pen solution and the MATLAB optimization illustrate
) ' the important trade off between LF performance, HF control
0.2 activity and stability margins. It is finally observed thaet
suggested PID design method has been successfully evdluate
0.1 in an introductory course on feedback control for a number of
years.
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