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Abstract

In supervisory control theory, a supervisor restricts the
plant in order to fulfill given specifications. A problem
for larger industrial applications is that the resulting su-
pervisor is not easily implemented and comprehensible
for the users. To tackle this problem, an efficient method
has recently been introduced to characterize a supervi-
sor by tractable logic conditions, referred to as guards.
This approach has been developed for a specific type of
automata with variables called extended finite automata
(EFAs). An extension of this approach to a more general
class of models is presented in this paper. It means that
classical supervisory control problems for automata and
Petri nets are easily and efficiently solved, but also gen-
eralized based on the suggested approach. The synthesis
procedure is naturally modeled and efficiently computed
based on binary decision diagrams.

1 Introduction

Supervisory control theory (SCT) [13] means that a
control function, called supervisor, is automatically syn-
thesized based on a plant model (the system to be con-
trolled) and a specification. The supervisor restricts the
behavior of the plant to ensure that the system never vio-
lates the given specification. A standard approach to de-
termine a synthesized supervisor is to explicitly represent
all states that are allowed to be reached in the closed-loop
system. However, the resulting supervisor may then re-
quire more memory than available, and the final supervi-
sor is a black box, where it is not clear from a user per-
spective why some events become disabled after the syn-
thesis. One way to obtain compact and comprehensible
models for the supervisor as well as the plant is to com-
bine discrete states/locations with variables. The variables
may then appear in guards and actions. Guard expressions
at the transitions restrict the behavior of the system, while
actions update the variables.

There exist a number of frameworks that are based on
automata extended with variables such as [17, 2]. In [17],
the states of a given supervisor are encoded using Boolean
variables, but the variables are used in guards and actions

attached to the events (not transitions) of the model. In [2],
to ensure a least restrictive supervisor it is assumed that all
variables are local, i.e., not shared between automata.

In [14, 11], an extended framework called extended
finite automata (EFAs) is presented that overcomes the
above-mentioned restrictions, making the framework suit-
able for SCT. For instance, it is possible to update the vari-
ables, which are global, in different automata, and to use
EFAs to model both plant and supervisor. In [12] a super-
visor is synthesized based on an EFA plant and a set of
forbidden locations. For large problems the approach can
suffer from an early state-space explosion while generat-
ing the plant with the forbidden locations. In addition, it is
not allowed to assign new values to some variables in the
plant and other variables in the specification. In this paper
we show that this can be a serious restriction. Indeed, the
assignment of variables in different local models, and its
formal treatment, is a key contribution of this paper.

In [8] the supervisor is represented as a set of control
functions, which is relatively close to the approach pre-
sented in this paper. The major focus is however to de-
sign a nonblocking supervisor for huge systems, while the
synthesis result is represented as BDDs, which normally
is not easy to interpret by users.

Supervisory synthesis based on Petri nets is presented
in [7, 5, 3, 16]. In these methods, the specifications are
added to the plants in the form of linear predicates. The
resulting controller can also be formulated as guards on
the marking vector, which for special cases correspond to
control places [6]. However, each approach has some re-
strictions. The non-blocking problem is not considered in
[7]. In [5] the liveness problem is considered but only for
controlled marked graphs. The approach proposed in [3]
is applicable if the supervisory net has a convex reachabil-
ity set, and in [16] the request for a minimally restrictive
supervisor is abandoned.

In this paper the supervisory guard generation, recently
presented for automata [10] and EFAs [11], is generalized
to a more general model class called state-vector transi-
tion (SVT) models. This means that well established su-
pervisory control problems for automata, EFAs and Petri
nets are easily and efficiently solved, but also generalized
based on the suggested approach. The SVT model, in-
cluding its full synchronous composition, can be directly



formulated as binary decision diagrams (BDDs) [1]. It im-
plies that large systems can be synthesized symbolically,
significantly reducing the traditional state space explosion
in terms of memory and computation time.

By the suggested framework, SCT can be solved for
large and complex systems, and in the same way for both
automata, EFAs and Petri nets, resulting in comprehensi-
ble control guards. Therefore, we argue that the presented
framework is a unified, flexible and attractive approach.
The SVT model has no specific graphical model; both au-
tomata and Petri nets with added guards and actions are
interesting user choices. The focus of the SVT model is
not on user interaction, more on the mathematical model
behind, and related algorithmic aspects.

2 Generic Discrete Event Model

A generic discrete event model is presented in this sec-
tion based on a tuple x, including an ordered set of discrete
variables. The domain of the individual variables Xj can
be symbolic states as in automata, or integer values as in
Petri nets. Each value of x represents a state, and since
the tuple x can be seen as a vector, x is considered as the
state-vector of a state space system with a discrete state
space X . A transition from one value of x to an updated
next value x́ is enabled when a related predicate on the
current and next value C(x, x́) is satisfied. The transition
takes place when it is enabled and a related event σ occurs.
At the same time the state vector x is updated to x́.

