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Göteborg, Sweden

Abstract

Wave propagation through a layer of a material that is inhomogeneous in

the thickness direction, typically a functionally graded material (FGM), is

investigated. The material parameters and the displacement components are

expanded in power series in the thickness coordinate, leading to recursion

relations among the displacement expansion functions. These can be used

directly in a numerical scheme as a means to get good field representations

when applying boundary conditions, and this can be done even if the layer is

not thin. This gives a schema that is much more efficient than the approach of

subdividing the layer into many sublayers with constant material properties.

For thin layers for which the material parameter do not depend on the layer

thickness the recursion relations can be used to eliminate all but the lowest

order expansion functions. Employing the boundary conditions this leads to

a set of effective boundary conditions relating the displacements and stresses
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on the two sides of the layer, thus completely replacing the layer by these

effective boundary conditions. Numerical examples illustrate the convergence

properties of the scheme for FG layers and the influence of different variations

of the material parameters in the FG layer.

Keywords: functionally graded materials, elastic waves, thin layer,

interface, effective boundary conditions

1. Introduction

Wave propagation problems in layered media have been studied exten-

sively in the literature. One particular field of interest concerns two homoge-

neous solids in contact, and especially how to model the interface boundary

conditions properly. Usually perfect bonding is assumed implying continuity

of stress and displacement across the interface. However, the actual inter-

face is more complicated than that as it has properties different from the

surroundings. This could either be at the micro level due to misfits at the

grain boundaries, or on a larger scale where a thin interface layer connects

the two solids, e.g. a glue. Various methods have been developed to model

such imperfect bondings (Jones and Whittier, 1967; Rokhlin and Wang, 1991;

Boström et al., 1992; Rokhlin and Huang, 1993). Another possible way of

dealing with this mismatch between materials is to impose a layer of a func-

tionally graded material in between the two homogeneous solids. Hereby

the material properties vary continuously from one surface to another, which

mitigates various interface problems such as delamination due to stress con-

centrations.

Functionally graded materials (FGM) are composite materials made of
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two (or more) phases of material constituents, where the phase distribution

varies continuously. The most used group of FGM consists of ceramic and

metal phases. Such FGM were developed in the mid 1980s where the strength

of the metal and the heat resistance of the ceramic made these materials

well suited for high-temperature environments. FGM also possess a number

of other advantages compared to homogeneous materials such as improved

residual stress distribution, higher fracture toughness, and reduced stress

intensity factors. Hence, FGM are nowadays used in many different fields of

engineering (Birman and Byrd, 2007; Shen, 2009).

The amount of work on structural elements made of FGM is huge, com-

prising isotropic, anisotropic and piezoelectric functionally graded (FG) struc-

tures of all geometries. Considering flat layers (plates), dynamical problems

on free FG plates have been much studied adopting the three-dimensional

equation of motion as well as different approximate theories based on the

Kirchhoff, Mindlin, and various higher order shear deformation assumptions

(Reddy and Cheng, 2003; Vel and Batra, 2004; Matsunaga, 2008; Zhao et al.,

2009; Cao et al., 2011). Coupling problems for FG plates placed between

homogeneous layers have been less frequently investigated. Such work has

recently been performed for sandwich panels in both statics (Kashtalyan and

Menshykova., 2009) and dynamics (Li et al., 2008; Chehel Amirani et al.,

2009; Hadji et al., 2011). The literature on transmission and reflection ef-

fects using FG layers is scarce. Results are presented in (Huang and Nutt,

2011) for the acoustic problem on a FG panel.

The present paper considers dynamic equations for an inhomogeneous

layer placed between two other materials. The layer is typically an FG layer,
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and is so designated in the following, but it may be any layer that is inhomo-

