
Self-stabilizing End-to-End Communication

in (Bounded Capacity, Omitting, Duplicating
and non-FIFO) Dynamic Networks�

(Extended Abstract)

Shlomi Dolev1, Ariel Hanemann1,
Elad Michael Schiller2, and Shantanu Sharma1

1 Department of Computer Science, Ben-Gurion University of the Negev, Israel
{dolev,hanemann,sharmas}@cs.bgu.ac.il��

2 Department of Computer Science and Engineering, Chalmers University of
Technology, Sweden

elad@chalmers.se� � �

Abstract. End-to-end communication over the network layer (or data
link in overlay networks) is one of the most important communication
tasks in every communication network, including legacy communication
networks as well as mobile ad hoc networks, peer-to-peer networks and
mash networks. We study end-to-end algorithms that exchange packets
to deliver (high level) messages in FIFO order without omissions or
duplications. We present a self-stabilizing end-to-end algorithm that can
be applied to networks of bounded capacity that omit, duplicate and
reorder packets. The algorithm is network topology independent, and
hence suitable for always changing dynamic networks with any churn rate.

1 Introduction

End-to-end communication is a basic primitive in communication networks. A
sender must transmit messages to a receiver in an exactly once fashion, where no
omissions, duplications and reordering are allowed. Errors occur in transmitting
packets among the network entities – one significant source of error is noise in
the transmission media. Thus, error detection and error correcting techniques are
employed as an integral part of the transmission in the communication network.
These error detection and correction codes function with high probability. Still,

� Also appears as a technical report in [10].
�� Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer

Sciences, Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant number 428/11), Cabarnit Cyber Security MAGNET
Consortium, Grant from the Institute for Future Defense Technologies Research
named for the Medvedi of the Technion, Israeli Internet Association, and Israeli
Defense Secretary (MAFAT).

� � � Work was partially supported by the EC, through project FP7-STREP-288195,
KARYON (Kernel-based ARchitecture for safetY-critical cONtrol).

A.W. Richa and C. Scheideler (Eds.): SSS 2012, LNCS 7596, pp. 133–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 S. Dolev et al.

when there is a large volume of communication sessions, the probability that
an error will not be detected becomes high, leading to a possible malfunction of
the communication algorithm. In fact, it can lead the algorithm to an arbitrary
state from which the algorithm may never recover unless it is self-stabilizing [8].
By using packets with enough distinct labels infinitely often, we present a
self-stabilizing end-to-end communication algorithm that can be applied to
dynamic networks of bounded capacity that omit, duplicate and reorder packets.

Contemporary communication and network technologies enhance the need
for automatic recovery and interoperability of heterogeneous devices and the
means of wired and wireless communications, as well as the churn associated
with the totally dynamic communication networks. Having a self-stabilizing,
predictable and robust basic end-to-end communication primitive for these
dynamic networks facilitates the construction of high-level applications. Such
applications are becoming extremely important nowadays where countries’
main infrastructures, such as the electrical smart-grid, water supply networks
and intelligent transportation, are based on cyber-systems. Defining the
communication network as a bounded capacity network that allows omissions,
duplications and reordering of packets and building (efficient) exactly once
message transmission using packets, allows us to abstract away the exact network
topology, dynamicity and churn.

The dynamic and difficult-to-predict nature of electrical smart-grid and
intelligent transportation systems give rise to many fault-tolerance issues and
require efficient solutions. Such networks are subject to transient faults due
to hardware/software temporal malfunctions or short-lived violations of the
assumed settings for the location and state of their nodes. Fault-tolerant systems
that are self-stabilizing [8,7] can recover after the occurrence of transient faults,
which can drive the system to an arbitrary system state. The system designers
consider all configurations as possible configurations from which the system is
started. The self-stabilization design criteria liberate the system designer from
dealing with specific fault scenarios, the risk of neglecting some scenarios, and
having to address each fault scenario separately.

Related Work and Our Contribution. End-to-end communication and
data-link algorithms are fundamental for any network protocol [25]. End-to-end
algorithms provide the means for message exchange between senders and
receivers over unreliable communication links. Not all end-to-end communication
and data-link algorithms assume initial synchronization between senders
and receivers. For example, Afek and Brown [1] presented a self-stabilizing
alternating bit protocol (ABP) for FIFO packet channels without the need for
initial synchronization. Self-stabilizing token passing was used as the bases for
self-stabilizing ABP over unbounded capacity and FIFO preserving channels
in [17,11]. Spinelli [24] introduced two self-stabilizing sliding window ARQ
protocols for unbounded FIFO channels. Dolev and Welch [15] considered
tolerating network errors in dynamic networks with FIFO non-duplicating
communication links, and use source routing over paths to cope with crashes. In

Self-Stabilizing End-to-End Communication in Dynamic Networks 135

contrast, we do not consider known network topology nor base our algorithms
on a specific routing policy. We merely assume bounded network capacity.

In [2], an algorithm for self-stabilizing unit capacity data link over a FIFO
physical link is assumed. Flauzac and Villai [16] described a snapshot algorithm
that uses bidirectional and FIFO communication channels. Cournier et al. [5]
considered a snap-stabilizing algorithm [3] for message forwarding over message
switched network. They ensure one time delivery of the emitted message to
the destination within a finite time using destination based buffer graph and
assuming underline FIFO packet delivery.

