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Abstract: Ordinary differential equation models often contain a large number of parameters
that must be determined from measurements by parameter estimation. For a parameter
estimation procedure to be successful, there must be a unique set of parameters that can have
produced the measured data. This is not the case if a model is not structurally identifiable
with the given set of outputs selected as measurements. We describe the implementation of a
recent probabilistic semi-numerical method for testing local structural identifiability based on
computing the rank of a numerically instantiated Jacobian matrix (observability/identifiability
matrix). To obtain this, matrix parameters and initial conditions are specialized to random
integer numbers, inputs are specialized to truncated random integer coefficient power series,
and the corresponding output of the state space system is computed in terms of a truncated
power series, which then is utilized to calculate the elements of a Jacobian matrix. To reduce
the memory requirements and increase the speed of the computations all operations are done
modulo a large prime number. The method has been extended to handle parametrized initial
conditions and is demonstrated to be capable of handling systems in the order of a hundred
state variables and equally many parameters on a standard desktop computer.
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1. INTRODUCTION

In many applications, the parameters in models of dy-
namic systems are not directly measurable but only ac-
cessible indirectly through their impact on measured en-
tities, which typically are time varying signals, outputs,
responding to some applied perturbations, inputs, to the
system under study. There are many parameter estimation
methods, which, given a parametrized set of candidate
models, a model structure, and measured input-output
data, perform a numerical search to obtain good numerical
values of the parameters. However, a fundamental question
to be answered before such methods are invoked is if
the model structure in question is identifiable. Structural
identifiability is a property of a model structure that en-
sures that parameters can be uniquely (globally or locally)
determined from knowledge of the input-output behavior
of the system. It is not an uncommon situation that model
structures obtained by physical or chemical modeling are
unidentifiable, i.e., there is an infinite number of sets of
parameter values that equally well describe the input-
output data.
? This work was supported by grants from the European Commis-
sion 7th Framework Programme (UNICELLSYS, grant No 201142
and CANCERSYS, grant No 223188) and the Swedish Foundation
for Strategic Research through the Gothenburg Mathematical Mod-
elling Centre.
??This work was carried out while the author was affiliated with
Fraunhofer-Chalmers Centre.

A large amount of literature has been devoted to the
theoretical characterization of this subject, starting in
Kalman [1961] for linear systems and in Hermann and
Krener [1977] for the nonlinear case, and continuing until
today, where Pohjanpalo [1978], Vajda et al. [1989], Walter
[1987], Ollivier [1990], Ljung and Glad [1990], Diop and
Fliess [1991], Evans and Chappell [2000], Audoly et al.
[2001], Margaria et al. [2001], Sedoglavic [2002], Saccomani
et al. [2003], Anguelova [2007], and Yates et al. [2009]
are just a few references. Before the work of Sedoglavic
[2002], the available methods for testing structural ob-
servability or identifiability of nonlinear systems relied on
characteristic set or standard bases computation (Ollivier
[1990], Diop and Fliess [1991], Ljung and Glad [1990],
Audoly et al. [2001] and Margaria et al. [2001]) or the
local state variable isomorphism approach (Vajda et al.
[1989] and Evans and Chappell [2000]). The complexity in
the number of variables and parameters of these methods
grows too fast for them to be generally applicable to
models of large dynamic systems. In Sedoglavic [2002],
a probabilistic semi-numerical algorithm is presented for
testing the local structural identifiability of a model, even
for large models with a few hundred state variables and
parameters.

We describe a Mathematica implementation of the prob-
abilistic semi-numerical algorithm described in Sedoglavic
[2002] and outline the main ideas behind the algorithm
without the need for the reader to have extensive knowl-
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edge in algebraic or differential algebraic theory. Further-
more, the algorithm is extended to cover more generally
parametrized initial conditions. The performance of the
implementation is demonstrated through a number of ex-
amples of large systems of biochemical reaction networks.
The paper is organized as follows. In Section 2 we define
the concepts of identifiability and observability to be used
in this paper. Section 3 describes the algorithm for testing
local structural identifiability of a given model structure
and some notes on the implementation of the method in
Mathematica is outlined in Section 4. Section 5 contains
a number of examples and Section 6 concludes the paper
and outlines some future work.

