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Abstract

Object recognition is an easy task for humans. Although a particular object can produce
an infinite number of images on the retina, depending on the position, size, pose, etc.
of the image, human brain still has the ability to recognize them with no di�culty. In
other words our brain has developed a tolerance to identity preserving transformations.
Our visual system receives the pixel-like information from retina, and transforms it to
a representation that is invariant to object’s position, size, etc. and yet is capable of
distinguishing between di↵erent objects. Our brain solves this problem in a hierarchical
structure. Visual information propagates along this hierarchy, known as ventral visual
pathway, consisting of retina, Lateral Geniculate Nucleus (LGN), primary visual cortex
(V1), V2, V4 and inferior temporal cortex (IT). At higher stages neurons become more
selective to abstract images and less selective to local features of the image. Yet, how
the brain constructs this representation is unknown. In this study I focus on the two
final stages: V4 and IT. I will try to elucidate the operation IT neurons do on top of V4
neurons. First I rule out the possibility that IT neurons are simply reducing neuronal
noise. Then I will try to gain insight into scale and complexity of linear models that could
potentially underlie the goodness of representation of IT over V4. In the end, I propose
that our method could be used with larger data sets, to obtain more reliable results.
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Chapter 1

Introduction

In everyday life humans can identify objects regardless of their size, position, pose, il-
lumination etc. In other words our ability to recognize objects is invariant to identity
preserving transformations. However Invariant Object Recognition is a very hard task
for machines [1]. The algorithm primates’ brain exploits to solve this problem is yet un-
known. Science of anatomy and study of activity latencies have elucidated which parts of
the central nervous system are involved in invariant object recognition [2]. Currently it
is believed that sensory information in the brain is mostly represented by the firing rate
of neurons in specific temporal windows [3]. Yet the underlying algorithm is unknown.

When we look at an object, an image of that object is formed on our retina. Retina
receives visual information by means of an irregular array of photoreceptors. Photorecep-
tors are sensory cells sensitive to light, even when light intensity is as low as one photon.
These photoreceptors sample the image with a high enough frequency that provides us
with a visual system that enables us to navigate through the external world. Exposure
to light excites cons and rods in the retina causing them to depolarize and fire action
potentials. This signal then goes to a specific part of thalamus, an area known as Lateral
Geniculate Nucleus (LGN). LGN cells send their signal to cortex, to primary visual cortex
(V1). V1 cells in turn excite cortical area V2. The activity then propagates to cortical
area V4 and then inferior temporal cortex (IT). IT is the final area involved in object
recognition. IT cells send their output to di↵erent areas of cortex including motor control
areas and memory [2]. This pathway is called the ventral visual pathway also known as
the ”what” pathway. It is responsible for the task of invariant object recognition.

The image of the object on the retina is similar to that of a digital image consisting of
pixels recorded by a digital camera. As visual information is processed along the ventral
visual pathway, an invariant representation is built up in IT [4, 5, 6, 7, 8]. So from a
computational point of view, we can define the invariant object recognition problem as
building a good representation (tolerant to identity preserving transformations) from the
pixel-like representation [9]. While a lot is known about structure and function of primary
visual cortex [10, 11, 12], very little is known about how the final goal is achieved by IT
neurons.
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Retinal photoreceptors drive retinal ganglion cells. Majority of retinal ganglion cells
respond optimally to light spots with dark surround or vice versa in their receptive field 1,
called on-center and o↵-center ganglion cells respectively. LGN cells have the same shape
preference, but they have bigger receptive fields. V1 cells show selectivity2 to Gabor
filters3. Each V1 cell has a preference for a particular size, frequency and orientation. So
the population of V1 cells can span a range of di↵erent Gabor filters. Gabor filters act
as edge detectors. There have been various studies on why V1 cells have this particular
shape selectivity [11] and how it is learnt [15]. As we go up along the ventral visual
pathway, neurons become selective to more complex shape features [16, 17, 18, 19]. V4
cells show selectivity to curvature at specific positions [16]. IT cells are mostly selective
to conjunction of shapes and abstract objects [7]. In other words they are sensitive to
presence of objects as a whole, or to semantics of the objects, and not particular features
per se (figure 1.1).

