
Chalmers Publication Library

Abstractions for nonblocking supervisory control of Extended Finite Automata

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2012 IEEE International Conference on Automation Science and Engineering: Green

Automation Toward a Sustainable Society, CASE 2012, Seoul, 20-24 August 2012 (ISSN:

2161-8070)
Citation for the published paper:
Shoaei, M. ; Feng, L. ; Lennartson, B. (2012) "Abstractions for nonblocking supervisory
control of Extended Finite Automata". 2012 IEEE International Conference on Automation
Science and Engineering: Green Automation Toward a Sustainable Society, CASE 2012,
Seoul, 20-24 August 2012 pp. 6.

http://dx.doi.org/10.1109/CoASE.2012.6386446

Downloaded from: http://publications.lib.chalmers.se/publication/171117

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/CoASE.2012.6386446
http://publications.lib.chalmers.se/publication/171117

Abstractions for Nonblocking Supervisory Control
of Extended Finite Automata

Mohammad Reza Shoaei, Lei Feng, Bengt Lennartson

Abstract—An abstraction method for Extended Finite Auto-
mata (EFAs), i.e., finite automata extended with variables, using
transition projection is presented in this work. A manufac-
turing system modeled by EFAs is abstracted into subsystems
that embody internal interacting dependencies. Synthesis and
verification of subsystems are achieved through their model
abstractions rather than their global model. Sufficient con-
ditions are presented to guarantee that supervisors result in
maximally permissive and nonblocking control. An examples
demonstrate the computational effectiveness and practical usage
of the approach.

I. INTRODUCTION

Increasing global competition is changing the strategies

and methods within industries in order to maintain market

presence and boost growth in an increasingly tough com-

petitive environment. The industries are pushed to enhance

performance and reduce the time and cost of introducing new

products. One contribution is to automatically compute the

controllers that coordinate their manufacturing plant. Indeed,

such controllers must guarantee the safety and nonblocking

of the controlled system.

Supervisory Control Theory (SCT), established by Ra-

madge and Wonham [1], is a formal framework for modeling

and control of Discrete-Event Systems (DES). Application

domains include manufacturing systems, vehicular traffic,

robotics, computer, and communication networks. Problems

that SCT can address include dynamic allocation of re-

sources, the prevention of system blocking, etc. and, within

these constraints, maximally permissive system behavior.

SCT can systematically synthesize supervisory controllers

that are able to prevent a DES from executing undesirable

behavior. Nevertheless, industrial acceptance is still scarce. A

number of issues that hinder industrial use have been identi-

fied in [2], [3]. Main issues are the discrepancy between the

signal based reality and the event-based automata framework,

the lack of a compact representation of large models, and

computational complexity.

Sköldstam et al. [4] tackle these issues by introducing

a modeling formalism, called Extended Finite Automata

M.R. Shoaei, B. Lennartson are with Department of Signals and Systems,
Chalmers University of Technology, SE-412 96, Gothenburg, Sweden,
{shoaei, bengt.lennartson}@chalmers.se, L. Feng is with the Department
of Machine Design, KTH - Royal Institute of Technology, SE-100 44
Stockholm, Sweden, leifeng@md.kth.se. This work was carried out at
the Wingquist Laboratory VINN Excellence Center within the Area of
Advance – Production at Chalmers, supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA). The support is gratefully
acknowledged.

(EFAs), which are ordinary automata extended with discrete

variables, guard expressions and action functions. This mod-

eling formalism has been used in several research works such

as [5], [6], including different approaches for synthesizing

EFAs [7], [8] and an implementation in the DES tool Suprem-

ica [9].

Although EFAs ease the modeling by providing a compact

representation of the system, SCT analysis is performed on

their underlying automata models and therefore, the fun-

damental obstruction to the development of SCT, i.e., the

computational complexity of synthesizing nonblocking su-

pervisors, still remains. Indeed, the nonblocking supervisory

control problem for DES is NP-hard [10]. The exponential

complexity of supervisor design arises from synchronizing

components into a global model. Therefore, effective control

methods for various subclasses of DES that enjoy special

structures are introduced such as modularity [11], [12] and

model abstraction [13], [14].

The most effective model abstraction operator in SCT is

the causal reporter map having the observer property [15],

which later was substituted by Feng and Wonham [16],

[17] with the natural observer. In this, components which

are sharing only a small number of common events, their

abstractions tend to be small, and designing controllers may

require only a modest effort. A limitation of the natural

projection is the need for the language of a system to

be known or be obtained by its generators, for instance,

automata which is not the case for a DES modeled by EFAs.

The transitions in EFAs are augmented with guards and

actions which one cannot define the language of individual

components without considering the global behavior of the

system, i.e., the synchronous composition of all components.

In this paper, we substitute the natural projection with

transition projection to achieve model abstraction for EFAs.

To reduce the computational complexity, the controller is syn-

thesized based on the model abstraction of subsystems rather

than the global system. Sufficient conditions are presented to

guarantee the decentralized supervisors to result in maximally

permissive and nonblocking control of the entire system.

The paper is organized as follows: Section II briefly

describes the EFA and its properties. In Section III, a model

abstraction using transition projection is introduced followed

by Section IV in which the observer property for transition

projections is explained. An example is presented in Section

V to demonstrate the practical usage of the method. Finally,

Section VI concludes our work.

II. PRELIMINARIES

A. Languages and Automata

The behavior of DES [19], [20] is described in terms

of event sequences and regular languages [1]. A regular

language is a subset of strings that can be recognized by

a finite automaton (FA) G = (Q,Σ, 7→, Q0, Qm). Q is the

finite state set. Σ is a non-empty finite event set called

alphabet. 7→⊆ Q × Σ × Q is the state transition function

mapping elements of Q×Σ into singletons of Q. The element

Q0 ⊆ Q is the set of initial states and Qm ⊆ Q is the set of

marked states.

