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The optical response of metallic nanoparticle arrays is dominated by localized surface plasmon

excitations and is the sum of individual particle contributions modified by interparticle coupling that

depends on specific array geometry. We demonstrate a so far unexplored distinct oscillatory behavior of

the plasmon peak position, full width at half maximum, and extinction efficiency in large area amorphous

arrays of Au nanodisks, which depend on the minimum particle center-to-center distance in the array.

Amorphous arrays exhibit short-range order and are completely random at long distances. In our

theoretical analysis we introduce a film of dipoles approach, within the framework of the coupled dipole

approximation, which describes the array as an average particle surrounded by a continuum of dipoles

with surface densities determined by the pair correlation function of the array.

DOI: 10.1103/PhysRevLett.109.247401 PACS numbers: 78.67.Bf, 41.20.�q, 42.25.Dd, 78.40.Pg

Strong coupling of light to metal nanoparticles via lo-
calized surface plasmon resonances is one reason for the
wide exploitation of nanosized metallic entities [1–4]. For
many targeted uses of nanoplasmonic systems, a key ques-
tion is whether to operate with individual metallic struc-
tures [5,6] or to use ensembles in the form of periodic [7]
or random arrays on a support [8]. The optical properties
of nanoplasmonic arrays, both periodic and fully random,
stem from the optical response of individual particles. The
array modifies these single-particle spectra, sometimes
quite considerably, via interparticle coupling that depends
on the exact array geometry.

Here we scrutinize experimentally and theoretically, by
means of a film of dipoles approach in the framework of the
coupled dipole approximation, a so far unexplored oscil-
latory behavior of the optical response from a specific type
of nanoparticle array, somewhere between perfectly peri-
odic and fully random, that we refer to as an amorphous
array. This particular type of nanoparticle arrangement on
a surface exhibits short range distance order while at long
distances it is completely random. Furthermore, it can be
quite easily fabricated on large areas (wafer scale), using
bottom-up self-assembly based nanofabrication techniques
like hole-mask colloidal lithography [9], making it a first
choice for many large-scale devices and applications
[2,10–13]. In contrast to earlier observations made on
amorphous arrays of plasmonic nanoparticles for a limited
particle density range [14], where the optical properties
were attributed to a single particle optical response, our
findings indicate that amorphous arrays exhibit distinct
properties of interacting particles even if their density is
low. This provides a powerful handle for tuning localized
surface plasmon resonances, notably at constant particle
size, shape, and material, in the myriad of documented
applications of nanoplasmonics, which include bio- or
chemosensing [2,15], light harvesting [3], photocatalysis
[4], and surface enhanced spectroscopy [16,17].

For our experiments, we fabricated large area arrays of
gold nanodisks with engineered randomness (to mimic
arrays obtained by self-assembly techniques such as hole-
mask colloidal lithography [9]) using a recently developed
electron beam lithography nanofabrication scheme [8] as
described in detail in the Supplemental Material [18].
Circular areas of roughly 30 mm2 were patterned for each
considered center-to-center (CC) distance with minimum
imposed CC ranging from 2.5 to 7 in units of particle
diameter D (C). The size distribution for the disks is very
narrow (as can be seen in Fig. 1, the Supplemental Material
[18], and the histograms in Ref. [8]) and, consequently,
basically eliminates inhomogeneous broadening. We fab-
ricated large arrays with a very large number of particles to
eliminate the possibility that for the same set of global
parameters (minimum CC, D, thickness 20 nm, illumina-
tion conditions fixed) small samples could give rise to
slightly different array realizations. Optical extinctionmea-
surements were carried out in a Cary 5000 spectrophotom-
eter bymeasuring optical transmission in forward direction.
During the experiment a circular nanopatterned area,
defined by a pinhole with a radius of 2.5 mm, was illumi-
nated at normal incidence by monochromatic light.
In the first two panels of Fig. 1, we present experimen-

tally measured extinction efficiency spectra near the reso-
nance to illustrate the sensitivity of the peak position and
extinction efficiency per particle at peak to the CC value C
for D ¼ 160 nm in (a) and D ¼ 260 nm in (b). In a first
rough analysis for D ¼ 160 nm, we see that for C ¼ 2:5
extinction is maximal at 838 nm, then it redshifts for C ¼ 3
and 4 to 855 and 867 nm, respectively, and then undergoes
a blueshift to 837 nm (C ¼ 5) and 815 nm for C ¼ 6.
This suggests an oscillatory behavior of the peak position.
A similar trend is also seen when tracing the peak amplitude
(extinction efficiency) and the linewidth. Such oscillations in
plasmon frequency have not been observed in earlier studies
of ordered arrays that focused on the influence of particle

