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In most solid cancers, cells harboring oncogenic mutations represent only a sub-fraction
of the entire population. Within this sub-fraction the expression level of mutated proteins
can vary significantly due to cellular variability limiting the efficiency of targeted therapy.
To address the causes of the heterogeneity, we performed a systematic analysis of one of
the most frequently mutated pathways in cancer cells, the phosphatidylinositol 3 kinase
(PI3K) signaling pathway. Among others PI3K signaling is activated by the hepatocyte
growth factor (HGF) that regulates proliferation of hepatocytes during liver regeneration
but also fosters tumor cell proliferation. HGF-mediated responses of PI3K signaling were
monitored both at the single cell and cell population level in primary mouse hepatocytes
and in the hepatoma cell line Hepa1_6. Interestingly, we observed that the HGF-mediated
AKT responses at the level of individual cells is rather heterogeneous. However, the overall
average behavior of the single cells strongly resembled the dynamics of AKT activation
determined at the cell population level. To gain insights into the molecular cause for the
observed heterogeneous behavior of individual cells, we employed dynamic mathematical
modeling in a stochastic framework. Our analysis demonstrated that intrinsic noise was
not sufficient to explain the observed kinetic behavior, but rather the importance of
extrinsic noise has to be considered. Thus, distinct from gene expression in the examined
signaling pathway fluctuations of the reaction rates has only a minor impact whereas
variability in the concentration of the various signaling components even in a clonal cell
population is a key determinant for the kinetic behavior.

Keywords: mathematical modeling, HGF, PI3 kinase, AKT, single cell heterogeneity, live cell imaging, primary

hepatocytes, hepatocellular carcinoma

INTRODUCTION
Cancer heterogeneity is considered a result of clonal instabil-
ity, followed by clonal evolution (Campbell and Polyak, 2007;
Marusyk and Polyak, 2010), as it has been shown in cultured cell
lines (Odoux et al., 2008; Dalerba et al., 2011). It has been postu-
lated that multi-lineage differentiation can contribute to tumor
heterogeneity (Reya et al., 2001; Jordan et al., 2006; Dalerba
et al., 2007), but this still remains very controversial (Shackleton
et al., 2009) and might strongly depend on the cellular context.
However, the heterogeneity of individual cells in a tumor is an
extremely important issue since it can cause differential responses
to treatment resulting in incomplete tumor regression and con-
tributing to overall poor efficiency of therapy in hepatocellular

carcinoma (HCC) patients (Unsal et al., 1994; Shachaf et al.,
2004) and other cancers (Brognard et al., 2001).

Cells also harbor non-genetic sources of random variabil-
ity that are likely to contribute to heterogeneous responses to
therapy. Even in isogenic populations, cells die at very differ-
ent time points after the administration of pro-apoptotic drugs,
and a sizable fraction of cells usually survives treatment (Spencer
et al., 2009). Such non-genetic cell-to-cell variability has been
extensively studied in gene expression. Swain et al. (2002) have
demonstrated that two identical genes in a bacterial cell are tran-
scribed with different time-varying rates. Similarly, two alleles
of the same gene in mammalian cells show random differences
in transcription in the absence of allelic imprinting (Mariani
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et al., 2010). These data demonstrate that random fluctuations
in the biochemical reactions involved in gene expression cause
measurable differences in protein concentration in individual
cells. Cell-to-cell variability in signal transduction is much less
investigated. In analogy to transcription, the unavoidable rate
fluctuations in molecular interactions, phosphorylation reactions
etc., could cause variable signaling processing in individual cells.
In analogy to transcription, this phenomenon will be referred to
as “intrinsic noise” (Swain et al., 2002). Cell-to-cell differences in
the concentrations of signaling proteins (receptors, kinases, phos-
phatases, adapters etc.) are another source of variability that will
ultimately be due to gene-expression noise. Because this type of
heterogeneity would be imposed by processes that are external to
signal transduction, we refer to it as “extrinsic noise.” In terms
of mathematical models of signal transduction, the distinction
between the two kinds of noise is particularly clear. Intrinsic noise
acts directly on the reaction rates itself whereas extrinsic noise acts
on the parameters (especially the protein concentrations).

Clearly, the study of noise in signal transduction requires
measurements in individual cells. To interpret such data in a sys-
tem akin to signal transduction, the yeast cell cycle, Kar et al.
(2009) suggested by means of model analysis that intrinsic noise

contributes more than extrinsic noise sources. In a live cell imag-
ing study of the mammalian antiviral response, intrinsic, and
extrinsic noise contributions in the activation of the IRF-3/7 and
NF-κB signaling pathways downstream of the viral sensor RIG-I
were found to be both large and of comparable magnitude (Rand
et al., 2012). By comparison, the extent of cell-to-cell heterogene-
ity in growth factor-mediated signaling in mammalian cells as
well as the relative contributions of intrinsic and extrinsic noise
has so far remained unclear.

A key growth factor that is not only essential for hepatocyte
proliferation during normal liver formation and regeneration
after injury, but also drives hepatic tumor cell proliferation
(Patijn et al., 1998; Comoglio, 2001; Christensen et al., 2005;
Michalopoulos, 2010; Joffre et al., 2011) is the hepatocyte growth
factor (HGF). HGF binds to the receptor tyrosine kinase cMet,
which activates receptor phosphorylation and subsequent activa-
tion of multiple signaling pathways including PI3 kinase signaling
(Figure 1A). Among the HGF activated proteins, phosphatidyli-
nositol 3 kinase (PI3K) and AKT play an important role in
cell survival, growth, proliferation, angiogenesis, metabolism,
and migration in normal and tumor context (Nicholson and
Anderson, 2002; Manning and Cantley, 2007). It has been

