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ABSTRACT 
 

Today’s need for efficient and effective automated planning has brought about a distinct 
set of planning approaches focused on different quantifiable results, namely time and 
resource consumption.  The planning problems are diverse and touch many aspects of day-to-
day life. Whether it is for finding the shortest route of travel in presence of traffic to selection 
of investment strategies, planning routines are in place to meet the needs of everyone and 
every machine. Most existing planning domains contain actions, which have common 
parameters such as duration, timing, resource consumption, and in some cases resource 
generation. This master thesis seeks to find the most optimal planner to solve Logistics 
problems.  Logistics problems utilize time, space, resources and actions thus they represent 
an ideal case to assess planners and underlying algorithms in how they deal with complexity 
of issues, how much time they utilize in generating a plan and how many steps they use in 
reaching the goal.  The combination of these factors points to the optimal planner suitable for 
logistics planning.  Planners are reviewed, analysis is undertaken and the most optimal 
solution is identified through practical experiments. 
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1 INTRODUCTION 
 
 

Today’s need for efficient and effective automated planning has brought about a distinct 
set of planning approaches focused on different quantifiable results, namely time and 
resource consumption.  The planning problems are diverse and touch many aspects of day to 
day life.  Planning problems are almost everywhere and their applications exist in different 
industries such as transportation, airlines, military, networking, etc. 

 
It is obvious that each industry and each application has its own set of requirements. As such 
finding a general purpose planner that effectively and efficiently copes with durative actions 
is a difficult task. Although the history of this concept dates back to about 1998 and 
numerous research has been conducted in this area, it seems still there is a lot of interest in 
the growing field of temporal planner. There are a lot of gaps to overcome regarding 
introducing a new planner.  
 
Research continues in planning and development of different planners, yet there are 
uncertainties that surface when it comes to the area of dealing with realistic planning 
domains. It is because such domains consist of several durative actions and all the actions 
either produce or consume resources. In fact, when the time and duration are the most critical 
factors to deal with, durative actions and their concurrency become more complicated 
components of the process.  To clarify those actions, imagine that a passenger is interested in 
traveling from El Paso to Phoenix. From a planning point of view the passenger may consider 
several alternatives and seek to find the true cost of each.  The problem in hand can be as 
simple as asking whether flying or driving would be the fastest option given the start time of 
the trip.  Or, the problem can be very complicated if the passenger want to consider time to 
destination, arrival time, cost of travel, and possibly the impact to environment due to fuel 
consumption.  This simple example highlights the fact that providing a simple planning 
system is a straightforward attempt however, when it comes to develop a planning system 
that can cooperate with actions which has duration and resources, it turns to be a complicated 
decision to make.  

 
The area of Logistics represents a good challenge for planning problems as it includes the 
implication of planning on utilization of time, space, and resources.  In this thesis the 
available planners that can potentially deal with Logistics problems are considered, their 
benefits and shortcomings are reviewed, and then suitable planners are applied to a set of 
logistics problems with the goal of finding an efficient and effective planner. Specifically the 
following question was the prime focus of this research: Of the numerous planners and search 
algorithms available today, which one is capable of effectively and efficiently solving 
logistics problems is a timely manner?  This thesis answers this question. 
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1.1 STRUCTURE 
 

Chapter 2 describes the methodology used in this thesis.  In Chapter 3 a brief description 
of problem solving is presented and certain definitions are outlined.  This chapter covers 
planning techniques and search strategies applicable to the problem in hand. Chapter 4 
includes the results of experiments conducted using various planners operating on three real 
world logistics problems leading to the identification of the most optimal planner.  Chapter 5 
the thesis conclusions are presented and certain future work is identified.  
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2 METHODOLOGY 
 

This thesis explores various planning and search methodologies to find an effective and 
efficient methodology capable of solving Logistics problems.  This chapter outlines the 
methodology used in selecting a set of promising planners from many covered in literature, 
identifying methods to measure the performance of planners, applying the selected planners 
to a representative set of Logistics problems, and finally identifying, through analysis of 
experimental results the most effective and efficient planner for solving Logistics problems. 

 
2.1 LITRETURE REVIEW 
 
The study of available planners is to focus on all available planners and their underlying 

algorithms specifically considering them in terms of durative actions which is a key factor is 
solving Logistics problems.  The various search algorithms available for use by the planners 
are to be reviewed in detail as their performance impacts the speed of searches that a planner 
takes and thus its performance.  Finally given the importance of a clear definition of a 
problem and its domain, available computer languages used by planners are to be considered.  
All of the work is to concentrate on finding suitable planners capable of dealing with 
challenging Logistics problems. While the most critical issues are timing and actions with 
duration, the majority of the effort is to be concentrated on review of possible problems and 
difficulties regarding timing.  

 
2.2 MEASUREMENT METHODS 
 
To assure that an optimal planner is selected, four quantifiable factors were identified: 
 
Search time Time taken by a planner to generate a plan   
Search length Number of steps/notes identified in the solution 
Expanded states Number of states with potential solutions expanded upon 
Generated states Number of states considered 
 

Generated States and Expanded States show the internal complexity of a planner thus its 
effectiveness whereas Search Time and Search Length represent the efficiency of the planner 
a planners goals.  For the experiment and data analysis the follow terms are defined: 
 

Efficiency (p) =   !"#$%!  !"#$(!)
!"#$%&'&  !"#"$%  (!)

  in milliseconds/State 

 

Effectiveness (p) =   !"#$%!  !"#$(!)
!"#$%!  !"#$%!  (!)

  in milliseconds/Node 

Furthermore based on the size of the problems in hand, it is envisioned that certain planners 
could not complete the tasks in hand due to time and memory limitations. These behaviors 
formed the basis for some of the observations made in the thesis.    
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These performance factors are to be used first in a qualitative study and identification of 
planners and search algorithms with promising capabilities specifically focused on Logistics. 
  
The measurement strategy is to employ real world logistics problems.  Multiple problems are 
to be considered representing a range of complexity that can provide a good exercise for the 
planners under test.  Each problem is to be solved by selected planners to form the basis for 
comparison and final selection of a planner. 

 
2.3 EXPERIMENTATION 

 
Based on the review of the available planners, a handful are to be selected and utilized on 

three distinct Logistics/Depot problems. Experiments are to quantify and qualify the impact 
of the size and complexity of the problem on the behavior of each planner.  The planners are 
to be able to supply information that can be used in calculating Efficiency and Effectiveness 
thus allowing a fair comparison of the planners. 

 
2.4 ANALYSIS OF DATA 
 
The data is to be collected and presented in a common format by the authors. The results 

are to be analyzed in a qualitative manner and the all anomalies of the analysis are to be 
discussed.  The data from each planner is to be presented individually and then compared as 
appropriate.  In all cases relevant information such as the duration of the planning process, 
the resulting search length, the number of states considered, efficiency, and effectiveness are 
to be shown and form the basis for the comparison and the conclusion. 
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3 DEFINITION OF PLANNING  
 

In general, planning is the process of controlling a group of tasks to complete what is 
described in the domain of the problem to achieve certain goals. Depending on how complex 
the domain is, the number of states required to complete the tasks increase. In Artificial 
Intelligence when faced with a problem, acting rationally is important to make an efficient 
plan to overcome that problem. Planning starts from certain point, which is called the initial 
state, and ends up at the goal state, which is the destination. In between there are steps to be 
taken, which are called actions. Basically, planning can be denoted as P and it can be 
formulated as P = (O, I, G) where the O denotes the set of actions, I stands for initial state, 
and G indicates the goal state. In general, planning is the process of choosing certain actions 
by considering the action’s effect, employing strategies, prioritizing tasks, and combining 
them to make a reasonable plan capable to reach the goal.  

 
3.1 TEMPORAL AND MERTIC PLANNING 

 
While planning is the prognosticated way of finding a set of actions and being concerned 

about their effects, Temporal Planning is more concerned about the timing of reaching a 
solution rather than the sequence of actions. Timing issues may happen because of several 
reasons such as: deadlines, shortage of resources, or as an effect of some actions or events, 
which are not controllable in the scope of the problem. 
 
Metric (numeric) planning on the other hand is not only concerned about the resource 
availability but also with the number of resources.  

 
The real world problems, which deal with temporal and metric planning, are really hard 
problems to find a solution to as they do have to handle constraints of time as well as limited 
resources1.      

  
3.2 PLANNING PROBLEMS 

 
Planning problems can be simple or complicated but all problems have at least one 

solution. In case of multiple solutions, they are not all the optimal answer to the problem but 
at least one is the reasonable answer to rely on. Indeed, the solution in general is the set of 
actions that are chosen to be performed in the different states to lead us to the goal state. To 
solve planning problems there are several alternatives available that vary in complexity. For 
instance, one possible way for the planner is to grab a path at random and then figure out if 
this is the one which can fulfill the desired outcome. If the answer is no, then it will try 
another one that seems most promising with the knowledge of its prior attempts.  As a result, 
the next choice might be at least a reasonable solution or at most the optimal answer to the 
problem. The other possible alternative may be a brute force search where all possibilities are 
examined leading to the selection of the optimal solution.  This approach seems to be easy 
but in reality it takes a long time to go through all the possible solutions. A third possibility is 

                                                
1  http://planning.cis.strath.ac.uk/TEMPPLAN/ 
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to define certain rules in order to find the solutions.  For example, as a first rule all the 
resources should take part in a list; therefore, who comes first serves first. A second rule may 
be that encountering an anomaly allows the planning system to switch to the next rule which 
could be something very different such as who came in last serves first.  The last but not least 
possibility is the use of a heuristic function that selects from several possible solutions the 
optimal answer to the problem.  

