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Abstract

Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 80’s, the
amount of recombinant pharmaceutical proteins obtained by microbial fermentations has
significantly increased. The recent advances in genomics together with high through-put analysis
techniques (the so-called —omics approaches) and integrative approaches (systems biology) allow the
development of novel microbial cell factories as valuable platforms for large scale production of
therapeutic proteins. This review summarizes the main achievements and the current situation in the
field of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and
discusses the future potential of this platform for production of blood proteins and substitutes.

Introduction

Microorganisms have been extensively used since ancient times for the production of fermented
food and beverages, thousands of years before the actual nature of the fermentative processes was
known. In the early 20" century the production of citric acid based on microbial fermentation was
initiated as the first large scale fermentation product and this was followed by industrial production
of penicillin as the first antibiotic. Introduction of the genetic engineering in the 70’s paved the way
for the establishment and development of the current biotech industry, allowing the commercial
production of industrial enzymes and biopharmaceutical proteins. In 1980, the FDA approved for
clinical use the recombinant insulin obtained from E. coli, becoming the first recombinant
pharmaceutical protein to enter the market [1]. Since then, the biotechnology industry has grown
substantially, and currently about 25% of commercial pharmaceuticals are biopharmaceuticals [2]
with 2010 sales exceeding USD100 billions [3]. About half of the world-wide sales are in the USA with
monoclonal antibodies representing the majority (>USD18 billions) followed by hormones (USD11
billions) and growth factors (>USD10 billions)[4]. Together with the production of industrial enzymes,
the recombinant protein production market is expected to rise to 169 billion dollars in 2014 [3]

(Figure 1).

Platforms for production of pharmaceutical proteins

Industrial biotechnology has traditionally used numerous bacterial and eukaryal cells as production
platforms, with the main criterion for host selection being the ability to produce the desired
compound. However, with the advent of genetic engineering it became possible to introduce
heterologous genes and create new traits in non-natural producers, allowing the development of cell

factories for the production of chemicals through metabolic engineering. E. coli was the earliest
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platform to be exploited, and is still nowadays the most used production platform for recombinant
proteins [5], covering approx. 30% of the total production of recombinant proteins [1] (Figure 1). In
general terms, bacteria have been considered to be the most efficient producers of heterologous
proteins due to several reasons: i) well developed molecular tools for genetic manipulation, ii)
annotated genomes and metabolic pathways, iii) high cell density cultivation capacity and growth
rate and iv) high yield of recombinant proteins, up to 80% of its dry weight [6-8]. However, standard
prokaryotic systems have some limitations for production of human proteins. For example, bacteria
are unable to perform some of the complex post-translational modifications [1], which itself
represents a limitation, since many proteins require further processing to become fully active. In
particular glycosylations that are needed to ensure proper function and activity, by influencing
proper charge, solubility, folding, serum half live of the protein, in vivo activity, correct cellular
targeting and immunogenicity, among others, cannot be often be fully accomplished in bacterial
systems [9] [10]. These limitations have paved the way towards eukaryotic expression systems and
there exists several eukaryotic systems that are currently in use for large scale production of
different therapeutic proteins (Table 1), with the most studied being hybridoma cells, Chinese
Hamster Ovary (CHO) cells [11], insect cells [12,13] and yeast cells [14]. Mammalian systems like
hybridoma and CHO cells clearly have the highest similarity to human cells, and proteins produced by
these systems are often properly folded and glycosylated. However the costs for their cultivation are
high (e.g. expensive media and growth factors, contaminations with microorganisms and viruses),
they have a limited secretion capacity and protein yields are usually low [15]. On the other hand
fungal expression systems, and in particular yeast, can grow in relatively cheap and defined media,
decreasing the production costs. Besides, they are not so susceptible to contaminations and in
addition, the yeast cells are less sensitive since the wall makes them more resistant to shear stress
during the production process [10]. Yeast expression systems also provide higher protein titers
(>1g/l) in fermentation processes that even last shorter time (only few days) [16]. Based on this, we
propose yeast as an attractive choice, and recent advances in genetic and metabolic engineering, and
tools in genomics and systems biology could make S. cerevisiae a preferred production platform for a
range of pharmaceutical proteins[17]. However, even though yeasts are eukaryotic systems, the
glycosylations of proteins may differ substantially from that performed by mammalian cells, a
difference that can be in some cases detrimental for its subsequent therapeutic use. N-glycosylation
in yeast, for example, is of the high mannose type whereas human N-glycans are mainly of the
complex or hybrid type. In addition to N-glycosylation, yeast O-glycosylation characterized by shorter
glycan structures, also differs from the human type, which is mucin-type in contrast to the
oligomannosyl-glycans in yeasts [10]. Very promising attempts have been recently achieved to

