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Abstract— The state-space explosion problem, resulting from
the reachability computation of the synthesis task, is one of
the main obstacles preventing the supervisory control theory
(SCT) from having an industrial breakthrough. To alleviate
this problem, a well-known strategy is to utilize binary decision
diagrams (BDDs) to compute supervisors symbolically. Based on
this principle, we present in this paper an efficient reachability
approach to large-scale discrete event systems modeled as finite
automata with variables. By making use of the disjunctive
partitioning technique, the proposed approach partitions the
transition relation of a considered system into a set of partial
transition relations according to included events. Then those
partial transition relations are selected systematicallyto per-
form the reachability computation. Experimental results show
that more iterations might be required to compute the fixed
point, but the intermediate BDDs are smaller. The approach has
been implemented in the supervisory control tool Supremica
and the efficiency is demonstrated on a set of industrially
relevant benchmark problems.

I. I NTRODUCTION

The analysis of discrete event systems (DESs) has been
paid extensive attention by researchers and scientists in the
computer science community. One typical analysis approach
is to utilize formal verification techniques, such as model
checking, to verify whether considered systems fulfill given
specifications or not. However, from the control engineering
point of view, instead of verifying the correctness of a DES
model, a controller, which automatically conducts the system
behavior without violating specifications, is a necessity.The
supervisory control theory (SCT) [1], [2] provides a control-
theoretic framework for control engineers to design such
a safety device, referred to as thesupervisorof a system.
Given a DES model to be controlled, theplant, and the
intended behavior, thespecification, the supervisor can be
automatically synthesized, guaranteeing that the closed-loop
system always achieves the given specification.

In [3], a framework was presented where users can both
model a system and obtain the supervisor in the form ofex-
tended finite automata(EFAs) [4], which is an augmentation
of an ordinary automata extended with variables. By taking
the advantage of EFAs, more compact and comprehensible
system models can be obtained. In addition, instead of
representing the supervisor as a single automaton, the guard
generation procedure provided in the framework can extract
a set of logic formulas. Those extracted formulas, referred
to as guards, are attached to the corresponding transitionsof
original models, which results in a modular representation
of the supervisor.

Whereas the aforementioned framework allows compact
representation of large state-spaces, when it comes to anal-

ysis, the number of states are not affected and could po-
tentially cause thestate-space explosionproblem that typ-
ically occurs when the behavior of interacting sub-systems
is studied. To alleviate the state-space explosion problem,
a well-known strategy is to symbolically represent system
models and compute supervisors by usingbinary decision
diagrams(BDDs) [5], [6], [7], [8], [9], [10]. In [3], a BDD-
based synthesis approach was presented. Particularly, based
on a plant and a specification modeled by EFAs, initially, the
EFAs are encoded as BDDs. Afterwards, the corresponding
BDD for the states of the monolithic supervisor is computed
iteratively. However, the main problem of such a monolithic
approach is that during the reachability computations, the
number of nodes in the intermediate BDDs might be signif-
icantly large.

To reach significant BDD reduction, it is crucial to explore
the search space in an intelligent way. The key is to impose
structure on the state-space exploration. Moreover, to realize
such an intelligent state-space exploration, an important
ingredient is the use ofpartitioning techniques, which was
rigorously defined in [11]. In [12] and [13], a straightforward
but non-trivial symbolic reachability approach was presented
in the context of SCT. The approach, based on the disjunctive
partitioning technique, represents the monolithic transition
relation of a fully synchronized DES by a collection of partial
transition relations. However, these approaches are basedon
finite automata without the introduction of variables. At the
time of writing this paper, to the knowledge of the authors,
yet no work has been presented to adapt these partitioning
techniques to DESs with variables.

In the context of the aforementioned research develop-
ments, motivated by the above remarks, in this paper, we
present an alternative symbolic reachability approach. By
making use of the disjunctive partitioning technique, the
proposed approach partitions the transition relation of a
considered system into a set of partial transition relations
according to included events. Then those partial transition
relations are selected systematically to perform the reacha-
bility computation.

The paper has three main contributions:

• Suggesting a symbolic way to partition DESs modeled
as EFAs by using the disjunctive partitioning technique.

• Proposing a straightforward algorithm to realize the
structural state-space exploration.