Communication between different discrete event mod-
els is often obtained by common events and full syn-
chronous composition [4], as in automata and Petri nets.
In EFAs, communication and synchronization can also be
determined by shared variables that are updated in more
than one EFA. Therefore, we assume for simplicity that
any variable in the state vector x can be assigned to new
values in more than one model. This means that x is only
partially updated in a local transition, and the rest of the
variables implicitly keep their current values. Some com-
plications then occur when local models are synchronized
for a specific event, especially for variables that are not
updated in any local model. This problem, which has also
been treated in [14] [11], is further developed and gener-
alized in this paper.

2.1 State-Vector Transition Model
Consider a tuple of discrete state variables

(x1, . . . , xn), where a subset of them are included
in a state vector x. Let Ωx be an index set, where j ∈ Ωx

for all state variables xj that are included in x. The
domain of definition of each xj is a finite set Xj . An SVT
model will now be defined based on this tuple of state
variables. The reason to introduce the index set Ωx is that
variables will later be arbitrarily shared between different
local models.

Definition 1 (State-Vector Transition Model)
A state-vector transition model G is a 5-tuple

G = 〈X, Σ, T,Xi,Xm〉 (1)

where:

(i) X = ×j∈ΩxXj is the finite domain of definition of
a vector x of variables xj ∈ Xj , where j ∈ Ωx for
all xj that are included in x.

(ii) Σ is a finite set of events.

(iii) T is a finite set of transitions. Each transition is a
3-tuple t = (C, ΩC, σ), where:

• C : X × X → B is a predicate on the current
value x and the next value x́, defining the en-
abling condition for the transition,

• ΩC is an index set, and j ∈ ΩC for all x́j where
there is a condition on x́j in C(x, x́),

• σ ∈ Σ.

(iv) Xi : X → B is a predicate, defining possible initial
values of x.

(v) Xm : X → B is a predicate, defining desired marked
values of x. �

Transition Relation and Keep Current Value A
transition t = (C, ΩC , σ) is enabled when the predicate
C(x, x́) is evaluated to true. An enabled transition is then
executed when the event σ occurs. If there is no condition
on x́j in C(x, x́), the index j ∈ Ωx\ΩC and the state vari-
able xj should keep its current value, i.e. x́j = xj . The
complete transition predicate Φ(x, x́) for transition t can
therefore be expressed as

Φ(x, x́) � C(x, x́)
∧

j=Ωx\ΩC

x́j = xj (2)

Consider e.g. the predicate C � x1 = 1 ∧ x́2 = 3 and
the index set Ωx = {1, 2}. Then ΩC = {2}, and the
complete transition predicate Φ � x1 =1 ∧ x́2 =3 ∧ x́1 =
x1. Observe that ΩC can be automatically generated by
parsing the predicate C(x, x́), and including the indices
for those variables that have conditions on x́j in C(x, x́).

Also note the condition on the next value x́ ∈ X . When
for instance the domain X = {0, 1, 2}, it means that the
conditions x́ = x + 1 and x́ = x−1 implicitly include the
additional guards x < 2 and x > 0, respectively. These
conditions on the current value of x do not need to be ex-
plicitly introduced, since they are achieved by the domain
of definition for x́.

The reason why the keep-current-value predicate∧
j∈Ωx\ΩC x́j = xj is separated from the predicate con-

dition C(x, x́) is that shared variables can be updated in
different SVT models. This implies that the two pred-
icates are required to be handled differently in the syn-
chronization defined in Section 3. Another benefit of the
keep-current-value predicate is that conditions on the next
value only need to be introduced by the user for those vari-
ables where the updated value is different from the current
one.



To be able to separate the keep-current-value predicate∧
j∈Ωx\ΩC x́j =xj from the predicate condition C(x, x́) in

the complete transition predicate (2), we have to assume
that there are no OR conditions in C between update of
different shared variables. This has the implication that
C � x́1 = 1 ∨ x́1 = 3 is acceptable, while C � x́1 =
1 ∨ x́2 = 3 is not acceptable. The latter case has simply
to be separated into two conditions and a choice between
two alternative transitions.

The following example illustrates the comments above,
but also shows how a Petri net model can be simplified by
introducing shared variables.

Example 1 Consider the classical Petri net (PN) model
in Fig. 1, where two common resources R1 and R2 are
required by both sequences but in opposite order. The
places and arcs between the two straight sequences model
the mutual exclusion conditions for the two resources. In
Fig. 2 an alternative PN model is presented, where the two
shared resource places are replaced by the shared vari-
ables R1 and R2. With the domain {0, 1} for both R1

and R2, the resources are booked (+) and unbooked (-) by
the short-cut command

R±
k � Ŕk = Rk ± 1 k = 1, 2 (3)

This alternative PN model has the benefit of showing the
sequential part flow graphically, while the resource book-
ing is more easily specified by logical conditions, espe-
cially for larger systems.