FIGURE 1 | Hepatocyte growth factor (HGF)-mediated signaling

pathway. (A) Graphical representation of the major signaling components
of HGF-induced cellular responses with the cMet/PI3K arm highlighted in
color. (B) Phosphorylation kinetics of the cMet receptor determined by
quantitative immunoblotting (IB) and for AKT by quantitative protein array
analysis in primary mouse hepatocytes stimulated with 40 ng/ml HGF. For
the detection of cMet receptor phosphorylation immunoprecipitation with
subsequent analysis by quantitative immunoblotting was employed that
combines chemiluminescence with LumImager detection and

quantification with the LumiAnalyst software. Measurements from
triplicates of three-independent hepatocyte preparations have been
merged on log scale assuming signal scaling between different gels. The
merged signals are represented as parameters in a generalized least
squares problem. Parameter estimates and one sigma confidence bounds
are depicted as dots and error bands. For AKT the dots represent the
scaled mean of the quantitative protein array results with one sigma
confidence as error margins obtained from four different hepatocyte
preparations.
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previously described that the different expression levels of PI3K
signaling pathway components influence the pathway response
to external stimuli (Yuan et al., 2011). By comparing single cell
and population data in combination with mathematical model-
ing, we investigated if the heterogeneity is caused by stochastic
fluctuations or extrinsic noise factors. To address this question, we
monitored the dynamics of membrane recruitment of a mCherry-
AKT fusion protein in primary mouse hepatocytes as well as
in the hepatoma cell line Hepa1_6 and generated a population
data-based deterministic ordinary differential equation (ODE)
model. Based on the ODE model we performed stochastic anal-
ysis to investigate the variability derived by the different sources
of noise at the single cell level. Our analysis demonstrated that
the observed heterogeneity could not be explained by consid-
ering intrinsic stochastic fluctuations of proteins in individual
cells alone, but rather there is a major contribution by extrinsic
noise due to variations in total protein levels for all the involved
signaling components.

RESULTS
POPULATION AND SINGLE CELL ANALYSIS OF HGF SIGNALING IN
PRIMARY MOUSE HEPATOCYTES
To determine the dynamics of HGF signaling at the cell popula-
tion level, primary mouse hepatocytes were stimulated with HGF
and lysed at different time points. The activation of the HGF
receptor cMet was determined by quantitative immunoblotting
while AKT phosphorylation was quantified by quantitative pro-
tein array (Figure 1B). We observed a fast activation kinetic of
cMet declining to the basal level after 180 min of HGF stimula-
tion, while AKT phosphorylation shows a slower and sustained
dynamics.

In order to investigate if the cell population response is
reflected at single cell level, fluorescently tagged AKT (Carpten
et al., 2007; Landgraf et al., 2008) was employed to quantify the
translocation of AKT to the plasma membrane and therefore
its activation in individual cells. The mCherry-AKT localization
was monitored by live cell imaging in transiently transfected pri-
mary mouse hepatocytes stimulated with HGF or left untreated.
Localization of the fluorescently tagged AKT1 in unstimulated
cells was similar as shown for different cell types in previous pub-
lications (Varnai and Balla, 2006; Carpten et al., 2007; Landgraf
et al., 2008). In order to track the mCherry-AKT localization
changes over time, the fluorescent signal was quantified within
5 pixels inside of the plasma membrane stained with WGA-
Alexa488 as depicted in Figures 2A,B. The quantification of the
track of 25 individual cells stimulated with HGF revealed a very
heterogeneous single cell behavior (Figure 2C) from sharp tran-
sient peaks, double peaks, wavy behavior, or slow increase over
the observation time of 30 min. By combining confocal imag-
ing and TIRF microscopy, investigations of additional 50 cells
from 10 independent primary mouse hepatocyte isolations con-
firmed the heterogeneous responses. To confirm that the observed
mCherry-AKT localization changes are specifically triggered by
HGF, cells were treated with PI3K inhibitor (LY294002) prior to
HGF stimulation or left untreated, show unchanged mCherry-
AKT localization as depicted for the average of the single cell
traces (Figure 2D). Despite the heterogeneity of time courses of

FIGURE 2 | Quantification of HGF-induced PI3K/AKT signaling at the

single cell level. (A) Confocal image of an individual mCherry-AKT
transfected primary mouse hepatocyte is shown as overlay of the Hoechst,
WGA-Alexa488, and mCherry-AKT signal with the signals from different
channels in artificial-coloring. The graphical representation shows the
tracked membrane signal in blue and the rim of the non-membrane
cytoplasmic region in yellow with the localization of the two nuclei in the
center. (B) Magnification of a subselection showing to the left of the
tracked membrane section that is marked in blue the intracellular
cytoplasmic space whereas to the right the bright green signal due to
background staining of the WGA-Alexa488 visualizes the extracellular
space. In the lower panel the quantification areas for mCherry-AKT intensity
derived by the membrane tracking are depicted as blue (membrane
associated) and yellow regions (intracellular reference area). (C) Signals
from 25 individual single cell traces in response to 40 ng/ml HGF
stimulation are represented in different colors. (D) Average of single cell
traces are depicted for untreated controls (n = 12) in blue, after stimulation
with 40 ng/ml HGF (n = 50) in red, and for cells pretreated with LY294002
for 30 min prior to HGF stimulation (n = 15) in green. Error bars represent
the standard error of the mean.

the HGF-induced AKT translocation to the cell membrane in
individual hepatocytes, the average of the data obtained at the
single cell level showed a remarkable similarity to the kinetics
observed at the cell population level.
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MATHEMATICAL MODELING OF AKT SIGNALING IN PRIMARY
MOUSE HEPATOCYTES
To elucidate the mechanisms responsible for the observed het-
erogeneity, we developed a mathematical model of the PI3K/AKT
signaling pathway activation. The model was initially formulated
as set of deterministic ODEs for the concentrations of active cMet,
PI3K, and AKT (Figure 4A). To constrain the model, the con-
centration of the key proteins of the pathway, cMet, the negative
regulator PTEN, AKT, and the subunit p85 of PI3K protein, were
determined by serial dilutions of recombinant protein standards
in combination with quantitative immunoblotting (Figure 3A
and Table 1). PI3K consists of two subunits, p110 and p85, and it
has been shown that their level correlate (Ueki et al., 2002); there-
fore we quantified the p85 subunit to measure the abundance of

FIGURE 3 | Quantification of cMet and PI3K signaling components in

primary mouse hepatocytes. (A) Quantitative immunoblotting with
known calibrator concentrations was used to estimate total number of
molecules per cell and concentrations in untreated cell lysates. (B) Analysis
of the degree of phosphorylation of AKT1 at Ser473 by mass spectrometry.
Primary mouse hepatocytes were treated with 40 ng/ml HGF for 10 min or
left untreated. Cells were lyzed, AKT1 was immunoprecipitated and in-gel
digested. A one-source standard pair was labeled with 13C6-phenylalanine
and added at 1:1 ratio to the digests prior to UPLC-MS/MS analysis. The
figure shows the normalized mass spectra of the AKT1 peptides; upper
panel: without stimulation, lower panel: after stimulation with HGF.