2. IDENTIFIABILITY AND OBSERVABILITY

Consider a parametrized class of models in state space
form

ẋ(t) = f(x(t), u(t), θ), x(0) = x0(θ) (1)

y(t) = g(x(t), u(t), θ) (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, θ ∈ Rd
is the parameter vector, and y(t) ∈ Rp is the output of
the system. Note the explicit dependence on parameters
in the equation for the initial conditions. This includes
both the case of unknown initial conditions independent
from other parameters in the model and the case when
some initial conditions are given as expressions of other
model parameters. The latter is for example the case if
one requires the system to be initialized in steady state.
The methods presented in this paper requires the vector
valued functions f , g, and x0 to be rational functions of
their arguments. This requirement is not as restrictive as
it may sound, since it can be shown that any function,
which in itself is the solution to an equation such as (1),
can be handled through an extended state space approach,
see Lindskog [1996].

We will now decribe one approach of how to arrive at
a Jacobian matrix whose rank determines if a system is
structurally identifiable or not. This is not the approach
used in the algorithm of this paper but the description is
included for comparative reasons.

Introducing the extended Lie-derivative operator, Lf ,
along the vector field, f , by the expression

Lf =

n∑
i=1

fi
∂

∂xi
+

∞∑
i=0

u(i+1) ∂

∂u(i)
(3)

and denoting k times repeated application of the operator
with Lkf the derivative with respect to time of any order

of x(t) or y(t) evaluated at t = 0 can very compactly be
expressed according to

x(j)(0) = Ljff(x, u, θ)|x=x(0),u(k)=u(k)(0),k=0,...,j (4)

y(j)(0) = Ljfg(x, u, θ)|x=x(0),u(k)=u(k)(0),k=0,...,j (5)

Hence, this gives explicit expressions linking the initial
values of the state variables with the initial value of a
derivative with respect to time of any order of both the
state and output of a system defined by (1) and (2).

Now, assume that the input-output behavior of a system
is given. The right hand side of (5) is an expression in x(0)
and θ and the left hand side of (5) is a known quantity

for any j (since y(t) is assumed to be described by the
solution to a system of differential equations and hence is
well behaved and can be proven to have a Taylor series
expansion). This can be put in vector equation form

Y = Y(x(0), θ) (6)

where Y is a column vector containing y(j)(0), j = 0, . . . , ν,
ν = n+ d− 1, and the dependence on u(j)(0), j = 0, . . . , ν
has been absorbed into the notation of the ν-dimensional
vector valued function on the right hand side. It can
be shown that derivatives of order higher than this ν
are algebraically dependent on lower order derivatives,
see Sedoglavic [2002] and Anguelova [2007]. Utilizing the
inverse function theorem, equation (6) can be uniquely
solved (locally) for x(0) and θ if and only if the Jacobian
matrix

J(x(0), θ) =
∂Y(x, θ)

∂(x, θ)

∣∣∣
x=x(0)

(7)

has full rank. This is called the rank-test for structural
identifiability, see Pohjanpalo [1978]. The entries of the
above Jacobian is given by

∂
∂xi
Ljfg(x, u, θ)|x=x(0),u(k)=u(k)(0),k=0,...,j (8)

∂
∂θi
Ljfg(x, u, θ)|x=x(0),u(k)=u(k)(0),k=0,...,j (9)

In the case of parametrized initial conditions, the relation
between the derivatives of the output at t = 0 and the
parameters becomes

Y = Y(x0(θ), θ) (10)

and hence the Jacobian when x(0) no longer is assumed
to be independent of θ can be expressed as

J(θ) =
∂Y(x, θ)

∂x

∂x

∂θ
+
∂Y(x, θ)

∂θ

∣∣∣
x=x0(θ)

(11)

Consider also the n equations corresponding to the initial
conditions

x(0) = x0(θ) (12)

The parameters θ, as well as the model structure (1)
and (2) is said to be locally structurally identifiable if for
almost all values of x(0) and θ and their corresponding Y
(generated by the model structure, specific x(0) and θ, and
given input), the equation (6) has a locally unique solution
x(0) and θ.

The above definition is close to the definition of local
algebraic observability in Sedoglavic [2002] but we have
avoided the introduction of more advanced algebraic ter-
minology.