PRL 109, 247401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

0031-9007=12=109(24)=247401(5) 247401-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.247401


spacing on array spectra [19–21]. A double-peaked structure
of the resonance position in Ref. [19] was attributed to two
different conditions for the emergence of the first diffraction
order—one into the substrate and one into air.

An efficient way to model arrays of plasmonic nano-
particles is by a coupled dipole approximation in which
each disk is modeled by an induced point dipole coupled to
an external electromagnetic field [22]. In this framework,
the particle properties are described by a polarizability �
determined by the material, geometry, and surrounding
medium [23,24]. In the quasistatic regime, the polarizabi-
lity �qs is proportional to Vð�m � �sÞ=½�s þ Lð�m � �sÞ�,
where �m and �s are the permittivities of the metal particle
and surrounding medium, respectively, V is the particle
volume, and L is a shape depolarization factor. Dynamic
depolarization and radiative damping are accounted for by
introducing the modified long wavelength approximation

(MLWA) [24,25] 1=� ¼ 1=�qs � 2
3 ik

3 � k2

a , where k is

the wave number of exciting light of wavelength � and a
is a length associated with the particle geometry [24]. The
nanodisks considered here, despite their relatively large
sizes, are adequately described by a dipolar MLWA in
view of the diameter-to-plasmon-wavelength ratios of 1

3 to
1
4 , which are in the same range as in earlier MLWA studies

for similar-sized particles [20,21]. The dipolar nature of the
plasmon resonance in Au nanodisks in the same size range
was furthermore confirmed experimentally in a recent
study by Khunsin et al. [26].

For an infinite periodic array, where the particles are inter-
acting, the systemof coupled equations is solved by assuming

that the polarization of each particle is the same and thus �
becomes an effective polarizability that takes into account
interparticle interactions via a retarded dipole sum [7,27,28].
For an amorphous array, we can, as an ensemble average,

define an effective polarization ��. One way of analyzing
the interparticle contributions to �� is to average over many
realizations of amorphous arrays (i.e., dipole sums). Here,
however, we introduce a model in which the average particle
is surrounded by a continuous film of dipoles with surface
densities determined by the pair correlation functionGðr; CÞ,
where r is the radial distance from the considered particle.
One can think of this as an average of an infinite number of
different realizations of amorphous arrays centered around a
specified particle placed at a particular specified point. In a
sense this approach is reminiscent of the coherent-potential
approximation for a random distribution of particles on a
square array [29] or a field averaging scheme [30].
For the average particle in an amorphous array, we carry

out the same procedure of solving the discrete dipole
equations as in Ref. [27] where the retarded dipole sum
(discrete particles) is replaced by a retarded dipole integral
(continuous film with hole)

SðCÞ¼
Z þ1

‘CC

Z 2�

0
eikr

"ð1�ikrÞð3cos2��1Þ
r3

þk2sin2�

r

#

�gðr;CÞrd�dr; (1)

where the exponential term multiplied by the expression
in the square brackets (eikr½. . .�) describes the retarded
dipole-dipole interaction, gðr; CÞ ¼ �Gðr; CÞ is the pair
correlation function Gðr; CÞ multiplied by the particle sur-
face density � ¼ �0‘

�2
CC, ‘CC � CD, and �0 is a surface

packing parameter. The integration is over the whole
2D (r, �) space with the exception of an inner circle smaller
than ‘CC. Performing the angular integration yields the
average, effective polarizability [7,27]

�� ¼ 1

��1 � S
; (2)

where

S ¼ ��
Z þ1

‘CC

eikr
�
k2 þ 1� ikr

r2

�
Gðr; CÞdr: (3)