PI3K. Additionally, the degree of AKT phosphorylation at 10 min
post HGF stimulation was determined by quantitative mass spec-
trometry (Hahn et al., 2011) exemplarily shown in Figure 3B.
All determined values and corresponding concentration ranges
are summarized in Table 1. In addition to the above-listed pro-
teins, the model includes a phosphatase for dephosphorylating
cMet. Since we observed a basal level of AKT phosphorylation,
we include in the model a direct activation of AKT by PI3K in a
HGF-independent manner. In Figure 4B the best fit of the model
to HGF-induced phosphorylation kinetics of cMet and AKT in
a cell population is shown. The model equations and parameter
values for the best fit obtained from 2500 fit sequences are given
in Table 2. After fitting the experimental data, 50 of those 2500 fit
sequences gave nearly identical sets of parameters.

To investigate whether intrinsic noise can account for the
observed heterogeneity of AKT activation kinetics at the single
cell level, we converted the deterministic model based on mass
action kinetics (Table 2) into the corresponding stochastic model
following the chemical master equation formalism (Kar et al.,
2009). We simulated individual single cell traces (Figure 4C)
using Gillespie’s algorithm. The resulting intrinsic noise was
too small to account for the experimentally observed single-cell
behavior (Figure 4D). Therefore, we examined the contribu-
tion of extrinsic noise due to variable protein concentrations of
the signaling components in individual cells. We distributed the
total concentrations of all protein components in the model log-
normally around the measured mean values with coefficient of
variation (CV) of 0.15 (Niepel et al., 2009). The resulting cell-
to-cell variability of AKT activation in the model was in the same
range as the experimentally measured one (Figure 4D). This find-
ing indicates that the heterogeneity of the total concentration of
the signaling proteins in a heterogeneous population of primary
mouse hepatocyte cells is the major contributor for the single-cell
variability observed in mCherry-pAKT recruitment dynamics at
the plasma membrane during HGF-mediated signaling.

POPULATION AND SINGLE CELL ANALYSIS IN CLONAL CELL
POPULATIONS
To rule out that the observed effects are due to variability
introduced by transient transfection or result from hepatocytes
derived from different regions in the liver, we generated sta-
ble Hepa1_6 cell clones expressing mCherry-AKT. Two clones,

Table 1 | Number of average molecules per cell and the

phosphorylation degree of AKT at 10 min post HGF stimulation in

primary mouse hepatocytes.

Molecules per cell Concentration (nM)

cMet 92,000 ± 15,000 11.6

PTEN 32,000 ± 22,000 4.0

p85 38,000 ± 24,000 4.8

AKT 120,000 ± 60,000 15.1

mCherry-AKT NA NA

pAKT(Ser473) 23.0% 3.5

p-mCherry-AKT(Ser473) NA NA

Frontiers in Physiology | Systems Biology November 2012 | Volume 3 | Article 451 | 4

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Meyer et al. Heterogeneous kinetics of AKT signaling

FIGURE 4 | Mathematical modeling of the cMet/PI3K signaling pathway.

(A) Schematic representation of the signaling pathway model generated with
the Cell Designer Software. Species framed by dashed lines represent
phosphorylated or activated forms. (B) Fits of time courses of cMet receptor
and AKT phosphorylation in primary mouse hepatocytes stimulated with
40 ng/ml or 100 ng/ml HFG. Depicted as dots with standard deviation as error
bar are the means of the indicated number of biological replicates. Model

trajectories are depicted as lines and the corresponding Chi-square values are
indicated. (C) Depicted in different colors are model simulations of AKT
phosphorylation for 10 individual cells resulting from stochastic events. (D) The
measured versus computed coefficient of variation (CV) for single cells over
time are shown indicating the experimental fluctuations of mCherry-pAKT
(blue line), theoretical intrinsic fluctuations of mCherry-pAKT (green line), and
the corresponding combination of extrinsic and intrinsic fluctuation (red line).

Hepa1_6-D8 and E2, were selected that showed high (Hepa1_6-
E2) and intermediate (Hepa1_6-D8) mCherry-AKT expression
levels based on flowcytometric analysis (Figure 5A). In addi-
tion, comparing by quantitative immunoblotting in both cell
clones the concentration of mCherry-AKT and endogenous AKT,
showed first of all a 1.6 fold higher endogenous AKT level in
clone E2 compared to clone D8 and parental Hepa1_6 cells. For
the mCherry-AKT expression in clone E2 was determined to be
2.0 fold higher than in clone D8. The mCherry-AKT expression
was determined to be 4.3 fold (D8) and 5.5 fold (E2) higher
than the endogenous AKT concentration in the respective clones
(Figures 5B,C and Table 3).

To investigate if the overexpression of the mCherry-AKT con-
struct is affecting the upstream signaling pathway, the time course
of cMet phosphorylation and degradation dynamics in the two
clones was compared (Figure 6A). The quantification showed
that the receptor dynamics was not altered by the different
exogenous AKT concentrations (Figure 6B). In order to deter-
mine if the mCherry-AKT followed the same dynamics as the
endogenous one, their activation kinetics was directly compared
by quantitative immunoblotting for both clones (Figure 7A).
The quantification of mCherry-AKT phosphorylation dynamics
was comparable to the endogenous AKT within each clone

(Figures 7B,C). As expected, the amplitude of the mCherry-AKT
phosphorylation signals was higher in both clones due to the
higher concentration of the tagged AKT compared to the endoge-
nous AKT. However, the total AKT levels remained constant over
time independent of HGF stimulation. The similarity of the AKT
phosphorylation dynamics independent of the different expres-
sion levels of endogenous and tagged AKT suggested that they
both compete for the same interaction partners. In conclusion, we
observed that there is no significant difference at the cell popula-
tion level. Therefore, we investigated if there are major differences
at the single cell level by monitoring the mCherry-AKT recruit-
ment to the plasma membrane by live cell imaging as described
for the primary mouse hepatocytes. The average of 10 single cell
tracks for each clone depicted in Figures 9A,B showed a lower
heterogeneity compared to one observed in the primary mouse
hepatocytes.