The concept of identifiability is closely related to that of
observability. Consider for a moment the parameter vector
θ to be known. A system (1) is said to be globally observable
if given the input-output behavior, the initial state, x0,
can be uniquely determined, see Hermann and Krener
[1977]. Using the trivial parametrization x(0) = θ with
no explicit dependence of f and g on θ the observability of
the initial state can be included in the notion of structural
identifiability of the model parameters.

3. THE ALGORITHM

A straightforward symbolic computation of the Jacobian
matrix in terms of repeated Lie derivatives according to (5)
followed by taking partial derivatives with respect to x(0)
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and θ to obtain the symbolic form of the Jacobian and
finally testing its generic rank suffers from a computa-
tional complexity problem. The rank test of the symbolic
Jacobian could be replaced by a numeric rank test on an
integer valued matrix after a random specialization of the
initial state and parameters. However, the expression swell
in symbolically obtaining higher order derivatives by re-
peated Lie-derivatives is huge and prevents the application
of this approach to large systems.

There is however a way to directly compute the Jacobian
for the random specializations mentioned above, without
the need to actually carry out the repeated Lie deriva-
tives. Instead one may directly calculate the entries of the
specialized Jacobian via the computation of power series
expansion of partial derivatives with respect to x(0) and
θ of the output. To cut computational complexity even
more, all calculations could be carried out modulo a large
prime number preventing the risk of switching to slow
software arithmetics for large integers. This indirect way
of computing the entries of the Jacobian, avoiding the pro-
hibitive computational complexity for large systems, was
first recognized by Sedoglavic [2002]. The use of random
specializations and modulo calculations both introduce the
risk of loosing rank regardless of the Jacobian’s generic
rank properties. However, the probability of this can be
bounded from above and this upper bound decrease with
the size of the modulus in such a way that for large
prime modulus suitable for software implemention the
probability becomes vanishingly small. Note that, because
integers are used, the results are exact in the sense that
it is structural identifiability (not practical identifiability)
that is analyzed.

Let us introduce the notation x(t;x0, θ) to indicate implicit
dependence of a solution to system (1) on the initial state
and parameters. The derivatives of the output with respect
to the initial state and parameters are

d

dx0
y(t;x0, θ) =

d

dx0
g(x(t;x0, θ), u(t), θ)

=
∂g

∂x

∂x

∂x0

∣∣∣
x=x(t;x0,θ)

(13)

d

dθ
y(t;x0, θ) =

d

dθ
g(x(t;x0, θ), u(t), θ)

=
∂g

∂x

∂x

∂θ
+
∂g

∂θ

∣∣∣
x=x(t;x0,θ)

(14)

Here is an outline of the steps of the algorithm

(1) Generate specializations of parameters and initial
conditions to random integer values.

(2) The input of the system is specialized to a truncated
random integer coefficient power series.

(3) Truncated power series solutions of the state, x =
x(t;x0, θ) and the state sensitivity with respect to the
initial state, ∂x

∂x0 , and with respect to the parameters,
∂x
∂θ , are computed.

(4) The above truncated power series are inserted in the
expression for the derivatives of the outputs with
respect to the initial state (13) and with respect to
the parameters (14), which results in truncated power
series representation of the output derivatives.

(5) Identification of the coefficients of the truncated
power series of the output derivatives with the co-

efficients (apart from a j! denominator) of a general
Taylor expansion of the output derivatives around
t = 0 gives the higher order time-derivatives of the
output derivatives evaluated at t = 0, i.e., the entries
of the specialized Jacobian matrix.

(6) Calculate the rank of the specialized Jacobian.

For efficiency reasons, the algorithm starts with truncating
power series after rather few terms. The above steps
may then need to be repeated, truncating the power
series at a higher order term until the rank computation
of the specialized Jacobian either reaches n + d, which
shows local structural identifiability, or stabilizes on a
smaller number indicating unidentifiability. Observe that
for vector output systems (p > 1) the number of terms in
the involved truncated power series may be significantly
less than n+ d. In practice the rank computation may be
performed by calculating the null space of the Jacobian.
A non-trivial null space gives information about which
combinations of columns in the Jacobian are generically
linearly dependent, i.e., which initial state variable values
and parameters that cannot be independently solved for.