The function eikr½k2 þ ð1� ikrÞ=r2� consists of two parts:
the first (eikrk2) comes from the far-field dipole radiation
and its value oscillates, while the second [eikrð1� ikrÞ=r2]
corresponds to intermediate and near fields and its value
has a well-defined limit for r ! 1. However, these obser-
vations are only strictly valid for a well behaved function
Gðr; CÞ at infinity.
To perform the integration for S in Eq. (3) we require an

expression for Gð�; CÞ, where � ¼ r=D is a normalized
radius. We obtain Gð�; CÞ by finding a function which fits
well (R2 ’ 1) to pair correlation data calculated fromrandom
distributions of particles generated with the random sequen-
tial adsorption algorithm, which was also used to calculate
particle positions for the fabricated arrays [31]. The selected
function consists of two parts—a constant and a varying one
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FIG. 1 (color online). Experimentallymeasured extinction spec-
tra of gold nanodisks with an engineered randomness. Resonance
position, peak value, and linewidth all show a nonmonotonic
dependence on lattice parameter C beingminimumcenter-to-center
distance in units of disk diameter D: (a) D¼160 nm, (b) 260 nm.
(c) and (d) show SEM images of the amorphous arrays for C ¼ 3
and 4, respectively. Notice the random distribution of perfectly
defined particles.
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Gð�; CÞ ¼ 1þ sin

�
2�

�� d0C
d1C

�
½a0e�a1Ca2 ð��cCÞ

þ b0e
�b1Ce�b2Cb3 ð��cCÞ� for � � C: (4)

It is chosen because its product with functions describing
dipole fields is relatively easy to compute and its R2 ¼ 0:99
(fitting parameters given inRef. [32] andmore information is
given in the Supplemental Material [18]). Slight differences
between this function and the one shown byHinrichsen et al.
[31] occur only for particles at close distances. However, as
we show later, a qualitative description is insensitive to the
exact expression describing the short range order.

Equation (4), while easily integrable when multiplied by
the electric dipole field [33], does not lend itself to an easy
exposition of the main physics taking place. Therefore, a
qualitative analysis is carried out first, before performing
the full calculation. We do this by keeping the hard-core part
(unity) and omitting the second, oscillating term (multiplied
by the sine function). Thus, the simplified G reduces to a
Heaviside step function �ð�� CÞ that describes a fully
random array with a removed circle of radius C around the
average particle. The simplification still describes satisfy-
ingly the most important property of the array, namely, the
short-range order defined by the minimal allowed CC dis-
tance for the analyzed particle, and does not alter the main
physical processes occurring within the array.

The function G ¼ �ð�� CÞ is derived from Eq. (4) by
setting the pair correlation function to unity. To calculate
the far-field term, which oscillates around a mean value, we
modify it by adding to the exponent the term �"r, which
makes the expression ��k2

Rþ1
‘CC

eikr�"rdr well defined.

This represents a case when the array is illuminated by a
very broad Gaussian beam; i.e., disks very far away from
the center of the beam feel a diminished intensity of the
electric field, but the decay is slow enough that the average
treatment of the disks holds.

The first integral in lim"!0 equals ��kieik‘CC and the
second ��eik‘CC=‘CC. Thus, for the simplified case ofG ¼
�ð�� CÞ, the retarded dipole integral becomes

S� ¼ ��
eik‘CC

‘CC
ð1þ ik‘CCÞ: (5)

We substitute this result into the effective polarizability
�� [Eq. (2)] and rewrite the right-hand side containing the
substituted expressions into a Lorentzian form to easily
identify the peak position and full width at half maximum
(FWHM). We employ, as an illustrative test case, a ge-
neric metal sphere with a Drude dielectric function
�ð!Þ ¼ 1�!2

p=½!ð!þ i�Þ�. Using the MLWA, we get

��

4��0R
3
¼ 1� �!2ð1þs2Þ�qfþ i½ �!ð ��þ2

3s
3 �!2Þþqg�

½1� �!2ð1þs2Þ�qf�2þ½ �!ð ��þ2
3s

3 �!2Þþqg�2 ;

(6)

where we have introduced dimensionless variables �!�
!=!0, ����=!0, s�!0R=cwith!