The two modular PNs in Fig. 2 are now formally de-
fined as two synchronized SVT models Gk, k = 1, 2.
The state variables are the number of tokens mk

j in each
place pk

j , i.e. x4(k−1)+j = mk
j , and the resource vari-

ables, xk+8 = Rk. This gives the state index sets Ω1
x =

{1, 2, 3, 4, 9, 10} and Ω2
x = {5, 6, 7, 8, 9, 10}. Assuming

there are initially mk
0 tokens in place pk

1 , and all tokens in
pk
4 is the marking condition, the initial and marking pred-
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Figure 1 Petri net including two shared resources R1 and R2.
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Figure 2 Two modular Petri net sequences, where resources
are booked (+) / unbooked (-) by the short-cut condition R±

k (3).

icates are

X k
i � xk =(mk

0 , 0, 0, 0, 0, 0)
X k

m � xk =(0, 0, 0, mk
0, 0, 0)

In Fig. 2 m1
0 = 3 and m2

0 = 2. With the domain of defini-
tion for mk

j ∈ {0, 1, . . . , mk
0}, the predicate condition for

the first transition in G1 is

C1
1 � ḿ1

1 = m1
1−1 ∧ ḿ1

2 = m1
2+1 ∧ Ŕ1 =R1 + 1

One token is moved from the first to the second place,
when there is at least one token in the first place and R1

is available. Remind that the domain of definitions for m1
1

and R1 imply that the predicate C1
1 is only satisfied when

the current value of m1
1 > 0 and R1 = 0. Since only m1

1,
m1

2, and R1 are updated, the index set Ω1
C,1 = {1, 2, 9},

and the complete transition predicate becomes, cf. (2)

Φ1
1 � C1

1 ∧ ḿ1
3 =m1

3 ∧ ḿ1
4 =m1

4 ∧ Ŕ2 =R2

Generating corresponding predicates for all transitions, it
only remains to handle the synchronization between G1

and G2. This is described in Example 3. �

The presented SVT model is similar to the EFA model
introduced in [14], where the locations here are general-
ized to a tuple of variables. This means that Petri nets can
also be naturally represented as SVT models, illustrated
above. The formulation is simplified, since the distinction
between locations and variables is avoided by considering
one tuple of variables, the state vector x. Guards and ac-
tions in an EFA transition are unified in the common con-
dition predicate C(x, x́). In EFAs guards and actions are
defined for variables but not for locations. Hence, guards
involving locations require an explicit introduction of cor-
responding location variables in EFAs.

2.2 Explicit State Transition Model
The state-vector transition model in (1) is now formu-

lated as an explicit state transition model. This can be



considered as an evaluated SVT model, where the com-
plete predicate Φ(x, x́) in (2) is determined for all possible
combinations of state variables.

Definition 2 (Explicit State Transition Model)
An explicit state transition model of an SVT model G =
〈X, Σ, T,Xi, M〉 is a 5-tuple

Ĝ = 〈X, Σ,→, Xi, Xm〉 (4)

where X and Σ are defined in Definition 1, and

• → � {(x, σ, x́) ∈ X × Σ × X |
∃t = (C, ΩC , σ) ∈ T : C(x, x́)

∧
j=Ωx\ΩC

x́j = xj}

• Xi � {x ∈ X | Xi(x)}
• Xm � {x ∈ X | Xm(x)} �

Observe that Ĝ is an automaton, where preferably differ-
ent values of the state vector x are expressed symbolically.
The explicit state transition relation is written x

σ→ x́,
which can recursively be extended to strings in Σ∗. A
path from a state x to a state y, which generates a string s,
is denoted x

s→ y. A corresponding path from an initial
state in Ĝ to a state x is written Ĝ

s→ x, while a path from
a state x to a marked state in Xm is denoted x

s→ Xm. If
a path from x to y, generating a string s, is not defined, it
is written x �

s
y.

The state-vector transition model G in (1), and its cor-
responding explicit state transition model Ĝ in (4), natu-
rally include nondeterministic behavior. A deterministic
SVT model, however, has a single initial state, and the
transitions x

σ→ x́ and x
σ→ x̀ always imply x́ = x̀.

3 Synchronous Composition

The synchronous composition of SVT models is now
defined and analyzed. The results are used in the follow-
ing sections on supervisor synthesis.

3.1 Extended Full Synchronous Composition
The definition is based on Hoar’s full synchronous

composition [4], but extended to include shared variables.
This is similar to the formulation in [14], but here adapted
to the SVT model.