In the context of dynamic networks and mobile ad hoc networks, Dolev,
Schiller and Welch [14,12,13] presented self-stabilizing algorithms for token
circulation, group multicast, group membership, resource allocation and
estimation of network size. Following [14,12,13], similar approaches to cope with
constantly changing networks have been investigated [22] in addition to other
fundamental problems such as clock synchronization [21], dissemination [18,20],
leader election [19,6,4], and consensus [23] to name a few. In this paper,
we investigate the basic networking tasks of end-to-end communication over
the network layer (or overlay networks), that are required for the design
of fundamental problems, such as the aforementioned problems considered
in [21,22,18,20,19,6,4,23].

Recently, Dolev et al. [9] presented a self-stabilizing data link algorithm for
reliable FIFO message delivery over bounded non-FIFO and non-duplicating
channel. This paper presents the first, to the best of our knowledge,
self-stabilizing end-to-end algorithms for reliable FIFO message delivery over
bounded non-FIFO and duplicating channel.

Due to space limit, some of the proofs are omitted from this extended abstract
and can be found in [10].

2 System Settings

We consider a distributed system that includes nodes (or processors),
p1, p2, . . . , pN . We represent a distributed system by a communication graph
that may change over time, where each processor is represented as a node.
Two neighboring processors, pi and pj , that can exchange packets directly are
connected by a link in the communication graph. Packet exchange between
neighbors is carried via (directed) communication links, where packets are sent
from pi to pj through the directed link (pi, pj) and packets are sent from pj
to pi through (pj , pi), the opposite directed link. End-to-end communication
among non-neighbor nodes, ps and pr, is facilitated by packet relaying from
one processor to neighbors. Thus, establishing a (virtual) communication link
between ps and pr in which ps is the sender and pr is the receiver. We assume the
communication graph is dynamic, and is constantly changed, while respecting N
as the upper bound on the number of nodes in the system. Packets are exchanged
by the sender and the receiver in order to deliver (high level) messages in a
reliable fashion. We assume that the entire number of packets in the system
at any given time, does not exceed a known bound. We allow any churn rate,

136 S. Dolev et al.

assuming that joining processors reset their own memory, and by that assist in
respecting the assumed bounded packet capacity of the entire network.

The communication links are bidirectional. Namely, between every two nodes,
pi and pj , that can exchange packets, there is a unidirectional channel (set) that
transfers packets from pi to pj and another unidirectional channel that transfer
packets from pj to pi. We model the (communication) channel, from node pi
to node pj as a (non-FIFO order preserving) packet set that pi has sent to
pj and pj is about to receive. When pi sends a packet m to pj, the operation
send inserts a copy of m to the channel from pi to pj as long as the upper
bound of packets in the channel is respected. Once m arrives, pj triggers the
receive event and m is deleted from the set. The communication channel is
non-FIFO and has no reliability guarantees. Thus, at any time the sent packets
may be omitted, reordered, and duplicated, as long as the link capacity bound
is not violated. We note that transient faults can bring the system to consist
of arbitrary, and yet capacity bounded, channel sets from which convergence
should start. We assume that when node pi sends a packet, pckt, infinitely often
through the communication link from pi to pj , pj receives pckt infinitely often.
We intentionally do not specify (the possible unreliable) routing scheme that is
used to forward a packet from the sender to the receiver, e.g., flooding, shortest
path routing. We assume that the overall network capacity allows a channel
from pi to pj to contain at most capacity packets at any time, where capacity
is a known constant. However, it should be noted that although the channel has
a maximal capacity, packets in the channel may be duplicated infinitely many
times because even if the channel is full, packets in the channel may be either lost
or received. This leaves places for other packets to be (infinitely often) duplicated
and received by pj .

Self-stabilizing algorithms do not terminate (see [8]). The non-termination
property can be easily identified in the code of a self-stabilizing algorithm: the
code is usually a do forever loop that contains communication operations with
the neighbors. An iteration is said to be complete if it starts in the loop’s first
line and ends at the last (regardless of whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. Where
a step starts with local computations and ends with a single communication
operation, which is either send or receive of a packet. For ease of description,
we assume the interleaving model, where steps are executed atomically, a single
step at any given time. An input event can either be the receipt of a packet or
a periodic timer going off triggering pi to send. Note that the system is totally
asynchronous and the non-fixed spontaneous send of nodes and node processing
rates are irrelevant to the correctness proof.

The state, si, of a node pi consists of the value of all the variables of the node
including the set of all incoming communication channels. The execution of
an algorithm step can change the node state. The term (system) configuration
is used for a tuple of the form (s1, s2, · · · , sN), where each si is the state of
node pi (including packets in transit for pi). We define an execution (or run)

Self-Stabilizing End-to-End Communication in Dynamic Networks 137

R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations
c[x] and steps a[x], such that each configuration c[x + 1] (except the initial
configuration c[0]) is obtained from the preceding configuration c[x] by the
execution of the step a[x]. We often associate the notation of a step with its
executing node pi using a subscript, e.g., ai. An execution R is fair if every node,
pi, executes infinitely many steps in R. We represent the omissions, duplications
and reordering using environment steps that are interleaved with the steps of the
processors in the run R. In every fair run, the environment steps do not prevent
communication, namely, infinite send operations of pi of a packet, pckt, to pj
implies infinite receive operations of pckt by pj.