 
One of the most famous planning problems is Blocks World Problem. The domain describes 
the actions an agent must take for approaching the goal. The domain of Blocks World 
problem, shown in Figure 3.1, is denoted by the table “t” which holds four removable blocks 
a, b, c, d. The rule is that one block can moves at a time, and they can either be placed on the 
top of each other or on the table. Each block can only move if there is no other block on top 
of it. The goal is to put the blocks on top of one another in an alphabetic order on the table. In 
order to reach the goal there are a number of actions to be considered.  The initial state in 
blocks world problem can be formulated as a set of:  

 
𝑆𝑖 = {On (a, b), On (b, c), On (c, t), On (d, t), Clear (a), Clear (d)} 

 
The goal state is also formulated as a set of: 
 

𝑆𝑔 = {On (a, b), On (b, c), On (c, d), On (d, t)} 
 

Relevant actions are movements (a, b, d) and (b, c, a) which are formulated as follow: 
 

{On (a, b), On (b, c), On (c, t), On (d, t), Clear (a), Clear (d)} 
{On (b, c), On (c, t), On (a, d), On (d, t), Clear (a), Clear (b)} 
{On (c, t), On (b, a), On (a, d), On (d, t), Clear (c), Clear (b)} 

 
There exist some constraints and conditions named as pre and post conditions per each action 
to perform. Preconditions must be true before action runs in one step before its performance. 
The following part is the formulated form of pre and post conditions relevant to the actions: 
  

Pre (MOVE (a, b, d)) = {Clear (a), On (a, b), Clear (d)} 
Post (MOVE (a, b, d)) = {On (a, d), Clear (a) Clear (b)} 
Pre (MOVE (b, c, a)) = {Clear (b), On (b, c), Clear (a)} 

 Post (MOVE ((b, c, a)) = {On (b, a), Clear (b) Clear (c)} 
 
 
 

 
 
 
 
 

Figure 3.1 Blocks World Problem 
 
The state space of the Blocks World Problem contains a set of all possible arrangement of 
blocks starting from the starting state to the goal state. 

t 

  Goal State 

a 

b 

c 

d 

 Initial State 

d c 

b 

a    Actions 
(Movements) 
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3.2.1 PLANNING PROBLEM IN TERMS OF DURATIVE ACTIONS   
 

Real world problems have more constraints to overcome compared with simple planning 
problems. While handling planning problems is a complex task, dealing with temporal 
planners and durative actions make planning far more complicated.  The introduction of 
every action’s duration brings on an additional dimension of difficulty that the planner has to 
be concerned about.  In addition to ordering of task for action and keeping track of the 
performance at every step, the planner is to keep track of the timing of each task to avoid 
conflicts with or interference to other ongoing actions. Resource and time constraints are the 
influencers of the performance of planning problems with durative actions.  

 
 
 
 
 
 
 
 
 

 
Figure 3.2 Durative actions schema 

 
 

3.3 SEARCH STRATEGIES 
 

An agent faced with a problem, needs to search for alternatives to find a solution. 
Possibly, the way to handle a problem is by searching an appropriate solution set to overcome 
any particular obstacle. Searching for a solution can take a form of a search tree where the 
initial state is the node from which the tree is formed and different states are placed as 
connected nodes underneath the initial state.  Typically, states might be reachable through 
different path, but there is only one appropriate solution that meets the desired characteristics. 
It is search strategy’s responsibility to select a node among group of nodes in a tree and 
expand upon it in order to find the best path to reach the goal state. The best search strategy is 
one that is aware of duplication in choosing the paths to follow therefore it can ignore certain 
nodes that could potentially get the search stuck in a never ending loop. The path cost is the 
cost of path from first parent node, which is the initiator to any node over the search tree. 
Also each search tree has depth which it recognized by the number of the levels from initiator 
to the end. The other fact which must be taken into consideration is selection of search 
algorithm’s efficiency which has direct relation to time and space complexity. It is obvious 
that more complex problems need more memory space to keep track of all the nodes, which 
are generated in the tree. [13]  

3.3.1 INFORMED SERACH  
 

Informed search or heuristic search refers to a search that uses available information from 

Start End 

Actions 

Durations 

    In between there are several 
conditions and effects of actions 
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the problem definition so the domain turns to known area to search in order to find out the 
reasonable solution. It employs a heuristic function to help it in selecting a path among all 
possible paths considering the cost of such selection. In general, for each node there is a 
heuristic evaluation function, which qualifies the node for expansion. In fact, heuristic 
evaluation function has responsibility to calculate the distance from any node to the goal; 
therefore, surely if that node is carrying the minimum cost to reach the goal, then it is the one 
which goes for expansion. 

3.3.1.1 	
  BEST	
  FIRST	
  SEARCH	
  
 
 A second function, known as evaluation function, is responsible for allocating a value to 
each node.  Therefore, Best First Search (BFS) employs the heuristic function to distinguish 
which node among the others is the best candidate to explore according to its approximate 
cost to the goal. Mainly in this algorithm two lists are involved. One is open list, which 
consists of all possible nodes for expansion, and the other is called the closed list, which is 
responsible to keep track of already explored nodes. While on one hand all the nodes are 
connected to each other, and produce different paths to the goal, it is possible that a node is 
closed yet its related nodes are waiting in the open list to explore.  The remarkable feature of 
this algorithm is when it comes to the dead luck situation it does not give up; it simply makes 
attempts for exploring another node in the search graph. 

3.3.1.2 	
  GREEDY	
  BEST	
  FIRST	
  SEARCH	
  
 

Greedy is one of the special cases of best first search.  In Greedy the heuristic function 
picks the nearest node to the goal instead of initiating the search from the starting point. In 
some cases this strategy works yet in other cases it turns problematic. As the algorithm‘s 
name implies it will pick that node greedily meaning that when it picks a node it does not 
consider the implications. This algorithm is neither complete nor optimal because it may fall 
into a loop and be locked there without finding a solution. It may get luck but generally it has 
time and memory space complexity.  

3.3.1.3 	
  A*	
  SEARCH	
  
 

A* Search is another special case for the best first search which looks for a complete and 
optimal solution to reach the goal. A* gets help from the nodes that are listed in the open and 
closed lists. Along the way from start node to the goal node there are a bunch of connected 
nodes to proceed through to reach the goal node.  A* basically has two main functions to 
guaranty that it can find a reasonable solution in return, one function is working on the path 
cost from start node to any node that is in the path to achieve the goal, and the second 
function is the heuristic function dealing with the approximate cost from that particular node 
to the goal node. These two functions together represent the total cost from the node to the 
goal and formulize the most reasonable path to the goal state, which has least cost possible. 
The algorithm is optimal because it tries to find the lowest cost possible, and it is complete 
because it gives a solution to the search problem. A* has memory space complexity as it 
keeps track of nodes in either lists in its memory.  It also has exponential time complexity. 
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3.3.2 UNINFORMED SEARCH 
 

Unlike informed search, the uninformed search, which is also known as blind search, is 
one that has no information about the problem itself other than knowing the initial state.  The 
search domain is fully unknown therefore it is imperative for the algorithm to explore 
different possibilities through the search domain. In this section some of well-known 
uninformed search algorithms are briefly introduced.  

3.3.2.1 	
  BREADTH	
  FIRST	
  SEARCH	
  (BFS)	
  
 
 The Breadth First Search explores all the tree nodes one at a time. The execution starts 
from the initial node of the tree and evaluates all the nodes in every level until it reaches the 
last node in the level.  It then moves forward to lower levels until it catches the very last 
node. It follows the First In, First Out (FIFO) rule, which means that any new added child 
goes to the end of the fringe. It is easy to observe that this algorithm is complete because it 
explores all the node one by one in each level from top to the bottom, and if there is a goal 
node in any “shallowest” level it can address it just after the search algorithm explore other 
“shallower” nodes. Although it is a good search algorithm to choose its time complexity and 
space complexity leave it to be inefficient. Since it goes through each and every node in 
search tree, it will take longer to complete the search process, especially if the goal is located 
at the very bottom level causing it to be discovered at the very end after the algorithm has 
examined all the higher levels.  The algorithm keeps all the information in the memory spaces 
thus creating space complexity as well.                                                               

3.3.2.2 	
  DEPTH	
  FIRST	
  SEARCH	
  (DFS)	
  
 

Whereas the Breadth First Search every node of one level before moving down to the next 
level, Depth First Search it starts from the initiator node and visits nodes from top to the end 
of each branch before exploring other branches. The type of fringe in this search algorithm is 
Last In First Out (LIFO) stack which indicates that the last node added to the fringe will be 
explored first. This search doesn’t require as much memory space as it limits its storage to the 
path from initiator node to the leaves as well as keeping track of any unexpanded nodes. 
Depth first search algorithm is neither complete nor optimal as if it can’t find a solution it 
never stops the search. If it makes a wrong decision it will continue in the wrong direction 
which leads the search process to get stuck in a loop or it might generate several possibilities 
as potential solutions.  

3.3.2.3 BACKTRACKING	
  SEARCH	
  
 

Backtracking Search uses depth first search as a main tool to find a proper solution 
throughout paths and back offs whenever it makes a wrong selection in order to get a chance 
to explore another path, which may lead to the goal. This search does not seem sufficient to 
solve complex problems.    
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3.3.2.4 DEPTH	
  LIMITED	
  SEARCH	
  (DLS)	
  
 

Depth Limited Search is a special case of depth first search algorithm with the additional 
capability to overcome scenarios where it gets stuck in a loop. It limits the depth of the search 
tree by considering the information provided by problem description. As a result it only 
considers those states that are getting the chance of expansion. After exploring all the nodes, 
which belong to the certain depth of the tree search, the limitation will be updated by 
increasing the depth value. The algorithm is not complete if the limit is less than depth 
because it cannot manage to reach the goal. Nor is it optimal as it cannot guaranty that it can 
point out the goal even if the limit has a value bigger than the depth itself.    

3.3.2.5 ITERATIVE	
  DEEPENING	
  DEPTH	
  FIRST	
  SEARCH	
  (IDS)	
  
 

This search puts all the best features of both breadth first search and depth first search 
algorithms together. It applies the depth first search to each level by assigning a limit to the 
depth of tree. Each time that it looks for the goal and fails, the depth first search will execute 
again for the next depth limit. This search is capable of finding the shortest answer to the 
problem, but compared to breadth first search algorithm it is much faster in finding the goal. 
The time complexity is a bit higher compare to the breadth first search and depth first search, 
but the space complexity is the same as depth first search.   

3.3.2.6 BIDIRECTIONAL	
  SEARCH	
  
 

Indeed, the execution of this kind of search starts in two different directions at the exact 
same time. One process starts from initial state and goes forward toward the goal state, while 
another process starts from the goal state in search of the initial state effectively going 
backward.  This search process is complete either when both of the processes approach each 
other in the middle or when they both point to a node that they both explored in their search 
space. As a result, when they both come to that point they can merge their path to bring along 
the final solution. The search has less time complexity but sometimes it requires having large 
memory space.  