Definition 3 (Extended Full Synchronous Composition)
Let Gk = 〈Xk, Σk, T k,X k

i ,X k
m〉, k=1, 2, be two SVT

models, where Xk = ×j∈Ωk
x
Xj . The extended full

synchronous composition (EFSC) of G1 and G2 is then
defined as

G1‖G2 = 〈X, Σ1 ∪ Σ2, T,X 1
i ∧ X 2

i ,X 1
m∧ X 2

m〉

where X = ×j∈Ω1
x∪Ω2

x
Xj , and T = T 1 × T 2. For each

combination of tk = (Ck, Ωk
C , σ) ∈ T k, k = 1, 2, the

predicate C(x, x́) and the index set ΩC of the synchronized
transition t = (t1, t2) = (C, ΩC , σ) ∈ T are defined as

C(x, x́) �

⎧⎨
⎩

C1(x1, x́1) ∧ C2(x2, x́2) σ ∈ Σ1 ∩ Σ2

C1(x1, x́1) σ ∈ Σ1\Σ2

C2(x2, x́2) σ ∈ Σ2\Σ1

(5)
and

ΩC �

⎧⎨
⎩

Ω1
C ∪ Ω2

C σ ∈ Σ1 ∩ Σ2

Ω1
C σ ∈ Σ1\Σ2

Ω2
C σ ∈ Σ2\Σ1

(6)

�

Example 2 To illustrate this definition, consider a syn-
chronized system G1‖G2 with only shared variables in
x = (x1, x2, x3), i.e. Ω1

x = Ω2
x = {1, 2, 3}. Given the

local transitions (x́1 = 1 ∧ x3 ≥ 0, {1}, a) ∈ T 1 and
(x3 = 1 ∧ x́3 = 0, {3}, a) ∈ T 2, the corresponding syn-
chronized transition, according to (5) and (6), becomes

(x́1 = 1 ∧ x3 ≥ 0 ∧ x3 = 1 ∧ x́3 = 0, {1, 3}, a) ∈ T

This results in the following complete transition predicate

Φ(x, x́) = x́1 = 1 ∧ x3 = 1 ∧ x́3 = 0 ∧ x́2 = x2 �
Based on Definition 3 we find that the index set for the
state vector x of G1‖G2 is Ω1

x ∪ Ω2
x. This means that

the shared variables defined by the intersection Ω1
x ∩ Ω2

x

are not repeated. Furthermore, the set of variables is not
fixed; it is extended when new SVT models are added by
synchronization.

When the next value conditions in G1 and G2 are in
conflict (due to update of one or more shared variables
to different values), no transition will occur. The reason is
that the synchronized predicate C1∧C2 will not be satisfied
due to the conflict between C1 and C2.

Example 3 In Example 1 the individual SVT models G1

and G2 were defined for the PN model in Fig. 2. In this ex-
ample the synchronous composition G1‖G2 is presented.
First we observe that the synchronized state vector has the
index set Ωx = {1, 2, . . . , 10}. Since all transitions have
unique events, the only thing to add to the local models G1

and G2 is the keep-current-value conditions on the mark-
ing variables for the PN that is not involved in the actual
transition. The complete transition predicate Φ1(x, x́) for
the first transition in the left PN sequence in Fig. 2 now
also needs keep-current-value conditions on m2

1, . . . , m
2
4.

This results in the complete transition predicate

Φ1 � C1
1 ∧ḿ1

3 =m1
3∧ḿ1

4 =m1
4∧ Ŕ2 =R2

∧
j=1,...,4

ḿ2
j =m2

j

for the synchronized transition. Adding such keep-
current-value conditions to all transitions and taking the
OR condition between them, a complete logical transi-
tion model for G1‖G2 is finally achieved. This transition
model can be directly transformed to a binary decision di-
agram, which means that efficient symbolic algorithms for
supervisory synthesis can be applied. �



3.2 Full Synchronous Composition
In the following analysis we will further investigate the

relation between synchronization of state-vector transition
models and explicit state transition models. Therefore
also the full synchronous composition (FSC) of explicit
state transition models is introduced.

Definition 4 (Full Synchronous Composition)
Let Ĝk = 〈Xk, Σk,→k, Xk

i , Xk
m〉, k=1, 2, be two SVT

models on explicit state transition form. The full syn-
chronous composition (FSC) of Ĝ1 and Ĝ2 is then defined
as

Ĝ1‖Ĝ2 =〈X1 ×X2, Σ1 ∪Σ2,→, X1
i ×X2

i , X1
m ×X2

m〉
where Φk(xk, x́k) = Ck(xk, x́k)

∧
j=Ωk

x\Ωk
C

x́j = xj and

→ � {((x1, x2), σ, (x́1, x́2)) ∈ X1×X2×Σ×X1×X2 |(
Φ1(x1, x́1) ∧ Φ2(x2, x́2) ∧ σ ∈ Σ1 ∩ Σ2

) ∨
(
Φ1(x1, x́1) ∧ x́2 = x2 ∧ σ ∈ Σ1\Σ2

) ∨
(
Φ2(x2, x́2) ∧ x́1 = x1 ∧ σ ∈ Σ2\Σ1

)} �

Compared to the extended full synchronous composition
(EFSC) for SVT models in Definition 3, one main differ-
ence is that no shared variables are included in this def-
inition. The FSC is only based on shared events, while
the synchronization of SVT models includes both shared
events and shared variables.