The system is asynchronous and the notion of time, for example, when
considering system convergence to legal behavior, is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix
of the execution in which every node sends at least one packet to every neighbor
and one of these packets is received by each neighbor. Thus, we nullify the infinite
power of omissions, duplications and reordering when measuring the algorithm
performance. Moreover, we ensure that packets sent are eventually received;
otherwise the channel is, in fact, disconnected. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first
asynchronous round, and so on. We measure the communication costs by the
number of packets sent in synchronous execution in which each packet sent
by ps arrives to its destination, pr, in one time unit, and before ps sends any
additional packet to pr.

We define the system’s task by a set of executions called legal executions (LE)
in which the task’s requirements hold. A configuration c is a safe configuration
for an algorithm and the task of LE provided that any execution that starts in c
is a legal execution (belongs to LE). An algorithm is self-stabilizing with relation
to the task LE when every (unbounded) execution of the algorithm reaches a
safe configuration with relation to the algorithm and the task.

The self-stabilizing end-to-end communication (S2E2C) algorithm provides
FIFO guarantee for bounded networks that omit duplicate and reorder packets.
Moreover, the algorithm considers arbitrary starting configurations and ensures
error-free message delivery. In detail, given a system’s execution R, and a pair,
ps and pr, of sending and receiving nodes, we associate the message sequences
sR = m0,m1,m2, . . ., of messages fetched by ps, with the message sequence
rR = m′

0,m
′
1,m

′
2, . . . of messages delivered by pr. Note that we list messages

according to the order they are fetched (from the higher level application) by
the sender, thus two or more (consecutive or non-consecutive) messages can be
identical. The S2E2C task requires that for every legal execution R ∈ LE, there
is an infinite suffix, R′, in which infinitely many messages are delivered, and
sR′ = rR′ . It should be noted that packets are not actually received by the
receiver in their correct order but eventually it holds that messages are delivered
by the receiver (to higher level application) in the right order.

138 S. Dolev et al.

3 The End-to-End Algorithm

Dynamic networks have to overcome a wide range of faults, such as message
corruption and omission. It often happens that networking techniques, such as
retransmissions and multi-path routing, which are used for increasing robustness,
can cause undesirable behavior, such as message duplications and reordering.
We present a self-stabilizing end-to-end communication algorithm that uses
the network’s bounded capacity, to cope with packet corruptions, omissions,
duplications, and reordering. We abstract the entire network by two directed
channels, one from the sender to the receiver and one from the receiver to the
sender, where each abstract channel is of a bounded capacity. These two abstract
channels can omit, reorder and duplicate packets. We regard two nodes, ps, pr,
as sender and receiver, respectively. Sender ps sends packets with distinct labels
infinitely often until ps receives a sufficient amount of corresponding distinct
acknowledgment labels from the receiver pr.

For the sake of readability, we start describing the algorithm using large
overhead, before showing ways to dramatically reduce the overhead. The sender
repeatedly sends each message m with a three state alternating index, which
is either 0, 1 or 2. We choose to discuss, without the loss of generality, the
case of a message with alternating index 0, where 〈0,m〉 is repeatedly sent in
(2 · capacity + 1) packet types. Each type uses a distinct label in the range
1 to twice the capacity plus 1. Namely, the types are: 〈0, 1,m〉, 〈0, 2,m〉, . . .,
〈0, 2 · capacity + 1,m〉. The sender waits for an acknowledgment of the packet
arrival for each of the (2 · capacity + 1) distinct labels, and an indication that
the receiver delivered a message due to the arrival of (capacity+1) packets with
alternating index 0. The receiver accumulates the arriving packets in an array of
(2 · capacity+1) entries, where each entry, j, stores the last arriving packet with
distinct label j. Whenever the receiver finds that (capacity + 1) recorded array
entries share the same alternating index, for example 1, the receiver delivers
the message m encapsulated in one in-coming packet recorded in the array –
this packet has the alternating index of the majority of recorded packets; 1 in
our example. Then, the receiver resets its array and starts accumulating packets
again, until (capacity + 1) recorded copies, with the same alternating index
reappear. The receiver always remembers the last delivered alternating index,
ldai, that caused the reset of its array, and does not deliver two successive
messages with the same alternating index. Each packet 〈ai, lbl,m〉 that arrives
to the receiver is acknowledged by 〈lbl, ldai〉. The sender accumulates the arriving
packet in an array of (2 · capacity + 1) entries and waits to receive a packet for
each entry, and to have a value of ldai that is equal to the alternating index
the sender is currently using in the sent packets in at least (capacity + 1) of
the recorded packets. Once such a packet set arrives, the sender resets its array,
fetches a new message, m′, to be delivered, and increments the alternating index
by 1 modulo 3 for the transmission process of the next message, m′.