• Integrating this approach with our modeling framework
and demonstrating the efficiency on a set of industrially
relevant benchmark examples.



II. PRELIMINARIES

In this section, some preliminaries used throughout the rest
of the paper are provided and briefly explained.

A. Extended Finite Automata

Definition II.1 (Extended Finite Automata). An extended
finite automatonE is a 4-tuple

E = 〈LE × V,ΣE ,→, (ℓE0 , v0)〉,

where:

• LE × V is the extended finite set of states, denoted by
Q, whereLE is a set oflocationsandV is the domain
of definition of thevariables;

• ΣE is a non-empty finite set of events i.e. the alphabet;
• →⊆ LE ×ΣE × G ×A× LE is the transition relation

whereG is the set of guard predicates overV andA =
{a | a : a function fromV to V } is a collection of
action functions;

• (ℓE0 , v0) ∈ LE × V is the initial state.

The finite setV = V 1 × . . . × V n is the domain of
definition of ann-tuple of variablesv = (v1, . . . , vn) with
the initial valuesv0 = (v10 , . . . , v

n
0 ) ∈ V . A guard g(v) is a

predicate over the variables that relate each element ofV to
either1 (true) or 0 (false). Actions are written as

v́ : = a(v) = (a1(v), . . . , an(v)),where v́ ∈ V.

The symbolξ is used to denote implicit actions that do not
update the values of variables. For instance, ifai(v) = ξ, it
means that actionai does not update variablevi, i.e. v́i = vi.

For convenience, the states (locations and variable values)
can be explicitly written out in system transitions according
to the following definition.

Definition II.2 (Explicit State Transition Relation). Let E =
〈LE × V,ΣE , 7→, (ℓE0 , v0)〉 be an EFA. The explicit state
transition relation ofE is defined as

7→E , {(ℓE, v, σ, ℓ́E , v́) ∈ LE × V × Σ× LE × V |

∃ℓE
σ
→g/a ℓ́E : v ∈ SATG(g) ∧ (v, v́) ∈ SATA(a)},

wherev andv́ are the values of the variables before and after
executing the transition, respectively;SATG denotes the set
of variable assignments that satisfies the guardg(v),

SATG(g) , {v ∈ V | v � g};

andSATA denotes the following set:

SATA(a) , {(v, v́) ∈ V × V | v́ = a(v)}.

For brevity, we denote the explicit representation of a
transition ℓ

σ
→g/a ℓ́ by 7→

ℓ
σ
→g/a ℓ́

. Additionally, since we
are interested in deterministic systems, we merely focus on
deterministic EFAs. In the sequel, for the sake of brevity, we
simply write EFAs for deterministic EFAs.

The composition of two EFAs is defined by theextended
full synchronous composition (EFSC).

Definition II.3 (Extended Full Synchronous Composition).
Let Ek = 〈LEk × V,ΣEk ,→Ek

, (ℓEk
0 , v0)〉, k = 1, 2, be

two EFAs with the shared variablesv = (v1, . . . , vn). The
Extended Full Synchronous Composition (EFSC) ofE1 and
E2 is

E1 ‖ E2 = 〈LE1 × LE2 × V,ΣE1 ∪ ΣE2 ,→, (ℓE1

0 , ℓE2

0 , v0)〉

where the state transition relation→ is defined as
1) (ℓE1 , ℓE2)

σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ1 ∩ Σ2 if

∃ℓE1
σ
→g1/a1

ℓ́E1 ∈→E1
and

∃ℓE2
σ
→g2/a2

ℓ́E2 ∈→E2
such that:

• g = g1 ∧ g2,
• For i = 1, . . . , n and∀v ∈ V :

ai(v) =















ai1(v) if ai1(v) = ai2(v)
ai1(v) if ai2(v) = ξ
ai2(v) if ai1(v) = ξ
vi otherwise

2) (ℓE1 , ℓE2)
σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ1\Σ2 if

(ℓE1 , σ, g, a, ℓE1) ∈→E1
andℓE2 = ℓ́E2;

3) (ℓE1 , ℓE2)
σ
→g/a (ℓ́E1 , ℓ́E2), σ ∈ Σ2\Σ1 if

(ℓE2 , σ, g, a, ℓE2) ∈→E2
andℓE1 = ℓ́E1.