introduce human glycosylation patterns in yeast (humanized yeast platforms). To date, only Pichia
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species have been successfully engineered to produce specific human-like glycoforms of proteins,
however recent advances reported in this field in S. cerevisiae seem to indicate that, with further
development, it may increase the array of strains available that are able to produce human-type
glycosylated proteins, and these strains will become a valuable platform for the production of

glycoproteins for therapeutic use [10,18,19].

How to make Saccharomyces cerevisiae a better producer of pharmaceutical proteins?

The technology for industrial production of recombinant pharmaceutical proteins in S. cerevisiae is
well established and currently applied for production of human insulin, hepatitis virus vaccines and
human papilloma virus vaccines, and its potential to be used for large scale production of many other
proteins in the forthcoming years is therefore high. Furthermore, the advent of systems biology
allowing global metabolism analysis and the application of so-called “omics” approaches such as
transcriptome, proteome and metabolome data, facilitates the identification of the bottlenecks and
factors limiting the full potential of this yeast to become a better producer [20,21], and consequently
the application of metabolic engineering to overcome constraints in productivity could definitely
allow the establishment of S. cerevisiae as a suitable platform for large scale production of

heterologous (including human) proteins [22].

There are several reports describing how either genetic or metabolic engineering can be successfully
performed in S. cerevisiae [22,23] resulting in the generation of strains showing an enhanced
production capacity of heterologous proteins [17,24,25]. Often just introducing an entire new
pathway for the production of the desired compound does not result in high levels of production.
because protein folding and secretion can represent the major limitation in terms of protein yields in
yeast [20]. Folding and secretion are complex processes and the molecular machineries are
composed of large number of components, so further modifications and development of these
pathways requires integrative analysis of the whole secretory pathway. Such approach has been
successfully carried out by engineering different elements of the secretory pathway, and by
combining different expression systems in order to optimize the production of several kinds of
different proteins showing different biochemical properties (i.e. size, type of modification
(glycosylation and/or disulfide bond formation)), such as human insulin precursor or a-amylase
[17,26,27]. Through a combination of these approaches it is possible to select the best protein
producers for further optimization, and this may lead to generic protein producing strains that can be
used as general platforms for the production of bio-based pharmaceutical proteins (Figure 2).

Production of Recombinant Human Blood Proteins
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Among the 58 biopharmaceuticals approved in the United States and/or Europe from 2006 to 2010
four are blood related proteins, including a rh coagulation factor VIII produced in CHO cells, a rh
antithrombin from milk of transgenic goats, a plasma kallikrein inhibitor produced in Pichia. pastoris,
and a rh thrombin produced in CHO cells [28]. All have therapeutic use for treatment of hemophilia.
To date, most of the recombinant blood related biopharmaceuticals approved for clinical treatment
are coagulation factors, including factor VIII, factor Vlla, and factor XI [28] with recombinant human
serum albumin (rHSA) as an exception. Due to the fact that it is not glycosylated, a variety of
expression hosts have been screened to express rHSA, including bacterium Bacillus subtilis, yeast S.
cerevisiae, Kluyveromyces. lactis and P. pastoris etc [29]. So far, Novozymes has commercialized two
rHSA produced by S. cerevisiae, namely Recombumin and Albucult. Since the clinical dosage of HSA is
usually quite high, normally over 10g/L, many studies have tried to express rHSA also in P. pastoris
for its high capacity in heterologous protein production [30]. The rHSA produced from P. pastoris has

gone through the clinical trials and confirmed the safety and efficacy to treat different diseases [31].