The correctness considers the fact that the receiver always acknowledges
incoming packets, and hence the sender will infinitely often fetch messages.
Following the first fetch of the sender, the receiver follows the sender’s alternating

Self-Stabilizing End-to-End Communication in Dynamic Networks 139

index, records it in ldai, and acknowledges this fact. We consider an execution in
which the sender changes the alternating index in to x, x+1, x+2, x (all modulo
3). In this execution, the sender is acknowledged that the receiver changes ldai to
x+1 and then to x+2, while the sender does not send packets with alternating
index x, thus, the last x delivery in the sequence must be due to fresh packets,
packets sent after the packets with alternating index x+ 2 were sent, and cause
a delivery.

In the preceding text a simplified algorithm with a large overhead was
presented – a more efficient algorithm is described in the following. The basic
idea is to enlarge the arrays to have more than n > (2 · capacity + 1) recorded
packets. Roughly speaking, in such a case the minority of the distinct label
packets accumulated in the arrays are erroneous, i.e., packet copies that were
accumulated in the network prior to the current fetch (maximum capacity). The
other (n− capacity) distinct label accumulated packets are correct. Thus, as we
know the maximal amount of unrelated packets, we can manipulate the data so
that the n− capacity correct packets, each of length pl will encode, by means of
error correcting codes, pl messages each of length ml, a length slightly shorter
than n. The sender fetches a window of pl messages each of length ml, where
pl is the maximal packet length beyond the header. The sender then uses error
correcting codes so that a message of length ml is coded by a word of length n,
such that the encoded word can tolerate up to capacity erroneous bits. The pl
encoded messages of length n are then converted to n packets of length pl in a
way that the ith message out of theml fetched messages is encoded by the ith bits
of all the n distinct packets that are about to be transmitted. So eventually, the
first bit of all distinct labeled packets, ordered by their distinct labels, encode,
with redundancy, the first message, and the second bit of all distinct labeled
packets, encode, with redundancy, the second message, etc. Fig. 1 shows the
formation of the n packets from the pl messages. When the receiver accumulates
n distinct label packets, the capacity of the packets may be erroneous. However,
since the ith packet, out of the n distinct packets, encodes the ith bits of all
the pl encoded messages, if the ith packet is erroneous, then the receiver can
still decode the data of the original pl messages each of length ml < n. The ith

bit in each encoded message may be wrong, in fact, capacity of packets maybe
erroneous yielding capacity of bits that may be wrong in each encoded message,
however, due to the error correction, all the original pl messages of length ml can
be recovered, so the receiver can deliver the correct pl messages in the correct
order.

In this case, the sender repeatedly sends n distinct packets and the receiver
keeps sending (capacity + 1) packets each with a distinct label in the range
1 to (capacity + 1). In addition, each of these packets contains the receiver’s
current value of ldai. The packets from the receiver are sent infinitely often, not
necessarily as a response to its received packets. When the receiver accumulates
n distinct label packets with the same alternating index, it recovers the original
pl messages, delivers them, resets its received packets array and changes its ldai
to the alternating index of the packets that it just delivered. We note that these

140 S. Dolev et al.

received packets must be different from its current ldai because the receiver does
not accumulate packets if their alternating index is equal to its current ldai. The
sender may continue sending the n packets with alternating index ldai, until the
sender accumulates (capacity + 1) distinct label acknowledging packets with
alternating index ldai. However, because now the packets’ alternating index is
equal to its current ldai, the receiver does not accumulate them, and hence does
not deliver a duplicate. Once the sender accumulates (capacity+1) packets with
ldai equal to its alternating index, it will fetch pl new messages, encode and
convert them to n distinct label packets and increase its alternating index by 1
modulo 3.

� ��� ��

� ��

pl

3

2

1

n

aiai ai

1 2

ml n > ml

lbl

AltIndex

Error
Correcting
Encoding

Ist Packet IIed Packet nth Packet

plth Message

IIed Message

Ist Message

�

Fig. 1. Packet formation from messages

The correctness
arguments use the same
facts mentioned above
in the majority based
algorithm. Eventually,
we will reach an
execution in which
the sender fetches a new
set of messages infinitely
often and the receiver
will deliver the messages
fetched by the sender
before the sender fetches
the next set of messages.
Eventually, every set of pl fetched messages is delivered exactly once because
after delivery the receiver resets its packets record array and changes ldai to
be equal to the senders alternating index. The receiver stops accumulating
packets from the sender until the sender fetches new messages and starts
sending packets with a new alternating index. Between two delivery events of
the receiver, the receiver will accumulate n distinct label packets of an identical
alternating index, where (n− capacity) of them must be fetched by the sender
after the last delivery of messages by the receiver. The fact, which reflects such
behavior at the receiver node, is that the sender only fetches new messages after
it gets (capacity + 1) distinct packets with ldai equal to its current alternating
index. When the receiver holds n distinct label packets with maximum capacity
erroneous packets, it can convert the packets back to the original messages by
applying the error correction code capabilities and deliver the original message
correctly.
Algorithm Description. Algorithms 1 and 2 implement the proposed S2E2C
sender-side and receiver-side algorithms, respectively. The two nodes, ps and
pr, are the sender and the receiver nodes respectively. The Sender algorithm
consists of a do forever loop statement (line 2 of the Sender algorithm), where
the sender, ps, assures that all the data structures comprises only valid contents.
I.e., ps checks that the ACK sets holds packets with alternating index equal to
the senders current AltIndexs and the labels are between 1 and (capacity + 1).