MATHEMATICAL MODELING OF AKT SIGNALING IN CLONAL CELL
POPULATIONS
As described for the primary mouse hepatocytes, we quantified
the concentration of the pathway components in the Hepa1_6-D8
and E2 clones (Table 3). The degree of phosphorylation at 10 min
post HGF stimulation in Hepa1_6 cell line was determined by
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Table 2 | Equations and parameters for the primary mouse

hepatocyte model.

Primary mouse hepatocyte model: equations

d
[
pMet

]

dt
= kkMet

([
Mettotal

] − [
pMet

])
HGFtotal

− k1Met
[
pMet

] [
Phosactive

]

d
[
Phosactive

]

dt
= kkPhos

([
Phostotal

] − [
Phosactive

]) [
pMet

]

− k1Phos
[
Phosactive

]

d
[
pMet − PI3K

]

dt
= kkPI3K

([
PI3Ktotal

] − [
pMet − PI3K

]) [
pMet

]

− k1PI3K
[
pMet − PI3K

] [
PTEN

]

d
[
pAkt

]

dt
= kkAkt_back

([
Akttotal

] − [
pAkt

]) ([
PI3Ktotal

] − [
pMet − PI3K

])

+ kkAkt
([

Akttotal
] − [

pAkt
]) [

pMet − PI3K
] − k1Akt

[
pAkt

]

Primary mouse hepatocyte model: parameters

Parameter Value

kkMet 2.133E-01 nM−1.min−1

k1Met 1.814 nM−1.min−1

kkPhos 1.0E-04 nM−1.min−1

k1Phos 1.0E-04 min−1

kkPI3K 1.63E-01 nM−1
.min−1

k1PI3K 3.399E-01 nM−1.min−1

kkAkt_back 1.316E-01 nM−1.min−1

kkAkt 5.2E-01 nM−1.min−1

k1Akt 3.476 min−1

mass spectrometry and calculated by comparative immunoblot-
ting for the clones (Table 3). Additionally to the previous deter-
ministic ODEs-based model generated for the primary mouse
hepatocytes, the mCherry-AKT species was added to the model
structure as depicted in Figure 8A. The new model included an
HGF-independent activation of AKT both for the endogenous
and for the mCherry-AKT. In a similar fashion to the primary
mouse hepatocytes, the time resolved quantitative data gener-
ated for both clones were fitted to the new model (Figure 8B).
The model reactions and the obtained parameter values are sum-
marized in Table 4. Notably, the parameter sets were identical
for both clones except for kAkt and kAktc. We implemented the
same procedure as employed for the primary hepatocytes to
transform the deterministic model to the corresponding stochas-
tic model based on Gillespie’s algorithm using chemical master
equation formalism to simulate single cell traces for the clones.
The intrinsic fluctuation calculated in the form of CV (green
line) could not recapitulate the experimentally obtained CV (blue
line) for both clones (Figures 9E,F). This was in agreement with
the results obtained for the primary mouse hepatocytes, where
intrinsic fluctuations could not account for the experimentally
observed heterogeneity. Therefore, we investigated the effect of
extrinsic fluctuation due to differences in protein concentrations
by deriving the CV of the mCherry-AKT concentration in both
clones by FACS analysis (Figure 5A). For simplicity the CV of all

protein species were set to the measured CV of the mCherry-
AKT of the corresponding clone, precisely CV of 0.137 for E2
and 0.096 for D8 clone. We simulated single cell traces for each
clonal population by distributing the total protein concentrations
of all the protein components in the model log-normally around
the measured mean values and with the corresponding CV val-
ues obtained for the D8 and E2 clone (Figures 9C,D). The noise
statistics (red line) calculated from these simulations resembled
the heterogeneity observed in the experimental data (blue line)
(Figures 9E,F) for the early response, suggesting that extrinsic
fluctuations significantly contribute to the heterogeneity in par-
ticular during the early phase of signal transduction, whereas
intrinsic fluctuations have only a minor impact. By comparing
these results with the ones obtained in primary mouse hepato-
cytes, we confirmed that also in clonal populations extrinsic noise
derived from variable expression levels of all considered proteins
contributes most to the observed single cell heterogeneity of AKT
response to HGF stimulation.

DISCUSSION
The response of cells to external cues is determined by
the coordinated interaction of multiple signaling components.
Heterogeneity in responses can arise from genetic variability,
intrinsic stochastic fluctuations of reaction rates, and extrinsic
noise in the form of variable protein expression levels even in
clonal populations (Brock et al., 2009; Huang, 2009; Marusyk
et al., 2012).

To determine the contribution of different sources of noise to
the PI3K pathway activation upon HGF stimulation, we exam-
ined pathway activation at cell population and single cell level
in two cellular model systems. In primary mouse hepatocytes
major control mechanisms of signaling pathways are unper-
turbed. Therefore, this system closely represents the physiological
situation and enables the analysis of molecular processes in a
setting resembling the in vivo situation. We show that fluores-
cently labeled signaling components can be expressed in these
cells albeit at very heterogenous levels. A major experimental
limitation of the system is the variability of hepatocytes from
preparation to preparation, the low transfection efficiency, and
the uncontrollable expression levels. Although the HCC cell line
Hepa1_6 harbors alterations in signaling pathways, it is a useful
model system since cell clones can be selected that stably express
labeled signaling proteins and thereby facilitate the examination
of principle mechanisms.

As readout of PI3K pathway activation at the single cell level
we monitored translocation of fluorescently tagged AKT to the
plasma membrane. As previously demonstrated full-length AKT
tagged at the N-terminus with green fluorescent protein (GFP)
retains functionality comparable to the endogenous protein as
demonstrated by its kinase activity and ligand-induced mem-
brane translocation (Watton and Downward, 1999). In analogy
to this construct we exchanged the GFP tag by a monomeric
version (Campbell et al., 2002) of mCherry to avoid artifacts
due to dimerization induced by the tag. We show that the
mCherry-AKT fusion protein is phosphorylated in response to
HGF stimulation and translocations to the membrane confirming
functionality.