B. Supervisory Control Theory

As described in Section I, the goal of SCT [1], [2] is to
automatically synthesize a minimally restrictive supervisor
S which guarantees that the behavior of the plantP always
fulfills the given specificationSp. Notice that if the plant
is given as a number of sub-plantsP1, . . . , Pn, the plant
P = P1 ‖ . . . ‖ Pn. Similarly, Sp = Sp1 ‖ . . . ‖ Spm.
For each sub-specificationSpi, ΣSpi ⊆ ΣP , meaning the
specification can not specify more than what the plant can
achieve. Within the theory, some states of an automaton
E, typically a specification, are identified asmarked states
QE

m. The marked states are the states that are desired to be
reached from the initial state. The set of marked states of a
composed automatonE1 ‖ E2 is the cartesian product of the
corresponding sets of marked states. In addition, the alphabet
is divided into two disjoint subsets, the controllable event set
Σc, and the uncontrollable event setΣu.

In SCT, the supervisor of a DES to be synthesized is
assumed to beminimally restrictive, meaning that the plant
is given the greatest amount of freedom to generate events.
Moreover, there are two properties that the supervisor ought
to have:

• Controllability: The supervisorS is never allowed to
disable any uncontrollable event that might be generated
by the plantP .

• Non-blocking: The supervisorS guarantees that at least
one marked state can be reached from every state.

The supervisory synthesis starts by generating the system
S0 = P ‖ Sp and detecting a set of initiallly uncontrol-
lable states. Through a series of reachability computations,
forbidden states are iteratively excluded fromQS0 until the
remaining states are both controllable and nonblocking. The
resulting system is the supervisorS and all of the included



states are hereby calledsafe states, denoted byQS . refer to
[13] for more details.

C. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [5], [6], compact and
operation-efficient data structures for representing Boolean
functions, have proven to be a powerful technique to combat
the state-space explosion problem. Given a set of Boolean
variablesB, a BDD is a Boolean functionh : 2B → {0, 1},
which can be expressed using Shannon’s decomposition [14]:

h = (¬bj ∧ h|bj=0) ∨ (bj ∧ h|bj=1) bj ∈ B

whereh |bj=0 andh |bj=1 refer to assignment0 and1 to all
occurrences of the Boolean variablebj, respectively. A BDD
is represented as a directed acyclic graph, which consists of
two types of nodes:decision nodesand terminal nodes. A
terminal node can either be0-terminal or 1-terminal. Each
decision node is labeled by a Boolean variable and has two
edges to itslow-child and high-child. The low- and high-
child corresponds to the cases in the above equation where
bj is 0 and1 respectively. Thesizeof a BDD refers to the
number of decision nodes. More details can be found in [15].

Given an EFAE, BDDs can be used to represent the
explicit transition relation II.2. The key point is to make
used of thecharacteristic function:

Definition II.4 (Characteristic Function). Let W be a finite
set so thatW ⊆ U , whereU is the finite universal set. A
characteristic functionχW : U → B is defined by

χW (a) =

{

1 iff a ∈ W
0 iff a /∈ W

(1)

Let n be the number of elements inU . In practice its
elements can be represented by binarym-tuples inBm(m =
⌈logn2⌉). Hence, an injective functionθ : U → B

m is used to
map the elements inU to elements inBm:

χW (a) =
∨

w∈W

a ↔ θ(w), (2)

where↔ on twom-tuplesv1 andv2 is defined as

v1 ↔ v2 ,
∧

0≤i<m

(vi1 ↔ vi2), (3)

wherevi denotes thei:th element in the binarym-tuple v.