The transition relation in G is written in infix notation

p
σ
7→ q. Let Σ∗ be the set of all finite strings over Σ, including

the empty string ε. Then, these notations can be extended to

strings in Σ∗ in the natural way by letting p
ε
7→ p for all p ∈

Q and p
sσ
7→ q if p

s
7→ r and r

σ
7→ q for some q, r ∈ Q, s ∈ Σ∗,

and σ ∈ Σ. Let p
σ
7→ denote the existence of one state q ∈ Q

such that p
σ
7→ q, and p 7→ q the existence of a string s ∈ Σ∗

such that p
s
7→ q. Automaton G is deterministic if Q0 is a

singleton q0 and p
σ
7→ q and p

σ
7→ q́ always implies q = q́.

Note that, by definition, the symbol ε does not belong

to Σ. If it is to be included, the event set Σε = Σ ∪ {ε}
is used instead. An important property of an automaton is

nonblocking. The automaton G is nonblocking if any state

reachable from the initial state q0 ∈ Q0 can also reach a

marked state via some string, i.e., (∀q ∈ Q)q0 7→ q ⇒ q 7→ p

for some p ∈ Qm.

Given two event sets Σ and Σ0 ⊆ Σ, the natural projection

is the function P : Σ∗ → Σ∗
0 such that P (ε) = ε and

P (σ) =

{

ε, σ ∈ Σ− Σ0

σ, σ ∈ Σ0

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ

The effect of P on a string s ∈ Σ∗ is just to erase the events

in s that do not belong to Σ0, but keep the events in Σ0

unchanged. The inverse image of the natural projection P is

a function P−1 : Pwr(Σ∗
0) → Pwr(Σ∗) where Pwr is the

power set.

B. Extended Finite Automata

A finite automaton can be extended with a set of variables

to an Extended Finite Automaton (EFA) whose transitions

are augmented with Boolean conditions and actions on these

variables to enjoy a compact and symbolic description of a

DES.

Let V = {v1, . . . , vn} be the set of n typed variables

and Di be the domain (type) of vi. Let η denote a tuple

of variable evaluation η : V → D assigning to each variable

vi ∈ V its current value in Di. G is the set of Boolean

conditions over V in which each condition g, also called

guard, is a propositional logic formula whose propositional

symbols are of the form v̄ ∈ D̄ where v̄ = (v1, · · · , vn) is an

n-tuple of pairwise distinct variables in V , and D̄ is a subset

of the domain of variables D = D1 × · · · ×Dn. Given two

guards g and h, we say that g is a subguard of h, denoted

g � h, if g ∧ h = g, and we say both g and h have the

same evaluation for η, denoted g = h, if η |= g ⇔ η |= h

where |= is the satisfaction relation [21]. Let A be the set of

actions where each action a ∈ A is an n-tuple of functions

(a1, . . . , an), updating the current variable evaluation η to the

new evaluation a(η). Every action is a function ai : Di → Di

which maps the variables evaluation of the current location

to the variables evaluation of the next location. The symbol

ξ is used to indicate that a variable is not updated; and in

vector form Ξ = {ξ, . . . , ξ}. If ai = ξ, we say that ai is a

don’t care updating of the variable vi, meaning that it takes

it current value, i.e., a(η(vi)) = η(vi).

Definition 1 (Extended Finite Automaton).

An extended finite automaton over a set of variables V is an

8-tuple

E = (L,D,Σ, T, L0, D0, Lm, Dm),

where L is a finite set of discrete locations, D = D1 ×
· · · ×Dn is the domain of variables, Σ is a nonempty finite

set of events (alphabets), T ⊆ L × Σ × G × A × L is the

conditional transition relation, L0 ⊆ L is the set of initial

locations, D0 = D0
1 × · · · ×D0

n is the set of variables initial

values, Lm ⊆ L is the set of marked (desired) locations, and

Dm ⊆ D is the set of marked values of the variables.

The initial variable evaluation, denoted η0, assigns each

variable vi ∈ V to its initial value D0
i . The notation ℓ

σ
→g/a ℓ́

is used as shorthand for (ℓ, σ, g, a, ℓ́) ∈ T . If the guard

of the transition ℓ
σ
→g/a ℓ́, is a tautology, e.g. g = T or

g = (v < 1)∨ (v > 1), then we simply write ℓ
σ
→a ℓ́. Similar

to DFA, let ℓ
σ
→g/a denote the existence of a location ℓ́ ∈ L

such that ℓ
σ
→g/a ℓ́.

It is assumed that all actions are written as constant

functions where the new value of vi only depends on its

previous value. Any transition can be decomposed into

multiple transitions of this form. For instance, the transition

ℓ
σ
→x:=y+1 ℓ́ where D(y) = {0, 1} can be decomposed into

ℓ
σ
→y=0/x:=1 ℓ́ and ℓ

σ
→y=1/x:=2 ℓ́.

EFAs can be unfolded to their underlying FAs whose states

and transitions are defined as follows.

Definition 2 (FA Semantics of an EFA).

Let E = (L,D,Σ, T, L0, D0, Lm, Dm) be an EFA over the

set of variables V . The FA G(E) is the tuple (QE ,ΣE , 7→E

, Q0
E, Q

m
E) where QE = L×D, 7→E⊆ Q×Σ×Q is defined

by the following rule:

ℓ
σ
→g/a ℓ́ ∧ η |= g

〈ℓ, η〉
σ
7→ 〈ℓ́, a(η)〉

,

Q0
E = L0 ×D0, and Qm

E = Lm ×Dm.

States of G(E) are the set of reachable states of E and

each state consists of a location ℓ together with variable

evaluation η. Note that in the definition of transition relation

7→, if the proposition above the horizontal line holds, then

the proposition under the line holds as well (also known

as Structured Operational Semantics), namely, whenever the

guard g of the conditional transition ℓ
σ
→g/a ℓ́ holds for the

variable evaluation η, i.e., η |= g, then there is a transition

in G(E) from state 〈ℓ, η〉 to state 〈ℓ́, a(η)〉. Observe that, the

DFA generated directly from a given EFA by constructing

the state set as L×D is not guaranteed to be the canonical

recognizer and therefore further reduction needs to be done

by using the standard algorithm of minimization [22]. In

the sequel, we assume that the DFA obtained by the above

transformation is a canonical recognizer of the language

represented by the input EFA model.