Self-Stabilizing End-to-End Communication in Dynamic Networks 141

Algorithm 1. Self-Stabilizing End-to-End Algorithm (Sender)

Persistent variables:
AltIndex: an integer ∈ [0, 2] that states the current alternating index value
ACK set: at most (capacity + 1) acknowledgment set, where items contain
labels and last delivered alternating indexes, 〈lbl, ldai〉
packet set: n packets, 〈AltIndex, lbl, dat〉, to be sent, where lbl ∈ [1, n] and dat
is data of size pl bits

Interface:
Fetch(NumOfMessages) Fetches NumOfMessages messages from the
application and returns them in an array of size NumOfMessages according to
their original order
Encode(Messages[]) receives an array of messages of length ml each, M , and
returns a message array of identical size M ′, where message M ′[i] is the
encoded original M [i], the final length of the returned M ′[i] is n and the code
can tolerate capacity errors

1 Do forever begin
2 if (ACK set �⊆ {AltIndex} × [1, capacity + 1]) then

(ACK set,messages)← (∅, Encode(Fetch(pl)))
3 foreach pckt ∈ packet set() do send pckt

4 Upon receiving ACK = 〈lbl, ldai〉 begin
5 if lbl ∈ [1, capacity + 1] ∧ ldai = AltIndex then
6 ACK set← ACK set ∪ {ACK}
7 if capacity <| ACK set | then begin
8 AltIndex← (AltIndex+ 1) mod 3
9 (ACK set,messages)← (∅, Encode(Fetch(pl)))

10 Function packet set() begin
11 foreach (i, j) ∈ [1, n]× [1, pl] do let data[i].bit[j] = messages[j].bit[i]
12 return {〈AltIndex, i, data[i]〉}i∈[1,n]

In case any of these conditions is unfulfilled, the sender resets its data
structures (line 2 of the Sender algorithm). Subsequently, ps triggers the Fetch
and the Encode interfaces (line 2 of the Sender algorithm). Before sending the
packets, ps executes the packet set() function (line 3 of the Sender algorithm).

The Sender algorithm, also, handles the reception of acknowledgments
ACKs = 〈lbl, ldai〉 (line 4 of the Sender algorithm). Each ACKs has distinct
labels, corresponding to already transmitted packets. On the reception of the
(capacity + 1) distinct label ACKs, ps keeps ACKs in ACK sets (line 6 of the
Sender algorithm), if ACKs have the value of ldai (last delivered alternating
index) equals to AltInex (line 5 of the Sender algorithm). When ps gets an
ACKs packet (capacity + 1) times (line 7 of the Sender algorithm), ps changes
AltIndexs (line 8 of the Sender algorithm). Afterwards, ps does reset ACK sets
and calls Fetch() and Encode() interfaces (line 9 of the Sender algorithm).

142 S. Dolev et al.

Algorithm 2. Self-Stabilizing End-to-End Algorithm (Receiver)

Persistent variables:
packet set: packets, 〈AltIndex, lbl, dat〉, received, where label ∈ [1, n] and dat is
data of size pl bits
LastDeliveredIndex: an integer ∈ [0, 2] that states the alternating index value
of the last delivered packets

Interface:
Decode(Messages[]) receives an array of encoded messages, M ′, of length n
each, and returns an array of decoded messages of length ml, M , where M [i] is
the decoded M ′[i]. The code is the same error correction coded by the sender
and can correct up to capacity mistakes
Deliver(messages[]) receives an array of messages and delivers them to the
application by the order in the array

Macros:
P (ind) = {〈ind, ∗, ∗〉 ∈ packet set}

1 Do forever begin
2 if {〈ai, lbl〉 : 〈ai, lbl, ∗〉 ∈ packet set} �⊆

{[0, 2] \ {LastDeliveredIndex}} × [1, n]× {∗}∨
(∃〈ai, lbl, dat〉 ∈ packet set : 〈ai, lbl, ∗〉 ∈ packet set \ {〈ai, lbl, dat〉})∨
(∃pckt = 〈∗, ∗, data〉 ∈ packet set :| pckt.data |�= pl)∨
1 <| {AltIndex : n ≤| {〈AltIndex, ∗, ∗〉 ∈ packet set} |} | then
packet set← ∅

3 foreach i ∈ [1, capacity + 1] do send 〈lbl, LastDeliveredIndex〉
4 Upon receiving pckt = 〈ai, lbl, dat〉 begin
5 if 〈ai, lbl, ∗〉 �∈ packet set∧

〈ai, lbl〉 ∈ ({[0, 2] \ {LastDeliveredIndex}} × [1, n])∧ | dat |= pl then
6 packet set← packet set ∪ {pckt}
7 if ∃ ! ind : ind �= LastDeliveredIndex ∧ n ≤| P (ind) |: P (ind) =

{〈ind, ∗, ∗〉 ∈ packet set} then
8 foreach (i, j) ∈ [1, pl]× [1, n] do
9 let messages[i].bit[j] = data.bit[i] : 〈ind, j, data〉 ∈ P (ind)

10 (packet set,LastDeliveredIndex)← (∅, ind)
11 Deliver(Decode(messages))

The Receiver algorithm executes at the receiver side, pr. The receiver pr
assures its data structure, namely, packet setr, in do forever loop (line 2 of the
Receiver algorithm). The receiver pr audits: (i) the packet setr holds packets
with alternating index, ai ∈ [0, 2], except LastDeliveredIndexr, labels (lbl)
between 1 and n and data of size pl; (ii) the packet setr holds exactly one group
of ai that has at least n elements. When any of the aforementioned conditions are
falsified, pr assigns the empty set to packet setr. In addition, pr acknowledges
ps by (capacity + 1) packets (line 3 of the Receiver algorithm).