3.3.3 LOCAL SEARCH ALGORITHMS 
 

In the search algorithms described so far, the solution for the problem is the path 
established from the start node to the goal node. Reaching the goal is the main concern of the 
algorithm. Local Search Algorithms only keep the recent state in their memory along with a 
value assigned to each state by a heuristic function. Each state is concerned with the assigned 
values of its neighbors. In the subsequent search, the state that is chosen as the best continues 
the process all over again until it satisfies the constraints. Like any other algorithms the local 
search algorithm is complete if it can find a solution for the problem. Local search algorithm 
can be optimal if it can find a local optimum where the state can’t be any better than what it is 
according to its neighbors’ calculations. Memory space complexity of local search algorithms 
is reasonable as they occupy less memory while finding a rational solution.  In contrast the 
other classes of algorithm may not be able to deal with the type of problems local search 
algorithms handle. Local search algorithms are often better choices to handle real world 
problems.        
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3.3.3.1 	
  HILL-­‐CLIMBING	
  
 

Hill-climbing, also known as greedy local search is one of the more famous algorithms 
under the class of local search algorithms. It promises to find local optimum solution, which 
is extracted from neighboring calculation, but it can’t promise to bring along the global 
optimum, which is the best solution among all the possibilities. It performs as if it is in a loop 
which may start anywhere.  It picks a good neighbor and tries to find a better solution by 
applying local search over surrounded neighbors. This procedure continually runs until the 
search improvement is achieved gradually by finding a reasonable solution. Although it 
improves its states by choosing better neighbors at any time and it is fast in its search, it 
sometimes stops when it hits local maxima. It happens when the local maximum, which is the 
biggest assigned number among the neighbors, is less than the global maximum. Therefore, 
hill- climbing can claim neither as being complete nor as being optimal. It doesn’t have 
memory space complexity because it keeps track of few nodes at a time and discards the 
others not in its surrounding.           

3.3.4 SUMMARY OF SEARCH ALOGORITHMS  
 

The potential for using a specific search algorithm as the candidate to apply to all sorts of 
problems was studied in details.  As depicted in Figure 3.3, the reviewed candidates have 
different characteristics that may make them suitable for diverse set of problems.  There are 
advantages and disadvantages to each search algorithm thus leading us to the conclusion that 
one algorithm cannot satisfy all the search problems that one may encounter.  Actually 
certain algorithms may even be completely wrong for some problems leading to wasted time 
as a solution may not be reached at all.    

 
Search Algorithm Complete Time Space Optimal 

Best First  No 𝑜(𝑏!) 
 

𝑜(𝑏!) 
 

Yes 

Greedy Best First  No 𝑜(𝑏!) 
 

𝑜(𝑏!) 
 

No 

A*  Yes 𝑜(𝑏!!!) 
 

𝑜(𝑏!) 
 

Yes 

Breadth First  Yes 𝑜(𝑏!!!) 𝑜(𝑏!!!) Yes 
 

Depth First  No 𝑜(𝑏!) 𝑜(𝑏𝑚) No 
 

Depth Limited  No 𝑜(𝑏!) 𝑜(𝑏𝑙) No 
 

Iterative Deepening Depth 
First 

Yes 𝑜(𝑏!) 𝑜(𝑏𝑑) Yes 

Bidirectional  Yes 𝑜(𝑏!/!) 𝑜(𝑏!/!) Yes 
 

Hill Climbing No 𝑜(𝑏!) 𝑜 1 − 𝑜(𝑏!) No 
 

Figure 3.3 Comparision of search algorithms. 
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3.4 PLANNING ALGORITHMS 
 

There are two main areas in planning algorithm, classical planning, and non-classical 
planning. Classical planning are planning systems that have complete information about their 
initial state. “There are several restricted requirements for planning system to be as classical 
planning. The planning known as Classical planning if its environment would be finite, fully 
observable, static, and deterministic in terms of time, actions, effects, and objects.”2 Non- 
classical planning, also known as conformant planning does not have enough information 
about problem’s initial state and they are based on indecisive action’s behavior and their state 
model is indefinite. As the description of these planning systems implies, the process of 
choosing sets of actions is based on their observations. 

3.4.1 FORWARD SERACH ALGORITHM 
 

The principle of Forward Search Algorithm is that it gets the problem description as an 
input to planning system. Thereafter, the planner processes the problem and if the problem 
seems to be solvable, then it returns the solution otherwise it fails when it approaches the 
branches it is supposed to delete. The search space is huge for forward search, but since it is 
not necessarily useful then there are different ways to control the branches by applying some 
changes in planning algorithm. Although the algorithm has space complexity it is complete. It 
is an optimal algorithm unless the optimal solution is part of deleted branches. The algorithm 
must be aware of useless branches, which are enlarging the search space of the problem very 
fast.  

3.4.2 BACKWARD SEARCH ALGORITHM   
        
     Backward search as its name implies is a planning algorithm which tries to find the 
reasonable path to solve the problem by starting the search from the goal to find out sub 
goals. Those sub goals are responsible to assure that the path found by them is the most 
promising path as goal state goes backward to the initial state. It is complete because it is 
guaranteed that a solution for the planning problem is reached. 

3.4.3 PARTIAL ORDER PLANNING ALGORITHM 
 

The partial order planning algorithm employs the technique “divide and conquer” to deal 
with sub problems separately; extracting sub goals, and generating sub plans and taking 
proper actions. In fact, the technique tries to make things easier, and applies more flexibility 
to the problem solving while it cuts problem into several sub problems, and from there each 
individual part has its own sub goals and sub plans to investigate. Generally, if two different 
actions are participating in a planning effort, regardless of their order they are combined at 
the end to form the resulting that is known as partial order planning. Indeed, every involved 
step in the plan can be interpreted as an action as none of the steps carry any ordering number 
for their performance.  

                                                
2 http://www.cs.umd.edu/~nau/cmsc722/notes/chapter02.pdf 
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3.4.4 PLANNING GRAPH AND GRAPHPLAN ALGORITHM 
 

This is one of the most effective approaches to solve planning problems. Planning graph 
is a data structure, which helps to extract a reasonable heuristic function. The extracted 
heuristic function can be used in GraphPlan search algorithm to find a solution for planning 
problem. It might be possible to observe the solution from planning graph, which employs the 
GraphPlan algorithm. Planning graph has ordered levels which belong to “time steps”.  
Levels order start from zero and go up. The level zero is dedicated to the initial state and 
there exists two different sets per level called “literals set and actions set.” Basically, the 
planning graph is capable of working with propositional logic and more specifically it uses 
STRIPS, which also have propositional presentation. Figure 3.4 formulizes a planning 
problem at the top and the following part shows a relevant planning graph to the problem. 
Although GraphPlan decreases the time steps by allowing parallel actions, certain actions 
can’t be performed in parallel.  On the one hand, the planning graph shows that there is 
couple of levels, and each of which consist of several actions that possibly could happen in a 
particular state. The algorithm is complete and optimal.  As shown in Figure 3.5 the 
GraphPlan algorithm is used to go through the given planning graph problem to generate the 
reasonable plan to reach the goal.  This procedure runs until it finds the proper solution to the 
problem, or at least understands literally that there is no solution for this planning graph. 
[7,12]         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.4 The “have cake and eat cake too “problem, and it‘s a plan graph 

 
Init(Have (cake))  
Goal (Have (Cake) ^ Eaten (Cake))  
Action (Eat (Cake) 

              PRECOND: Have (Cake) 
                            EFFECT: ¬ Have (Cake) ^ Eaten (Cake)) 

Action (Bake (Cake) 
                            PRECOND: ¬ Have (Cake) 
                            EFFECT: Have (Cake)) 
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Figure 3.5 Graph Plan algorithm 

 
 

3.5 PLANNING LANGUAGES 
 

In classical planning, the planning language is the language, which can describe initial 
state, goal state, and all belonging actions, which an agent must take for any planning 
problems. Planning languages are expressive formal ways to introduce the planning 
problems. In fact, the planning language interprets the knowledge given by problem 
description into an official language to display different states as well as a representation of 
the actions.   

3.5.1 ACTION LANGUAGES3 4 
 

In the field of Artificial Intelligence, action languages are widely used to describe actions 
and their effects as well as the corresponding domain definition for each planning problem. 
The syntax of this type of language is the same as English and their semantics are like 
transition functions. There are a number of action languages such as ADL, STRIPS, PDDL, 
Action Language A, B, and C, where they are describing the set of possible actions that are 
modifying the states over the time. Among the list, the Planning Domain Definition 
Language (PDDL) is one of the well-known languages, which it is commonly used. 

3.5.1.1 STANFORD RESEARCH INSTITUE PROBLEM SOLVER (STRIPS) 
 

STRIPS was introduced in 1970 to control a robot called Shakey. Shakey was to move 
from room to room and pick up certain objects and carry them from place to place. Figure 3.6 
shows Shakey’s world. STRIPS uses A* algorithm’s heuristic function to point out the 

                                                
3 An introduction to Action language, Tan Cao Son and Chiaki Sakama, January 9, 2010 
4 Action Languages, Michael Gelfond and Vladimir Lifschitz,May 7,1999 

 
function  GRAPHPLAN(problem) returns solution or failure 
    graph  ← INITIAL - PLANNING - GRAPH (problem) 
    goals   ← GOALS[problem] 

                 loop do 
                      if goals all non - mutex in last level of graph then do 

                         solution ← EXTRACT - SOLUTION (graph, goals, LENGTH (graph)) 
                            if solution ≠ failure then return solution 

                      else if  NO - SOLUTION - POSSIBLE (graph) then return failure 
                            end if 
                       end if 
                       graph  ← EXPAND - GRAPH (graph, problem) 

  end loop 
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qualified node to explore in next attempt. It is a language for classical planning. STRIPS 
define the planning problem as a set of states. Basically, from the starting point of planning 
problem to the end point, there are three categories named as initial state, current state, and 
the goal state. The operators are in fact the set of actions, which are happening in different 
states causing some degree of change in different states. Each member of the set of operators 
can perform under certain conditions to change the states. As an example, with Shakey’s 
movement task, information such as the relevant objects, the locations, and how these two 
factors are related to each other is to be extracted. Operators also have properties such as 
preconditions that must be satisfied before actions can be taken.  STRIPS keeps two list, one  
contains the states which are added to list in terms of the result for employing certain 
operations and a delete list which keeps track of the nodes which are deleted from the 
problem.          