In Definition 4 the state vectors x1 and x2 for the two
models Ĝ1 and Ĝ2 are not joined, which implies that the
total vector for the FSC becomes (x1, x2) compared to the
EFSC, where the shared variables among x1 and x2 are
only included ones. Furthermore, the index sets Ω1

C and
Ω2

C are not joined in the FSC, which they are in the EFSC.
These differences have major implications on the resulting
behavior of the FSC for explicit state transitions models
and the EFSC for SVT models, as will be illustrated in the
following analysis.

3.3 Analysis
The unique features of SVT models are the introduc-

tion of shared variables that can be updated by different lo-
cal SVT models, the keep-current-value mechanism, and
the flexible specification of the involved variables, includ-
ing the shared ones. The consequences of this nontrivial
but powerful sharing mechanism will now be further ana-
lyzed, first by an example and then by a proposition.

Example 4 Consider two SVT models G1 and G2 with
two shared variable (x1, x2) and two shared events {a, b}.
The local transition sets for G1 and G2 are T 1 =
{(x́1 = 1, {1}, a), (x2 > 0, ∅, b)} and T 2 = {(x́2 =
1, {2}, a), (x1 > 0, ∅, b)}. By generating the complete
transition models for G1, G2, and G1‖G2, based on Def-
inition 1, (2), and Definition 3, and assuming the initial
state (x1, x2) = (0, 0), the following languages are ob-
tained

L(G1) = L(G2) = a∗ L(G1‖G2) = a(a + b)∗

The reason for the more limited behavior of the local mod-
els G1 and G2 is that there is a condition (a guard) on the
variable that is not updated by the local model itself but
by its "sister" model. G1 has a guard on x2 that is updated
by G2 and vice versa. In G1‖G2, where both variables
are updated simultaneously, the guards are satisfied after
the first a-transition has happened, which implies that the
b-transition can also be executed. �

This example shows that a richer behavior can be achieved
after an EFSC of SVT models, compared to the individual
models. It never happens in an ordinary FSC, where two
synchronized automata limit each others behaviors or run
independently.

Proposition 1
According to Definition 3 and 4 and the assumptions be-
low, the following relations are valid for SVT models G1,
G2 and G3.

(a) The synchronization operator is commutative and as-
sociative, i.e. G1‖G2 = G2‖G1 and (G1‖G2)‖G3 =
G1‖(G2‖G3).

(b) Assume that Ω1
x ∩Ω2

x = ∅. Then generally Ĝ1‖G2 =
Ĝ1‖Ĝ2.

(c) Assume that Ω1
x∩Ω2

x =∅ (no shared variables). Then

Ĝ1‖G2 = Ĝ1‖Ĝ2.

(d) Assume that Ω1
x ∩ Ω2

C = ∅ and Σ2 ⊆ Σ1. Then

Ĝ1‖Ĝ1‖G2 = Ĝ1‖G2.

Proof: (a) Follows by Definition 3 and the fact that the
conjunction and the set union operators are commutative
and associative.

(b) Results from Example 4, since Σ1 = Σ2 implies

that L(Ĝ1‖Ĝ2) = L(Ĝ1)∩L(Ĝ2) = a∗ = L(Ĝ1‖G2) =
a(a + b)∗

(c) Assume without loss of generality that the state vec-
tor x for G1‖G2 is reordered such that x = (x1, x2),
where x1 and x2 are the local state vectors for G1 and
G2. Remind that there are no shared variables between x1

and x2. Then the state space of Ĝ1‖G2, X = X1 × X2,
i.e. the state space of Ĝ1||Ĝ2. Furthermore, generating
the complete transition predicates (2) for G1||G2, follow-
ing Definition 3, then gives the same explicit state space

model Ĝ1‖G2, based on Definition 2, as Ĝ1||Ĝ2, accord-
ing to Definition 4.

(d) For G1‖G2 and σ ∈ Σ1 ∩Σ2, the set Ωx\ΩC in (2)
can, according to Definition 3, be rewritten as (Ω1

x ∪Ω2
x)\

(Ω1
C∪Ω2

C) = (Ω1
x∪Ω2

x\Ω1
x)\(Ω1

C∪Ω2
C) = Ω1

x\(Ω1
C∪Ω2

C)∪
Ω2

x \ Ω1
x \ Ω2

C . Based on the assumption Ω1
x ∩ Ω2

C = ∅,
we then get

Ωx\ΩC = Ω1
x\Ω1

C ∪ Ω2
x\(Ω1

x ∪ Ω2
C)



for σ ∈ Σ1 ∩ Σ2. Now introduce the functions

Φ1(x1, x́1) = C1(x1, x́1)
∧

j=Ω1
x\Ω1

C

x́j = xj (7)

Φ21(x2, σ, x́2) =
(C2(x2, x́2)

∧
j=Ω2

x\(Ω1
x∪Ω2

C)

x́j =xj ∧ σ ∈ Σ2
)

∨( ∧
j=Ω2

x\Ω1
x

x́j = xj ∧ σ /∈ Σ2
)