2
0¼!2

p=3 theMie reso-

nance frequency, a coupling strength q���0ðR=‘CCÞ3

(q is maximum �
4 for �0 ¼ 1), two functions fðk‘CCÞ and

gðk‘CCÞ : fðxÞ¼ cosx�xsinx, gðxÞ ¼ sinxþ x cosx, and
c is the speed of light.
From the denominator of Eq. (6) we can read off the

resonance frequency and the FWHM. In the noninteracting

case (q ¼ 0), we have a mode at ��N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
with a

linewidth ��N ¼ ð2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þð ��þ ½2s3=3ð1þ s2Þ�. For an
amorphous array consisting of such particles the resonance
is modified by interparticle coupling via the retarded dipole
integral and Eq. (6) shows that we have a resonance at

��I= ��N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qfðkN‘CCÞ

q
; (7)

in terms of the noninteracting ��N and a linewidth of

��I= ��N ¼ 1þ 2ð1þ s2ÞQNgðkN‘CCÞ; (8)

whereQN is the individual particle quality factor defined as
the ratio of the peak position and its width. We see from
Eqs. (7) and (8) that due to the quality factor we expect the
randomness to show up much more in the FWHM than
in the resonance frequency. This is clearly seen in Fig. 2
which shows peak position (solid) and FWHM (dashed)
based on Eqs. (7) and (8). The peak position follows a
sinusoidal line with a period determined by the ratio of the
minimum particle-particle distance to the resonance wave-
length �N of a single particle. Notice, that the oscillations
are governed by the low cutoff ‘CC. The real part of the
dipole interaction term shifts the resonance position
towards higher frequency when <ðSÞ�f<0, while for
<ðSÞ> 0 it induces a red shift. The largest shifts occur
when the array is relatively dense, cf. large coupling
strength q. For large interparticle spacing the interference
between the disks vanishes since q is proportional to ‘�3

CC.
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FIG. 2 (color online). The variation of the optical character-
istics of the particle arrays in Fig. 1 can be understood from a
simple generic Drude model. The resonance frequency (solid)
and FWHM (dashed) of the array using a hard core pair-
correlation function with minimum center-center distance ‘CC
is shown. We measure the center-center distance ‘CC in units of
the resonance wavelength �N. The resonance frequency as well
as the linewidth are in units of the bare particle properties.
Notice how the interference between the particles causes both
resonance frequency and FWHM to oscillate and the oscillations
of the FWHM are larger than for the resonance frequency. With
decreased coupling, the curves settle to the single particle values.
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The single particle resonance linewidth ��I is modified by
the imaginary part of S� � g which introduces a modula-
tion of the linewidth equal to ð1þ s2ÞQNgðkN‘CCÞ. Similar
to the peak position, the linewidth is a decaying oscillatory
function that tends to the single particle resonance width
for infinitely diluted amorphous arrays. When g < 0 for
even-numbered half-periods the resonance linewidth is
smaller than the single particle one; however, it does not
go to zero [24,34–36]. Note, that in this analysis we have
kept the minimum center-center distance larger than that of
the order of two diameters so that higher order multipoles
which are not present in the theory should be negligible.

In the above qualitative picture, in which we dropped the
oscillatory term in the pair correlation function, we have
shown that the oscillations of the optical cross sections of
amorphous arrays are the result of interference between the
incident field driving a particle and the scattered fields
originating from the other particles in the array. We use
now the full expression for G [Eq. (4)] to analyze experi-
mental data, shown in Fig. 1, obtained from extinction
measurements on nanofabricated amorphous arrays of nano-
disks. To model the properties of a single disk in the array,
we adjust an oblate spheroidal polarizability so that the
single disk (for a hypothetical case of an infinitely diluted
array) resonance position and linewidth correspond to the
asymptotes of the experimental arrays for very large CC.