 
Figure 3.6 Shakey's world and its performance in his environment 

 
• STRIPS formulation:   

 
A person is at location A, in Las Cruces and has a car. There is a gas station in location C, 

which is El Paso. The person wants to meet his friend in location B, which is Phoenix, but it 
requires buying gasoline, and filling up the tank in order to reach to Phoenix. 
 

Initial state: CarAt( Las Cruses), Fuel(Low), GasStationAt(El Paso), FriendAt(Phoenix) 
Goal state: Meet(Friend) 
 
Actions: 
 
// drive from Las Cruces to El Paso 
 
_Drive(Las Cruse, El Paso)_ 
Preconditions: At(Las Cruces),  Fuel(Low) 
Postconditions: not  At (Las Cruces), At (El Paso) 
 
// fill up the tank 
 
_FillUp(El Paso)_ 
Preconditions: At(El Paso), GasstationAt(El Paso), Fuel(Low) 
Postconditions:Feul(full), notFeul(low) 
 
// drive to Phoenix 
 
_Drive(El Paso, Phoenix)_ 
Preconditions: At(El Paso),  Fuel(Full) 
Postconditions: not  At (El Paso), At (Phoenix), Fuel(low) 
 
//meet a friend in Phoenix  
 
_MeetFriend(Phoenix)_ 
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Preconditions: At(Phoenix), FriendAt(Phoenix), Fuel(low) 
Postconditions:Meet(friend) 

3.5.1.2 ACTION DESCRIPTION LANGUAGE (ADL) 
 

ADL is based on STRIPS and in some sense it is an upgraded version of STRIPS. It was 
coined in 1987 and it is basically an automated planning language which is actively used in 
robotic area. Action description language finds a specific condition that lead to a set of 
actions that promise to lead us to the goal. Each action has preconditions that must be 
satisfied in order to let the action start performing. Action performance causes some effects to 
the “environment” in order to modify it. The environment can be identified by particular 
states, which are either satisfied, or not.  To help in better understanding of ADL, the 
following example is provided.  

  
• ADL formulation: 

 
Imagine the problem of bus transportation. In this example there are number of 

passengers who want to go from Las Cruces to El Paso by bus. The bus itself needs to get 
fuel and the fuel level in tank will change during each transport. Herein, according to the 
problem specification, there are several basic actions which are involved.  They get in the 
bus, get off the bus, driving the bus, and fill up the tank: 
 

Action ( 
     Getin ( p: Passenger,  b: Bus,  c: City,  g:Gas) 
     Precondition: At(p,c)  ∧  At(b,c) ∧  At(b,g) 
     Effect: ¬ At(p,c) ∧ In (p,b) ∧ ¬ At(c,g) 
 ) 
 
Action ( 
     Getoff ( p: Passenger,  b: Bus,  c: City,  g:Gas) 
     Precondition: In(p,b)  ∧  At(b,c) ∧  At(b,g) 
     Effect:  At(p,c) ∧  ¬ In (p,b) ∧ ¬ At(b,g) 
 ) 
 
Action ( 
     Drive ( b: Bus,  from: City,  to: City,  g:Gas) 
     Precondition:   At(b, fromcity) ∧   At  ( fromcity ,g) 
     Effect:  ¬At(b,fromcity) ∧  At (b, tocity) ∧ At(tocity,nogas) 
 ) 
 
Action ( 
     Fillup ( b: Bus,  c: City,  g:Gas) 
     Precondition:  At(b,c)    ∧   ¬ In(b,g) 
     Effect:  At(b,c) ∧ In (b,g) 
 ) 

 
 
In Figure 3.7 STRIPS and ADL are compared. 
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STRIPS ADL  

  
-­‐ Only positive literals in states is allowed 

      
-­‐ All the unmentioned literals are counted as 

false literals, where this situation called 
”Closed World Assumption ” 
 

-­‐ Goals are conjunctions 
 

-­‐ Effects are conjunctions 
 

-­‐ Does no support for types 
 

-­‐ Does no support for equality 
 

-­‐ Ground literals can be find in Goals 
 

-­‐ PSPACE complete and some restricted 
problems are transformed NP-complete 
 

-­‐ Propositional language  
  
  

  
-­‐ Both positive and negative literals in states 

are allowed 
 

-­‐ All the unmentioned literals are counted as 
unknown literals. This situation called “ 
Open World Assumption” 
 

-­‐ Conjunction and disjunction are allowed 
for goals 
 

-­‐ Conditional effects allowed 
 

-­‐ Variables can have types 
 

-­‐ Equality is built in 
 

-­‐ Quantified variables can be find in Goals 
 

-­‐ PSPACE  -Complete  

 
Figure 3.7 Comparison between STRIPS and ADL 

 

3.5.1.3 PLANNING DOMAIN DEFINITION LANGUAGE (PDDL) 
 

Another standard language in AI field, PDDL is specialized to represent classical 
planning problem domains. There are different versions available from PDDL1.1 to the 
recent version called PDDL3.1. The extensions of original PDDL are for supporting the 
domains containing time and numeric resources. For example, PDDL 2.1 has four levels as 
follow:   

Level 1: Propositional description of classical planning   
Level 2: Numeric variables 
Level 3: Actions which has duration but they don’t have continuous effects 
Level 4: Actions which has duration and they do have continuous effects 
 

PDDL is widely used for encoding problem domains and expressing the temporal planning 
problems. It consists of “objects”, “predicates” which are the attributes of objects, “actions” 
which are able to apply changes, “goal specification” which should be true to achieve the 
plan, and finally “initial state” which is the starting state. PDDL consists of two main files, 
domain and definition.  Domain contains states and actions while Definition contains initial 
state, objects, and the goal specifications. Although PDDL has combination of STRIPS and 
ADL most of the planners are not able to support it.5 6  [5] 

 

                                                
5 http://www.cs.ust.hk/~qyang/221/introtopddl2.pdf 
6 http://cswww.essex.ac.uk/PLANET/summer-school-02/ 
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• PDDL formulation: 
 

Consider the problem of cargo transportation. In this problem instance there is a lift truck, 
which can move between Las Cruces and El Paso. It used to load with 5 large sizes of objects 
in one city and it will be unloaded in another city. In the beginning it is job all the objects are 
in Las Cruces whereas later on they must be in El Paso. Actions loading and unloading 
happens by a lifter. 
 

Objects: The two cities, five objects, and a lifter. 
Predicates: Is  χ a city? Is object χ inside city Υ? Is lifter χ empty? […] 
Initial state: All objects and the lift truck are in the Las Cruces. The lifter is empty. […] 
Goal specification: All objects must be in El Paso. 
Actions/Operators: The lift truck can move between cities, load an object or unload an object. 

 
Objects: 
(: objects cityLas Cruces    cityEl Paso 
                   Object1   object2   object3   object4   object5 
                    lifter)    
 
Predicates: 
(: predicates  (CITY   ?  𝜒) (OBJECT   ?  𝜒) (LIFTER   ?  𝜒) 
                           (at-lifttruck   ?  𝜒) (at- object   ?  𝜒    ?Υ) 
                           (free   ?  𝜒)  (carry   ?  𝜒    ?Υ)) 
 
Initial state:  
(: init  ( CITY  cityLas Cruces)  (CITY  cityEl Paso) 
            ( OBJECT  object1) ( OBJECT  object2) ( OBJECT  object3) ( OBJECT  object4) ( 
OBJECT object5) 
            (Lifter   lifter) ( free   lifter) 
            ( at- lifttruck   cityLas Cruces)  (at-object   object1  cityLas Cruces) (at-object   object2  
cityLas      
            Cruces) (at-object   object3  cityLas Cruces) (at-object   object4  cityLas Cruces)   
            (at-object   object5  cityLas Cruces)) 
 
Goal specification: 
(: goal  ( and  ( at-object     object1    cityElPaso) 
                           ( at-object     object2    cityElPaso) 
                           ( at-object     object3    cityElPaso) 
                           ( at-object     object4    cityElPaso) 
                           ( at-object     object5    cityElPaso) ) ) 
 
Action/Operator: 
(: action  move: parameters  (?  𝜒    ?Υ) 
       : precondition    ( and  ( CITY   ?  𝜒  )  ( CITY   ?  Υ  ) 
                                       (at – lifttruck  ?  𝜒  )  ) 
        :effect                   ( and  (at_lifttruck   ?Υ  ) 
                                        ( not  (at_lifttruck   ?  𝜒  )  )  )  ) 
 
Action/Operator: 
(: action  load: parameters  (?  𝜒    ?Υ    ? Ζ) 
      : precondition      (and   ( OBJECT  ?  𝜒  ) (CITY  ?Υ ) (LIFTER   ? Ζ) 
                                        (at-object   ?  𝜒    ?Υ ) (at- lifttruck  ?Υ ) (free ? Ζ) ) 
       : effect                     (and   ( carry   ? Ζ   ?  𝜒) 
                                          (not    ( at- object   ?  𝜒    ?Υ) ) ( not  ( free  ? Ζ ) ) ) ) 
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Action/Operator: 
(: action  unload: parameters  (?  𝜒    ?Υ    ? Ζ) 
      : precondition      (and   ( OBJECT  ?  𝜒  ) (CITY  ?Υ ) (LIFTER   ? Ζ) 
                                        ( carry    ? Ζ   ?  𝜒)  (at-lifttruck  ?Υ ) ) 
      :  effect                    ( and  ( at-object   ?  𝜒    ?Υ    ) (free  ? Ζ) 
                                        (not   (carry   ? Ζ   ?  𝜒  ) ) ) ) 

3.5.1.4 ACTION LANGUAGE A 
 

     Introduced in 1991, Action Language A is the combination of STRIPS and ADL. In fact, 
it is STRIPS extension together with the propositional description part, which is borrowed 
from ADL. When any possible action has defined in language A then it would be 
deterministic action in all the states. In other words, action language A has a domain that 
contains dynamic propositions and conditions which must become true to make next action 
happen. As an example the “Yale Shooting Problem” shows how action language A is 
defined. There is a turkey called Fred who is alive and there is an unloaded weapon in 
starting state. Performing each action might cause some effects into this domain. It means 
that in order to use the weapon it required to load it and thereafter using the weapon means 
attempt for killing Fred. If shooting happens then it means that Fred comes dead and weapon 
status changed again to unload. There are two fluent here such as alive and loaded whereas 
each of which has a truth-values that can be possibly changes over the time and the 
corresponding actions are load and shoot. The domain and initial state of Yale Shooting 
Problem can be denoted as follow:   