3.1 Rationally Parametrized Initial Conditions

In the original algorithm presented by Sedoglavic [2002],
parameters are treated as state variables with zero time-
derivatives. In this way the problem is turned into the
framework of nonlinear observability, where an observable
system means that all parameters and the initial values of
the state variables can generically be uniquely determined
from input-output data. However, this also means that
initial values and parameters are inherently separated.

The model structure (1) and (2) permits parametrized
initial conditions, which generalizes the above approach
since initial values of state variables and other parameters
in a model do not need to be independent. This is a
common situation for models constrained to start in steady
state, which puts the implicit constraint 0 = f(x0, u(0), θ)
on the initial values. The approach taken in Sedoglavic
[2002] is covered in our setting by letting the initial values
be separate parameters independent of the rest of the
model parameters.

We extend the algorithm to parametrized initial conditions
by firstly, specializing the parameters to random integer
values, which now also determines the initial state variable
values. Secondly, in step (4) of the algorithm equation (14)
is replaced by

d

dθ
y(t;x0(θ), θ) =

d

dθ
g(x(t;x0(θ), θ), u(t), θ)

=
∂g

∂x

∂x

∂x0
∂x0

∂θ
+
∂g

∂x

∂x

∂θ
+
∂g

∂θ

∣∣∣
x=x(t;x0(θ),θ)

(15)

for calculating the truncated power series for the deriva-
tives of the output with respect to the parameters, which
gives the modified Jacobian matrix J̃(x(0), θ).

Now, in addition to equation (6), we have the algebraic
equations for the initial values (12). This means that we
must ask whether any of the null-vectors of J(x(0), θ)
provide directions in which x(0) and θ can be changed
while keeping (12) fulfilled.
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Each null-vector ν = (ν1, . . . , νn+p) corresponds to a

differentiation σ = ν1
∂
∂x1

+ · · ·+ νn
∂
∂xn

+ νn+1
∂
∂θ1

+ · · ·+
νn+p

∂
∂θp

. If this differentiation σ is such that it also gives

zero when it is applied to the initial condition equations,

σ(x(0)− x0(θ))
∣∣
x(0)=x0(θ)

= 0, (16)

then σ represents combinations of the parameters θ which
fulfill both (6) and (12). They give the same Taylor
series for y(t) around t0 and θ is not locally structurally
identifiable.

Algorithmically it works as follows. Form a vector I =
x(0) − x0(θ). Now, to complement J̃(x(0), θ), take the
derivatives of I with respect to the state variables and
parameters. Then, from the resulting matrix of deriva-
tives, take those combinations of columns of I that gave
corresponding null-vectors for J̃(x(0), θ), and evaluate the
column combinations for the specialized numerical values
of the parameters. These column combinations represent
symmetries, relations between parameters, where a change
in one parameter can be compensated by changes in other
parameters without the ouputs being changed, possibly
resulting in unidentifiability. Next, calculate the nullspace
of the resulting matrix. If this space is empty, then the
system is identifiable after all, because of the additional
information in the initial value equations. If it is not
empty, then there are combinations (as defined by the null-

vectors) of the original symmetries to J̃(x(0), θ) such that
the information in I does not solve the problem and make
the system identifiable. Form those combinations, giving a
matrix S, representing the final symmetries.

Identifiable entities are those where the corresponding
rows in S consist entirely of zeros, since these entities are
not involved in any final symmetries. Entities where the
corresponding row in S has nonzero-elements are involved
in some symmetry and are not identifiable.

A variation of the above approach would be to eliminate
x(0) from the beginning, which means that one ends up
with equation (10). Its Jacobian matrix (11) does not
depend on the parameters. Now, in step (1) only the
parameters needs to be specialized to random integer
values and in step (4) of the algorithm both equation (13)
and (14) are replaced by (15) for calculating the truncated
power series for the derivatives of the output with respect
to the parameters.

3.2 Known Initial Conditions

In the case that some initial conditions have known numer-
ical values we proceed as follows. Introduce a parameter
for each known state variable initial value. In step (1) of
the algorithm specialize the corresponding parameters to
the known initial conditions. In this way the solvability of
equation (10) for these special values of the initial state
variable values is decided by the algorithm having the rest
of the parameters take generical values.