Figure 1.1: Visual information goes from retina to Lateral Geniculate Nucleus (LGN)
in thalamus and then to primary visual cortex (V1). Ventral visual pathway, which is
responsible for object recognition gets its input from V1 and passes information along to
cortical areas V2, V4 and inferior temporal cortex (IT). Neurons in later stages of the
hierarchy show selectivity to more complex images. Image courtesy of [9], [16] and [20]

From previous studies it is known that IT cells are tolerant to changes in size, position,
etc. [6, 7]. We also know that this tolerance increases along the ventral visual pathway
[7]. A comparison between areas V4 and IT has shown that IT cells show more invariance
than V4 cells. One possible explanation is that the reason is IT cells have bigger receptive
fields. It has been shown that although IT cells have bigger receptive fields than V4 cells,
this is not the reason that representation of objects in IT is invariant [7]. The goal of

1
Receptive Field (RF) of a cell is part of the visual field that can excite the cell if the proper stimulus

is presented there.

2
Selectivity to some stimulus means the cell is the most active when the stimulus is presented. Cell’s

response to other stimuli declines as the stimuli gets more and more di↵erent from the preferred stimulus

3
Gabor filters are a family of wavelet functions which are basically a Gaussian function multiplied by

a sinus function. For further information on Gabor functions see [13, 14]
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this study is to elucidate how IT neurons process visual information they receive from
activity of V4 neurons. Each IT neuron is connected to several V4 neurons. All inputs
to a single neuron are not integrated with the same weight. We want to know what
determines the strength and quantity of these connections, i.e. each IT neuron receives
information from which V4 neurons and what determines the weighting of inputs to the
cell. In other words we want to know the essence and size of the computation IT cells do
on top of V4 to build an ”invariant” representation underlying our ability to recognize
objects without di�culty (figure 1.2). Although several computational models have been
proposed to model the visual system [21, 22], they are mostly based on what is known
from early visual stages. The results of this study can be used on top of these models to
boost the performance of machine vision algorithms.

First, I show that the underlying mechanism cannot be explained by simple noise
reduction mechanism; i.e. each IT neuron is not just pooling from exact similar V4
neurons which only leads to a reduction in neuronal noise. Then I try to see if IT neurons
are doing linear pooling from V4 neurons or a non-linear computation is necessary to
explain the di↵erence between IT and V4. Further more, if the di↵erence can be explained
by linear pooling, how many V4 neurons are connected to a single IT neuron and how
are those neurons determined.
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Figure 1.2: Representation of objects is more linearly separable in cortical area IT than V4
[7]. The nature of the transformation that maps representation of objects in V4 to IT is
yet unknown. This is a simple schematic of what is meant by linear separability. Di↵erent
objects undergo di↵erent transformations, yet representation of the same object in the
brain supports invariant object recognition. Hypothetically we can assign a manifold to
each object and its infinite possible transformations, in the neural space. In neural space
each dimension is response of one neuron, and each point, is representation of one image
in this space.
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Chapter 2

Methods

2.1 Estimation of performance in the absence of noise

As previously pointed out by Rust et al. [7], IT is better than V4, not only at invari-
ant object recognition, but also at object recognition itself in that it seems that object
representation is more linearly separable in IT than V4. Their data set and approach
was adopted for this work. They recorded electrophysiological activity from areas V4
and IT of two macaque monkeys while they were fixating at images shown on a monitor.
Their eye movement was monitored by an eye-tracking camera. They used 60 images of
10 di↵erent objects, 6 di↵erent images of each object at di↵erent size and positions and
object on a background image. Images were interleaved and each shown to each monkey
10 times i.e. they had ten di↵erent trials for each image of each object. They recorded
from 140 V4 and 143 IT neurons in total. They compared the goodness of representation
in IT and V4 by training linear classifiers on them. They treated each neuron as one
dimension, so for example with 140 V4 neurons, we have 140 dimensions. Each trial of
each image of each object is one point in this space. They then defined 10 binary tasks;
each one was to separate all images of one object from all the other images. For each
binary task, they trained a support vector machine (SVM) [23]. They randomly split
their data set to training and testing subsets. They used half of the trials for training
and the other half for testing. They repeated this random procedure 50 times to obtain
a robust estimate. Having 10 objects, they trained 10 classifiers and had 10 outputs for
each test data point. Label of each test data point, i.e. determining what object that
data point belongs to, was the label of the classifier that had the highest output among
all the classifiers for that data point (one vs. all approach). The real labels and classifi-
cation labels were then compared and the performance was calculated. They observed a
significant di↵erence between IT and V4. Representation of objects in IT is more linearly
separable than V4.