 

𝑫𝒀𝑺𝑷 =

𝒔𝒉𝒐𝒐𝒕  causes  ¬𝒂𝒍𝒊𝒗𝒆  if  𝒍𝒐𝒂𝒅𝒆𝒅
𝒍𝒐𝒂𝒅  causes  𝒍𝒐𝒂𝒅𝒆𝒅

𝒍𝒐𝒂𝒅  executablif  ¬𝒍𝒐𝒂𝒅𝒆𝒅
𝒔𝒉𝒐𝒐𝒕  causes  ¬𝒍𝒐𝒂𝒅𝒆𝒅    

  

 

𝑰𝒀𝑺𝑷 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑦  ¬𝒍𝒐𝒂𝒅𝒆𝒅,𝒂𝒍𝒊𝒗𝒆   
 

Following is the transition function of this domain, which shows how the pair of action and 
state is connecting to its belonged states: 

𝚽𝑫 𝒂, 𝒔 =⊥ 𝒊𝒇  𝒂  𝒊𝒔  𝒏𝒐𝒕  𝒆𝒙𝒆𝒄𝒖𝒕𝒂𝒃𝒍𝒆  𝒊𝒏  𝒔    𝒘𝒉𝒆𝒓𝒆   ⊥ 𝒅𝒆𝒏𝒐𝒕𝒆𝒔  𝒂  𝒇𝒂𝒊𝒍  𝒔𝒕𝒂𝒕𝒆;𝒂𝒏𝒅 
𝚽𝑫 𝒂, 𝒔 = 𝒔 ∖ 𝒆𝒂 𝒔 𝒆𝒂 𝒔 𝒊𝒇  𝒂  𝒊𝒔  𝒆𝒙𝒆𝒄𝒖𝒕𝒂𝒃𝒍𝒆  𝒊𝒏  s. 

 
 
   
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.8 Presentation of problem in action langauge A 
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3.5.1.5 ACTION LANGUAGE B 
 
     In general, action language B is a more developed version of language A with some 
additional features like indirect effects of actions into the states. It is capable of recognizing 
the differences between static and dynamic rules. Back to Fred example, while alive and 
loaded has previously been defined as a set of fluents in action language A, here another 
fluent called dead which indicates “Fred is dead”, is added. By adding this fluent it leads to a 
mutual exclusive situation whereas there is constraint in between these two. 
 

 𝒔𝒕𝒂𝒕𝒆  𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒕𝒆  𝒂𝒏𝒅  𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 =
¬𝒅𝒆𝒂𝒅  if  𝒂𝒍𝒊𝒗𝒆
  ¬𝒂𝒍𝒊𝒗𝒆  if  𝒅𝒆𝒂𝒅

  
 

 
 The domain and initial state of Yale Shooting Problem can be denoted as follow:   
 

 𝑫𝒀𝑺𝑷 =

𝒍𝒐𝒂𝒅  causes  𝒍𝒐𝒂𝒅𝒆𝒅
𝒍𝒐𝒂𝒅  executablif  ¬𝒍𝒐𝒂𝒅𝒆𝒅
𝒔𝒉𝒐𝒐𝒕  causes  ¬𝒍𝒐𝒂𝒅𝒆𝒅    

𝒔𝒉𝒐𝒐𝒕  causes    𝒅𝒆𝒂𝒅  if  𝒍𝒐𝒂𝒅𝒆𝒅
𝒔𝒉𝒐𝒐𝒕  causes  ¬𝒂𝒍𝒊𝒗𝒆  if  𝒍𝒐𝒂𝒅𝒆𝒅

  

 

𝑰𝒀𝑺𝑷 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑦  ¬𝒍𝒐𝒂𝒅𝒆𝒅,¬𝒅𝒆𝒂𝒅    
 
The transition function for action language B is as follow: [2, 3, 6.8, 9, 10, 14]  
 

Φ! 𝑎, 𝑠 = 𝒔!  |  𝒔!  𝒊𝒔  𝒂  𝒔𝒕𝒂𝒕𝒆  𝒂𝒏𝒅  𝒔! = 𝑪𝒍𝑫𝒄  (𝒆𝒂(s) ∪ (𝒔 ∩ 𝒔!))} 

3.5.1.6 ACTION LANGUAGE C 
	
  

Similar to above, action language C also adds indirect effects.  Compared to language B, it 
is a more expressive language since the main focus is to have as an expressive language as 
possible. Alike languages A, and B the syntaxes are very similar with slight modifications. 
While language C can handle concurrent actions, language B cannot.  Language C, can easily 
handle concurrent actions to be executed as well as it can cope with nondeterministic actions. 
Language C makes it possible to be flexible to non-constant fluent.  
 

3.6 PLANNERS 
 

Planners are “general problem solvers” which are acting as an automated solver system to 
numerous problems. They are aiming to find the reasonable solutions for the problem. It can 
be either a person acting as a planner to ensure that the given goal can be reachable through 
that solution or a machine. The plans instruction to reach the goal is the output of planner. In 
fact, the planner is a program, or it can take a form of planning algorithm to get the problem 
description as an input and return a plan as an output. The plan is executable path, which lead 
an agent to find out an optimal solution to the problem. It is like a map that shows the 
direction and helps people to move from certain place to their desired destinations. Other than 
planner systems, which are dealing with classical planning problems, there are some 
planners, which are interacting with durative actions, known as temporal planners. Usually, 
temporal planners are dedicated to single agent to provide them with an appropriate plan. 
There are many temporal planners available but here the well-known Single agent temporal 
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planner known as SAPA is discussed. 
 
 
 
 
 
 
 

Figure 3.9 Simplified planner architecture 
 
List of some well-known AI planning systems are tabulated as follow:  

 
Figure 3.10 Classification of existing planning and scheduling systems 

3.6.1 SAPA 
 

SAPA is a temporal planner, which deals with durative actions and resources. “It is a 
multi-objective metric temporal planner.” The search strategy used by SAPA is forward 
chaining A* algorithm which get helps from heuristic function. This function is potentially 
aware of cost of the path as well as its length. However, heuristic function belonging to the 
other kind of planners is just concerned with only the paths length. SAPA is known as a good 
temporal planner because it finds reasonable solutions in the way it evaluates the quality of a 
solution as well as in finding multiple solutions to a problem. SAPA is capable of handling 
the reasoning process about resources, which are either producers or consumes. SAPA in 
contrast with other temporal planner is one of the best. There are several temporal planners 
handling durative actions and use resources almost the same as SAPA such as TLPlan, HSTS, 
and Zeno but the important ones are the ones that have information and understanding about 
the domain. However SAPA can interact without having that particular information. Among 
other temporal planners TGP can only deal with durative actions whereas LPSAT and GRT-
R are able to cope with resources and actions, which are either using or producing them. 
There are only two temporal planners such as TP4 and Resource-IPP where they can work 
with both durative actions and resources. [4]    
 
Moreover, there certain development has improved SAPA. One of those attempts called 
DRIPS and the other one is known as Sharaabi. DRIPS is also a Temporal metric planners. Its 
search space consists of time stamped states. Whenever any event happens, DRIPS, similar to 
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Planner 

 
Planning 
Problem 

Input Output/Goal 
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SAPA, looks for any possible actions from the list of possibilities. In fact, events result from 
performance of any action in its state either at the expected or at times with some delay. All 
these effects influence their states. All events are tracked and the times do change 
accordingly to the time stamp of the event. In developed version of SAPA the temporal 
planner can check the actions before they are completed. If DRIPS isn’t faced with constrains 
such as time complexity and memory space complexity, it will produce a plan to solve the 
problem if such solution exists. 
 
 

     
Figure 3.11 SAPA’s architecture 
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Figure 3.12  running SAPA resulted charts7. 
 
Sharaabi is an extension to DRIPS and SAPA. For each action to takes place, its 
preconditions are to be first satisfied.  Once the Boolean value of a precondition has been 
checked, then that value will be kept in the state and there is no need to check its value later.  
The other modification to SAPA and DRIPS represent that the current time and duration of 
actions are known as a part of preconditions. Although there are several attempts happened to 
improve the execution of SAPA, still the contemporary approaches needs to improve their 
heuristic functions and they need to speed up the solution finding procedure.[18]   

 
The performance of SAPA to solve the number of problems is tabulated as follow:  
 

 
Planner Number of 

solved problem	
  
Number of 
attempted 
problem	
  

Success ratio	
   Capabilities	
  

SAPA 80 122 66% Time, Complex 
Figure 3.13 SAPA Performance 

 

3.6.2 BLACKBOX PLANNING SYSTEM  
 

It is a planning system developed by Henry Katuz and Bart Selman. Blackbox combines 
the best features of SATPlan(Littman) and GraphPlan(Blum) to come up with a flexible and 

                                                
7  http://rakaposhi.eas.asu.edu/sapa.html/ 
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robust system to solve planning problems. The system runs SATPlan solver for a while to 
solve the problem and when it fails, then the planner switches to GraphPlan if needed. This 
remarkable functionality helps Blackbox to cover a range of planning problems. As the name 
of this planning system implies, neither plan generator nor problem solver in the system 
know anything about what is happening on the other side, whereby, both looks like blackbox 
to each other. 

 
The acceptable language for Blackbox is PDDL and it uses logical expression to build a 
propositional frame by using SATPlan and GraphPlan. Based on experiments conducted 
using blackbox, its shortcoming of handling actions with conditional effects has been 
illuminated. It is notably capable to solve the complex logistic domains involving large 
problem description yet it can’t scale up for solving very large size problems. Whilst such 
problems are solvable in less than 10 minutes,  in contrast GraphPlan itself is not able to 
handle those problems at all and GraphPlan dealing with smaller problems may take four 
times to come up with solution to the problem.  In particular, blackbox planning system often 
gets stuck in GraphPlan and can’t find the solution. To overcome this limitation, it employs 
additional technique whereas that function can modify the heuristic function and cut off the 
search. It swiftly restarts the backtracking algorithm after a certain number of search 
algorithm executions. Therefore, it massively improves the search performance. Figure 3.14 
shows in Blackbox planner the cutOff and its effect to search performance and Figure 3.15 
illustrate the overview of Blackbox. 
 