Since we are interested in deterministic systems, we only

focus on deterministic EFAs and, for the sake of brevity, we

simply write EFAs for deterministic EFAs.

Definition 3 (Deterministic EFA).

An EFA E is deterministic if G(E) is deterministic, namely,

the set of initial states of G(E) is a singleton 〈ℓ0, η0〉, where

ℓ0 ∈ L0 and η0 is initial variable evaluation, and for all

transitions 〈ℓ, η〉
σ
7→ 〈ℓ́, ή〉 and 〈ℓ, η〉

σ
7→ 〈ℓ̀, ὴ〉 it always

implies that 〈ℓ́, ή〉 = 〈ℓ̀, ὴ〉.

Given two EFAs E and É, we say that É is a sub-EFA of

E, denoted E1 ⊆ E2, if É is obtained from E by removing

some locations of E as well as the transitions linked to these

locations or removing some transitions of or replacing the

guards of some edges of by subguards. Since the transitions

in EFAs are conditional, it is not possible to describe the

static behavior of the system by following its transitions

before evaluating its guards and actions. Therefore, a notion

of execution fragment that is a series of transitions with

guards and actions ending with a location is used to describe

the dynamic behavior of EFAs.

Definition 4 (Finite Execution Fragment).

Let E = (L,D,Σ, T, ℓ0, η0, Lm, Dm) be an EFA over the

set of variables V . A finite execution fragment ̺ in E is a

series of transitions

̺ = ℓ0
σ1→g1/a1

ℓ1
σ2→g2/a2

· · ·
σi+1
→ gi+1/ai+1

ℓi+1, (0 6 i < n),

where n > 0. The integer n is the length of the execution

fragment.

The ̺ = ℓ0 for some ℓ0 ∈ L is a legal finite execution

fragment, henceforth execution fragment, of length n = 0.

Note that, in execution fragments, we do not explicitly list

the selfloops of the empty string ε as they are trivially

contained in any EFA. The first and last location of ̺

is denoted by first(̺) and last(̺), respectively, str(̺) de-

notes σ1σ2 . . . σi+1, and Loc(̺) denotes the set of locations

{ℓ0, ℓ1, . . . , ℓi+1} (0 6 i < n), that can be reached by

following the transitions in ̺. We call ̺ an initial execution

fragment if first(̺) ∈ L0 and η0 = η0, and a marked

execution fragment if last(̺) ∈ Lm and ηn ∈ Dm. Finally, ̺

is accepted by E if for all transition ℓi
σi+1
→ gi+1/ai+1

ℓi+1 ∈ ̺

we have ηi |= gi+1 and ηi+1 = a(ηi).

For two execution fragments ̺i, i = 1, 2, in E, we say

̺1 is a precedence of ̺2, written ̺1 ⊑ ̺2, if last(̺1) =
first(̺2) and η1 = η2 where η1 and η2 are the current

variable evaluations for the locations last(̺1) and first(̺2),
respectively and ̺1 = ̺2 iff str(̺1) = str(̺2) and for all

transitions (ℓ1j , σ, g
1
j+1, a

1
j+1, ℓ

1
j+1) ∈ ̺1, g1j+1 6= ε, there

exists a transition (ℓ2j , σ, g
2
j+1, a

2
j+1, ℓ

2
j+1) ∈ ̺2 such that

g1j+1 = g2j+1 and a1j+1 = a2j+1 for all 0 6 j < |̺1| up to

renaming of locations.

EFAs similar to ordinary automata are composed by the

extended full synchronous composition (EFSC). By the def-

inition of EFSC, it is assumed that the variables are shared

by all EFAs with the same initial variable evaluation.

Definition 5 (EFSC).

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, η

0, Lm
k , Dm

k), k = 1, 2, be two

EFAs over the set of shared variables V . The Extended Full

Synchronous Composition of E1 and E2 is

E1‖E2 = (L,D,Σ, T, ℓ0, η0, Lm, Dm),

where L = L1×L2, Σ = Σ1∪Σ2, T is defined by the rules:

*
ℓ1

σ
→1,g1/a1

ℓ́1 ∧ ℓ2
σ
→2,g2/a2

ℓ́2 ∧ σ ∈ (Σ1 ∩ Σ2)

〈ℓ1, ℓ2〉
σ
→g/a 〈ℓ́1, ℓ́2〉

such that

(i) g = g1 ∧ g2,

(ii) For i = 1, . . . , n:

ai =

a1i if a1i = a2i
a1i if a2i = ξ

a2i if a1i = ξ

ηi otherwise;

*
ℓ1

σ
→1,g1/a1

ℓ́1 ∧ ℓ́2 = ℓ2 ∧ σ ∈ (Σ1 − Σ2)

〈ℓ1, ℓ2〉
σ
→g1/a1

〈ℓ́1, ℓ́2〉

*
ℓ2

σ
→2,g2/a2

ℓ́2 ∧ ℓ́1 = ℓ1 ∧ σ ∈ (Σ2 − Σ1)

〈ℓ1, ℓ2〉
σ
→g2/a2

〈ℓ́1, ℓ́2〉
,

L0 = L0
1 × L0

2, and Lm = Lm
1 × Lm

2 .

Note that, if the action functions of E1 and E2 try to

update a shared variable to different values, the variable is,

by default, not updated. A situation where two values are

conflicting, is usually a consequence of bad modeling. In

this work, in order to avoid conflicting variables, we assume

that for any two conditional transitions in the system with

the same label, say ℓ1
σ
→g/a ℓ2 and ℓ́1

σ
→ǵ/á ℓ́2, if both

a, á 6= Ξ always implies a(η) = á(ή). In general, this

assumption may restrict the modeling using EFA. But in

practice, shared events in ordinary DFAs, which are used

for mutual exclusion, precedence relations and supervisor

implementation, are replaced by guards on shared variables

in EFAs.