One explanation could be that the representation in IT is less noisy than V4 (IT Fano
factor1 for this data set: 1.43, V4 Fano factor for this dataset: 1.69 on average). Assume

1
Fano Factor is a measure of dispersion and is defined as F =

�2

µ , Fano factor for Poisson distribution

is 1.
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the n dimensional space, in which each neuron is one dimension and each image of each
object is a point in that space, determined by the firing rate of each neuron to that image.
Each recorded trial for that image is a noisy measure of the true firing rate (i.e. firing rate
in the absence of noise). It is well established that statistics of the firing rate variability
is close to Poisson distribution [24, 25]. So the recorded data in that space would look
like a cloud around the true value of each point in the space, the cloud points being the
noisy measurements. It may be possible that IT is pooling from identical V4 neurons to
reduce the noise. To test that, I decided to estimate the performances in the absence of
neuronal noise.

The problem I encountered was that measures like performance in percent correct or
area under the ROC (Receiver Operating Characteristic) curve [26] would saturate and
do not have enough power to show the di↵erence between V4 and IT, specially in this case
where the dimensionality is high relative to number of data points (140 dimensions and
60 data points); So I chose d’ [26] as the performance measure. d’ can be calculated when
data points are distributed over only one dimension. To calculate d’, I trained a SVM
(neurons being the dimensions and their response to each image being one data point
quantified in terms of firing rate) and projected data points on one dimension determined
by the weight vector obtained from SVM. I used the same 10 binary tasks explained above,
obtaining one d’ for each task. I had to introduce some cross-validation when calculating
the performance to prevent over fitting and for the estimate of goodness of representation
to be robust. Yet I could not cross-validate over trials, since I was averaging out the noise
discussed further in the methods. One possibility is to use a subset of images from each
object to train the classifier and use the remain for testing. What I was after was not
the how the neurons can generalize over subset of images, but how linearly separable the
representation is (figure 2.1). To avoid this dilemma, out of the 60 images I left only one
image out, trained on all other images and applied the weights to the left out image. This
way I obtained a one dimensional projection of all data points from the high dimensional
neuronal space. I repeated that for all images, i.e. each image was left out once. I used
a one vs. all approach [27] to train the classifier, i.e. I trained one classifiers for each
object which is trained to separate that object from all the other objects. That would
be training a total of 60 classifiers for each of the 10 binary tasks. Thus I will end up
with one d’ for each binary task. I used LibSVM library [28] with a C value 2 of 10000
although I did not see a significant di↵erence with other C values. Throughout this work
d’ is always calculated using SVM unless stated otherwise.

I used the following formula to calculate d’ for each binary task:

d

0 = hpoints belonging to the objecti�hpoints not belonging to the objectip
0.5·(�2

points belonging to the object

+�

2

points not belonging to the object

)

I devised two di↵erent methods to estimate d’ in the absence of noise: Empirical
method and Analytical method3. I tested both methods with simulated data. I used
Pixel values (as a model for retinal photo receptors), simulated V1-like neurons [1] and
simulated IT neurons [29]. For Pixel and V1-like cells, I randomly chose a sub set of them

2
C value is the parameter of support vector machines that should be preset. The optimal value that

generates best generalization is usually found by exhaustive search.

3
These methods were devised and tested by the author as part of the thesis work
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Figure 2.1: Linear separability is measured when the classifier is trained and tested on all
images and shows if a linear hyper plane can distinguish between di↵erent objects, Gener-
alization is when the classifier is trained only on one image and tested on all other images
and shows how much that representation can generalize over other images having seen the
data from one single image of each object. Along the linear separability-generalization
continuum we had to introduced some generalization to get a robust estimate, but tried
to stay near the linear separability extreme