4. IMPLEMENTATION

The algorithm has been implemented as a Mathematica
package. The function syntax is

IdentifiabilityAnalysis [{deqn, ic}, y, u, x, θ, t]IdentifiabilityAnalysis [{deqn, ic}, y, u, x, θ, t]IdentifiabilityAnalysis [{deqn, ic}, y, u, x, θ, t]

where deqn is a list of differential equations, ic is a list of
parametrized initial conditions (if omitted independently
parametrized initial conditions are assumed), y is a list of
output expressions, and u, x, and θ are lists of names of
inputs, state variables, and parameters, respectively. The
last argument, t, is the name of the independent variable.
The answer is given in the form

IdentifiabilityAnalysisData[Boolean, <>]

where Boolean is True or False depending on if the
system is structurally identifiable or not. The result-
ing IdentifiabilityAnalysisData[. . .] object iad, contains
a number of properties, which can be extracted with
the syntax iad[”property”]. A list of available properties
is given by iad[”Properties”], which includes ”Identifi-
ableParameters”, ”UnidentifiableParameters”, ”Transcen-
denceDegree”, and ”Jacobian”.

Some of the most time consuming steps of the algorithm
are parallelizable, which is implemented and can be turned
on with a simple option to the function if the system on
which Mathematica is runing has access to more than one
CPU.

Using this algorithm, even large systems can usually be an-
alyzed on a standard desktop computer in reasonable time.
All of the following examples but one were executed on a
laptop with 4GB RAM and a dual core 2.53GHz CPU.For
the most extreme cases we switched to a computer with
8GB RAM and a quad core 2.66GHz CPU.

Further information about the Mathematica package
and instructions on how to obtain it can be found at
www.fcc.chalmers.se/sys/products/identifiabilityanalysis.

5. EXAMPLES

To demonstrate the power and scalability of the presented
algorithm we will now analyze the local structural identifi-
ability of a set of models of biochemical reaction networks.
A common approach to model the dynamic behavior of
such networks is to use the so called reaction rate equa-
tions. These are derived from the mass balances of the
reaction network, i.e., what reactants and products there
are and their kinetics. Graphically such networks can be
depicted using the Systems Biology Graphical Notation
(SBGN), see Le Novère et al. [2009] and Jansson and
Jirstrand [2010]. Note that the main point of the examples
is to demonstrate the size of systems and sets of outputs
that can be handled. Practical biological concerns like
which things can easily be measured, what does it mean
that some parameters are not identifiable if not measured,
and such questions, are not adressed in this paper.

Example A model of the NF-κB pathway.
The first example is the signaling network of the two-
feedback-loop regulatory module of the NF-κB signaling
pathway from Lipniacki et al. [2004]. Mathematically, the
network is given by a system of differential equations
describing the rate of change of concentrations of different
molecules in or around the cell.

It turns out that this particular system is not very well
connected and many things must be measured or known
a priori for the system to be identifiable. For example,
if the state variables are selected as admissible output
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signals and all parameters are to be estimated, then it
can be shown that there are five state variables that
must be included among the outputs for the system to
be identifiable. A local structural identifiability analysis of
this system using our Mathematica implementation looks
as follows.

In[1]:= vars = Table[xi, {i, 15}];vars = Table[xi, {i, 15}];vars = Table[xi, {i, 15}];

In[2]:= params = Table[θi, {i, 28}];params = Table[θi, {i, 28}];params = Table[θi, {i, 28}];

In[3]:= sys = {x′1[t] == −θ1x1[t]x2[t] + 1
333

(−θ14x1[t] + θ15x9[t]) ,

x′2[t] == −θ1x1[t]x2[t] + 1
333

θ13x8[t],

x′3[t] == θ1x1[t]x2[t]− 1
333

θ11x3[t],

x′4[t] == θ3 + θ2x2[t]− θ4x4[t],

x′5[t] == θ6 + θ5x2[t]− θ7x5[t],

x′6[t] == θ9 + θ8x2[t]− θ10x6[t],

x′7[t] == 10
16667

θ11x3[t]− θ21x7[t] + θ1x8[t]x9[t]− θ28x7[t]x11[t],

x′8[t] == θ21x7[t]− 10
16667

θ13x8[t]− θ1x8[t]x9[t] + θ26x15[t],

x′9[t] == θ18x5[t]− θ23x9[t]− θ1x8[t]x9[t]