C. Supervisory Control of EFA

SCT is a formal framework for the modeling and control

of DES consisting of a plant and a specification. In this

work, we use the symbolic algorithm presented in [8] to ef-

ficiently synthesize a nonblocking supervisor. The algorithm

iteratively strengthens the guards on conditional transitions

to avoid forbidden or blocking states. Given a DES control

problem, we assume that all events are controllable, the plant

is modeled by an EFA P , and the specification by an EFA

Sp. The specification can be represented, without loss of

generality, by a set of forbidden locations which can be

obtained by a refined plant model R with the same behavior

as P such that the executions not allowed in Sp end up in

certain forbidden locations in R. See [8] for more elaboration

on refinement.

From now on, we assume that the plant model is given as

the refined EFA R and the specification is given as the set of

forbidden locations Lf ⊂ LR. Let us denote the set of safe

locations by Ls = L − Lf and recall the set of reachable

states QR in G(R). A state q = 〈ℓ, η〉 ∈ QR is a forbidden

state iff ℓ ∈ Lf , otherwise, q is a safe state. In the sequel,

Rs denotes the EFA obtained from R by assigning F to the

guard g of every transition ℓ
σ
→g/a ℓ́ for which ℓ́ ∈ Lf , i.e., ℓ́

is a forbidden location. Rs is constructed such that Rs ⊆ R

and is called the safe sub-EFA of R.

Definition 6 (Nonblocking, Safety).

[8] Let R be an EFA, Lf its set of forbidden locations,

and Rs its safe sub-EFA. A reachable state q ∈ QR is: (a)

nonblocking if there exists a state p ∈ Qm
R such that q

s
7→ p

for some string s ∈ Σ∗; (b) safe if q ∈ QRs . The EFA R is,

respectively, nonblocking and safe if every reachable state of

R is, respectively, nonblocking and safe.

A supervisor S for R can be seen as a function S : T → G
which maps each transition to a supervision guard such that

S(ℓ
σ
→g/a ℓ́) � g if σ ∈ Σc, and S(ℓ

σ
→g/a ℓ́) = g if σ ∈ Σu.

Let RS denote the sub-EFA obtained from R by replacing

its guards by those provided by S. Then, S is said to be

nonblocking if RS is nonblocking and safe if RS is safe. In

case RS is blocking, a search will be performed to find a

safe and nonblocking supervisor S such that RS ⊆ Rs. Let

S(R,Lf) denote the set of nonblocking and safe supervisor

candidates of R, then S↑ := supS(R,Lf), is the most

permissive nonblocking and safe supervisor compared to any

other supervisor in S(R,Lf) when the latter is nonempty.

The RS↑

is called the supremal nonblocking sub-EFA of Rs.

RS↑

is calculated by the Supervisory Synthesis for EFA

(SSEFA) [8] using a fixed-point iteration method. Given a

refined EFA R and a set Lf ⊂ L of forbidden location,

SSEFA(R,Lf) computes stronger, maximally permissive,

guards for the transitions of R in N steps such that the

obtained EFA is nonblocking.

III. EFA PROJECTION

Traditionally, brute-force computation is used for verifica-

tion and coordination [20]. This we wish to avoid since the

nonblocking supervisory control problem in SCT is NP-hard.
Abstraction introduces hierarchy into the system structure,

as it reports only the events shared with other subsystems

and conceals the rest. The fewer the reported events, the

greater state reduction will be achieved. Natural projection

[23] with observer property is a language-theoretic operation,

which cannot be used for EFAs with conditional transitions

before evaluating the guards and the actions. In order to

use model abstraction using projection, we substitute the

natural projection with transition projection to be able to

abstract the system by their transition systems. In this section

a DES is assumed to consist of a group of simple plant

EFA components, subject to a conjunction of modular control

specifications. Before introducing the transition projection we

need the following notations.

For an event σ, let Act(σ) ⊆ A and Con(σ) ⊆ G be the

sets of actions and guards, respectively, retrieved from all

transitions labeled with σ. Note that, by the assumption after

Definition 5, the set Act(σ) is a singleton aσ .

Definition 7 (Local Event).

For an EFA Ei, i ∈ n, over the set of shared variables V ,

an event σ ∈ Σi is local to Ei if for all j ∈ n we have (i)

σ ∈ Σi −
⋃

Σj (j 6= i), (ii) (∀g ∈ Con(σ)) g is tautology,

(iii) (∀g ∈ Gj) η |= g ⇔ aσ(η) |= g.

Here, condition (i) guarantees that the event σ only per-

tains to Ei and not to other EFAs Ej (j 6= i), (ii) ensures

that guards on any transition labeled by σ is a tautology when

clear from context; hence σ can cause the transition to occur

at any time, and (iii) guarantees that the execution of action

aσ has no effect on any guards evaluation. Any transition

labeled with a local event is called a local transition, and

similarly any execution fragment is local if its transitions are

all local.