Self-Stabilizing End-to-End Communication in Dynamic Networks 143

Node pr receives a packet pcktr = 〈ai, lbl, dat〉, see line 4 of the Receiver
algorithm. If pcktr has data (dat) in the size of pl bits and pcktr has alternating
index (ai) in the range from 0 to 2, excluding the LastDeliveredIndex and
pcktr has a label (lbl) in the range of 1 to n (line 5 of the Receiver algorithm),
pr puts pcktr in packet setr (line 6 of the Receiver algorithm). When pr gets
n distinct label packets of identical ai (line 7 of the Receiver algorithm),
pr forms the message from the packets (line 9 of the Receiver algorithm).
Subsequent steps include the reset of the packet setr data structure and change
of LastDeliveredIndexr to ai (line 10 of the Receiver algorithm). Next, pr
decodes and delivers the message (line 11 of the Receiver algorithm).

Correction proof. The correct packet exchange between the sender and
the receiver requires coordination. The sender should wait after fetching a
new message batch, i.e., executing lines 8 to 9 of the Sender algorithm, until
the receiver delivers a message batch, i.e., executing line 11 of the Receiver
algorithm. We describe the set of legal executions for correct packet exchange
before demonstrating that the Sender and the Receiver algorithms satisfy these
requirements in Theorem 1, which says that the studied algorithms implement
self-stabilizing end-to-end communication (S2E2C) task.

Let asα be the αth time that the sender is fetching a new message batch,
i.e., executing lines 8 to 9 of the Sender algorithm. Let arβ be the βth

time that the receiver is delivering a message batch, i.e., executing line 11
of the Receiver algorithm. With respect to the self-stabilizing end-to-end
communication (S2E2C) task and the algorithms of the Sender and the Receiver,
the legal execution set includes executions, R, that interleave the asα and the
arβ steps in a manner that matches the alternating index labels. Namely, after
the occurrence of asα ∈ R in which the sender fetches a new message batch, the
step asα+1 should not occur before arβ ∈ R in which the receiver delivers that
message batch (Lemma 3). Similarly, after the occurrence of arβ ∈ R in which
the receiver delivers a message batch, the step arβ+1

should not occur before
asα ∈ R in which the sender fetches the next message batch (Lemma 4).

In addition, the asα and the arβ steps should have matching alternating
indices. The proof shows that the sender, ps, increments its AltIndexs =
s indexα value on every asα in a modulo 3 fashion, and the receiver, pr, adopts
s indexα and deliver its message batch in step arβ after receiving at least
(n− capacity) packets that are tagged by s indexα. Similarly, pr acknowledges
the received packets using the tag LastDeliveredIndexr = r indexβ, and then
ps proceeds to fetch a next message batch in asα+1 after receiving at least more
than capacity acknowledgments.

We note that the proof implies that within a constant number of asynchronous
rounds, the receiver, pr, receives an entire batch of n packets from its incoming
abstract channel out of which (n − capacity) packets are from the sender,
ps. This is true because: (1) we assume that when the sender sends a packet
infinitely often through the abstract channel, the receiver receives the packet
infinitely often, and (2) the proof shows that the sender does not stop sending its
current batch of messages, before guaranteeing that the current message batch

144 S. Dolev et al.

had arrived to the receiver, pr, and pr had delivered it. Moreover, analogous
arguments to arguments (1) and (2) above imply the number of asynchronous
rounds, in which the sender, ps, receives an entire batch of (capacity + 1)
acknowledgments that at least one of them is from the receiver.

Lemmas 1 and 2 are needed for the proof of lemmas 3 and 4. Throughout we
refer to R as an execution of the Sender and the Receiver algorithms, where ps
executes the Sender algorithm and pr executes the Receiver algorithm.

Lemma 1. Let csα(x) be the xth configuration between asα and asα+1 and
ACKα = {ackα(�)}�∈[1,capacity+1] be a set of acknowledgment packets, where
ackα(�) = 〈�, s indexα〉. For any given α > 0, there is a single index value,
s indexα ∈ [0, 2], such that for any x > 0, it holds that AltIndexs = s indexα

in csα(x). Moreover, between asα and asα+1 there is at least one configuration
crβ , in which LastDeliveredIndexr = s indexα. Furthermore, between asα and
asα+1 , the sender, ps, receives from the channel from pr to ps, the entire set,
ACKα, of acknowledgment packets (each packet at least once), and between (the
first) crβ and asα+1 the receiver must send at least one ackα(�) ∈ ACKα packet,
which ps receives.

Proof. We start by showing that s indexα exists before showing that crβ exists
and that ps receives ackα from pr between asα and asα+1 .