+ 10
16667

(θ14x1[t]− θ15x9[t])− θ25x9[t]x11[t],

x′10[t] == θ27x4[t]− θ24x10[t],

x′11[t] == −θ12x11[t]− θ16x11[t]− θ28x7[t]x11[t]− θ25x9[t]x11[t]

− θ19x10[t]x11[t] + θ17x13[t] + θ22x14[t] + θ26x15[t],

x′12[t] == θ16x11[t] + θ19x10[t]x11[t]− θ12x12[t],

x′13[t] == θ25x9[t]x11[t]− θ17x13[t],

x′14[t] == θ20 − θ12x14[t]− θ22x14[t],

x′15[t] == θ28x7[t]x11[t]− θ26x15[t] };

In[3]:= sys = {x′1[t] == −θ1x1[t]x2[t] + 1
333

(−θ14x1[t] + θ15x9[t]) ,

x′2[t] == −θ1x1[t]x2[t] + 1
333

θ13x8[t],

x′3[t] == θ1x1[t]x2[t]− 1
333

θ11x3[t],

x′4[t] == θ3 + θ2x2[t]− θ4x4[t],

x′5[t] == θ6 + θ5x2[t]− θ7x5[t],

x′6[t] == θ9 + θ8x2[t]− θ10x6[t],

x′7[t] == 10
16667

θ11x3[t]− θ21x7[t] + θ1x8[t]x9[t]− θ28x7[t]x11[t],

x′8[t] == θ21x7[t]− 10
16667

θ13x8[t]− θ1x8[t]x9[t] + θ26x15[t],

x′9[t] == θ18x5[t]− θ23x9[t]− θ1x8[t]x9[t]

+ 10
16667

(θ14x1[t]− θ15x9[t])− θ25x9[t]x11[t],

x′10[t] == θ27x4[t]− θ24x10[t],

x′11[t] == −θ12x11[t]− θ16x11[t]− θ28x7[t]x11[t]− θ25x9[t]x11[t]

− θ19x10[t]x11[t] + θ17x13[t] + θ22x14[t] + θ26x15[t],

x′12[t] == θ16x11[t] + θ19x10[t]x11[t]− θ12x12[t],

x′13[t] == θ25x9[t]x11[t]− θ17x13[t],

x′14[t] == θ20 − θ12x14[t]− θ22x14[t],

x′15[t] == θ28x7[t]x11[t]− θ26x15[t] };

In[3]:= sys = {x′1[t] == −θ1x1[t]x2[t] + 1
333

(−θ14x1[t] + θ15x9[t]) ,

x′2[t] == −θ1x1[t]x2[t] + 1
333

θ13x8[t],

x′3[t] == θ1x1[t]x2[t]− 1
333

θ11x3[t],

x′4[t] == θ3 + θ2x2[t]− θ4x4[t],

x′5[t] == θ6 + θ5x2[t]− θ7x5[t],

x′6[t] == θ9 + θ8x2[t]− θ10x6[t],

x′7[t] == 10
16667

θ11x3[t]− θ21x7[t] + θ1x8[t]x9[t]− θ28x7[t]x11[t],

x′8[t] == θ21x7[t]− 10
16667

θ13x8[t]− θ1x8[t]x9[t] + θ26x15[t],

x′9[t] == θ18x5[t]− θ23x9[t]− θ1x8[t]x9[t]

+ 10
16667

(θ14x1[t]− θ15x9[t])− θ25x9[t]x11[t],

x′10[t] == θ27x4[t]− θ24x10[t],

x′11[t] == −θ12x11[t]− θ16x11[t]− θ28x7[t]x11[t]− θ25x9[t]x11[t]

− θ19x10[t]x11[t] + θ17x13[t] + θ22x14[t] + θ26x15[t],

x′12[t] == θ16x11[t] + θ19x10[t]x11[t]− θ12x12[t],

x′13[t] == θ25x9[t]x11[t]− θ17x13[t],

x′14[t] == θ20 − θ12x14[t]− θ22x14[t],

x′15[t] == θ28x7[t]x11[t]− θ26x15[t] };

In[4]:= output = {x4[t], x5[t], x6[t], x10[t], x12[t]};output = {x4[t], x5[t], x6[t], x10[t], x12[t]};output = {x4[t], x5[t], x6[t], x10[t], x12[t]};