Based on Definition II.4, the characteristic function for one
element of the explicit state transition relation,7→

ℓ
σ
→g/aℓ́

can
be constructed as:

χ 7→
ℓ
σ
→g/aℓ́

(bV
1

, . . . , bV
n

, b́V
1

, . . . , b́V
n

, bL, b́L, bΣ) =




∨

(v,v́)∈SATA(a)|v∈SATG(g)

n
∧

i=1

(

bV
i

↔ θ(vi) ∧ b́V
i

↔ θ(v́i)
)

)

∧

bL ↔ θ(ℓ) ∧ b́L ↔ θ(ℓ́) ∧ bΣ ↔ θ(σ),

(4)

where bΣ denotes the Boolean variables representing the
alphabet whilebL and b́L are two different sets of Boolean
variables representing the current and updated locations.For
an EFA wheren variables are defined,bV

i

and b́V
i

denote
the current and updated integer values of thei:th variable.
In our framework, integers are represented as the two’s
complement system as array of BDDs [16]. Consequently,
the characteristic function of the transition relation of an EFA
E, χ 7→E will be

χ 7→E =
∨

ℓ
σ
→g/aℓ́∈→E

χ 7→
ℓ
σ
→g/aℓ́

III. E FFICIENT SYMBOLIC REACHABILITY

COMPUTATION

Not surprisingly, reachability (co-reachability) computations
turn out to be the bottle-neck of the SCT synthesis algorithm.
Adopting the symbolic representation using binary decision
diagrams, we can partially solve this problem. However,
with more complicated DESs, the BDD representation of
the monolithic transition relation,χ 7→S0

, might be extremely
large to be constructed. More importantly, even though
such BDD representing the monolithic transition relation is
managed to be constructed, the reachability computation may
still suffer from the state-space explosion due to the large
intermediate BDDs. In this section, we present a way to
partition DESs modeled by EFAs by using the disjunctive
partitioning technique and then a straightforward but nontriv-
ial algorithm, based on the partitioned BDDs, is presented
to guide the state-space exploration.

SinceS0 is the synchronization of a number of sub-plants
and sub-specifications in the form of EFAs, in all of the
following computations we focus onN ≥ 2 EFAs and let
E = E1 ‖ . . . ‖ EN .

A. Partitioning of the full synchronous composition

Partitioning of the transition relation as introduced in [11]
has become the standard guideline to alleviate the state-space
problem. This is done by splitting the transition relation
into a set ofpartial transition relations, connected by either
disjunction or conjunction. In this paper, in correspondence
with each eventσ ∈ ΣE, the partial transition relationχ σ

7→E

under full synchronous composition can be constructed in
the following steps:

1) Computeχ σ
7→

E†
where E

† = E†
1 ‖ . . . ‖ E†

m,

{E†
1, . . . , E

†
m} ⊆ {E1, . . . , EN} and σ ∈ E†

1 ∩ . . . ∩
E†

m.
2) Computeχ σ

7→
E‡

whereE
‡ = E‡

1 ‖ . . . ‖ E‡
m′ and

{E‡
1, . . . , E

‡
m′} = {E1, . . . , EN}\{E†

1, . . . , E
†
m}.

Regarding step 1, computingχ σ
7→

E†
, two further steps need

to be performed in advance:
• Computeχ′

σ
7→

E†
, which denotes the characteristic func-

tion of
σ
7→E† excluding the action functions of EFA

variables,
• Computeχ σ

7→
v

E†
denoting the update of EFA variables.



To computeχ′
σ
7→

E†
, we make use of the following two

propositions.

Proposition 1. For an EFA E and an eventσ ∈ ΣE , the
characteristic function representing the explicit transition
relation throughσ of E, denoted byχ σ

7→E
, is computed as

follows:

χ σ
7→E

= χ 7→E ∧ χσ,

whereχσ is the characteristic function of the eventσ and
χ 7→E is the explicit transition relation of the EFAE.

Proposition 2. Let E†
1 , . . . , E

†
m be m ≥ 2 EFAs andσ ∈

ΣE†
1 ∩ . . . ∩ ΣE†

m . Then

χ′
σ
7→

E†
=

m
∧

k=1

(∃ (b́V
1

, . . . , b́V
n

).χ σ
7→

E
†
k

), (5)

whereE† = E†
1 ‖ . . . ‖ E†

m.

Subsequently, we computeχ σ
7→

v

E†
, which represents the

update of EFA variables after the occurrence ofσ. In the
following computations, we focus on the update of a single
variable between two EFAs and extend it to all variables for
all EFAs in the model.

Definition III.1 (Updated Transition Relation Throughσ).
For an EFA E and a single variablevi, the updated transition
relation forvi throughσ, denoted by

σ
7→vi,E , can be defined

as

σ
7→vi,E= {(ℓ, v, σ, ℓ́, v́) | ∀(ℓ, v, σ, ℓ́, v́) ∈

σ
7→E ∧ v́i 6= vi}.