For an EFA E over the set of variables V and the set

of events Σ, the transition projection P̄ for the conditional

transition relation T and the set Σℓ ⊆ Σ is defined as follows:

P̄ : T × Σℓ → T

where for every transition ℓ
σ
→g/a ℓ́ ∈ T and γ ∈ Σℓ

P̄ [ℓ
σ
→g/a ℓ́, ε] = ℓ

σ
→g/a ℓ́

P̄ [ℓ
σ
→g/a ℓ́, γ] =

{

ℓ
σ
→g/a ℓ́, σ 6= γ

ℓ
ε
→g/a ℓ́, σ = γ

The transition projection P̄ replaces the label of transitions

labeled by events in Σℓ with symbol ε. In effect, an EFA is

allowed to make a transition spontaneously, without receiving

an input event. Extending T to its power set Pwr(T), we

get P̄ : Pwr(T)×Σℓ → Pwr(T) such that for any τ ∈ Σℓ,

N ⊆ T : P̄ (N, τ) = {P̄ (ℓ
σ
→g/a ℓ́, τ)|ℓ

σ
→g/a ℓ́ ∈ N}. If

we further extend Σℓ to its power set Pwr(Σℓ), P̄ becomes

P̄ : Pwr(T) × Pwr(Σℓ) → Pwr(T) such that for A ∈ Σℓ,

N ⊆ T : P̄ (N,A) =
⋃

{P̄ (N, τ)|τ ∈ A}. If the effect of P̄

on T is understood then P̄ [T,Σℓ] may be written P̄Σℓ
T and

if P̄ is defined then P̄ T . A projected (observer) EFA Ẽ of

an EFA E whose transitions are projected by the transition

projection P̄ : T × Σℓ → T can be constructed as follows.

Let Sε(ℓ) be the set of ε-closure of a location ℓ in E. Sε(ℓ)
is constructed recursively by finding every location that can

be reached from ℓ along any path whose transitions are all

labeled ε. Formally, (1) ℓ ∈ Sε(ℓ), (2) (∀ℓ́ ∈ Sε(ℓ)) ℓ́
ε
→g/a

ℓ̀ ⇒ ℓ̀ ∈ Sε(ℓ). The location set of Ẽ will be denoted

by L̃, with element ℓ̃ that label ε-closure subsets of E.

Evidently ε-closure subsets might be nondeterministic, i.e.,

there is more than one outgoing transition with the same

event label in Σ − Σℓ from these subsets. A deterministic

model can then be achieved as follows [19]. Define the initial

location subset ℓ̃0 := Sε(ℓ
0). Choose σ1 ∈ Σ − Σℓ and

define ℓ̃1 :=
⋃

ℓ∈ℓ̃0{Sε(ℓ́) | (ℓ, σ1, g, aσ, ℓ́) ∈ T }. Define

ℓ̃2 similarly, from ℓ̃0 and σ2 ∈ Σ − Σℓ − {σ1}, and repeat

until Σ−Σℓ is exhausted. The subset obtained at any step is

discarded if it is empty or if it appeared previously. This pro-

cess yields a list of distinct nonempty subsets ℓ̃0, ℓ̃1, . . . , ℓ̃k

and one-step ’subset’ transitions of form (ℓ̃0, σ, gσ, aσ, ℓ̃
i),

σ ∈ Σ−Σℓ, i ∈ {0, 1, . . . , k}, augmented with the action aσ
(recall that by the assumption, all transitions with the same

event label has the the same action) and the guard gσ that is

the disjunction of guards on all transitions from the locations

in subset ℓ̃0 to the locations in subset ℓ̃i, more specifically,

gσ is defined for all ℓ ∈ ℓ̃0 and for all ℓ́ ∈ ℓ̃i such that

(ℓ, σ, g, aσ, ℓ́) ∈ T , and gσ = gσ ∨ g (initially assigned to

F). The procedure is repeated recursively for each of the

subsets ℓ̃1, ℓ̃2, . . . and each σ ∈ Σ−Σℓ, until no new subset

transitions are obtained. The result is the projected EFA

Ẽ = (L̃,D, Σ̃, T̃ , ℓ̃0, η0, L̃m, Dm),

where L̃ is the final list {ℓ̃0, ℓ̃1, . . . , }, L̃m := {ℓ̃ ∈ L̃ | ℓ̃ ∩
Lm 6= ∅}, and (ℓ̃, σ, gσ, aσ, ℓ̃

′

) ∈ T̃ iff (ℓ, σ, g, aσ, ℓ́) ∈ T

for some ℓ ∈ ℓ̃, ℓ́ ∈ ℓ̃
′

, σ ∈ Σ − Σℓ. Let the projected EFA,

by the set of local events as described above, be achieved by

the function P̂ : E × Σℓ → E, that is, P̂ [E,Σℓ] = Ẽ.

Turning to the supervisory control problem, consider a

system consisting of two EFA components, E1 and E2,

over event sets Σi (i = 1, 2). To obtain a reduction of the

system, we could first compute the systems global behavior

E1‖E2 and then its transition projection. When, however,

the local events of the two components are all defined the

result is obtained more economically from reductions of the

components, according to the following proposition. This

result is central to our method.

Proposition 1.

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, η

0, Lm
k , Dm

k), k = 1, 2, be two

EFAs over the set of shared variables V . Consider T as the

set of transition relations for E1‖E2 and let Σℓ ⊆ Σ :=
Σ1∪Σ2. Define P̄ : T ×Σℓ → T and Q̄i : Ti× (Σi∩Σℓ) →
Ti (i = 1, 2). If Σℓ is the set of local events, then the EFA

projection

P̂ [E1‖E2,Σℓ] = Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ].

Proof: See [24].

The extension to an arbitrary number of synchronized

factors is straightforward and is left out.

IV. EFA OBSERVER

Consider a DES described by EFA E. Given a set of

local events, we can define the transition projection P̄ :
T ×Σℓ → T and then the EFA projection P̂ [E,Σℓ]. Crucial

to successful model abstraction using transition projection

is that the projected system contains necessary and suffi-

cient information needed for reliable representation of the

nonblocking property. In other words, the EFA projection P̂

may remove critical information and be inconsistency with

the original DES with respect to nonblocking. For instance,

the projection of a blocking DES could be nonblocking, so

a nonblocking supervisor designed from the EFA projection

could result in a blocking supervisor for the original DES. To

avoid this pitfall, one must carefully select the local events

of a DES.

ℓ0

ℓ1

5

3

1

g3/a3

g1/a1

(a) E

ℓ0

ℓ1

3

1

1

g3/a3

g1/a1

g1/a1

(b) Ẽ

Fig. 1: Ẽ is the projection of E but not an E-observer.