 
Figure 3.14 CutOff and its effect to search performance in Blackbox planner 
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Figure 3.15 Blackbox simplified overview 

3.6.3 HEURISTIC SEARCH PLANNER (HSP) 
 

HSP is a planner coined by Bonet and Geffner. It is a domain independent planner, which 
solves STRIPS problems by using heuristic function from starting state to the goal state. Its 
implementation has been done in programming language C. Studies show that, the search 
algorithm used by HSP can be any of Best First Search, weighted A*, weighted BFS, Greedy 
BFS, or Hill Climbing search in order to find out the distance estimated from starting state to 
the goal state without considering on how good is the solution. 

 
In contrast, it can’t use A* algorithm as a search alternative to reach the goal while A* has 
space complexity since it gathers all the states in the memory and also A* is too slow to hit 
the goal state to solve the problem. Unlike A*, the Greedy search or Hill Climbing search 
could be a good approaches to take for both small size and large size problems. It is because 
they are usually very fast to generate the states and they are guaranteed to find an optimal or 
almost optimal solution to the problem. The heuristic function to the HSP can be observable 
from the problem description. Likewise the other heuristic search planning systems, in HSP 
also the search procedure will take time based on how large is the state space and the number 
of child at each state, the length of founded solution, and heuristic function. 
 
HSP has time complexity since it recalculates its heuristics function in each new state and it 
doesn’t keep going forward to find a solution to the problem with a constant heuristic 
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function. HSP is capable to handle actions that have conditional effects in return of those 
action executions. 
 
The heuristic function in use by HSP can be either admissible (optimistic) heuristic, or non-
admissible (non-optimistic) heuristic. The term admissible or optimistic applies when the 
function never overestimate the cost from current state to the goal state.  
 
Figure 3.16 provides a brief comparison between HSP and Blackbox based on number of 
problems solved by them as well as it points out among all attempts by each planner how 
many times they were fastest to present the plan and how many times they brought shortest 
path from the initial state to the goal state. Studies show that HSP was faster than Blackbox in 
the way of solving logistic problems. Also the size of the plan presented by HSP was smaller 
compare to the one generated by Blackbox.  
 
Planner Average time Solved problem Fastest Planner Shortest 

Planner 
HSP 1.49 63 16 55 
Blackbox 35.48 82 19 61 

Figure 3.16 Comparison between HSP and Blackbox 

3.6.4 LAMA 
 

LAMA is a classical planner that uses heuristic search to solve the problems. It also uses 
another source for searching the solution called landmarks. The term landmark implies that 
there are a number of propositions in the provided solution whereas their truth-value must be 
set as true in all the solution. Landmarks are propositional sub goals that should be available 
in any possible solution to the problem. LAMA uses landmarks to estimate the distance from 
current state to the goal state to help with heuristic search.  Specifically LAMA can obtain the 
distance to the goal from the current state by keeping track of the number remaining sub goal, 
which are not achieved. The sequential numbers assigned to all the remaining landmarks tell 
which landmark should be achievable next.  LAMA uses weighted A* search algorithm 
whereas it looks for solution continuously and it updates the weights by reducing assigned 
value. Therefore, LAMA keeps searching iteratively to find the best possible plan until search 
procedure is terminated. In order to find a good quality of solution, LAMA uses the cost to 
reach the goal from initial state together with distance from the current state to the desired 
goal state. However the searching procedure starts by greedy best first search to find a quick 
solution to the problem. The first phase of searching will be done as soon as the first solution 
is found. In the second phase of search, the weighted A* will starts searching for solutions 
iteratively to observe any better solution considering a reduction of the weights.  

 
The core structure of LAMA has three different programs: translator program, which is 
implemented in Python, the “knowledge compilation” program, which is implemented in 
C++, and the search program, which is also implemented in C++. LAMA planner invokes 
each program where they are sorted in sequential order. The   communication between 
programs is done through text files. 
 
In fact, the translator programs interpret the problem to PDDL to give it as an input to the 
planning system. The knowledge compilation is generating date structures that are vital for 
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further sub goal generation, which enhances the heuristic search. Therefore, it is time for 
search engine to play its role to find a solution to the problem accordingly. [19] 

3.6.5 CRIKEY 
 

The temporal planner CRIKEY is a forward heuristic search planner that uses both best 
first search and enforced hill-climbing search algorithms in the planning phase whereas the 
scheduling phase uses greedy search algorithm. CRIKEY supports PDDL but not any other 
languages. It handles both metric and time planning problems. It draws the line between 
planning and scheduling phases. It can also establish the connection between them as 
necessary. This can be done by using the relaxed problem, which is able to load the search 
procedure.  The relaxed problem is a sub problem of the real world problems in which the 
constrains are reduced. Moreover, the quality of relaxed problem is directly influenced by the 
planner’s execution. In some cases it may affect the search procedure to find a solution to the 
problem. If that is case, then it is CRIKEY’s responsibility to observe those situation to 
modify the relaxed problem based on its observation to omit the deadlock and prevent the 
generation of plan which is not schedulable otherwise the planner will fails. CRIKEY uses 
Forward Heuristic Search over constructed graphPlan and it is capable to handle both metric 
temporal planning problems. CRIKEY’s implementation has been done in Java. 
 
As it was mentioned earlier when CRIKEY is faced with a temporal planning problem, it first 
attempts to divide it into the planning and scheduling phases.  Combining these two phases, if 
necessary, may avoid a failure in solving a relaxed problem. In order to detect failing 
situations it looks for such a case in the domain description of the temporal planning problem. 
In other words it looks at whole domain to figure out where both phases must be combined 
and when they should be separated. It starts modifying the domain and solves two phases 
together if necessary. CRIKEY is guaranteed to find a solution if there exists one for any 
particular temporal planning problems. In that sense CRIKEY is called complete but it can’t 
be called optimal since it can’t guaranty the quality of the solution, as it can’t assure that the 
identified solution is the best one considering time complexity and resource impacts.  It is 
necessary to double-check the plan to make sure that is schedulable as well. Therefore, Mini-
Scheduler which is consists of three elements such as: A Simple Temporal Network (STN) 
(Dechter, Meiri, and Pearl, 1991) containing a set of “ time- point variables and binary 
constraints” 8 between those variables is employed. In general STN indicates the constraints 
between the tasks that an agent is supposed to perform, durative actions constraint, temporal 
priority of actions, and temporal constraint between actions. Mini-scheduler will starts 
reasoning about set of chosen actions by performing those set of actions within the specified 
length of time and if they do have enough time for their performance, the Mini-Scheduler will 
consider those set of actions as appropriate actions otherwise it will discard them from the 
problem search space. The Mini-Scheduler uses same algorithms as the one uses by CRIKEY 
in its scheduling phase. The Mini- Scheduler will finish its task whenever the set of approved 
actions are accomplished in the plan, then it will terminates. CRIKEY needs to improve the 
quality of its search. Better heuristic function is required in order to guaranty the quality of 
search. The heuristic function is depending on the number of participated actions in relaxed 
problem. CRIKEY is not able to handle the resources whereas they are producing or 

                                                
8 http://www.cs.vassar.edu/~hunsberg/__papers__/ss-thesis-parts/ss-thesis-chap4.ps 
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consuming as well as they does have dependency on their states. Figure 3.17 is showing how 
these two phases are separated in CRIKEY. [15][16][17] 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.17 Architecture of CRIKEY in terms of seprating two phases 

 
3.7 PLANNING AND SCHDULING 

 
Scheduling is slightly different from planning. During planning some sequential actions 

are taken to find a reasonable path from initial state to the goal state. Scheduling on the other 
hand is mainly dealing with who has the possibility to solve the problem, which contains 
“temporal information” as well as thinking about which order of action must be taken to meet 
the “deadlines.” A very famous example of scheduling is “job shop scheduling problem” 
which has set of “jobs” and each job has its own sequence of actions and corresponding 
constraints. All involved actions have duration and they are using certain resources. The 
utilization of the resources, the applicability of each resource to the task, as well as 
availability of resources must all be put into consideration. Whether a resource produces or 
consumes must be defined. To solve the “job shop scheduling problem” the time to start for 
any actions must be denoted in advance and all the constraints must be carried through. 
Literally, time as a resource is a critical issue to deal with it. Therefore, the combination of 
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planning and scheduling is required to cope with production and consumption by different 
actions in the problem domain. [1] 
Scheduling and planning are done in two separate phases to handle durative actions and 
resource assignment. Figure 3.18 illustrates two phases. 9 10 
 

 
 

 

 

                 
 

Figure 3.18 Planning versus Scheduling 
 
 

                                                
9  http://prometeo.ing.unibs.it/sschool/slides/ghallab/ghallab-slides.pdf 
10  http://ai-lab-webserver.aegean.gr/EETN/planning_and_scheduling 
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4 EXPERIMENTAL RESULTS 

 
SAPA, Black Box, HSP, LAMA, and CRIKEY planners are subjects of the experiments 

conducted as part of this thesis.  The planners were selected based on that they all use A* or 
other types of local search to reach the goal and they all are capable of handling PDDL as an 
input language.  Three problems with varying degree of difficulty were selected to exercise 
the selected planner.  For each planner and each planning problem the research focused on 
whether the planner solves the problem, and if so, the time taken by the planner, the number 
of actions in the solution, the planners efficiency and its effectiveness.  This Chapter provided 
the details of the findings when the above planners were applied to three distinct problems.   

 
4.1 Logistic Problem – Package Delivery  
 
The domain of the problem consists of trucks, airplanes, airports, and packages.  The 

airplanes are used to transport number of packages from one airport to another while trucks 
do the local intra city deliveries.  The planning process includes actions such as load, unload, 
drive, and fly. Every package delivery includes all aforementioned actions therefore 
combination of these actions in sequence leads to the transportation of a package to an airport 
and delivery of it from an airport to another.  The goal is to devise a plan for minimal time to 
make the deliveries. 
 

 
Figure 4.1 Package Delivery Domain 

 
Table 4.1 depicts the performance of five competing planners all solving the Package 
Delivery Problem.  Using STRIPS the performance of CRIKEY, HSP, LAMA, SAPA, and 
Black Box running this logistic problem was evaluated.    