Frontiers in Physiology | Systems Biology November 2012 | Volume 3 | Article 451 | 6

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Meyer et al. Heterogeneous kinetics of AKT signaling

FIGURE 5 | Distribution and quantification of AKT expression levels in

Hepa1_6 cell clones. (A) FACS analysis of the distribution of mCherry-AKT
expression in stable Hepa1_6 clones is shown in comparison to parental wild
type Hepa1_6 cells. For the calculation of the coefficient of variation within the
population the distribution in the Hepa1_6-E2 population (passage #12) is
depicted on the right and the distribution in the Hepa1_6-D8 population

(passage #11) is displayed in the middle. Their dependency on the cell size is
shown in the corresponding lower panels. (B + C) Quantification of molecules
per cell for mCherry-AKT and endogenous AKT in the stable Hepa1_6 clones
D8 (35 μg total cell lysate) and E2 (20 μg of total cell lysate) are shown as
determined by (B) quantitative immunoblotting and (C) linear regression from
known AKT-calibrator concentrations analyzed on the same gel.

Table 3 | Number of molecules per cell and concentrations of signaling components and phosphorylation degree of AKT and mCherry-AKT at

10 min HGF stimulation in the Hepa1_6 clones D8 and E2.

Molecules per cell in Hepa1_6-D8 Concentration (nM) Molecules per cell in Hepa1_6-E2 Concentration (nM)

cMet 425,000 ± 71,000 65.2 378,000 ± 94,000 73.5

PTEN 47000 ± 25,000 27.3 220,000 ± 80,000 8.9

p85 775,000 ± 69,000 107.9 625,000 ± 47000 213.0

AKT 150,000 ± 112,000 94,7 549,000 ± 73,000 151.4

mCherry-AKT 1651,000 ± 533,000 405,5 2350,000 ± 582,000 825.7

pAKT(Ser473) 3.5% 3.3 2.5% 3.8

p-mCherry-AKT(Ser473) 0.7% 2.7 0.9% 7.6

It has been shown that in vivo binding of AKT to PIP3
at the membrane is crucial for its activation by phosphory-
lation (Carpten et al., 2007; Landgraf et al., 2008; Gonzalez
and McGraw, 2009). Experiments by Ding et al. showing that
AKT can directly be phosphorylated by PDK1 without mem-
brane recruitment if both are artificially co-localized by fus-
ing each one to half of a fluorescent protein (Ding et al.,
2010) suggest that localization to the membrane might merely

serve as platform for AKT and PDK complex formation
and thereby foster subsequent AKT phosphorylation. In line
with previous reports (Coutant et al., 2002; Carpten et al.,
2007; Landgraf et al., 2008; Gonzalez and McGraw, 2009), we
show that membrane recruitment of mCherry-AKT is abol-
ished in our experiments upon PI3K inhibition prior to HGF
stimulation in line with the lack of phosphorylation at the
population level confirming that membrane recruitment of
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FIGURE 6 | Dynamics of cMet receptor phosphorylation and total

receptor levels post HGF stimulation in Hepa1_6 cell clones stably

expressing mCherry-AKT. (A) Representative immunoblots for
phosphorylation and total protein of the cMet receptor immunoprecipitated
from lysates of Hepa1_6-D8 and Hepa1_6-E2 clone stimulated with

40 ng/ml HGF. (B) Experimental data indicated as dots show the mean of
the kinetics of cMet receptor phosphorylation from three independent
experiments and the shaded area indicates the standard deviation
individually for both clones and in (C) the total cMet degradation dynamics
is displayed.

mCherry-AKT serves as bona fide readout for PI3K pathway
activation.

To disentangle the sources of noise contributing to the dynam-
ics of PI3K pathway activation, we established a deterministic
model based on time course data for phosphorylation of endoge-
nous AKT. Subsequently, the parameters derived from this model
were used for the stochastic model assuming that the parameters
of the mCherry-AKT are similar to endogenous AKT. Stochastic
models (Hayot and Jayaprakash, 2006; Lipniacki et al., 2006;
Ashall et al., 2009) have been used to propose that cell-to-cell
heterogeneity arises through intrinsic, stochastic, transcriptional
variability, but this alone can not produce the highly different
individual cell responses observed in our data. For cell cycle reg-
ulation the intrinsic fluctuations of the small number of mRNA
molecules and overall low concentrations of expressed proteins
are the major source of noise in the system (Kar et al., 2009).
On the contrary, the single cell heterogeneity of growth factor
signaling pathway activation, as shown here for HGF-mediated
membrane recruitment and phosphorylation of AKT, cannot be

explained by intrinsic noise alone suggesting only a minor impact
of random fluctuations in reaction rates. Rather, the heterogene-
ity in pathway activation required the consideration of additional
extrinsic noise pointing to the importance of variability in the
concentration of pathway components in individual cells.

The expression level of pathway components in primary
mouse hepatocytes probably due to low efficiency of transient
transfection is very heterogeneous and correlates with highly vari-
able pathway activation. By flow cytometry the CV for AKT
expression was determined for the Hepa1_6 cell clones stably
expressing mCherry-AKT underscoring the differences in over-
all expression levels and the range of expression. HGF-induced
membrane recruitment of mCherry-AKT in those cell clones
revealed cell-to-cell variability as already observed for the pri-
mary hepatocytes, but with overall less heterogeneity in the
shape of the single tracks. This is probably due to the sta-
ble expression as compared to the transient transfection, which
results in higher variability in the total protein level for each
individual cell.
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FIGURE 7 | Quantification of the phosphorylation dynamics and total

protein levels of endogenous and mCherry-AKT post HGF

stimulation in stable Hepa1_6 cell clones. (A) Representative
immunoblots for clone Hepa1_6-D8 and E2 detected with
phosphor-Ser473 antibody and reprobing for total AKT are depicted.