First, we address the extinction cross sections per parti-
cle in the arrays. Figure 3(a) presents the measured and
calculated extinction per disk in the array, Ce, normalized
to the extinction of a single disk. Clearly, extinction exhib-
its strong oscillatory CC distance dependence for all three
measured particle sizes. The minimum-to-maximum dif-
ference is about 40% for small CC distances and agrees
very well with the model calculations.

The measured experimental peak positions (diamonds)
and FWHM (circles) values are shown in Figs. 3(b)–3(d).
The solid orange and dashed blue lines representing peak
position and FWHM values, respectively, are calculated
according to the scheme outlined above. The agreement
between the theoretical and experimental data is reasonable
in view of our relatively simple theoretical treatment of the
particle interaction in the array. The period and phase shift
of the measured and calculated oscillations of the peak
position and FWHM are consistent and show a pronounced
CC distance dependence. Notably, the experimentally mea-
sured FWHM for the D ¼ 260 nm disk varies between ca.
0.3 and 0.5 eV at a rather moderate change of the peak
position (1.15 to 1.25 eV). As analyzed in detail previously,
the agreement between MLWA data for peak position,
intensity, and FWHM and the experimental one for diluted
amorphous arrays (C ¼ 6) is excellent [8], indicating the
validity of our model for a reasonable quantitative descrip-
tion for the considered system, despite its simple nature.

We now briefly address trends in the amplitude of the
oscillations that physically originate from radiative coupling
as a function of nanodisk size in the amorphous array. It is

known from theory and experiment that the scattering effi-
ciency, especially compared with absorption (i.e., the
scattering-absorption branching ratio), increases with parti-
cle size [37]. Thus, it is to be expected that the oscillations are
most pronounced for the largest particles, where the radiative
coupling is strong, and decrease in amplitude as the nanodisk
diameter decreases. This is precisely the trend that can be
seen in Fig. 3 [forD ¼ 480 nm, the maximumpeak position
oscillation amplitude (�E) normalized to peak position (E0)
is�E=E0 ¼ 0:11, forD ¼ 260 nm,�E=E0 ¼ 0:09, and for
D ¼ 160 nm, �E=E0 ¼ 0:06]. Consequently, the decrease
of the oscillatory amplitude is expected to continue as the
nanoparticle diameter further decreases. This can be clearly
seen in Fig. 2, where a 60 nm Drude sphere was considered.
The observed discrepancies between the calculated val-

ues for the peak position and, in particular, the FWHM are
the result of several factors, among which are inhomoge-
neity of the fabricated disks (this effect is, however, small),
the fact that disks with large diameter-to-thickness ratios
are not perfectly described by one dipole, and the estimation
of the long-range interference term in the dipole integral.
Another issue to be noted here is the illumination of the
array in the modeling, i.e., the assumption of a very broad
Gaussian beam incident onto an infinite amorphous array
(the array is in focus, so the phase of the incident beam is
uniform). The latter assumption is then used to calculate the
far-field term. However, for a finite array this is not fully
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FIG. 3 (color online). Experimental results compared to our
predictions based on the full pair-correlation function for the
extinction at peak value, the peak position and linewidth as a
function of the minimum particle-particle distance in units of
particle diameter. The characteristics of the spectra (extinction
value, position, and linewidth) oscillate as a result of radiative
coupling between the plasmonic particles within the array and are
a function of the minimum CC distance. (a) shows peak extinction
values for a disk in the amorphous array for the different disk
diameters, which are normalized to the peak extinction values of
their respective single particles; (b)–(d) show extinction peak
position (solid orange line, left y axis) and linewidth (dashed
blue line, right y axis) for diameters (b) 160, (c) 260, and
(d) 480 nm as a function of the CC distance. The horizontal
thin solid and dashed lines indicate asymptotes of the peak
position and linewidth of the amorphous arrays, respectively.
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correct. Far-field radiation is proportional to eikr and its
definite integral (present in the retarded dipole integral)
oscillates, so the value of the sum for a finite array depends
on the exact relation between the array and the illumination.
Thus, our result is to be viewed as an average value.