(8)

as well as the assumption Σ2 ⊆ Σ1 and Definition 3. Then
the explicit state transition relation for G1‖G2 can be ex-
pressed as

→
̂G1‖G2= {(x, σ, x́) |Φ1(x1, x́1) ∧ Φ21(x2, σ, x́2)} (9)

To emphasize separate state variables in the FSC

Ĝ1‖Ĝ1‖G2, the state vector x̄1 ∈ X1 is used in G1. Ac-
cording to Definition 4, including the observation that the
event set for G1‖G2 is Σ1, we then obtain

→
�G1‖ ̂G1‖G2 ((x̄1, x), σ, (´̄x1, x́)) |Φ1(x̄1, ´̄x1) ∧

Φ1(x1, x́1) ∧ Φ21(x2, σ, x́2)} (10)

Since x1 and x̄1 have the same domain of definition X1,
and Φ1(x̄1, ´̄x1) is true for all ((x̄1, x), (´̄x1, x́)) such that
Φ1(x1, x́1) ∧ Φ21(x2, σ, x́2) is true, it is enough to con-
sider those (x, x́) where Φ1(x1, x́1) ∧ Φ21(x2, σ, x́2) is
true in (10). In other words, (9) generates the same tran-

sitions as (10), which shows that Ĝ1‖Ĝ1‖G2 = Ĝ1‖G2

when Ω1
x ∩ Ω2

C = ∅ and Σ2 ⊆ Σ1. �

Part (c) of this proposition is an important special case,
since both automata and Petri nets have no shared vari-
ables. Part (d) will be used in the following supervisor
synthesis.

4 Supervisory Control

Supervisory control theory (SCT) [13] is a general the-
ory to automatically synthesize supervisors based on a
given plant and specification. A plant G is normally
given as a number of synchronized sub-plants, i.e. G =
G1‖ · · · ‖GNG . Local specifications Kj , j = 1, . . . , NK

are also synchronized to a common specification K =
K1‖ · · · ‖KNK . Typical examples of specifications are
a) additional guards and actions on existing or new vari-
ables, such as the resource booking R±

k (3) in Exam-
ple 1, b) marked and explicitly forbidden states, and c)
dynamic specifications that restrict possible alternatives in
the plant. The total specification of the controlled system
is obtained by synchronizing the specification K with the
plant G. The result G‖K is also a candidate of a super-
visor to control the plant such that the specification K is
fulfilled.

All synchronizations in G‖K are based on the EFSC,
which means that shared variables can be updated by any
local SVT model. Before the supervisor synthesis is in-
troduced, an important assumption need to be included.

No variables in the plant G are allowed to be updated to
new values by the specification K . It means that the set
ΩK

C has no common elements with ΩG
x . This is a natural

assumption, which still means that guards on current val-
ues of plant variables can be included in the specification.
This assumption has an important implication, which is
shown in the following proposition.

In this proposition, Ĝ′ being a subautomaton of Ĝ, de-
noted Ĝ′ ⊆ Ĝ, means that all elements in the tuple of Ĝ′

are subsets of corresponding elements in Ĝ, except for the
event sets that are equal, i.e. ΣG′

= ΣG.

Proposition 2 (Refinement)
Let G = 〈XG, ΣG, T G,XG

i ,XG
m〉 and K = 〈XK , ΣK ,

T K ,XK
i ,XK

m 〉. Assume that ΩG
x ∩ ΩK

C = ∅, ΣK ⊆ ΣG,

and consider an arbitrary sub-automaton Ŝ ⊆ Ĝ‖K.

Then Ĝ‖Ĝ‖K = Ĝ‖K and Ĝ‖Ŝ = Ŝ.
Proof: From Proposition 1(d), with G1 = G, G2 = K ,

it follows that Ĝ‖Ĝ‖K = Ĝ‖K. Since Ŝ ⊆ Ĝ‖K, we

also know that Ĝ‖K‖Ŝ = Ŝ. Synchronizing Ĝ‖Ĝ‖K =
Ĝ‖K with Ŝ then gives Ĝ‖Ŝ = Ŝ. �

Assuming that Ŝ is a supervisor, a standard assumption in
SCT is that the closed loop system is Ĝ‖Ŝ. The result of
this proposition then shows that the supervisor in itself is
a model of the closed loop system.

4.1 Controllability and Nonblocking
In SCT, the events are divided into two disjoint sub-

sets: controllable events, denoted by Σc, that can be pre-
vented from executing by the supervisor; and uncontrol-
lable events, denoted by Σu, which cannot be influenced
by the supervisor [13]. Two important properties are con-
sidered in SCT namely controllability and nonblocking.