(B + C) Quantification of AKT phosphorylation dynamics from
three-independent experiments are shown. The experimental data
indicated by dots represents the mean (N = 3) and the shaded area
indicates the standard deviation for (B) clone Hepa1_6-D8 and (C) clone
Hepa1_6-E2.

Independent of transient transfection or stable cell clones, our
results show that extrinsic noise, in particular variability in the
concentration of signaling components, overall contribute signif-
icantly to the observed noise at least for the initial kinetics of
pathway activation. The later rise of the experimentally observed
CV could be attributed to a number of factors: (1) induced mRNA
expression and new protein synthesis, (2) a consequence of the
experimental procedure with accumulated fluorescent bleaching
due to the laser light, and hence (3) increased stress response and
induced apoptosis as seen in some of the cells when imaged for
more than 40 min. In the future, further fine-tuning of the model-
ing approach could be achieved by considering in addition mRNA

concentrations, production and degradation rates, and correla-
tion with the determined protein concentrations and their change
over time depending on the treatment.

Single cell responses can be very diverse but still give a robust
population response to physiological ligand concentrations for
many different signaling pathways (Nelson et al., 2004; Turner
et al., 2010) being able to trigger different specific responses
depending on the cell context and temporal controls (Hoffmann
et al., 2002; Ashall et al., 2009). Cell-to-cell variability within a cell
population is one of the major causes of incomplete response of
tumors to targeted therapy. Our results show that cell-to-cell vari-
ation in signal transduction is mainly due to extrinsic noise even
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FIGURE 8 | Extended cMet/PI3K pathway model. (A) Schematic
representation of the model structure including mCherry-AKT. (B)

Dynamics of the phosphorylation of cMet, endogenous AKT, and
mCherry-AKT in the Hepa1_6-D8 and E2 clones stimulated with

40 ng/ml HGF. The means of the indicated number of biological
replicates are represented as dots with the standard deviation as error
bars. The model trajectories are depicted as lines and the
corresponding Chi-square values are given.

in clonal populations. This knowledge could provide an impor-
tant basis for the development of improved strategies for targeted
tumor therapies in the future.

MATERIALS AND METHODS
HEPATOCYTE ISOLATION AND HANDLING
The procedure for hepatocyte isolation and HGF stimulation
has been previously established in our lab (Klingmuller et al.,
2006; Castoldi et al., 2011; Huard et al., 2012). Primary mouse
hepatocytes were isolated and subsequently cultivated for 4 h
in adhesion medium in presence of 10% FCS and maintained
over-night in the pre-starvation medium, that does not contain
serum. The stimulation with 40 ng/ml of recombinant mouse
HGF was performed after 6 h of starvation and cells lysed with
NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 20 mM Tris pH7.4,
10 mM NaF, 1 mM EDTA pH 8.0, 1 mM ZnCl2 pH4.0, 1 mM
MgCl2, 1 mM Na3VO4, 10% glycerol) supplemented with apro-
tinin and AEBSF (Sigma-Aldrich) at different time points. For
imaging purposes cells were seeded in 2-well Labtech chambers
after collagen coating for 2 h at a density of 120.000 for primary
hepatocytes and 80.000 for Hepa1_6 cells per ml per well. Cells
were transfected in a total volume of 800 μl OptiMem using 6 μl
Lipofectamine™ LTX and 4 μl Plus™ regency (Invitrogen), and
1 μg of Plasmid DNA. Transfection media was removed after 12 h

and cells incubated in pre-starvation medium for at least 6 h.
All biological assays and imaging where performed 24–48 h post
transfection in starvation media.

QUANTITATIVE IMMUNOBLOTTING
Serum-starved confluent Hepa1_6 cells or primary mouse
hepatocytes were lysed at different time points after treat-
ments and protein concentrations determined. To analyze c-Met
activation an immunoprecipitation protocol using antibody
Met(B-2) (Santa Cruz Biotechnologies, sc-8057) was estab-
lished and the phosphorylation signal was detected using
an anti-phosphotyrosine antibody 4G10 (Millipore, #05-1050).
For all other components the total amount and the acti-
vation by phosphorylation was detected and quantified in
immunoblots or protein array analysis using the following anti-
bodies: pAKT(S473) #4058L, pAKT(T308) #4056S, and total
AKT #9272S (Cell Signaling), total cMet (B-2) #sc-8057 (Santa
Cruz), for pPTEN(Ser380/Thr382/383) #9554 and total PTEN
#9552 (Cell Signaling), and total p85 #50-172-006 polyclonal
serum (Upstate). Blots were developed using ECL advanced (GE
Healthcare) with acquisition on an Image Quant LAS 4000 sys-
tem and quantification with the Image Quant TL software (GE
Healthcare). Repeated measurements have been merged on log
scale assuming signal scaling between different gels. The merged
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Table 4 | Equations and parameters for the stable Hepa1_6 clone

model.

Hepa1_6 clone D8 and E2 model: equations

d
[
pMet

]

dt
= kkMet

([
Mettotal

] − [
pMet

])
HGFtotal

− k1Met
[
pMet

] [
Phosactive

]

d
[
Phosactive

]

dt
= kkPhos

([
Phostotal

] − [
Phosactive

]) [
pMet

]

− k1Phos
[
Phosactive

]

d
[
pMet − PI3K

]

dt
= kkPI3K

([
PI3Ktotal

] − [
pMet − PI3K

]) [
pMet

]

− k1PI3K
[
pMet − PI3K

] [
PTEN

]

d
[
pAkt

]

dt
= kkAkt_back

([
Akttotal

] − [
pAkt

]) ([
PI3Ktotal

] − [
pMet − PI3K

])

+ kkAkt
([

Akttotal
] − [

pAkt
]) [

pMet − PI3K
] − k1Akt

[
pAkt

]

d
[
pAktc

]

dt
= kkAktc_back

([
Aktctotal

] − [
pAktc

]) ([
PI3Ktotal

] − [
pMet − PI3K

])

+ kkAktc
([

Aktctotal
] − [

pAktc
]) [

pMet − PI3K
] − k1Aktc

[
pAktc

]