Recall that,from Definition II.3, the result ofai(v) can be
divided into four if-then constructs, which we denote byCj .
EachCj consists of anif part, denoted byIj , and athen
part, denoted byTj:

• I1 : a
i
1 = ai2; both actions update the variables to the

same value.
• T1 : a

i(v) = ai1 or ai(v) = ai2.
• I2 : a

i
2 = ξ; the first action updates the variable but not

the second action.
• T2 : a

i(v) = ai1.
• I3 : a

i
1 = ξ; the second action updates the variable but

not the first action.
• T3 : a

i(v) = ai2.
• I4 : otherwise; none of the actions updates the variable,

or the actions update the variable to different values.
• T4 : a

i(v) = vi.

Definition III.2 (Interaction Transition Relation Through
σ). For two EFAs E1 and E2, and a variablevi, the
interaction transition relation through the eventσ, denoted
by Cj(

σ
7→vi,E1‖E2

), can be defined as

C1(
σ
7→vi,E1‖E2

) ,{((ℓE1, ℓE2), v, σ, (ℓ́E1 , ℓ́E2), v́) |

(ℓE1 , v, σ, ℓ́E1 , v́) ∈
σ
7→vi,E1

∧

(ℓE2 , v, σ, ℓ́E2 , v́) ∈
σ
7→vi,E2

},

C2(
σ
7→vi,E1‖E2

) ,{((ℓE1 , ℓE2), v, σ, (ℓ́E1 , ℓ́E2), v́) |

(ℓE1 , v, σ, ℓ́E1 , v́) ∈
σ
7→vi,E1

∧

(ℓE2 , v, σ, ℓ́E2 , ν́) ∈
σ
7→E2

\
σ
7→vi,E2

},

C3(
σ
7→vi,E1‖E2

) ,{((ℓE1 , ℓE2), v, σ, (ℓ́E1 , ℓ́E2), v́) |

(ℓE1 , v, σ, ℓ́E1 , ν́) ∈
σ
7→E1

\
σ
7→vi,E1

∧

(ℓE2 , v, σ, ℓ́E2 , v́) ∈
σ
7→vi,E2

},

C4(
σ
7→vi,E1‖E2

) ,{((ℓE1, ℓE2), v, σ, (ℓ́E1 , ℓ́E2), v́) |

((ℓE1 , ℓE2), v, σ, (ℓ́E1 , ℓ́E2), v́) /∈
3
⋃

j=1

(Cj
σ
7→vi,E1‖E2

),

whereν́ = (v́1, . . . , v́i−1, ξ, v́i+1, . . . , v́n).
Hence, by definition we have:

χ σ
7→vi,E1‖E2

=

4
∨

j=1

χ
Cj(

σ
7→vi,E1‖E2

)
.

Based on Definition III.2:

χ σ
7→

v

E†
=

n
∧

i=1

χ σ
7→

vi,E†
. (6)

Moreover,χ σ
7→

E†
can be computed according to (5) and (6):

χ σ
7→

E†
= χ′

σ
7→

E†
∧ χ σ

7→
v

E†
. (7)

At this stage, we are done with step 1.

Remark. Recall from Definition II.3, that if there exists an
eventσ, such thatσ ∈ ΣE1\ΣE2 , on the occurrence ofσ,
E2 would remain the previous location, i.e.∀ℓ, ℓ́ ∈ LE2 , ℓ =
ℓ́. On the other hand, the values of variables are updated
according to the transitions labeled byσ in E1.

Definition III.3 (Remained Transition Relation ofσ). For
an EFA E and an eventσ /∈ ΣE , the remained transition
relation ofσ for E, denoted by

σ
yE can be defined by

σ
yE= {(ℓ, σ, ℓ́) | ∀ℓ, ℓ́ ∈ LE ∧ ℓ = ℓ́}.

Therefore, the characteristic function representing
σ
7→E‡

can be computed according to the following proposition.