The value of AltIndexs = s indexα is only changed in line 8 of the Sender
algorithm. By the definition of asα , line 8 is not executed by any step between asα
and asα+1 . Therefore, for any given α, there is a single index value, s indexα ∈
[0, 2], such that for any x > 0, it holds that AltIndexs = s indexα in csα(x).

We show that crβ exists by showing that, between asα and asα+1 , there is
at least one acknowledge packet, 〈lbl, ldai〉, that pr sends and ps receives, where
ldai = s indexα. This proves the claim because pr’s acknowledgments are always
sent with ldai = LastDeliveredIndexr, see line 3.

We show that, between asα and asα+1 , the receiver pr sends at least one of
the ackα(�) ∈ ACKα packets that ps receives. We do that by showing that ps
receives, from the channel from pr to ps , more than capacity packets, i.e., the
set ACKα. Since capacity bounds the number of packets that, at any time, can
be in the channel from pr to ps , at least one of the ACKα packets, say ackα(�

′),
must be sent by pr and received by ps between asα and asα+1 . This in fact proves
that pr sends ackα(�

′) after crβ .
In order to demonstrate that ps receives the set ACKα, we note that

ACK set = ∅ in configuration csα(1), which immediately follows asα , see line 9
of the Sender algorithm. The sender tests the arriving acknowledgment packet,
ackα, in line 5 of the Sender algorithm. It tests ackα’s label to be in the range of
[1, capacity + 1], and that they are of ackα’s form. Moreover, it counts that
(capacity + 1) different packets are added to ACK set by adding them to
ACK set, and not executing lines 8 to 9 of the Sender algorithm before at
least (capacity + 1) distinct packets are in ACK set.

Lemma 2 (proof appears in [10]). Let crβ (y) be the y
th configuration between

arβ and arβ+1
, and PACKETβ(r index′

β) = {packetβ(�, r index′
β)}�∈[1,n] be

Self-Stabilizing End-to-End Communication in Dynamic Networks 145

a packet set, where packetβ,r index′
β
(�) = 〈r index′

β , �, ∗〉. For any given β >

0, there is a single index value, r indexβ ∈ [0, 2], such that for any y >
0, it holds that LastDeliveredIndexr = r indexβ in configuration crβ (y).
Moreover, between arβ and arβ+1

there is at least one configuration, csα , such
that AltIndexs �= r indexβ. Furthermore, there exists a single r index′

β ∈
[0, 2] \ {r indexβ}, such that the receiver, pr, receives all the packets in
PACKETβ(r index′

β) at least once between csα and arβ+1
, where at least

n− capacity > 0 of them are sent by the sender ps between arβ and arβ+1
.

Lemmas 3 and 4 borrow their notations from lemmas 1 and 2. Lemma 4 shows
that between asα and asα+1 , there is exactly one arβ step.

Lemma 3. Between asα and asα+1 , the receiver takes exactly one arβ step, and
that between arβ , and arβ+1

, the sender takes exactly one asα+1 step.

Proof. We start by showing that between asα and asα+1 , there is at least one
arβ step before showing that there is exactly one such arβ step when α > 2.
Then, we consider a proof for showing that between arβ and arβ+1

, there is at
least one asα step before showing that between arβ and arβ+1

, there is exactly
one asα step when β > 2.

By Lemma 1 and line 8 of the Sender algorithm, in any configuration, cs1(x),
that is between as1 and as2 , the sender is using a single alternating index,
s index1, and in any configuration, cs2(x), that is between as2 and as3 , the
sender is using a single alternating index, s index2, such that s index2 =
s index1+1 mod 3. In a similar manner, we consider configuration, csα(x), that
is between asα and asα+1 .

Lemma 1 also shows that for α ∈ (1, 2, . . .), there are configurations, crα ,
in which LastDeliveredIndexr = s indexα. This implies that between asα and
asα+1 , the receiver changes the value of LastDeliveredIndexr at least once,
where α ∈ (1, 2, . . .). Thus, by arβ ’s definition and line 10 of the Receiver
algorithm, there is at least one arβ step between asα and asα+1 .

To see that when α > 2 there is exactly one such arβ step between asα and
asα+1 , we consider the case in which between asα and asα+1 , there are several arβ
steps, i.e., arβfirst

, . . . , arβlast
. In particular we consider the asα−1 , arβ−1last

, asα ,

arβfirst
, arβlast

, asα+1 steps and show that arβ+1first
= arβ+1last

. Let us assume,

in the way of a proof by contradictions that arβ+1first
�= arβ+1last

. We show that

there is an asα′ step between arβ+1first
and arβ+1last

.

By Lemma 2, between arβfirst
and arβlast

, there is at least one configuration,

csα′ (x), for which AltIndexs �= r indexβ−1last
, and at least one configuration,

csα′′ (x), for which AltIndexs �= r indexβ+1first
.

Suppose that α′ = α′′. By asα ’s definition, line 3 of the Sender algorithm
and the function packet set(), the sender changes AltIndexs’s value in step
asα′ that occurs between arβ+1first

and arβ+1last
. For the case of α′ �= α′′,

we use similar arguments and consider the sequence of all csα′ (x), csα′′ (x), . . .
configurations between arβfirst

and arβlast
and their corresponding AltIndexs’s

values. By similar arguments to the case of α′ = α′′, any consecutive pair of

146 S. Dolev et al.

AltIndexs implies the existence of an asα between arβfirst
and arβlast

. Thus, a

contradiction.