The occurrence of these oscillations has direct impli-
cations for plasmonic devices. For example, in plasmonic
sensing applications a slight tuning of the CC distance in
an amorphous array can significantly boost the figure of
merit [38]. As a second example, the possibility of tailoring
the peak linewidth in the near infrared spectral range is
of particular interest in the surface enhanced infrared ab-
sorption spectroscopy [16,17], where broad resonances are
sought to overlap with the sharp and localized vibrational
excitations of adsorbed molecules. Thus, in view of its
wide-ranging implications, our work provides a widely
unexplored tool for optimizing the particle-light interac-
tion in nanoplasmonic systems by tailoring the particle CC
distance in amorphous plasmonic nanoparticle arrays.

In summary,we have shown experimentally and explained,
using a film of dipoles model, an unexpected oscillatory
optical response of amorphous plasmonic nanoparticle arrays
that depends on the minimum allowed particle-particle sepa-
ration. Optical spectra of amorphous arrays, while stemming
from those of single particles, exhibit a strong influence of
intra-array radiative coupling of the plasmonic disks that
results in oscillation of the extinction, its position, and line-
width, which have not been observed in periodic arrays.
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Lett. 10, 931 (2010).

PRL 109, 247401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

247401-5

http://dx.doi.org/10.1038/nmat2546
http://dx.doi.org/10.1126/science.1176593
http://dx.doi.org/10.1038/nmat2629
http://dx.doi.org/10.1038/nmat3151
http://dx.doi.org/10.1038/nmat3151
http://dx.doi.org/10.1021/nl034372s
http://dx.doi.org/10.1021/nl034372s
http://dx.doi.org/10.1038/nmat3029
http://dx.doi.org/10.1103/PhysRevLett.101.143902
http://dx.doi.org/10.1103/PhysRevLett.101.143902
http://dx.doi.org/10.1021/nn102166t
http://dx.doi.org/10.1021/nn102166t
http://dx.doi.org/10.1002/(ISSN)1521-4095
http://dx.doi.org/10.1002/(ISSN)1521-4095
http://dx.doi.org/10.1021/nn201074z
http://dx.doi.org/10.1021/nn201074z
http://dx.doi.org/10.1021/nl801396r
http://dx.doi.org/10.1103/PhysRevLett.104.147401
http://dx.doi.org/10.1103/PhysRevLett.104.147401
http://dx.doi.org/10.1016/j.solmat.2012.05.009
http://dx.doi.org/10.1016/j.solmat.2012.05.009
http://dx.doi.org/10.1021/jp027562k
http://dx.doi.org/10.1021/jp027562k
http://dx.doi.org/10.1038/nmat2162
http://dx.doi.org/10.1073/pnas.0907459106
http://dx.doi.org/10.1073/pnas.0907459106
http://dx.doi.org/10.1021/nn2047982
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.247401
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.247401
http://dx.doi.org/10.1103/PhysRevLett.84.4721
http://dx.doi.org/10.1103/PhysRevLett.84.4721
http://dx.doi.org/10.1021/jp034234r
http://dx.doi.org/10.1021/jp034235j
http://dx.doi.org/10.1021/jp034235j
http://dx.doi.org/10.1364/JOSAA.11.001491
http://dx.doi.org/10.1364/JOSAA.11.001491
http://dx.doi.org/10.1364/JOSAB.26.000517
http://dx.doi.org/10.1023/A:1021977613319
http://dx.doi.org/10.1021/nl201043v
http://dx.doi.org/10.1063/1.1826036
http://dx.doi.org/10.1088/0953-4075/38/7/L02
http://dx.doi.org/10.1103/PhysRevB.28.4247
http://dx.doi.org/10.1364/JOSAB.2.000931
http://dx.doi.org/10.1364/JOSAB.2.000931
http://dx.doi.org/10.1007/BF01011908
http://dx.doi.org/10.1007/BF01011908
http://dx.doi.org/10.1063/1.1760740
http://dx.doi.org/10.1063/1.1760740
http://dx.doi.org/10.1063/1.1859281
http://dx.doi.org/10.1063/1.1859282
http://dx.doi.org/10.1063/1.2734550
http://dx.doi.org/10.1063/1.2734550
http://dx.doi.org/10.1021/nl100044k
http://dx.doi.org/10.1021/nl100044k