(Since the number of Pixel and V1-like cells was very high, training a classifier on all of
them was very time consuming and unnecessary for the purpose of current study. Also I
wanted to keep the dimensionality of the simulated and real data at the same number so
that dimensionality would not become a confounding factor), and then normalized each
one randomly with respect to one random real IT neuron. I took the average of each
simulated neuron over all images, and divided that by average of one random IT neuron
over all images and trials. Then response of the simulated cell to all images was divided
by this normalization factor. I did so to keep firing rates of the simulated and real cells at
the same range, since with Poisson noise, variance of the response is equal to the mean.
Also for Poisson distribution Signal to Noise Ratio (SNR) is higher for higher firing rates,
I had to make sure that my simulations have the same SNR as real data. For V1-like
neurons, I first had to add a bias value so that the minimum firing rate was shifted to
zero, then normalize. In all of these three models, true firing rates are known and I can
calculate d’ in the absence of noise. I then added Poisson noise to raw values, and made
a data set identical to the real neuronal data with ten trials. I then tested the accuracy
of the estimation and its robustness to a number of di↵erent factors: number of images4,
the particular image set I have5, number of trials used for estimation, noise model and
noise amount. To do this, I varied number of images for each object from 2 images to
all 6 images from each object. Images were chosen randomly three times. Also using
all the images I used di↵erent number of trials (5, 7 and all 10) for estimation. To vary
the amount of noise first I did the estimations with Poisson noise. Then I used Gaussian
noise with a mean value equal to the raw value and varied the variance from equal to
the mean value (Poisson like) to 1.5 times, 2 times and 10 times the mean value. Since
I had the raw values I could compute the d’ and compare that to the estimation. With
the IT simulation I tried di↵erent parameters to span a broader range of true d’. Also for
our V1 and Pixel simulations, I only picked features (neurons) that were responsive to at

4
I randomly selected subsets of images to see if number of images for each object can a↵ect the

estimation, i.e. whether the estimation would be more accurate if I had for example 20 images instead

of 6 for each object

5
I tested the method with another image set to make sure our results is not dependent on the particular

image set
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least one image, which is the same criterion used when recording real electrophysiological
activity. So I picked pixel or V1 cells that had nonzero response to at least one image,
and then selected random subsets from these cells.

2.1.1 Empirical method

To average out the noise ideally we should have an infinite number of trials to estimate
the real firing rates, which is not a tractable goal for obvious reasons. So I had to get a
robust estimate with only 10 trials. First I estimated d’ using di↵erent number of trials.
I had 140 V4 neurons and 143 IT neurons. So formed a 140 dimensional space (for IT
I randomly chose 140 neurons out of 143 several times). I averaged di↵erent number of
trials to form one data point for each image, i.e. represent each image with the average
of m number of trials for that image, m varying from 1 to 10. The trials were chosen
randomly out of 10 trials (10 times and without replacement). I plotted d’ vs. number
of trials averaged together. Clearly more using more trials resulted in higher d’ values.
Ideally what I was after was d’ at infinite number of trials. Then I fitted a function to
this curve using the least square method and extrapolated the value of the function at
infinity. I tried di↵erent functions such as tanh, exponential, logistic and hyperbolic and
compared their performance with simulations.

Each point on the d’ vs. number of trials curve is an average over several values
from di↵erent random trial selections. To fit a curve, I did 20 bootstraps from values of
each data point with replacement and computed the average, then used the data for least
square estimation. Least square estimator needs an initial value to estimate the curve
parameters. The estimator was initialized with random values 50 times and the best fit
(out of 50) was chosen based on the RMS (root mean square) error of the fit. The average
estimation over those 20 bootstraps would be the estimation of d’ in absence of noise.
Formulations of the tested functions are:
tanh:
y = atanh(b.x) + c

hyperbolic:

y = a� 1
bx+ c

logistic:
y = a

1 + e

�(bx+c)

exponential:
y = a� be

�x

c

where [a, b, c] are the parameters to be estimated.

I checked the method to see if it is robust to number of data points, number of trials
used for estimation and amount of noise as described in the previous section.

2.1.2 Analytical method

When computing d’, within-class variance6 consists of two components: within-class dif-
ference between di↵erent images in that class and noise. Assuming independent noise we

6
Variance across data points all belonging to one binary class
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can estimate variance of noise and subtract it. Consider one neuron case first. Assume
we have I images in the class, each of them consisting of N

i

trials. In total we will have

N data points where: N =
IP

i=1
N

i

.

Each data point is the response of the neuron to one image at one particular trial.
Here I show the response to image i in trial j as r

ij

where:

r

ij

= v

i

+ n

ij

with i = 1:I and j = 1:N
i

(2.1)

where v

i

is the true firing rate of the neuron to image i and n

ij

is the neuronal noise
which is assumed a random variable with zero mean.
The average response of the neuron to all images would be:

r̄ =
1

N

(
IX

i=1

N

iX

j=1

r

ij

)

=
1

N

(
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i=1
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+ n
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)

=
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(
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+
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i=1
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iX

j=1

n
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)

=
1
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(
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i=1
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i

v

i

)

(2.2)

The overall variance of the response would be:

�

2 =
1

N

(
IX

i=1

N

iX

j=1

(r
ij

� r̄)2)