Hepa1_6 clone D8 and E2 model: parameters

Parameter Value

kkMet 4.796E-01 nM−1.min−1

k1Met 5.135E-01 nM−1.min−1

kkPhos 1.0E-04 nM−1.min−1

k1Phos 1.0E-04 min−1

kkPI3K 1.13E-02 nM−1
.min−1

k1PI3K 6.24E-02 nM−1.min−1

kkAkt_back 2.528E-03 nM−1.min−1

kkAktc_back 1.536E-02 nM−1.min−1

k1Akt 126.3 min−1

k1Aktc 904.26 min−1

kkAkt (for E2) 4.84E-02 nM−1.min−1

kkAkt (for D8) 1.637E-01 nM−1.min−1

kkAktc (for E2) 6.663E-02 nM−1
.min−1

kkAktc (for D8) 5.224E-01 nM−1
.min−1

signals are represented as parameters in a generalized least squares
problem. Parameter estimates and 1 sigma confidence bounds are
depicted as dots and error bands in Figures 1B, 6B,C, and 7B,C.

For absolute quantifications using dilution series of known
concentrations of recombinant calibrator-proteins, SBP, or GST-
tagged versions of the proteins PTEN, cMet, and p85 were
cloned by PCR amplification from cDNA with introduction of
appropriate restriction enzyme sites for ligation into the expres-
sion vectors. The cDNA for human PTEN was a kind gift
from Alex Toker (Beth Israel Deaconess Medical Center, Boston,
MA, USA), p85 from Michael D. Waterfield (University College
London, UK), and cMet from George Vande Woude (Van Andel
Research Institute, MI, USA). Calibrator-proteins were expressed
in BL21 bacteria and purified using Avidin- or Gluthation-beads,
respectively. The AKT calibrator was purchased as 6His-AKT
(Millipore). SDS-Page with appropriate calibrator concentra-
tions and biological replicates of the cellular lysates with subse-
quent quantitative immunoblotting was performed. Calibration

curves were employed to determine the molecule number in
the respective sample. Information on the used protein amount,
number of the lysed cells, and the cell volume were used to
estimate the molecules per cell and concentrations of the signaling
components.

PROTEIN ARRAY ANALYSIS
To study the dynamic activation of the pathway components
the hepatocytes were stimulated with HGF and time resolved
data were generated by quantitative protein array analysis sim-
ilar as previously published (Korf et al., 2008; Brase et al.,
2011). Non-rabbit-derived antibodies were used for manufac-
turing the antibody arrays using Up05669 (Upstate), CS2967
(Cell Signaling), and sc-55523 (Santa Cruz) mouse antibody for
AKT detection. The necessary pre-dilutions with PBS were tested,
these are then diluted 1:1 with arraying buffer (Whatman). The
spotting was performed with a sciFLEX-Arrayer–S5 (Scienion,
Berlin) piezoelectric non-contact spotter on 16-pad nitrocellu-
lose slides (Oncyte, Grace). Each antibody is spotted in 3 × 3
spots per pad. After spotting, the slides are stored at 4◦C. For
sample preparation fresh cell lysates are diluted with array buffer
at a dilution in the range of 1:10 to 1:32. Depending on the
protein of interest, the samples needed to be mildly denatured
prior to dilution. The calibrator-proteins are treated similarly.
Recombinant proteins were generated or are commercially avail-
able to be used as normalizers in immunoblotting and calibrators
for the arrays containing a defined amount of the protein of inter-
est with know phosphorylation degrees. The slides were blocked
with LiCor Blocking Buffer for 2–6 h prior to incubation. Samples
and calibrator-solutions were incubated on the slides shaking over
night. All incubations were performed at 4◦C. The slides were
then washed with array buffer and incubated with specific rabbit-
derived detection antibody [i.e., CS9272 (Cell Signaling), sc-1619,
and sc-9272 (Santa Cruz) for AKT]. After removal of excess
detection antibody, slides were washed again with array buffer,
and then incubated with anti-rabbit-alexa680 coupled antibody.
Afterwards, the slides were washed first with washing buffer and
then with distilled water. The slides were then dried at room tem-
perature in the dark and scanned using the LiCor Odyssey scanner
(intensity 4–5, resolution 21 μm, high quality). The medians of
the spot-intensities of the 9 spots per array pad and sample were
quantified with the GenePix Pro Software. The calculation of
the protein concentration was performed by an R-based cus-
tom made software (ProArray). The software uses the calibrator
signals to estimate a multi-linear response matrix of each anti-
body with respect to the calibrator concentrations. This response
matrix was inverted for assay signals in order to compute protein
concentrations. Signal uncertainties were estimated based on the
goodness of calibration. Subsequently, they were propagated to
uncertainties of the computed concentrations.

MICROSCOPY
Laser scanning confocal microscopy
Live cell imaging was performed on a Zeiss LSM710 with an
incubation chamber at 37◦C and 5% CO2 using a 40× oil objec-
tive. Single transfected cells where imaged using Hoechst 34522
as nuclear DNA stain (blue), Wheat-germ-agglutinine-Alexa488
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FIGURE 9 | Representation of experimental and model-derived CVs.

The average of the kinetics of mCherry-AKT membrane association in 10
individual cells for (A) the clone Hepa1_6-D8 and (B) clone Hepa1_6-E2 are
shown with the standard error of the mean indicated for each time point.
(C + D) The calculated dynamics for 10 simulated cells with extrinsic noise

contribution as given by the parameters are shown. For the clones (E)

Hepa1_6 D8 and (F) E2 the CV’s for the experimental fluctuations in
mCherry-pAKT (blue line), theoretical intrinsic fluctuations in mCherry-pAKT
(green line), and the corresponding combination of extrinsic and intrinsic
fluctuation (red line) are plotted.

(WGA-Alexa488) (Invitrogen) as membrane stain (green) and the
transfected mCherry-AKT (red). Time series imaging every 20–30
s or for 3D z-Stacks every minute where acquired in unstimulated
6 h starved cells and post HGF stimulation for at least 30 min or
up to 2 h if applicable.