A ”good” selection of local events is whenever a projected

EFA reaches a location by P̄ ̺s and then a marked location

by P̄ ̺t, the original system, must be able to reach a marked

location from ̺ś, via some ̺t́ such that P̄ ̺ś = P̄ ̺s and

P̄ ̺t́ = P̄ ̺t.

Definition 8 (E-observer).

Assume a nonblocking EFA E and let Σℓ ⊆ Σ be the subset

of events. The transition projection P̄ : T ×Σℓ → T is an E-

observer, if for all initial execution fragments ̺s and ̺ś and

for all marked execution fragment ̺t in E such that ̺s ⊑ ̺t
and P̄ ̺ś = P̄ ̺s, there exists a marked execution fragment

̺t́ in E such that ̺ś ⊑ ̺t́ and P̄ ̺t́ = P̄ ̺t.

Example 1. Consider EFAs E and Ẽ in Fig. 1 and assume

the set of local events Σℓ = {5}. The shaded circle is the

marked location. Define the transition projection P̄ : T ×

Σℓ → T and let ̺s = ℓ0
1
→g1/a1

ℓ1, ̺t = ℓ1
3
→g3/a3

ℓ0, and

̺ś = ℓ0
1
→g1/a1

ℓ1
5
→ ℓ0 such that ̺s ⊑ ̺t and P̄ ̺s = P̄ ̺ś.

We cannot further find any execution fragment, say ̺t́ in E

such that ̺ś ⊑ ̺t́ and P̄ ̺t = P̄ ̺t́. Thus P̄ is not an E-

observer.

Let denote E = ∅ when there is no outgoing transition

from the initial location of E.

Lemma 1.

In the notation of Proposition 1, define the transition pro-

jection P̄i : T × (Σj − Σi) → T for i, j = 1, 2 and j 6= i.

For the EFAs E1 and E2 if Σ − Σℓ 6= ∅, (∃ℓi
σ
→g/a ℓ́i ∈

Ti) σ ∈ Σ − Σℓ for some ℓi, ℓ́i ∈ Li (i = 1, 2) we have

E1‖E2 6= ∅ ⇔ Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] 6= ∅.

Proof: (⇒) We know E1‖E2 6= ∅. Also, there exists

̺ ∈ E1‖E2 with some transitions labeled by events in

Σ − Σℓ. Applying P̄ we get P̄ ̺ ∈ P̂ [E1‖E2,Σℓ]. By the

hypothesis assumption Σ − Σℓ 6= ∅ which implies that

P̂ [E1‖E2,Σℓ] 6= ∅ and by Proposition 1, P̂ [E1‖E2,Σℓ] =
Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] 6= ∅.

(⇐) We know Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ] 6= ∅ and by

Proposition 1 we also know that P̂ [E1‖E2,Σℓ] 6= ∅. Then,

taking any execution fragment ´̺ ∈ P̂ [E1‖E2,Σℓ] there must

be an execution fragments ̺ ∈ E1‖E2 such that P̄ ̺ = ´̺ and

therefore, E1‖E2 6= ∅.

In the sequel, we assume that Σℓ ⊂ Σ := ∪Σi, (∃ℓi
σ
→g/a

ℓ́i ∈ Ti) σ ∈ Σ− Σℓ (i ∈ n). Note that if Σℓ is equal to Σ
or ∅, P̄ is automatically an E-observer.

In a system consisting of more than one plant component,

it would be more economical to check the E-observer prop-

erty component-wise without computing the synchronous

product first. Proposition 2 presents a sufficient condition for

this simplification to be valid.

Proposition 2.

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, η

0, Lm
k , Dm

k), k = 1, 2 be

two nonblocking EFAs over the set of shared variables V .

Consider T as the set of transition relations for E1‖E2.

Define the transition projections P̄ : T × Σℓ → T and Q̄i :
Ti × (Σi ∩ Σℓ) → Ti (i = 1, 2) where Σℓ ⊂ Σ := Σ1 ∪ Σ2.

If Σℓ is the set of local events and for both i = 1, 2, Q̄i is

an Ei-observer, then P̄ is an E1‖E2-observer.

Proof: See [24].

As we establish a ”reliable interface” for EFAs by in-

troducing E-observer, the interaction between two com-

plex systems may be examined through their projections

rather than their global behavior. Since the EFA models

of P̂ [Ei,Σi ∩ Σℓ] are smaller than those of Ei, we may

save significant computational effort, in accordance with the

following.

Theorem 1 (Synchronously Nonconflicting Criterion).

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, η

0, Lm
k , Dm

k), k = 1, 2, be two

EFAs with the set of shared variables V and let Σℓ ⊂ Σ :=
Σ1∪Σ2 be the set of local events. If Q̄i : Ti×(Σi∩Σℓ) → Ti

are Ei-observer (i = 1, 2), then E1‖E2 is nonblocking if and

only if Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩Σℓ] is nonblocking.

Let P̄i : T ×(Σj−Σi) → T (j 6= i), Z̄ : T ×((Σ1∪Σ2)−
(Σ1 ∩ Σ2)) → T , and R̄i := Q̄i ◦ P̄i(i, j = 1, 2).
(If) Let ̺s be an initial execution fragment in E1‖E2. We

must show that there exists a marked execution fragment ̺t
such that ̺s ⊑ ̺t. Apply P̄i to ̺s, we get P̄i̺s ∈ Ei (i =
1, 2). We also know that P̄ ̺s ∈ P̂ [E1‖E2,Σℓ]. Because of

the assumption that Σℓ is the set of local events and by Propo-

sition 1, P̄ ̺s ∈ Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[E2,Σ2 ∩Σℓ]. Then, by

Proposition 2 there must exist a marked execution fragment

´̺t ∈ Q̂1[E1,Σ1 ∩Σℓ]‖Q̂2[E2,Σ2 ∩Σℓ] such that P̄ ̺s ⊑ ´̺t.
Applying R̄i on both sides, we get R̄iP̄ ̺s and R̄i ´̺t.We have

R̄i ◦ P̄ = Q̄i ◦ P̄i (i = 1, 2). Consequently, both Q̄iP̄i̺s and

R̄i ´̺t are in Q̂i[Ei,Σi ∩ Σℓ](i = 1, 2). Since P̄i̺s ∈ Ei

and Q̄i is an Ei-observer, there exists a marked execution

fragment ̺wi ∈ Ei such that P̄i̺s ⊑ ̺wi and Q̄i̺wi = R̄i ´̺t.
Applying P̄j(j = 1, 2; j 6= i) to both sides of this equation,

we get P̄jQ̄i̺wi = P̄jR̄i ´̺t = Z̄ ´̺t and P̄j ◦ Q̄i = P̄j .