Proposition 3. Let E‡
1, . . . , E

‡
n be n ≥ 2 EFAs andσ /∈

ΣE‡
1 ∪ . . . ∪ ΣE‡

n , then

χ σ
7→

E
‡
1
‖...‖E

‡
n

=

n
∧

k=1

χ σ
y

E
‡
k

. (8)

Based on (7) and (8):

χ σ
7→E

= χ σ
7→

E†
∧ χ σ

7→
E‡

(9)

Theorem III.1. For N ≥ 2 EFAs E1, . . . , EN and E =
E1 ‖ . . . ‖ EN and ann-tuple of variablesvi, . . . , vn, the
following statement holds:

χ 7→E
=

∨

σ∈
⋃N

k=1
ΣEk

χ σ
7→E

(10)

For the proof, refer to [17].



B. Structural state-space exploration

Following the previous section, we conclude that in order
to design successful BDD-based reachability algorithms for
large-scaled systems, it is vital to traverse the state-space in
a structural way. For this purpose, we present an alternative
algorithm which is structurally similar to the workset algo-
rithm in [13] with the difference that it works for the systems
modeled as extended finite automata.

After the transition relation of a system has been par-
titioned into a set of event-based BDDs, the reachability
computation, as is shown in Algorithm 1 starts to execute.
Taking as input the initial state and the set of partial
transition relations, the algorithm maintains a set of active
partial transition relations,Wk. For each iteration, one partial
transition relation is selected and a saturated reachability
search (Algorithm 2) is performed on it. If more reachable
states are found, based on Definition III.4 and III.5, more
partial transition relations are appended to the workset. The
algorithm terminates as long as there is no transition relation
in Wk. The formal proof of the correctness of the algorithm
can be found in [17].

Definition III.4 (Event Dependent Transition Relation Set
of σ). For N ≥ 2 EFAs,E1, . . . , EN , the event dependent
transition relation sets ofσ, denoted byDe(

σ
7→E1‖...‖EN

) is
defined as:

De(
σ
7→E1‖...‖EN

) = {
σ′

7→E1‖...‖EN
| σ′ ∈ De(σ) ∧ σ′ 6= σ},

where

De(σ) = {σ′ | ∃E ∈ {E1, . . . , EN},

such thatσ′ is the successor ofσ in E}.

Definition III.5 (Variable Dependent Transition Relation Set
of σ). ForN ≥ 2 EFAs and an-tuple of variablesv1, . . . , vn,
the variable dependent transition relation sets ofσ, denoted
by Dv(

σ
7→E1‖...‖EN

), is defined as:

Dv(
σ
7→E1‖...‖EN

) = {
σ′

7→E1‖...‖EN
| σ′ ∈ Dv(σ) ∧ σ′ 6= σ},

where

Dv(σ) = {σ′ | ∃(ℓ, σ′, g, a, ℓ́) ∈ →E1‖...‖EN
, ∀χvi ∈ g

such that∃(ℓ, v, σ, ℓ́, v́) ∈
σ
7→E1‖...‖EN

∧ vi 6= v́i)}.

IV. CASE STUDIES

The proposed partitioning and traversal algorithm in this
paper has been implemented in the supervisory control tool
Supremica[18] which usesJavaBDD [19] as the BDD
package. In this section, it is applied to a set of academic and
industrial benchmark examples to demonstrate the efficiency.

The benchmark examples where experiments are carried
out are: Resource Allocation System (RAS) [20], [21],
Resource Allocation Systems with Error Handling (RAS-EH)
[17], Ball Sorting Process (BSP) [22], Automated Guided Ve-
hicles (AGV) [23], Parallel Manufacturing Example (PME)
[24], Cat and Mouse Tower (CMT) and Extended Dinning
Philosophers (EDP) [25], [17].