Cell tracking and mCherry-AKT quantification
Image analysis and quantification of mCherry-AKT membrane
recruitment was done using the LSM-Zen2009 software, ImageJ,
and a newly developed MatLab script for tracing the membrane
stain in one channel over time with adjustments to cell move-
ments and shape changes of the membrane (WGA-Alexa488) and
quantifying the first 5 pixels inside the cell as membrane frac-
tion in the second fluorescent channel (mCherry-AKT) with an
further inside cytoplasmic region as reference. All values were
normalized for bleaching during acquisition by the overall cell
fluorescence.

Determination of the cell volume
Using the confocal Zeiss LSM710 with z-stack mode by consec-
utive imaging with adjacent not overlapping sections, the cell
volume was determined by quantification of the cell area mul-
tiplied with the high of the confocal section summed up over all
images.

Total internal reflection fluorescence (TIRF) microscopy
TIRF microscopy was performed at the Nikon Imaging Center of
the University of Heidelberg with a Nikon Ti inverted microscope
with perfect focus system for TIRF automated dual channel time-
lapse imaging with laser lines of 488 and 561 nm. For detection

an Andor iXon DU-897 Electron Multiplier CCD digital camera
was used. Cells were imaged in 8-well labtech chamber slides in
an environmental chamber from okolab, allowing for full tem-
perature, CO2, and humidity control. The total intensity changes
over time where quantified using ImageJ software representing
the kinetic of mCherry-AKT at the membrane of the cells at the
glass bottom due to the TIRF settings.

CLONING/FLUORESCENT TAGGING
The fluorescent tagging of AKT with mCherry was achieved by
PCR amplification of mCherry-cDNA removing the stop-codon
and replacing it with a short linker (Asp-Glu-Leu-Tyr-Lys-Gly-
Thr-Gly-Ser-Ile) and the mouse AKT1 cDNA (Addgene #10841)
sequence via an introduced BamHI restriction side in a similar
fashion as described previously (Carpten et al., 2007; Landgraf
et al., 2008).

Primers
mCherry-F-BglNhe: GAT AGA TCT GCT AGC ATG GTG AGC
AAG GGC GAG GA
mCherry-R-KpnBam: GAT GGA TCC GGT ACC CTT GTA CAG
CTC GTC CAT GC
mAKT1-F-BamHind: GAT GGA TCC AAG CTT ATG AAC GAC
GTA GCC ATT GTG
mAKT1-R-EcoSal: GAT GTC GAC GAA TTC TCA GGC TGT
GCC ACT GGC T

The mCherry-AKT fusion was initially cloned into the pENTR
gateway entry vector via BglI/SalI into the BamHI/XhoI sites and
subsequently cloned into the pMOWS-puro for stable cell line
generation.
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Generation and handling of stable cell line clones
Generation of retrovirally transduced stable clones was per-
formed following standard protocols. Briefly, 10 μg of the final
vector pMOWS-puro-mCherry-AKT was transfected into 293T-
Phoenix-eco cells using CaCl2, the supernatant after 24 h was used
for spin infection of 5 × 104 Hepa1_6 cells and cells subjected to
selection for 1 week with 2.5 μg/ml puromycin. Finally 500 cells
were singled out and seeded on three 96-well plates to grow single
cell clones in DMEM media with 5% FCS (Invitrogen), Pen/Strep,
and Glutamax with additional 1.2 μg/ml puromycin supplemen-
tation for further cultivation. Finally, two single cell clones with
different but stable mCherry-AKT expression levels were selected,
namely clone Hepa1_6-D8 and E2.

MASS SPECTROMETRY
For the analysis of the degree of phosphorylation of AKT1
at Ser473 one-source standard peptides labeled with 13C6-
phenylalanine were used as previously described (Hahn et al.,
2011). Primary mouse hepatocytes were treated with 40 ng/ml
HGF or left untreated, respectively. Cells were lysed, AKT1
was immunoprecipitated and in-gel digested with AspN.
For the cleavage peptides DSERRPHFPQFSYSASGTA und
DSERRPHFPQFpSYSASGTA the one-source standard pair at 1:1
ratio was prepared and added to the digests prior to UPLC-
MS/MS analysis.

FACS
Flow cytometry analysis was performed on a LSR Fortessa
equipped with five lasers (355, 405, 488, 561, and 633 nm) using
FACS-tubes (Falcon, #352008). The mCherry-AKT was detected
with the PI-channel settings with 0.4% compensation. The log-
arithmic transformed FACS values of mCherry-AKT intensity
were used to calculate the CV of the protein expression of the
population.

MODELING
We constructed a mass action kinetics-based deterministic model
for the simplified pathway scheme proposed in Figure 4A (for
the primary hepatocytes) and Figure 9A (for the Hepa1_6 cell
lines). The model equations are shown in Tables 2, 4, respec-
tively. The parameter values in Tables 2, 4 are the best fits to
the time course data for the phosphorylation of endogenous and
exogenous AKT and the corresponding cMet phosphorylation
obtained by the simulated annealing method. The tool used was

Potterswheel (Potterswheel, Germany), a MATLAB toolbox for
ODE-based chemical reaction simulations and fitting.

To account for the cell-to-cell variability in the AKT phospho-
rylation kinetics, we first investigated the effect of intrinsic noise
theoretically. The deterministic models, formulated in terms of
mass action kinetics, were converted into stochastic model using
the chemical master equation formalism and simulated by using
Gillespie’s algorithm (Kar et al., 2009). The parameters values
shown in the Tables 2, 4 were used for the stochastic simulations
performed. The initial values for the concentration variables were
calculated by using the total protein concentrations (Tables 1, 3)
and the given parameter values. We simulated individual cell
pAKT traces by drawing uniformly distributed random numbers
required in stochastic simulation with a different starting seed
of the random number generator. In a second step, we included
“extrinsic” cell-to-cell variability by distributing the total pro-
tein concentrations according to experimental measurements of
mean protein concentrations (Tables 1, 3) and coefficient of vari-
ations (CVs) (CV = 0.137 for E2 clone and CV = 0.096 for D8
clone). We drew random numbers from those log-normally dis-
tributed concentration distributions of the individual pathway
components with different means and CV before the start of the
stochastic simulation for an individual cell. In this way we sim-
ulated individual cells having different total concentration of the
pathway components as well as intrinsic noise in the biochemical
reactions.
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