This implies that P̄2̺w1
= Z̄ ´̺t = P̄1̺w2

. Constructing the

set Π := {̺w ∈ E1‖E2 | P̄1̺w = ̺w1
∧ P̄2̺w = ̺w2

}
by Lemma 1 we know that Π 6= ∅. Taking any execution

fragment from this set, say ̺w ∈ Π where ̺s ⊑ ̺w we

observer that ̺w is marked as required.

(Only if) According to the assumption E1‖E2 is nonblocking

and therefore, for any initial execution fragment ̺s there

exists a marked execution fragment ̺t such that ̺s ⊑ ̺t.

Recall the Proposition 1, apply P̄ on both ̺s and ̺t, we get,

respectively, P̄ ̺s and P̄ ̺t in P̂ [E1‖E2,Σℓ] = Q̂1[E1,Σ1 ∩
Σℓ]‖Q̂2[E2,Σ2∩Σℓ]. Since P̄ is E1‖E2-observer, there must

exist a marked execution fragment ´̺t ∈ P̂ [E1‖E2,Σℓ] such

that P̄ ̺s ⊑ ´̺t and P̄ ´̺t = P̄ ̺t. Therefore, for any execution

fragment P̄ ̺s ∈ Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] there

exists a marked execution fragment ´̺t such that P̄ ̺s ⊑ ´̺t
and therefore, Q̂1[E1,Σ1 ∩ Σℓ]‖Q̂2[E2,Σ2 ∩ Σℓ] is also

Zone 1

Zone 2

Zone 3

R1

R2

Conveyer

Fixture 1

Fixture 2

Fig. 2: The robot workcell.

ℓi0start ℓi1 ℓi2 ℓi3

ℓi13ℓi14ℓi15

TakeGuni
g : P = 1

a : Ri := 1

Movei1
g : Zi = 0
a : Zi := 1
a : Ri := 2

Movei2
g : Z3 = 0
a : Z3 := 1
a : Zi := 0
a : Ri := 3

Backi2
g : Zi = 0
a : Zi := 1
a : Ri := 14

Backi1
a : Z3 := 0
a : Zi := 0
a : Ri := 15

PutGuni
a : Ri := 16

Weld i1 · · · Weld i10
a : Ri := 4 · · · a : Ri := 13

(a)

ℓj0start

ℓj1

ℓ0start

ℓ1

fixatej
g : P = 1

g : Zj = 0&Z3 = 0

a : Zj := 1;Z3 = 1

releasej
g : Rj = 16

IN
a : P := 1

OUT
g : R1 = 16

g : R2 = 16

a : P := 0

(b)

Fig. 3: EFA models of (a) Robot i for i = 1, 2 and (b) on

the left is the fixture j for j = 1, 2 and on the right is the

conveyor.

nonblocking. �

In case two EFAs E1 and E2 are synchronously conflict-

ing, a third EFA E must be introduced to resolve the conflict.

Instead of computing the EFA E directly from the two EFAs

themselves, we can perform this computation through their

abstractions.

Proposition 3.

In the notation of Proposition 2, if there exists an EFA E such

that Q̂1[E1,Σ1∩Σℓ]‖Q̂2[E2,Σ2∩Σℓ]‖E is nonblocking then

E1‖E2‖E is also nonblocking.

Proof: See [24].

As long as E can resolve the conflict between Q̂1[E1,Σ1∩
Σℓ] and Q̂2[E2,Σ2 ∩Σℓ], it can resolve the conflict between

E1 and E2.

V. EXAMPLE

A. Robot Workcell

The proposed approach is applied to the nonblocking

supervisory control of a simplified mid-sized robot workcell.

The robot workcell consists of two robots, two fixtures

and a conveyor in the configuration shown in Fig. 2. The

system operates as follows: car body is supplied by the

conveyor; Fixture 1 and 2 fixate two plates on each side

of the car body; each robot takes a welding gun and welds

ℓi0start ℓi1 ℓi2

ℓi3ℓi14ℓi15

TakeGuni
g : P = 1

a : Ri := 1

Movei1
g : Zi = 0
a : Zi := 1

Movei2
g : Z3 = 0

a : Z3 := 1

a : Zi := 0

Backi2
g : Zi = 0
a : Zi := 1

Backi1
a : Z3 := 0
a : Zi := 0

PutGuni
a : Ri := 2

Fig. 4: Projected EFA models of Robot i for i = 1, 2.

TABLE I: Optimal nonblocking supervisory synthesis results

of the manufacturing workcell example

Reachable States Supervisor States

Original Models 211 163

Abstracted Models 111 63

10 geometry points; the fixtures then release the plates; and

the conveyor transfers the car body to the next station. The

specifications for zones are that Zone 1,2, and 3 can only

be occupied by one device at a time. In order to model

the zones, variables Z1, Z2, and Z3 with the domain of

D(Zi) = {0, 1} for i = 1, 2, 3 are introduced. Moreover,

to model the workcell flow, variables P with the domain of

{0, 1} and Rj(j = 1, 2) with the domain of {0, 1, . . . , 16}
are used to indicate the availability of car body and the state

of robots, respectively. Fig. 3(a) illustrates the EFA models

of the robots and Fig. 3(b) shows the EFA models of (left)

fixtures and (right) the conveyor. First, the local events in

the system is found by checking the observer conditions for

each plant. The events which satisfied the condition were then

Σℓ ={Weld 1, . . . , Weld 10}. Observe that each event in the

set Σℓ is (i) unique to their EFA plant, (ii) has a guard that

is true, and (iii) has no action that evaluates any guard in

the system to true. Therefore, are used to abstract the plant

models. The projected plant EFAs of Robot 1 and 2 are shown

in Fig. 4. Using the abstracted EFAs, the supervisor can now

with less memory and computational effort be obtained by the

DES tool Supremica. Table I shows the result of nonblocking

supervisory synthesis for both original and abstracted models.