Lemma 4 shows that between arβ and arβ+1
, there is exactly one asα step, and

its proof follows similar arguments as the ones in Lemma 3.

Lemma 4 (proof appears in [10]). Between arβ and arβ+1
, the sender takes

exactly one asα+1 step.

Lemmas 3 and 4 facilitates the proof of Theorem 1.

Theorem 1 (S2E2C). Within a constant number of asynchronous rounds,
the system reaches a safe configuration (from which a legal execution starts).
Moreover, following a safe configuration, Algorithm 2 delivers every new sent
message batch within a constant number of asynchronous rounds.

4 Conclusions

Self-stabilizing end-to-end data communication algorithms for bounded capacity
dynamic networks have been presented in this extended abstract. The proposed
algorithms inculcate error correction techniques for the delivery of messages
to their destination without omissions, duplications or reordering. We consider
two nodes, one as the sender and the other as the receiver. In many cases,
however, two communicating nodes may act both as senders and receivers
simultaneously. In such situations, acknowledgment piggybacking may reduce
the overhead needed to cope with the capacity irrelevant packets that exist in
each direction, from the sender to the receiver and from the receiver to the
sender. Using piggybacking, the overhead is similar in both directions. The
obtained overhead is proportional to the ratio between the number of bits in the
original message, and the number of bits in the coded message, which is a code
that withstands capacity corruptions. Thus, for a specific capacity, assuming the
usage of efficient encoding, the overhead becomes smaller as the message length
grows.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media.
Distributed Computing 7(1), 27–34 (1993)

2. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: FOCS, pp. 268–277. IEEE Computer Society (1991)

3. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in
tree networks. In: Workshop on Self-stabilizing Systems (ICDCS 1999), pp. 78–85.
IEEE Computer Society (1999)

4. Chung, H.C., Robinson, P., Welch, J.L.: Brief Announcement: Regional
Consecutive Leader Election in Mobile Ad-Hoc Networks. In: Scheideler, C. (ed.)
ALGOSENSORS 2010. LNCS, vol. 6451, pp. 89–91. Springer, Heidelberg (2010)

Self-Stabilizing End-to-End Communication in Dynamic Networks 147

5. Cournier, A., Dubois, S., Villain, V.: A snap-stabilizing point-to-point
communication protocol in message-switched networks. In: 23rd IEEE
International Symposium on Parallel and Distributed (IPDPS 2009), pp. 1–11
(2009)

6. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stabilizing Leader Election in
Dynamic Networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 35–49. Springer, Heidelberg (2010)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. Dolev, S.: Self-Stabilization. MIT Press (2000)
9. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over

non-fifo channels with optimal fault-resilience. Inf. Process. Lett. 111(18), 912–920
(2011)

10. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing data link
over non-fifo channels without duplication. Technical Report 2012:01, Chalmers
University of Technology (2012) ISSN 1652-926X

11. Dolev, S., Israeli, A., Moran, S.: Resource bounds for self-stabilizing message-driven
protocols. SIAM J. Comput. 26(1), 273–290 (1997)

12. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilitzing group
communication in ad hoc networks. In: PODC, p. 259 (2002)

13. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group
communication in ad-hoc networks. In: 21st Symposium on Reliable Distributed
Systems (SRDS 2002), pp. 70–79 (2002)

14. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group
communication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905
(2006)

15. Dolev, S., Welch, J.L.: Crash resilient communication in dynamic networks. IEEE
Trans. Computers 46(1), 14–26 (1997)

16. Flauzac, O., Villain, V.: An implementable dynamic automatic self-stabilizing
protocol. In: ISPAN, pp. 91–97. IEEE Computer Society (1997)

17. Gouda, M.G., Multari, N.J.: Stabilizing communication protocols. IEEE Trans.
Computers 40(4), 448–458 (1991)

18. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: 30th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2011), pp. 381–390 (2011)

19. Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: An asynchronous leader election
algorithm for dynamic networks. In: 23rd IEEE International Symposium on
Parallel and Distributed Processing (IPDPS 2009), pp. 1–12 (2009)

20. Jelasity, M., Montresor, A., Babaoglu, Ö.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

21. Kuhn, F., Locher, T., Oshman, R.: Gradient clock synchronization in dynamic
networks. Theory Comput. Syst. 49(4), 781–816 (2011)

22. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic
networks. In: ACM Symposium on Theory of Computing (STOC 2010), pp.
513–522 (2010)

23. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: 30th ACM Symposium on Principles of Distributed Computing (PODC 2011),
pp. 1–10 (2011)

24. Spinelli, J.: Self-stabilizing sliding window arq protocols. IEEE/ACM Trans.
Netw. 5(2), 245–254 (1997)

25. Tanenbaum, A.S.: Computer networks, 4th edn. Prentice-Hall (2002)

	Self-stabilizing End-to-End Communication in (Bounded Capacity, Omitting, Duplicating and non-FIFO) Dynamic Networks

	Introduction
	System Settings
	The End-to-End Algorithm
	Conclusions
	References