 CRIKEY HSP LAMA SAPA Black Box 
Search time 120 ms 28 ms 238.78* s 168 ms 53 ms 
Search length 25 27 25 25 25 
Expanded states N/A 41 105 45 N/A 
Generated states N/A 343 1386 154 N/A 
Efficiency N/A 0.7 2274.1 3.7 N/A 
Effectiveness 4.8 1.0 9551.2 6.7 2.1 

Table 4.1 
        * High value may not have been caused by planner.  

Assumptions: 
Three airport   Three Depots  Three Points of Origins 

 3 trucks   2 airplanes  3 packages 
 
Goal: 
 Minimize time of delivery  
 
Process: 
 Truck picks up at point of origin and delivers to airport 
 Airplane carries from one airport to another 

Truck delivers from airport to depot  
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The results show that all the planners were able to handle the problem but in different ways. 
Their search times varied from 28 Milliseconds to almost 239 seconds but their search 
lengths were almost equal.  The generated and expanded states varied significantly with HSP 
demonstrating the most efficiency and most effectiveness.  Unfortunately neither Crikey nor 
Black Box outputted the states counts. 
 
With an Efficiency of 1.0 and an Effectiveness of 0.7, by far HSP was the best performer in 
solving the Package Delivery problem.  It generated 343 states and expanded on 41 in just 28 
milliseconds.  Its search algorithm combines searches know for reaching best solution with 
searches known for quickness in reaching solutions. Specifically to be as quick as possible 
HSP starts its search with some Greedy search and as soon as it found the first solution it 
starts to investigate for not only the quicker one but also for the optimal one.  HSP 
significantly reduced the time consumed by planner to find a solution even though it took 2 
more actions in less time comparing the other evaluated planners in this study.  The closest 
competitor was Black Box with an Effectiveness of 2.1. 
 

4.2 Depot Problems  
 
Combining Logistics and BlockWorlds domains, a new domain called Depot domain has 

been formulated. In this problem the trucks are moving boxes from their point of origination 
to a depot where the boxes are stacked with a priori knowledge of the desired stacking order.  
The lifters on the trucks utilize this knowledge in stacking the boxes inside the trucks and at 
the depot.  The possible actions defining the states of this domain are:  
 

Drive The movement of trucks from the origination point to the depot. 
Position and the duration are dependent on the speed of the trucks. 

Lift The action to move a box from a truck to the stacking position.  
Certain conditions have to be met one being that the boxes and the 
lifter are in the same place and the same time and that the lifter is 
available. 

Drop  The action of the lifter to drop a box in its appropriate position.  The 
action could be in stacking the box at the depot or inside the truck 
based on the stacking requirement for each box.  

 
This domain has 4 different forms: Strips, Numeric, Simple-Time, and Time: 
 

Strips  Simplified form of the domains.  Strips limit the size of search space 
when the search space is too big.  

Numeric  Optimizes usage of fuel by trucks and lifters  
Simple-Time  Optimizes the time utilization by the truck and by lifter.  Simultaneous 

actions requiring truck and lifter are taken into account. 
Time   Optimizes the time utilization by the truck and by lifter considering 

the speed of the truck and lifter as well as the weight of the boxes to be 
transported and stacked. Scheduling based on the speed of the trucks 
and their positions is considered.  

 
This case considers the availability of the trucks, their proximity to the destination, and the 
weight of the boxes and the order of stacking.  Faster truck can be available to serve first but 
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they need to be in the right position, Therefore an accurate plan to solve the problem is 
needed to schedule resources and redirect them in an efficient way.  Depots domain can be 
considered as a sequential domain where time is varied in different versions.   
 
As described earlier the domain itself is the combination of two other domains and they all 
consists of certain objects called trucks, lifters, boxes, and number of boxes which are to be 
stacked on top of each other in certain place. But as each form has its own criteria, the initial 
state would be varying from one to other. While Strips concentrates on basic features, the 
initial state for Simple-Time is duration of each step, for Time duration depends on distance 
between locations, and for Numeric it is based on catching the goal state and using the 
minimal fuel possible.   Regardless of the initial states of the four forms, the common goal is 
to move boxes and stacking them in particular places.  
 
Two different stances of the depot problem were considered, a single depot and a multi depot.   

4.2.1 Single Depot 
 
The parameters utilized in this problem are outlined in Figure 4.2.   
 

 
Figure 4.2 Single Depot Domain 

 
In Tables 4.2 to 4.6 the results of five planners working on the Single Depot problem are 
tabulated.  
 

CRIKEY Time Strips Simple time Numeric 
Search time 130ms 0.00s 90 ms 10 ms 
Search length 15 17 13 17 
Efficiency N/A N/A N/A N/A 
Effectiveness 8.7 0.0 6.9 0.6 

Table 4.2  
 

 
HSP Time Strips Simple time Numeric 

Search time 

Timed Out 

28ms 

Timed Out Timed Out 

Search length 16 
Expanded states 16 
Generated states 120 
Efficiency 1.8 
Effectiveness 1.8 

Table 4.3 

Assumptions: 
Single Point of Origin  Single Depot 

 2 trucks   4 boxes   3 lifters 
 1 pallet at point of origin 3 pallets at destination 
 3 lifters 
 
Goal: 
 Delivery of all boxes from point of origin to destination 

No wait time due to availability of lifters  
 
Process: 
 Boxes transported one at a time by trucks 

Lifting and setting of boxes follow predetermined order  
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LAMA Time Strips Simple time Numeric 

Search time 

Timed Out 

3.95s 

Timed Out Timed Out 

Search length 15 
Expanded states 71143 
Generated states 539983 
Efficiency 0.05 
Effectiveness 263.3 

Table 4.4  
 

SAPA Time Strips Simple time Numeric 
Search time 86ms 60ms 78ms 

Timed Out 

Search length 17 17 85 
Expanded states 32 31 39 
Generated states 65 76 85 
Efficiency 2.7 1.9 2.0 
Effectiveness 5.1 3.5 0.9 

Table 4.5  
 

Black Box Time Strips Simple time Numeric 
Search time 

Timed Out Timed Out Timed Out Timed Out 

Search length 
Expanded states 
Generated states 
Efficiency 
Effectiveness 

Table 4.6  
 

Crikey was the only planner cable of solving this planning problem using all of its four 
versions.  The results show that the search time varied from almost 0 to 130 Milliseconds 
with search lengths as low as 13 and as high as 17.  No information about the states is 
generated by Crikey therefore the Efficiency of the various versions of this planner cannot be 
compared.  Its Effectiveness however shows that Numeric and Simple time versions 
outperformed the other versions. 
 
Three of the four versions of HSP timed out before any results could be generated.  Strips 
was the only version that produced results reaching a search length of 16 in 28 Milliseconds.  
Similarly LAMA’s results were limited to Strips as well but as shown in Table 4.4, the search 
time reached almost 4 seconds with more than half a million states generated in this 
ineffective process. 
 
Similar to Crikey, SAPA was able to reach results in three of the versions in reasonable time 
and excellent Efficiency and Effectiveness.  Time and Strip versions demonstrated good 
performance however Simple time did have the best overall performance.  
 
Overall the most optimal planner for this Logistics problem with an Effectiveness of 0.6 was 
Crikey using the Numeric version.  Within 10 milliseconds it reached a solution. The closest 
competitor to it was SAPA’s Simple Time version. 

4.2.2 Multi Depot 
 
The parameters utilized in this problem are outlined in Figure 4.3.   
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Figure 4.3 Multi Depot Domain 

 
 
In Tables 4.7 to 4.11 the results of five planners working on the Multi Depot problem are 
tabulated.  
 
 

CRIKEY Time Strips Simple time Numeric 
Search time 

Timed Out 

7.26s 

Timed Out 

10.84s 
Search length 31 31 
Efficiency N/A N/A 
Effectiveness 234.2 349.7 

Table 4.7  
 

HSP Time Strips Simple time Numeric 
Search time 

Timed Out 

10.56s 

Timed Out Timed Out 

Search length 26 
Expanded states 93199 
Generated states 975941 
Efficiency 0.11 
Effectiveness 406.2 

Table 4.8  
 

LAMA Time Strips Simple time Numeric 
Search time 

Timed Out 

3.99s 

Timed Out Timed Out 

Search length 24 
Expanded states 27770 
Generated states 431066 
Efficiency 0.14 
Effectiveness 166.3 

Table 4.9  
 

SAPA Time Strips Simple time Numeric 
Search time 1373ms 1623ms 1227ms 

Timed Out 

Search length 26 27 26 
Expanded states 170 100 146 
Generated states 1863 1238 1681 
Efficiency 8.07 16.23 8.40 
Effectiveness 52.8 60.1 47.2 

Table 4.10  
 
 

Assumptions: 
Single Point of Origin  Three Depots 

 2 trucks   6 boxes   6 lifters 
 1 pallet at point of origin 1 pallet at each destination 
  
 
Goal: 
 Delivery of all boxes from point of origin to three destinations 

No wait time due to availability of lifters  
 
Process: 
 Boxes transported one at a time by trucks 

Lifting and setting of boxes follow predetermined order  
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Black Box Time Strips Simple time Numeric 
Search time 

Timed Out Timed Out Timed Out Timed Out 

Search length 
Expanded states 
Generated states 
Efficiency 
Effectiveness 

Table 4.11 
 
For this more complex depot problem, Time and Simple time versions of Crikey could not 
reach a solution and timed out.  Strips and Numeric did manage to reach solutions with equal 
search lengths with search times of 7.26 and 10.84 seconds respectively deeming Strips as the 
more effective of the two.   
 
As was seen in the Single Depot scenario, three of the four version s of HSP timed out before 
any results could be generated for this second depot problem.  Strips did produce results 
reaching a search length of 26 in 10.5 seconds.  Its Efficiency was great but its Effectiveness 
was extremely poor.  Similarly LAMA’s results were limited to Strips but as shown in Table 
4.9, the search time reached almost 4 seconds with less than half a million states generated in 
this efficient but ineffective process.  It is interesting that the number of states generated and 
the expanded states by LAMA for the multi depot problem were less than the single depot 
case. 
 
Across the board SAPA was the best performing planner for this complex problem.  Three of 
the versions led to solutions in far less time than the other planners while reaching relatively 
the same search length with far more effectively but less efficiently. The most optimal one of 
the three was Simple Time version. 
 