=
1

N

(
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i=1

N

iX

j=1

(v
i

+ n

ij

� r̄)2)

=
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(
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+ r̄
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� 2v
i
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ij
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=
1
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(
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(N
i

(v2
i

+ r̄

2 � 2v
i

r̄) +
N

iX

j=1
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2
ij

+ 2v
i

n

ij

� 2n
ij

r̄))

=
1
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(
IX

i=1
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i

(v
i

� r̄)2 +
N

iX
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n

2
ij

))

(2.3)

If N
i

is equal for all i (which is the case for this data set), equation (2) is reduced to:

r̄ =
1

I

(
IX

i=1

v

i

) (2.4)
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Which is the within-class average in the absence of noise. So to estimate the true aver-
age firing rate of a class we can use equation (2) and simply compute the average over
all images and trials for that class. Provided the above condition, equation (3) is also
simplified to:

�

2 =
1

I

(
IX

i=1

(v
i

� r̄)2) +
1

N

(
IX

i=1

N

iX

j=1

n

2
ij

)

= �

2
within�class

+
1

N

(
IX

i=1

N

i

�

2
n

i

)

= �

2
within�class

+
1

I

X
i = 1I�2

n

i

= �

2
within�class

+ �

2
n

(2.5)

where �

2
n

i

is variance of noise for image i. So in the single neuron case, we can just
compute the overall variance over images and trials within a class, then estimate variance
of neuronal noise for each image from di↵erent trials that we have for that image. Since
trial-to-trial variance is assumed to be due to neuronal noise, variance of di↵erent trials
for each image is an estimation of the variance of noise. By substituting these values in
equation (5) and subtracting the noise elements from the overall variance we can estimate
the within-class variance in the absence of neuronal noise.
In a high dimensional, we should first project the data on one dimension. If we have D

neurons, we can project that on one dimension with a weight vector ~

W of size D ⇥ 1.

r

ij

=
DX

k=1

w

k

r

ij

k

and || ~W ||2 = 1 (2.6)

The relationship between the mean and variance (for each class) of the projected data
and individual neurons is (Assuming having equal number of trials for each image, i.e.
N

i

s are equal and assuming that neurons are independent):

r̄ =
DX

k=1

w

k

r̄

k

(2.7)

�

2 =
DX

k=1

w

2
k

�

2
k

=
DX

k=1

w

2
k

(�2
within�class

k

+ �

2
n

k

)

(2.8)

Which is mathematically equivalent to just taking the projection, and do what we did for
one neuron case.

To form the projection I left one image and its trials out, trained the classifier on
other images, took the weights, normalized them, and applied those weights to the trials
of the left out image. When training SVM I did not use the bias term, because I just
needed to project the data on one dimension and bias point was just going to add more
variance to estimations. Like before, I had a binary one vs. all task for each object.
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2.2 Comparison of single IT neurons with populations
of V4 neurons

From anatomical and latency studies it is known that V4 is a↵erent to IT. Yet the nature
of the operation IT neurons do on top of V4 is unknown. The complexity of this compu-
tation can vary on a continuum, from simple linear pooling of V4 neurons to a non-linear
operation.

I tried to gain insight into linear models that can explain the performance gain of IT
over V4. Specifically I was interested to see if IT neurons are simply pooling from random
V4 neurons or from V4 neurons that are good in each specific task (for instance gira↵e vs.
everything else) to form an IT neuron selective to gira↵es. To do this I compared single IT
neurons with subpopulations of V4 neurons, either selected randomly, or selected cleverly
(based on single neuron performances). To do that I defined binary tasks, and for each
task chose one single IT neuron that was good at doing that task. Then compared its
performance with subpopulations of V4 neurons and examined how many V4 neurons can
outperform the single IT neuron. My measure for performance was estimated d’ in the
absence of noise. I used the analytical method for the estimations. In the single neuron
case, I did not train a SVM. I left each data point out once, computed the d’ with all the
other data points, and multiplied the sign of that d’ to that data point. Choosing the
best single neuron is prone to outliers that are a byproduct of random neuron selection, so
I looked at the distribution of single neurons d’ s for each task for both IT and V4 (figure
2.2) and decided to take the Q90 neuron7. I also tried other statistics (see results). In
cases I wanted to choose a subpopulation of V4 neurons that were good at doing each task
(i.e. choose cleverly), I chose neurons as good or worse than the Q90 neuron, excluding
the outliers.