Aside from rHSA, many other human blood proteins are also under active studies [32-34]. Human
fibrinogen (Hf) is a large plasma glycoprotein that plays a critical role in the last stage of coagulation.
It is dimeric and comprised of two sets of three different polypeptides, namely Aa, BB and y. The
protein was expressed in P. pastoris protease deficient strain by constructing an expression vector
containing the cDNA of three individual peptide chains. Even though the peptides expressed were of
different N-glycosylation patterns as that of native Hf, they were correctly assembled to a functional
rHf that is capable of forming a clot in the presence of factor Xllla [32]. Human a-1-antitrypsin
(hAAT) was produced in tomato: the codon modified cDNA sequence was expressed and the mRNA
5 and 3‘ flanking regions were modified to achieve a high-level expression by eliminating mRNA
destabilizing sequences, which are ATTTA and its variants, splice sites and A/T strings. In contrast to
the unglycosylated rAAT expressed in E. coli, the glycosylated rATT from transgenic tomato was
biologically active [33]. One more example is the production of human transferrins (Tf) which are a
family of monomeric proteins that are of different sizes depending on the extent of glycosylation.
Besides its central role to facilitate iron transport and metabolism, a lot more other functions have
been evidenced, e.g. acting as a growth factor for mammalian tissue cells, as a neurotropic factor
during neural stem cell development and as an angiogenic factor to promote endothelial cell
migration etc, enabling a development of many novel practical applications in medicine [34]. To date,
several heterologous systems including E. coli, yeast, transgenic plants, mammalian and insect cells
have been developed for rhTf production [34], among which E. coli was reported to be inefficient due

to the production of inactive hTf. Successful expressions of hTf were reported in S.cerevisiae and P.
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pastoris with the resulting proteins being functional independent of use of only a partial sequence or

a full sequence, or with mutated glycosylation sites [34].

S. cerevisiae as a cell factory for human hemoglobin production

All the proteins described above are blood plasma components which contribute to different roles of
blood such as coagulation, clotting, transport of iron, maintain blood osmotic pressure and blood
volume. The additional crucial role of blood is the transport of oxygen and the only component in
blood that possesses oxygen carrier function is hemoglobin (found in erythorcytes), and this is
therefore a key component for development of human blood substitutes for treatment of patients

with injuries, anemia or in post-operational recovery.

Production of recombinant hemoglobin (rHb) has been attempted since the late 80’s. A variety of
strategies have been applied using several different expression systems, ranging from bacteria to
higher organisms such as transgenic plants and animals [35]. The work was first done in E. coli, where
a single B globin was expressed with a cleavable linker and refolded in vitro with native a globin and
exogenous heme [35]. The work was quite laborious and researchers therefore tried to express a and
B globins simultaneously in vivo with endogenous heme incorporated [36]. It was observed that the
essential parameters for normal human hemoglobin, namely Bohr effect and 2,3-BPG effects of the
rHb were reduced which very likely resulted from the methionine termini at the end of the globin
chains [37]. The amount of methionine modified a and B globins were significantly reduced by co-
expression of the methionine amino-peptidase (Met-AP) gene with the globin genes resulted in an
increased yield of rHb [36]. Further optimizations of the E. coli expression system included codon
optimization for globin expression in a T7 promoter system [38]; Site-directed mutations in B globin
chain in order to reduce the extreme oxygen affinity to rHb (no release of oxygen) due to the lack of
2, 3-BPG allosteric regulation; and a tandem fused a globin to prevent the dissociating of the
tetramer into a af} dimer [39]. In some resent studies, researchers have tried to co-express a globin
with its molecular chaperon, a-hemoglobin stabilizing protein (AHSP) and revealed its mechanisms
on preventing a globin precipitation. [40-42]. Correct expression and folding of human Hb have also

been accomplished in animals, e.g. pig [43] and mice [44,45], and in plants, e.g. tobacco[46].

The previous examples and the state-of-the-art methodologies and approaches show that S.
cerevisiaze can be engineered to become an even better producer for a wider range of
pharmaceutical and blood proteins. Comparing to E. coli, heterologous proteins produced in S.

cerevisiae do not have methionine modification which affecting the biological function of the rHb.
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Compared to plant and animal expression systems, the yeast system is cheaper and faster to
manipulate. As an outlook, we propose several potential strategies for increasing human hemoglobin

production in S. cerevisiae e.g. globin folding, heme uptake, and subunit assembling.