In[5]:= res = IdentifiabilityAnalysis[sys, output, vars, params, t]res = IdentifiabilityAnalysis[sys, output, vars, params, t]res = IdentifiabilityAnalysis[sys, output, vars, params, t]

Out[5]= IdentifiabilityAnalysisData[True, <>]

In[6]:= output = {x4[t], x5[t], x6[t], x10[t]};output = {x4[t], x5[t], x6[t], x10[t]};output = {x4[t], x5[t], x6[t], x10[t]};

In[7]:= res = IdentifiabilityAnalysis[sys, output, vars, params, t]res = IdentifiabilityAnalysis[sys, output, vars, params, t]res = IdentifiabilityAnalysis[sys, output, vars, params, t]

Out[7]= IdentifiabilityAnalysisData[False, <>]

In[8]:= res[”UnidentifiableParameters”]res[”UnidentifiableParameters”]res[”UnidentifiableParameters”]

Out[8]= {θ1, θ2, θ5, θ8, θ12, θ16, θ18, θ20, θ22, θ25, θ28,
x1, x2, x3, x7, x8, x9, x11, x12, x13, x14, x15}

As demonstrated above, skipping just one of the five
ouputs results in a large number of entities becoming
unidentifiable. The identifiability analysis of this system
given one set of outputs takes only a few seconds on a
standard laptop.

Example The JAK-STAT signaling pathway.
A model describing the JAK-STAT pathway (Yamada
et al. [2003]) contains 31 state variables and 51 parameters
and its differential equations are given below.

The runtime for the identifiability analysis depends on the
number of output signals. If for example all state variables
in this case are used as output signals (of course unrealistic
in practice), the program finishes in a few seconds on a
standard laptop. If only a few output signals are selected,
it takes a couple of minutes for the program to return the
result.

For local structural identifiability of this model, it can be
shown to be enough to measure a few carefully selected
output signals. For example, measuring x10[t] and x31[t]
is enough, but if selecting other state variables as output
signals then no set excluding x31[t] can be shown to give
an identifiable system.

ẋ1 = −2
(
x21θ1 − x2θ2

)
− x1x4θ4 + x6θ5 − x1x5θ7 + x7θ8

ẋ2 = x21θ1 − x2θ2 + x3θ3 − x2x4θ9 + x8θ10
ẋ3 = −x3θ3 + x214θ23 − x3θ24 − x3x16θ30 + x27θ31
ẋ4 = −x1x4θ4 + x6θ5 + x6θ6 − x2x4θ9 + x8θ10 + x8θ11
ẋ5 = x6θ6 − x1x5θ7 + x7θ8 − x5θ12
ẋ6 = x1x4θ4 − x6θ5 − x6θ6
ẋ7 = x1x5θ7 − x7θ8 + x8θ11
ẋ8 = x2x4θ9 − x8θ10 − x8θ11
ẋ9 = x5θ12 − x9x14θ16 + x15θ17 − x9x22θ19 +

+x23θ20 − x9x20θ21 + x21θ22 + x25θ29 + x26θ47
ẋ10 = −x10θ13 + x2θ14

x2+θ15
ẋ11 = x10θ13 − x11θ50
ẋ12 = −x12x29θ41 + x30θ42
ẋ13 = −x13x20θ25 + x22θ26 + x26θ47 − x13θ48 + x11θ51
ẋ14 = −x9x14θ16 + x15θ17 − 2

(
x214θ23 − x3θ24

)
+ x21θ27 +

−x14x20θ33 + x24θ34 − x14x16θ35 + x25θ36
ẋ15 = x9x14θ16 − x15θ17 + x27θ28
ẋ16 = x27θ28 + x25θ29 − x3x16θ30 + x27θ31 − x14x16θ35 + x25θ36
ẋ17 = −x17θ18 + x18x20θ39 − x17θ40
ẋ18 = x17θ18 − x18x20θ39 + x17θ40 − x18x23θ45 + x26θ46 + x26θ47
ẋ19 = x17θ18 − x19θ32 + x228θ37 − x19θ38 + x26θ47
ẋ20 = −x9x20θ21 + x21θ22 − x13x20θ25 + x22θ26 + x21θ27