VI. CONCLUSION

In this paper we have extended previous work on model

abstraction by natural projection with a modified observer

property to include the EFA modeling formalism. Transi-

tion projection is introduced to substitute natural projection

for EFAs by projecting the conditional transitions without

knowing its underlying language. We independently compute

the projection of the low-level components without regarding

their mutual conflict. Subsequently, to reduce computational

complexity, we compute the high-level coordinators based

only on abstracted models of the low-level components.

Effective and consistent model abstraction is accomplished

through transition projections with the observer property.

A robot workcell example demonstrates the computational

effectiveness and practical usage of the proposed approach. A

special case of this abstraction, including additional structural

reduction, has been applied on a large-scale manufacturing

workcell [18], where more than 98% of the computational

time and space has been saved.

REFERENCES

[1] P. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of IEEE, Special Issue on Discrete Event

Dynamic Systems, vol. 77, no. 1, pp. 81–98, 1989.
[2] M. Fabian and A. Hellgren, “PLC-based Implementation of Super-

visory Control for Discrete Event Systems,” in 37th Decision and

Control, Tampa, FL, USA, 1998.
[3] X.-R. Cao, G. Cohen, A. Giua, W. M. Wonham, and J. H. van

Schuppen, “Unity in Diversity, Diversity in Unity: Retrospective and
Prospective Views on Control of Discrete Event Systems,” Discrete

Event Dynamic Systems, vol. 12, pp. 253–264, 2002.
[4] M. Skoldstam, K. Åkesson, and M. Fabian, “Modeling of discrete

event systems using finite automata with variables,” 2007 46th IEEE

Conference on Decision and Control, pp. 3387–3392, 2007.
[5] S. Miremadi, K. Åkesson, and B. Lennartson, “Supervisor Computa-

tion and Representation: A Case Study,” 2010.
[6] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,

P. Falkman, and K. Åkesson, “Sequence planning for integrated
product, process and automation design,” Automation Science and
Engineering, IEEE Tran., vol. 7, no. 4, pp. 791–802, Oct. 2010.

[7] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-Based Ap-
proach for Modeling Plant and Supervisor by Extended Finite Au-
tomata,” IEEE Transactions on Control Systems Technology, 2011.

[8] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Nonblocking
and Safe Control of Discrete-Event Systems Modeled as Extended
Finite Automata,” IEEE Transactions on Automation Science and

Engineering, vol. 8, no. 3, pp. 560–569, Jul. 2011.
[9] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—an

integrated environment for verification, synthesis and simulation of
discrete event systems,” in Proceedings of WODES’08, Ann Arbor,
MI, USA, 2006, pp. 384–385.

[10] P. Gohari and W. M. Wonham, “On the complexity of supervisory
control design in the RW framework.” IEEE transactions on systems,

man, and cybernetics., vol. 30, no. 5, pp. 643–52, Jan. 2000.
[11] M. H. Queiroz, J. E. R. Cury, and M. de Queiroz, “Modular control

of composed systems,” in American Control Conference, vol. 6, no.
June. American Autom. Control Council, Jun. 2000, pp. 4051–4055.

[12] K. Schmidt, T. Moor, and S. Perk, “A Hierarchical Architecture for
Nonblocking Control of Discrete Event Systems,” in Proceedings of
the IEEE Conference on Control and Automation Intelligent Control.

IEEE, 2005, pp. 902–907.
[13] R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham, “Hierarchical

interface-based supervisory Control-part I: serial case,” in IEEE Trans-

actions on Automatic Control, vol. 50, no. 9, Orlando, FL, USA, Sep.
2005, pp. 1322–1335.

[14] R. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control-part II: parallel case,” in IEEE Transactions
on Automatic Control, vol. 50, no. 9, Sep. 2005, pp. 1336–1348.

[15] K. C. Wong and W. M. Wonham, “On the Computation of Observers
in Discrete-Event Systems,” Discrete Event Dynamic Systems, vol. 14,
no. 1, pp. 55–107, Jan. 2004.

[16] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,” Automatic Control, IEEE Transactions on,
vol. 53, no. 6, pp. 1449–1461, 2008.

[17] ——, “On the Computation of Natural Observers in Discrete-Event
Systems,” Discrete Event Dynamic Systems, vol. 20, no. 1, pp. 63–
102, Oct. 2008.

[18] M. R. Shoaei, S. Miremadi, K. Bengtsson, and B. Lennartson,
“Reduced-order synthesis of operation sequences,” in ETFA2011.
IEEE, Sep. 2011, pp. 1–8.

[19] W. M. Wonham, Supervisory Control of Discrete Event Systems,
Toronto, Canada, 2011.

[20] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems, 2nd ed. Springer, 2008.
[21] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT

Press, 2008.
[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation, 2nd ed., ser. Series in Computer
Science. Addison-Wesley, 2001.

[23] L. Feng, “Computationally efficient supervisor design for discrete-
event systems,” Doctor of Philosophy, University of Toronto, 2007.

[24] M. R. Shoaei, L. Feng, and B. Lennartson, “Supervisory Control
of Extended Finite Automata using Transition Projection,” Chalmers
University of Technology, Tech. Rep., 2012. [Online]. Available:
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=155706