Additionally to the existing strategies such as site directed mutagenesis of the amino acids that are
important for stabilization [47,48], co-overexpression of a and B globin genes, cross-linking two a
globins as di-a to avoid af dimer formation, it is worth trying to co-express the AHSP gene together
with the a and B globin genes to increase the a globin stability [42,49,50] thus further enhancing the
production of rHb. It has also been reported that heme can accelerate hemoglobin accumulation in
immature cultured erythroid cells [51] and heme is not only the indispensable prosthetic group but
also essentially involved in assembling and ensuring a stable tetramer structure [52]. As heme
supplementation is expensive and the mechanism behind is poorly understood [53], engineering the
heme synthesis pathway is proposed to be a better choice to increase heme levels in the cell.
Examples for engineering the heme biosynthesic pathway include over-expression of the rate-limiting
enzymes in the synthesis pathway [54], engineering ALA (aminolevulinic acid) synthesis since it is the

first intermediate involved in heme synthesis, as well as engineering the iron uptake pathway.

In conclusion, the recent advances in the field of metabolic engineering allowed that S. cerevisiae
become an efficient cell factory for the production of heterologous proteins. By a systems biology
approach, further improvements might be implemented through integrative analysis and the
development of mathematical predictive models, being this yeast expected to become the suitable

platform for sustainable large scale production of protein therapeutics in the forthcoming future.
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Figure 2. Workflow overview for the development of yeast cell factories by metabolic engineering
from a systems biology approach. Engineering for protein production improvement can be
implemented either at a host level (e.g. metabolic engineering of gene pathways related to different
steps concerning protein processing and secretion) and/or be applied to the improvement of
expression systems by addition/testing of different features (e.g. the suitable selection marker for
each system, promoter sequences, etc). High throughput analysis methodologies allow then the
generation or large data sets, which can be processed and integrated in mathematical models for the
identification of new potential targets, allowing further improvement via retrofitting the system, and

therefore resulting in an enhanced protein production capability of the cell platform.

Protein System Production level Refs
Hirudin S. cerevisiae " 60 mg/L [55]
H. polymorpha v - [56]
Interferon a-2b H. polymorpha v 120 mg/L [57]
Hepatitis B vaccine H. polymorpha v - [58]
Angiostatin P. pastoris v 108 mg/L [59]
Anti-HBs Fab P. pastoris " 50 mg/L [60]
Human serum albumin K. lactis 3g/L [61]
3g/L [62]
S. cerevisiae "
10 g/L [63]
P. pastoris v
Human interleukin 6 A. niger (7 150 mg/L [64]
Human apolipoprotein Al CHO cells ™ 80 mg/ml [65]
Insulin precursor P. pastoris v 3g/L [66]
S. cerevisiae " 98mg/L [27]
Human tPA CHO cells ™ 34 mg/L [67]
Human gonadotropin CHO cells ™ 3g/L [67]
Erythropoietin (epoetin Q) CHO cells ™ - [68]
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444

445
446
447
448

449

450
451
452
453
454
455
456
457

Monoclonal Ab NSO cells ™ 3g/L [67]

HPV vaccine (Cervarix'") Insect cells - [69]
Human proapolipoprotein Al Insect cells 80 mg/L [70]
Clotting factor VIl a BHK cells ™ - [68]

Table 1. Examples of recombinant therapeutic proteins successfully expressed using different

production systems, including highest production levels reported in each organism. CHO = Chinese

hamster ovary cells; BHK = Baby hamster kidney cells; NSO = Myeloma cells; (Y) = Yeast; (F) =

Filamentous fungi; (M) = Mammalian.

Hightlights

Recombinant therapeutic production is a multibillion dollar market.

E. coli represents 30% of recombinant protein production but not suitable for human therapeutics.

Eukaryotic systems other than yeast are costly or not so efficient regarding protein yields.
S. cerevisiae shows a high potential to be a suitable platform for therapeutic protein.

Human blood proteins are the next candidates to be challenged by S. cerevisiae system.
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