4.3 Discussion of results 
 
CRIKEY was able to produce a solution for the majority of the cases applied.  For the 
Logistic problems as well as Single Depot, it was able to reach solutions in a timely and 
effective way.  It did however time out in running the Multi Depot problem using its Time 
and Simple Time versions.  CRIKEY by default uses Enforced Hill-Climbing which may fail 
while doing a local search however, adjusting the preset algorithm to Breadth-First Search 
will bring solution to all different version of the depots problem.  CRIKEY is not an optimal 
algorithm for finding the best solution but is one to find a quick solution however its 
quickness was not seen in the Multi depot problem as it took significant time to reach a 
solution. It was also observed that while SAPA handled some actions simultaneously, 
CRIKEY took a single action at the time.  Interestingly all actions taken by SAPA were 
eventually taken by CRIKEY.   
   
As for HSP, it was only able to run in the Strip version for all three problems.     During the 
search procedure it first employs Greedy Best First Search and then Best First Search to reach 
the goal in both directions, forward and backward.  It did fine with the simplest of the three 
problems but had a slightly ineffective process in solving the multi depot problem. 
 
LAMA also ran only in Strip version.  Its performance from a time and effectiveness point of 
view was the poorest of all the planners.  The LAMA planner uses Lazy Greedy and Lazy 
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Best First searches in its first iteration in order to find a quickest possible solution to the 
problem at hand. Subsequently and immediately after finding an initial solution, it will move 
on to find a more optimal solution by replacing the initial search algorithms with the non- 
continuous Weighted A*.  The search starts from the beginning to improve the quality of the 
search procedure in the planner. The process is too complex for three of the four versions 
while the simplest one, Strips, takes a long time to converge on a solution.  Observations tell 
that the solution generated by LAMA take much longer whereas per each run of search there 
are more states generated than the one expanded in the process of examining different 
possibilities.   In solving the problems about half a million states were generated and a high 
percentage were expanded upon.  LAMA consists of three different programs that are 
invoked as needed to solve the task in hand.  Although in theory LAMA is good in satisfying 
the sequential domains, in this case at times it crashed and at times it wasn’t able to proceed 
as it hit a deadlock situation. Based on the observation the problem occurred either because of 
memory usage, which is calculated in rang of 55.3% up to 72.7% or CPU usage in rang of 
8% to 95%.   Note that CPU usage never exceeds 95% regardless of memory usage. Other 
potential explanations are (1) overloaded memory when huge graph is generated, or (2) 
blocked memory or possible memory leakage due to assignment parts of memory to a 
variable or task which is not really in use but for which the memory remains active until 
released.     
 
According to the results presented in the above tables, the solutions found by SAPA was a 
well performing planner for all the three problems and in a majority of its versions.  This can 
be attributed to the search algorithm used by SAPA, Breadth First Search.  SAPA uses 
forward chaining for its search direction and supports all the versions except Numeric. This is 
because metric temporal planners deal with more complex constraints whereas classical 
planners only handle constraints between actions. Although SAPA handles both durative 
actions and the resource consumer actions, still it is not capable to handle Numeric since 
SAPA requires more time to produce a solution with less cost.  However, in contrast Numeric 
version requires less fuel usage to achieve the goal. SAPA is a sound and complete planner, 
which means that it guaranty that if there exists any solution to the problem in hand it will 
generate it.   
   
Unlike other planers Blackbox is not capable to handle depots problems. It uses the 
SATPlan’s local search and the GraphPlan’s engine to search the plan graph. Blackbox also 
applies another strategy to improve its performance. It actually restarts the search procedure 
after the fixed number of backtracking, i.e. it adds a randomization into the heuristic in the 
search in order to reduce the amount of time consumed to produce the proper solution.  
However neither of these features is able to give it the possibility of solving depots problems.  
 
The version that worked on all the three problems was Strips.  In Tables 4.12 to 4.15 the 
performance of four out of five planners using Strips is outlined.    It works quicker than the 
other versions and all but the Black Box case lead to reasonable solutions.  The more 
complex the problem, the more actions the planner needs to apply to reach its goals. This 
requires more memory to allocate to handle therefore the more complex problems require 
more time and memory.  Clearly Strips capability to minimize the size of the domain to a 
manageable one gives it the possibility to run quickly before any timeout or memory 
limitations are reached.  Out of the four planners whose Strip version worked HSP and SAPA 
clearly have the better performance when one considers time, efficiency and effectiveness.  
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To solve logistics problems HSP shows the best performance overall with SAPA having 
slightly better effectiveness on harder multi depot problems. 
 
 

Crikey Logistic Single Depot Multi Depot 
Search time 120 ms 0.00s 7.26s 
Search length 25 17 31 

Efficiency N/A N/A N/A 

Effectiveness 4.8 0 234.2 

Table 4.12 Crikey using Strips 
 

 
HSP Logistic Single Depot Multi Depot 

Search time 28ms 28ms 10.56s 
Search length 27 16 26 

Expanded states 41 16 93199 

Generated states 343 120 975941 

Efficiency 0.68 1.75 0.11 

Effectiveness 1.0 1.8 406.2 

Table 4.13 HSP using Strips 
 

 
LAMA         Logistic Single Depot Multi Depot 

Search time 238.78* s 3.95s 3.99s 
Search length 25 15 24 
Expanded states 105 71143 27770 
Generated states 1386 539983 431066 
Efficiency 2274.1 0.05 0.1 
Effectiveness 9551.2 263.3 166.3 

                 * High value may not have been caused by planner.  
Table 4.14 LAMA using Strips 

 
 

SAPA Logistic Single Depot Multi Depot 

Search time 168ms 60ms 1623ms 

Search length 25 17 27 

Expanded states 45 31 100 

Generated states 154 76 1238 

Efficiency 3.7 1.9 16.2 

Effectiveness 6.7 3.5 60.1 

Table 4.15 SAPA using Strips 
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5 CONCLUSION  

 
This thesis answers the following question:  Of the numerous planners and search 

algorithms available today, which one is capable of effectively and efficiently solving 
logistics problems is a timely manner?  Through selection of appropriate planners and search 
algorithms, the most promising ones were selected and utilized in solving logistics problems.  
It was explicitly shown that that HSP has superior performance in solving various logistics 
problems.  It was quick, efficient and effective in solving all three problems using its Strips 
version.   

 
In this thesis planning problem along with search algorithms and strategies have been studied 
in detail.  A brief comparison between search algorithms has shown the power of these 
algorithms in finding reasonable solutions for planning problems. The thesis also covered the 
planning as a core along with all the related concepts. Particularly, classical planners were 
compared to temporal planners and usability of each was highlighted. Scheduling as it relates 
to planning was also discussed in detail along with some computer languages to represent 
planning problems. Specifically, five temporal planners SAPA, CRIKEY, Blackbox, HSP, 
and LAMA were selected and utilized in solving three distinct logistics planning problems 
with the goal of finding the most effective and efficient planner to solve any logistics 
problem. Methods to measure the performance of planners were presented and it was 
demonstrated how these planners and their respective versions dealt with the problems, 
explicitly showing their strengths and weaknesses.  All and all, through experiments 
conducted it was shown that HSP has superior performance in solving various logistics 
problems.  It was quick, efficient and effective in solving all three problems using its Strips 
version.  The overall high performance is attributed to its use of Greedy Best First Search 
followed by Best First Search to reach the goal in both directions, forward and backward.   
 
It was also observed timing and potentially memory issues that deserve further look in future 
research.  As expected time plays an essential role in concept of planning and scheduling 
problems.   
 

5.1 FUTURE WORK 
 

As an avenue for future research, the current planners with complementary capabilities 
can be combined to achieve better performing planners suitable for Logistics and other real 
world problems. It is the recommendation of the researchers that a common hardware and 
software platform should be used to launch the various planners and demonstrate all planner 
performance under a common platform and under similar circumstances.  Furthermore using 
a common platform planning problems are to be run multiple times to remove any anomalies 
that may exist in the data.  The authors will put more effort on programming our own idea to 
take part in competition with existing planners. Thinking about search space in planning 
domain and finding the way to prevent going through any paths which are not providing a 
solution can be another point to put it in consideration.  



46 
 

 BIBLIOGRAPHY 
 
[1] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach Third 
Edition/2010. 
[2]  Hector  Geffner. Heuristics, Planning and Cognition. 
[3]  Tran Sao Son and Chiaci Sakama. An Introduction to Action Language, January 2010.  
[4]  Minh B. Do and Subbarao Kambhampati. SAPA: A Multi Objective Metric Temporal 
Planner, 2003. 
[5]   Malik Ghallab, Adele  Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, 
Manuela Velose, Daniel Weld, and David Wilkins. PDDL- The Planning Domain Definition 
Language, October 1998. 
[6]   Patrik Haslum and Hector Geffner. Heuristic Planning with Time and Resourses. 
[7]   Avrim L. Blum and Merrick L. Furst. Fast Planning Through Planning Graph Analysis, 
1997 
[8]   Alex Coddington, Maria Fox, and Derek Long. Handling Durative Actions in Classical 
Planning Frameworks, UK. 
[9]    Mausam and Daniel S. Weld. Planning with Durative Actions in Stochastic Domains, 
Seattle 2008. 
[10]   Blai Bonet and Hector Geffner. Planning as Heuristic search, Venezuela. 
[11]   Hector Geffner. Perspectives on Artificial Intelligence Planning, Spain.  
[12]  Avrim L. Blum and John C. Langford. Probabilistic Planning in the Graph Plan 
Framework. 
[13]    Malte Helmert. The Fast Downward Planning System, Germany 2006.  
[14]    Jorn Hoffmann and Bernhard Nebel. FF: The Fast- Forward Planning System. 
[15]    Keith Halsey, Derek Long, and Maria Fox. CRIKEY-A Temporal Planner Looking at 
the Integration of Scheduling and Planning, Glasgow, UK. 
[16]  Keith Halsey, Derek Long, and Maria Fox. Multiple Relaxations in Temporal     
Planning. 
[17]    Keith Halsey. The Workings of CRIKEY- a Temporal Metric Planner, Glasgow, UK  
[18]    Bharat Ranjan Kavuluri. Extending Temporal Planning for the Interval Class, India. 
[19]  Silvia Richter,and Mathias Westphal. The LAMA Planner: Guiding Cost-Based 
Anytime Planning with Landmarks,Australia, Germany. 

 

 
 
       
 