Algorithm 1 Event-based Forward Reachability

1: input q0 := (ℓE1

0 × . . .× ℓEN
0 × v0),

W0 := {
σ
7→E1‖...‖EN

| ∀σ ∈ ΣE1 ∪ . . . ∪ΣEN }
2: let Q0 := {q0}, k := 0
3: repeat
4: Pick and remove

σ
7→E1‖...‖EN

∈ Wk

5: k := k + 1
6: Qk := Qk−1 ∪ Reachability(Qk−1,

σ
7→E1‖...‖EN

)
7: if Qk 6= Qk−1 then
8: Wk := Wk−1∪De(

σ
7→E1‖...‖EN

)∪Dv(
σ
7→E1‖...‖EN

)
9: end if

10: until Wk = ∅
11: return Qk

Algorithm 2 Reachability

1: input Q,
σ
7→E1‖...‖EN

2: let Q0 := Q, k := 0
3: repeat
4: k := k + 1
5: Qk := Qk−1 ∪ {(q́, v́) | (q́, v́) ∈ Qk such that

∃(q, v) ∈ Qk−1 ∧ (q, v, σ, q́, v́) ∈
σ
7→E1‖...‖EN

}
6: until Qk = Qk−1

7: return Q

Experiments are carried out on a standard PC (Intel Core
2 Quad CPU @ 2.4 GHz and 3GB RAM) running Windows
7 and the result is shown in Table I. For each benchmark
example, the minimally restrictive supervisor generated by
the algorithm is both non-blocking and controllable. It can
be observed that both the monolithic and partitioning ap-
proaches can handle AGV, for which the number of reachable
states is up to107. However, by comparing the maximal
number of BDD nodes during the reachability computa-
tion, which can express the maximal memory usage, the
monolithic approach needs9 times more memory than the
partitioning approach. Regarding the example BSP, event
though the final number of supervisor states is only706,
the intermediate BDDs during the state-space exploration,
on the other hand, are large due to the high interactive
complexity of the system. The monolithic approach fails
to explore the state-space while the partitioning approach
can survive and synthesize the supervisor within11 sec-
onds. As mentioned before, since the proposed partitioning
algorithm is based on the alphabet which might contain a
large number of events, more iterations than the standard
algorithm are needed to reach the final fixed point. However,
the intermediate BDDs produced during the computation are
smaller, leading to improved memory and runtime efficiency.
Finally, with respect to the last two benchmark examples, Cat
and Mouse Tower and Extended Dining Philosophers, the
partitioning approach can also handle some relatively large
problem instances with the acceptable time. However, with
the values of parameters growing, both the computation time
and memory used increase rapidly.



TABLE I: Comparison Between Two Symbolic Synthesis Approaches

BDD Monolithic Approach BDD Partitioning Approach

Model Reachable States Supervisor states BDD Peak Computation Time (s) BDD Peak Computation Time (s)

RAS 1.19× 10
4

0.88× 10
4

2826 0.49 215 0.13

RAS-EH 1.84× 106 0.68× 106 42314 18.67 2275 0.87

BSP 706 706 M.O. − 16640 10.48

AGV 2.29× 107 1.15× 107 9663 3.60 1001 0.87

PME 8.13× 105 0.46× 105 1022 0.24 225 0.14

CMT (1,5) 605 579 447 0.01 255 0.02

CMT (5,1) 1056 76 635 0.06 590 0.04

CMT (1,7) 1198 1156 801 0.10 321 0.39

CMT (7,1) 2710 155 1074 0.15 974 0.06

CMT (3,3) 2.96× 10
5

1.64× 10
5

16770 24 5070 4.1

CMT (5,5) 1.07× 1010 3.15× 109 M.O. − 65102 79

EDP (5,10) 167761 1596 1157 0.5 134 0.4

EDP (5,50) 3.46× 108 1.38× 105 7743 1.25 178 0.55

EDP (5,100) 1.05× 1010 1.05× 106 − T.O. 192 1.3

EDP (5,200) 3.28× 1011 8.20× 106 − T.O. 206 6.5

M.O. indicates memory out during reachability search (due to large intermediate BDDs) and T.O. indicates time out (10 min).

V. CONCLUSIONS

In this paper, we presented an alternative symbolic approach
to large-scaled systems modeled as extended finite automata.
The proposed approach first partitions the closed-loop system
under full synchronous composition based on the disjunctive
partitioning technique, and then depends on an efficient
algorithm to explore the state-space in a structural way.

The proposed approach has been implemented and inte-
grated into prior work. Besides, it is applied to a set of aca-
demic and industrial examples to demonstrate the efficiency.
Overall, the whole framework provides the convenience for
users to model systems and obtain control functions in
the same model domain. All computations are performed
symbolically by BDDs, which are transparent and the only
interface users deal with is the EFA framework.
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