Definition 5 (Controllability)
Let Ĝk = 〈Xk, Σk,→k, Xk

i , Xk
m〉, k = 1, 2, be two SVT

models on explicit state transition form, where Σ2 ⊆ Σ1.
Then Ĝ2 is controllable with respect to Ĝ1 and a set of
uncontrollable events Σu ⊆ Σ1 if, for every string s ∈
Σ1∗ and every uncontrollable event σu ∈ Σu ∩ Σ2 such

that Ĝ1‖Ĝ2 s→ (x1, x2) and x1 σu→ x́1 in Ĝ1, it also holds

that x2 σu→ x́2 in Ĝ2. If this transition in G2 does not exist,
x2 is an uncontrollable state that needs to be forbidden.

�

Definition 6 (Nonblocking)
Let Ĝ = 〈X, Σ,→, Xi, Xm〉. A state x ∈ X in Ĝ is
reachable if Ĝ

s→ x, and it is coreachable if x
s→ Xm.

An SVT model, on explicit state transition form Ĝ, is non-
blocking if every reachable state is also coreachable. �

By generating a subautomaton Ŝ ⊆ Ĝ‖K that is non-
blocking, Proposition 2 shows that this property also holds
for the closed loop system Ĝ‖Ŝ = Ŝ.

Concerning controllability, Proposition 2 can also be
used to generate a controllable supervisor Ŝ, with respect



to the plant Ĝ, that is a subautomaton Ŝ ⊆ Ĝ‖K. The key

is to first identify all uncontrollable states in Ĝ‖K with
respect to Ĝ. The identification of these forbidden states
is shown in the following proposition.

Proposition 3 (Uncontrollable states)
Let G = 〈XG, ΣG, T G,XG

i ,XG
m〉 and K = 〈XK , ΣK ,

T K ,XK
i ,XK

m 〉. Assume that ΩG
x ∩ ΩK

C = ∅, ΣK ⊆ ΣG.

The set of uncontrollable states in Ĝ‖K with respect to Ĝ
is then given by the set

XG‖K
u = {x ∈ XG‖K | ∃(tG, tK) ∈ T G‖K ,

tG = (CG, ΩG
C , σ), tK = (CK , ΩK

C , σ) ∧
σ ∈ Σu ∧ ∀x́G ∈ XG ∧ ∀x́K ∈ XK :
CG(xG, x́G) ∧ ¬CK(xK , x́K)}

Proof: Follows from Proposition 1(d) for G1 = G and
G2 = K , the transition relation (10) and the related con-
flict between Φ1 in (7) and Φ21 in (8), which reduces to
¬ (C1 → C2) = C1 ∧ ¬C2 = CG ∧ ¬CK . �

4.2 Supervisor state set generation

Based on the supervisor candidate Ĝ‖K a supervisor
Ŝ will now be constructed. It is done by generating a set

of forbidden states Xf that are removed from Ĝ‖K, such
that desired properties are achieved. This is achieved us-
ing the following two definitions.

Definition 7 (Forbidden state model)
Let Ĝ = 〈X, Σ,→, Xi, Xm〉. A corresponding model in-
cluding a set of forbidden states Xf ⊆ X is then defined
as Ĝ\Xf

= 〈X\Xf , Σ,→\Xf
, Xi\Xf , Xm\Xf〉 where

→\Xf
= {(x, σ, x́) |x, x́ /∈ Xf} �

Definition 8 (Forbidden state operator)
Let Ĝ = 〈X, Σ,→, Xi, Xm〉 where Σu ⊆ Σ. The forbid-

den state operator Θ �G(Xf ) : 2X → 2X for Ĝ is defined
as

Θ �G(Xf ) = Xf ∪ {x ∈ X | ∀su ∈ Σ∗
u ∧ ∀y ∈ X

such that x
su−→ y, it holds that y �

s

\Xf
Xm} �

First note that y �
s

\Xf
Xm means that state y is not core-

achable, i.e. it is a blocking state. Given a set of forbidden
states Xf this operator adds additional forbidden states,
including all those states x from which a string su of un-
controllable events leads to blocking or forbidden states y,
based on the current set of forbidden states Xf . This gen-

eration includes the empty string su = ε. Hence, Θ �G(Xf )
adds all blocking states to Xf , but also the uncontrollable
states leading to blocking or forbidden states.

This forbidden state operator is applied to the super-

visor candidate Ĝ‖K, where the initially forbidden states

are the uncontrollable states X
G‖K
u , defined in Proposi-

tion 3, and any explicitly forbidden states X
G‖K
f , speci-

fied by the user. Hence, the recursive equation

Xj+1
f := Θ

̂G‖K(Xj
f ) X0

f = XG‖K
u ∪ X

G‖K
f (11)

is iterated until a fixed point Xf = Θ ̂G‖K(Xf ) is reached.
Remind that ΣG‖K = ΣG and let Ŝ = 〈XS , ΣG,→S

, XS
i , XS

m〉 be the automaton for the supervisor. Based on
this fix point calculation Ŝ can be expressed as

Ŝ = Ĝ‖K\Xf
(12)

and the supervisor states, the safe states, are XS =
XG‖K\Xf .