To choose the Q90 neurons, I cross-validated over trials. I randomly selected 5 trials
(without replacement), estimated noiseless d’ for all neurons I had, chose the neurons
based on those values, and then calculated the noiseless d’ with the remaining 5 trials.
This process was repeated ten times. I also tried this procedure with using 1 trial for
selection and 9 trails for calculation and did not see a significant di↵erence.

In the case of random V4 neurons, I randomly chose neurons 20 times without re-
placement and took the average.

As mentioned above I looked at two linear models: clever pooling or random pooling
from V4 neurons. I formed subpopulations of di↵erent sizes from random or good (chosen
cleverly as described above) V4 neurons (figure 3.4). I fitted a curve to this plot. I tried
both linear curve and hyperbolic curve with the mentioned formula. With this curve I
could calculate how many V4 neurons could explain the performance of the single Q90
IT neuron (i.e. their performance was equal to that of single IT neuron). Obviously I
obtained di↵erent numbers for the random pooling and clever pooling models (See results)

To see which model was more consistent I made the task harder by decreasing number

7
Q90 neuron is the neuron which outperforms 90% of neurons
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of images to span a broader range of performances for single IT and see if any of those
models break down. Decreasing number of images makes the task harder because each
time the classifier is trained, it seems fewer data points and can generalize less for the
left out data points. I tried this approach with other classifier training methods as well.
I used linear correlation coe�cient classifier and random weights. In the case of random
weights, weights were chosen randomly from a uniform distribution and then normalized.

Then I tried to test the predictability of these models (Clever or random pooling with
di↵erent sizes). For each pooling strategy, I considered di↵erent number of V4 neurons
that IT was pooling from to build an artificial IT neuron. For each model, I took the
noiseless d’ estimation of that number of V4 neurons (either best or random for the cor-
responding strategy) and plotted that against the Q90 IT noiseless d’, each point being
one task. For this analysis I used SVM to compute the projection of data points on one
dimension (see results).
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Figure 2.2: Normalized histogram of single neuron d’ in the absence of noise for V4 (up)
and IT (bottom), estimated with the analytical method. Dotted bars show Q90, Q95 and
Q99 d’ s from right to left respectively. Each subplot shows one task.

14



Chapter 3

Results

3.1 Goodness of estimation of performance in the ab-
sence of noise

Before analyzing the real data, I decided to estimate the robustness of the method to 1)
number of images, 2) number of trials used for estimation and 3) di↵erent noise levels. I
did simulations with image pixel values, V1-like cells [1] and simulated IT neurons [29]
(See methods). The results of the simulations for the four functions mentioned in the
methods for the empirical method are shown in figure 3.1, top. The method is clearly
unbiased and robust to the variations we made i.e. number of images, number of trials
and amount of noise. The estimator only failed at the noise amount with a Fano factor of
10, which is far from Fano factor values for the real data set. Those data points are not
plotted. For high d’ s for simulated IT, the method is under estimating the true value.
This is because at that d’ range, the data given to estimator is so sensitive to noise. The
reason is that there are only 60 data points in a 140 dimensional space, so SVM is so
sensitive to noise and therefore cannot generalize properly. As can be seen in figure 3.2,
error bars shrink or do not change size as number of trials increases. This was not the
case for those data points deviating from the identity line, so those underestimations are
because we are feeding the estimator with bad data. This proves the empirical method
reliable to be used on real data. I did simulations with V1-like and IT like cells with
analytical method as well and compared the two methods. The results are shown in
figure 3.1, bottom. As it is evident there is no bias or significant di↵erence between the
two methods.

3.2 Comparison of IT and V4 in the absence of noise

I applied the analytical estimation method to real neuronal data for di↵erent number of
neurons for V4 and IT. Neuron subsets where chosen randomly without replacement 50
times. The di↵erence between IT and V4 cannot be explained solely by simple noise re-
duction (Figure 3.3). This shows that IT neurons are doing a more complicated operation
on input they received from V4 neurons. The nature and scale of this operation is not
quite known. It can vary from random linear pooling to clever linear pooling to nonlinear
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Figure 3.1: Top: Robustness check for Empirical estimation, x axis shows the true d’,
y axis shows the estimated d’, each point is one task with particular noise model and
amount, number of images and number of trials. Blue, red and green points show pixel,
V1 like cells and simulated IT neurons respectively. From left to right the plots show the
estimation with logistic, hyperbolic, exponential and tanh curves fitted to data respec-
tively. Bottom: Simulations for both analytical (up) and empirical (middle) methods
and their comparison (bottom) for V1 like cells (red) and simulated IT neurons (green).
Error bars reflect standard deviation across di↵erent bootstraps of values.