+x19θ32 − x14x20θ33 + x24θ34 − x18x20θ39 + x17θ40
ẋ21 = x9x20θ21 − x21θ22 − x21θ27
ẋ22 = −x9x22θ19 + x23θ20 + x13x20θ25 − x22θ26
ẋ23 = x9x22θ19 − x23θ20 − x18x23θ45 + x26θ46
ẋ24 = x14x20θ33 − x24θ34
ẋ25 = −x25θ29 + x14x16θ35 − x25θ36
ẋ26 = x18x23θ45 − x26θ46 − x26θ47 − x26θ49
ẋ27 = −x27θ28 + x3x16θ30 − x27θ31
ẋ28 = −2

(
x228θ37 − x19θ38

)
+ x30θ43 − x28θ44

ẋ29 = −x12x29θ41 + x30θ42
ẋ30 = x12x29θ41 − x30θ42 − x30θ43 + x28θ44
ẋ31 = x26θ49

Example The Ras Signaling Pathway (Wolf et al. [2007]).
The model of the Ras Signaling Pathway has 67 state
variables and about 100 parameters. The network is highly
connected and it turns out that it is enough to measure
only one state variable to get local structural identifia-
bility. This variable does not even have to be carefully
selected (in fact, all variables we tested were ok as single
outputs).

The runtime for the identifiability analysis again depends
on the number of output signals. If all variables are used
as output signals (again unlikely in practice), the program
finishes in minutes, and in the extreme case of only one
output signal, the analysis takes a few hours.

Example A MAP Kinase Cascade.
This is a very large model (Schoeberl et al. [2002]) with
about 100 variables and 100 parameters. The time required
for the analysis is highly dependent on the set of output
signals selected for analysis. If, for example, all variables
are selected as output signals, the algorithm finishes in half
an hour. On the other extreme end, with only one output
signal, much more must be calculated before reaching
the result, so in this case the run takes about two days.
This example shows that even systems with about 100
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variables and 100 parameters can be analyzed for local
structural identifiability on a standard desktop computer
in reasonable time for any set of output functions. A
careful analysis of what must be measured for the MAP
system to be identifiable is not the aim of this paper but
the topic of a paper in preparation, Anguelova et al. [2012].

6. CONCLUSIONS

In this paper we have demonstrated the feasibility of de-
termining (local) structural identifiability for large scale
dynamic systems using a semi-numerical probabilistic
method. The Mathematica implementation takes the sys-
tem equations, parametrized initial conditions, and out-
puts written in a natural syntax and computes a number of
properties of interest of the system such as identifiability
and the sets of identifiable or unidentifiable parameters.
The computations, also on quite large systems, are carried
out on a standard desktop computer in reasonable time.

ACKNOWLEDGEMENTS

We are grateful to Prof Alexandre Sedoglavic for pro-
viding us with source code and documentation for his
ObservabilityTest program.

REFERENCES

M Anguelova. Observability and identifiability of non-
linear systems with applications in biology. PhD the-
sis, Chalmers University of Technology and Gothenburg
University, Sweden, 2007.

M Anguelova, J Karlsson, and M Jirstrand. Minimal
output sets for identifability. Manuscript in preparation,
2012.

S Audoly, G Bellu, L D’Angio, M P Saccomani, and
C Cobelli. Global identifiability of nonlinear models of
biological systems. IEEE Trans Biomed Eng, 48(1):55–
65, 2001.

S Diop and M Fliess. On nonlinear observability. In Proc
First Europ Control Conf, pages 152–157, 1991.

N.D. Evans and M.J. Chappell. Extensions to a procedure
for generating locally identifiable reparameterisations of
unidentifiable systems. Mathematical Biosciences, 168
(2):137–159, 2000.

R Hermann and A J Krener. Nonlinear controllability and
observability. IEEE Trans on Aut. Control, 22(5):728–
740, 1977.

A Jansson and M Jirstrand. Biochemical modeling with
Systems Biology Graphical Notation. Drug Discovery
Today, 15(9-10):365–370, 2010.

R E Kalman. On the general theory of control systems.
In Proc ICAC, volume 1, pages 481–492, 1961.

N. Le Novère et al.. The Systems Biology Graphical
Notation. Nature Biotechnology, 27:735–741, 2009.

P Lindskog. Methods, Algorithms and Tools for System
Identification Based on Prior Knowledge. PhD Thesis
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