4.3 Supervisor Guards
To obtain supervisor guards that can be added to the

original SVT model G, which guarantee that the closed
loop system will stay within the safe state set XS , two
specific state sets are introduced.

XS
σ = {x ∈ XS |x σ−→S}

XS¬σ = {x ∈ XS |x σ−→G‖K ∧ x �
σ

S}

The set XS
σ includes all states in XS where the execution

of σ is defined for S, while XS¬σ includes all correspond-
ing states where the execution of σ is defined for G‖K ,
but not for S. Thus, for all states in XS

σ the event σ must
be allowed by S, while for all states in XS¬σ the event σ
must be forbidden. For all other states it does not mat-
ter if the supervisor allows or forbids σ. For every event
σ ∈ Σc ⊆ ΣG a supervisor predicate is therefore gener-
ated such that:

CS
σ (x) =

⎧⎨
⎩

T x ∈ XS
σ

F x ∈ XS¬σ

don’t care x ∈ X\(XS
σ ∪ XS¬σ)

(13)

More details on how this can be done based on BDDs and
heuristic rules are shown in [10].

These predicates are added to the plant SVT models
Gk , k = 1 . . . , NG, by replacing the transition relation
sets Tk with T k

S = {(Ck∧CS
σ , Ωk

C , σ) | (Ck, Ωk
C , σ) ∈ T k}.

The resulting SVT models, called Gk
S , are composed to

GS = G1
S‖ · · · ‖GNG

S and synchronized with the specifi-
cation K . This results in the final SVT supervisor

S = GS‖K

Theorem 4
Let G = 〈XG, ΣG, T G,XG

i ,XG
m〉 and K = 〈XK , ΣK ,

T K ,XK
i ,XK

m 〉. Assume that ΩG
x ∩ ΩK

C = ∅, ΣK ⊆ ΣG.
By iterating (11) until a fix point Xf is achieved, a con-
trollable, nonblocking, and maximally permissive super-

visor Ŝ = Ĝ‖K\Xf
is obtained. The resulting supervisor

is a model of the closed loop system, i.e. Ŝ = Ĝ‖Ŝ, and a



corresponding SVT supervisor S = GS‖K , where GS in-
cludes guards added to G, generates the same closed loop

system, i.e. ĜS‖K = Ĝ‖K\Xf
.

Proof: Since ΩG
x ∩ ΩK

C = ∅, ΣK ⊆ ΣG and Ŝ =
Ĝ‖K \Xf ⊆ Ĝ‖K, Proposition 2 shows that Ŝ = Ĝ‖Ŝ.
The set of uncontrollable states given by Proposition 3 are
avoided, including explicitly forbidden states, by initialize
the forbidden state iteration (11) by X0

f =X
G‖K
u ∪X

G‖K
f .

In every iteration of (11), based on the current set of
forbidden states Xf

j , any additional blocking states Bj are

added to Xf by su = ε. When Ĝ‖K s→ x and x
su→ y,

where y ∈ Xf
j ∪Bj and su ∈ Σ∗

u, the string ssu can be ex-

ecuted in both Ĝ and Ĝ‖K. This is the fact, since accord-

ing to Proposition 2, L(Ĝ‖Ĝ‖K) = L(Ĝ) ∩ L(Ĝ‖K) ⊆
L(Ĝ). All such extended uncontrollable states x must
therefore be forbidden, since via a string ssu they will

lead to a forbidden or blocking state y in Ĝ‖K, while the
corresponding state in the plant Ĝ is reachable.

Exactly those extended uncontrollable states, includ-
ing the blocking states, are added to the set of forbidden
states in (11). When the fix point Xf = ΘG‖K(Xf ) is
reached, no more blocking and extended uncontrollable
states are identified. Therefore, the resulting supervisor

Ŝ = Ĝ‖K\Xf
is controllable and nonblocking. Since

Ŝ = Ĝ‖Ŝ, the closed loop system is also nonblocking.
In each iteration of (11) only those states that neces-

sarily need to be forbidden are added to the set of forbid-

den states Xf . Together with the fact that Θ ̂G‖K (11) is
a monotonic function, and a classical result from lattice
theory by Tarski [15], it can be shown, see [9], that the
resulting Ŝ in (12) is also maximally permissive.

Finally, since the generated guards in (13) guarantee
that the supervisor S accepts all transitions that are ac-
cepted by the supervisor Ŝ and forbid all those that are not
allowed by Ŝ, the same closed loop system are achieved

for Ŝ = ĜS‖K and Ŝ = Ĝ‖K\Xf
. �

5 Conclusions

A state-vector transition model has been presented
from which a nonblocking, controllable and maximal per-
missive supervisor can be implemented in terms of con-
trol guards added to the original model. The suggested
algorithm is naturally formulated by BDDs, which means
that large and complex systems can be handled efficiently.
Furthermore, since the SVT model include automata,
EFAs and Petri nets as special cases, the presented frame-
work is a unified, flexible and attractive approach for su-
pervisor synthesis.
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