pooling of V4 neurons (Figure 3.4). Also we do not know each IT neuron is computing
on how many V4 neurons in each of these models.
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Figure 3.2: d’ of IT (blue) and V4 (green) cells as a function of number of trials averaged
together to compute the mean. The mean value for each image is the one data point used
to compute d’. Final end points are no noise estimations extrapolated with hyperbolic
function. Error bars reflect variation across di↵erent neuron subset and trial selections
for the curves and di↵erent bootstraps from data for the estimated no noise points. This
analysis is done for di↵erent number of neurons: 40 (top), 90 (middle) and 140 (bottom).

I considered two linear pooling models for further analysis: each IT neuron is pooling
from random V4 neurons or each IT neuron is pooling from best V4 neurons for each
specific task. I examined each of these models to see which one was more successful at
describing the data and what was the size of pooling for each model. Although the results
may not seem consistent across di↵erent tasks, they will give us an insight about the scale
of the model. In other words, the space of probable models (from basic random pooling
models to clever models to more sophisticated nonlinear models with any scale) shrinks
to the smaller space of possible models.

3.2.1 Linear models of pooling from V4 to IT

To see which of the two considered models better describes the performance di↵erence
between IT and V4, for each binary task (see methods) I compared best IT neuron that
could do that task with subpopulations of V4 neurons. I did this analysis with the esti-
mations of d’ in the absence of noise. First I looked at the distribution of single IT and
V4 neurons performance, and decided that Q90 was robust to outliers for choosing the
best neuron (see figure 2.2). So I compared Q90 IT with random subpopulations of V4
neurons or V4 neurons chosen as good as or worse than the Q90 V4 neuron (see methods).
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Figure 3.3: Estimation of d’ in the absence of noise as a function of number of neurons
for IT (blue) and V4 (green) with empirical method. Error bars reflect di↵erent neuron
subset selections and bootstraps of data for estimation.

Figure 3.4: Complexity continuum of the models: It can vary from very basic of noise
reduction to complex non-linear operations

I plotted noiseless d’ as a function of number of neurons for V4 neurons for each
model. I fitted a hyperbolic function to each curve and computed number of V4 neurons
at which the curve is closest to the noiseless Q90 IT.

I then plotted this number vs. IT noiseless d’ for each task. To see which model
is more consistent to describe the di↵erence between IT and V4, I decided to vary the
di�culty of the task and span a broader range for noiseless IT d’ cells (see methods).
The results are shown in figure 3.5.
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Figure 3.5: Estimated noiseless d’ for Q90 V4 neurons (top) and random V4 neurons
(bottom) as a function of number of neurons with analytical method. The blue curves
show the curve fitted to the plot (Hyperbolic case), each of them corresponding to one
bootstrap from data. The dashed black line shows no noise Q90 IT neuron for comparison
with subpopulations of V4 neurons. Each subplot shows one task. Error bars reflect
di↵erent trial and neuron subset selections for random selection case.

I did this analysis with various classifiers for the original task to see the range of
number of V4 neurons explaining IT (see methods). The results are shown in tables 3.1
and 3.2.
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Sample Learn Q90 Q95 Q99
Best RAND x x x
Best SVM 10.35± 13.70⇧(0.3) 5.23± 2.33 7.50± 5.95⇤⇧(0.2)
Best ⇢ 9.96± 13.98⇧(0.3) 8.44± 4.18 8.03± 3.99⇤†(0.6)

Random RAND x x x
Random SVM 54.10± 43.60†(0.1) 129.73± 332.84†(0.2) 176.34± 175.31†(0.5)
Random ⇢ 92.39± 50.40†(0.4) 52.82± 24.66†(0.8) 278.07± 79.75†(0.8)

Table 3.1: Hyperbolic curve fitted. Numbers show where the fitted curve meets IT (for
choosing the best, the criterion is the same as IT, i.e. Q90 IT is compared to Q90 V4,
Q95 IT to Q95 V4 and so on) in the mean ± std format. Numbers in () show how many
of the curves were excluded form the analysis. *: Curve was excluded because the fitted
curve was above IT. †: Curve was excluded because V4 curve almost never met IT, in
hyperbolic case it cut IT at negative values and in linear case it had near zero slope. ⇧:
Curve was excluded because the function was not a good fit for the curve hence excluded
from the analysis.

Sample Learn Q90 Q95 Q99
Best RAND x x x
Best SVM 13.56± 13.61⇤(0.1) 6.13± 2.31⇤(0.2) 10.31± 5.73⇤†(0.4)
Best ⇢ 11.79± 3.96 10.63± 4.55⇤(0.1) 15.73± 7.79⇤†(0.2)

Random RAND x x x
Random SVM 90.81± 97.64 139.84± 167.47 289.44± 423.152
Random ⇢ 251.04± 407.36†(0.2) 474.01± 972.60†(0.2) 461.00± 566.08†(0.2)

Table 3.2: Linear curve fitted. Numbers show where the fitted curve meets IT (for
choosing the best, the criterion is the same as IT, i.e. Q90 IT is compared to Q90 V4,
Q95 IT to Q95 V4 and so on) in the mean ± std format. Numbers in () show how many
of the curves were excluded form the analysis. *: Curve was excluded because the fitted
curve was above IT. †: Curve was excluded because V4 curve almost never met IT, in
hyperbolic case it cut IT at negative values and in linear case it had near zero slope. ⇧:
Curve was excluded because the function was not a good fit for the curve hence excluded
from the analysis.
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To test the predictability of each model (each model is specified with the strategy of
pooling and size of pooling, this analysis was only done with SVM), I plotted Q90 IT per-
formance vs. prediction of each model for di↵erent sizes for each strategy (see methods).
The results are shown in figure 3.6. Unfortunately I did not see a consistency in those
models, so I could not find a model that could predict the performance of IT cells for all
tasks. This could have di↵erent reasons:
1. There is a sampling bias in this neuronal data set. Recorded neurons maybe not
revealing the underlying operation. As we can see for single Q90 IT vs. single Q90 V4
plot (figure 3.6, top, upper left plot), there is no correlation between single IT and V4
neurons. A task hard for IT is not necessarily hard for V4 and vice versa. So the variation
of d’ s we observe for di↵erent tasks is because of this particular sample of neurons and
not the intrinsic di�culty of the task due to lower level features and image statistics (see
figure 3.7).
2. The task is not di�cult enough to show the di↵erence between IT and V4. As we
can see single V4 neurons are almost as good as single IT neurons (see figure 2.2), but in
single IT cells distribution, we can see more outliers very good at doing the task.

These two reasons can be further investigated with a better data set, i.e. a harder
task with more images for each object and a sample with more neurons.
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Figure 3.6: Prediction of Q90 (up) and random (bottom) V4 models vs. real Q90 single
IT d’. Each subplot shows a di↵erent model with di↵erent number of neurons.
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Figure 3.7: Comparison of the di�culty of the task for simulated V1 like cells and recorded
IT cells. Each point shows a di↵erent task. Error bars reflect variation across di↵erent
noiseless d’ estimations. Performance of V1 like cells is more or less the same for all tasks.
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Chapter 4

Conclusion

In this work I tried to get an insight into possible models that might be able to explain the
di↵erence in goodness of representation between visual cortical areas, IT and V4 (Figure
1.2). In the first part, I ruled out the simplest model (simple noise reduction) that po-
tentially could explain that di↵erence. Although this model seemed improbable because
as previously shown before [7], IT neurons are more sensitive to feature conjunctions and
semantics of the object and not just the shape, while V4 neurons carry more shape spe-
cific information. Yet this model was to be tested, because those studies were done with
noisy data points.

In the second part, using the noiseless performance estimation method, I proposed a
method that has the potential to extract the form and scale of the computation IT neu-
rons do over their V4 a↵erents. With the proper data set, it is possible to elucidate the
underlying computation. The proposed method has several advantages. First, it averages
out an important confounding factor: Neural Noise. Second, the method gives a robust
measure of goodness of representation that can deal with limited data sets. Third, the
particular choice of performance measure (d’ ) has the power to elucidate di↵erences even
when other measures saturate, i.e. it can to some extent deal with high dimensionality
problem. Finally the results are not specific to current data set and not sensitive to
amount of collected data (number of images or trials).

The results will help us understand how a ”good” representation is built along the
ventral pathway, i.e. a representation that can easily be used by later stages receiving
input from IT. Also we will be able to elucidate how the brain solves the problem of
invariant object recognition. This could inspire machine vision models to support various
detection tasks such as pedestrian detection, face detection, etc. more e�ciently. It could
also be of clinical use in the future.
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