geneous in the thickness direction. The material parameters in the layer can

vary in a more or less arbitrary way in the thickness direction although they

are assumed continuous. However, they need not be continuous at the bound-

aries. In the following the surrounding materials are designated ’half-spaces’,

but this is certainly not necessary, they may be layered or inhomogeneous,

or even a traction-free boundary is possible. The layer is modeled using the

three-dimensional equations of motion where the material parameters and

displacement components are expanded in power series in the thickness co-

ordinate. This method has previously been used for other plate structures

such as isotropic homogeneous plates (Boström et al., 2001), isotropic FG

plates (Vel and Batra, 2004), anisotropic homogeneous plates (Mauritsson

et al., 2011) and piezoelectric homogeneous plates (Johansson and Niklas-

son, 2003; Mauritsson et al., 2008; Mauritsson and Folkow, 2010). Insertion

into the governing three-dimensional equations of motion results in recursion

relations among the displacement expansion functions. For thicker layers or

layers whose material properties depend on the layer thickness, these recur-

sion relations can be used directly in a numerical scheme to get good field

representations when applying boundary conditions. For thin layers for which

the material parameters do not depend on the layer thickness the power series

expansions in conjunction with these recursion relations are used in the con-

tinuity boundary conditions at the top and the bottom of the FG layer. By

eliminating the internal layer fields, these boundary conditions are expressed

in terms of the displacement and stress fields for the surrounding half-spaces.

Hereby, the effects from the FG layer are replaced by effective boundary con-
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ditions (containing tangential and time derivatives), expressed in terms of

the exterior fields. It is thus not necessary to model and solve equations

for the layer separately, which simplifies the analysis of such coupled prob-

lems. A similar approach has been used when deriving effective boundary

conditions for homogeneous plates (Johansson et al., 2005) and porous plates

(Folkow and Johansson, 2009) surrounded by fluid half-spaces, as well as for

homogeneous piezoelectric layers bonded to elastic materials (Johansson and

Niklasson, 2003; Mauritsson, 2009). The power series and the resulting effec-

tive boundary conditions can be truncated to arbitrary order in the thickness,

resulting in a hierarchy of equations that from previous experience (Boström

et al., 2001) are believed to be asymptotically correct also in the present case.

Here, explicit results are presented including thickness terms of power four

in the anti-plane (SH) case, and thickness terms of power two in the in-plane

(P-SV) case. Also the fully three-dimensional effective boundary conditions

are derived. Numerical results are presented for plane wave problems, where

energy transmission coefficients are calculated using the recursion relations

and different truncation orders of the displacement series expansions. When

compared to the result from the exact three-dimensional equation of motion,

the present theory is seen to converge as the truncation order is increased.

Also the influence of different variations of the material parameters in the

FG layer are investigated.

2. Anti-plane motion (SH case)

Consider first the simpler anti-plane (SH) case where the displacement

has only one component. The geometry is specified in Fig. 1 which shows the
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FG layer of thickness d and the surrounding two homogeneous half-spaces A

(z < 0) and B (z > d). In the FG layer the density is ρ(z) and the shear

modulus is µ(z), where the z dependence is left arbitrary. In the half-spaces

the material parameters are assumed to be constant and are denoted by a

subscript A or B, thus the densities are ρA and ρB and the shear moduli are

µA and µB. In Fig. 1 the boundary values of the displacement v and shear

stress σyz in the two half-spaces are also indicated; these are the quantities

that enter into the boundary conditions. In the FG layer the governing

equation is

∂σyx(x, z, t)

∂x
+

∂σyz(x, z, t)

∂z
= ρ(z)

∂2v(x, z, t)

∂t2
, (1)

where the two shear stresses are

σyx(x, z, t) = µ(z)
∂v(x, z, t)

∂x
, σyz(x, z, t) = µ(z)

∂v(x, z, t)

∂z
. (2)

Accordingly the governing equation can be written in terms of the displace-

ment

∂

∂z

(
µ(z)

∂

∂z

)
v(x, z, t) +

(
µ(z)

∂2

∂x2
− ρ(z)

∂2

∂t2

)
v(x, z, t) = 0. (3)

To proceed the material parameters are expanded in power series

ρ(z) =
M∑
i=0

ρiz
i, µ(z) =

M∑
i=0

µiz
i. (4)

The upper limit M depends on the model for the FG layer, in most cases

a good enough representation should be obtained with low values on M .

However, for the applicability of the present method the density and shear

modulus need not be continuous at the boundaries between the FG layer
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x

z

d

v  (x,t), σ  (x,t)A A
yz

v  (x,t), σ  (x,t)B B
yz

Figure 1: Geometry of the problem for an anti-plane motion of an FG layer with the

boundary values of the displacements and stresses in the surrounding materials indicated.

and the half-spaces. Also the displacement in the FG layer is expanded in a

power series

v(x, z, t) =
N∑
j=0

vj(x, t)z
j, (5)

where the expansion coefficients are thus functions of x and t. The upper

limit must be chosen so that the results converge to a desired accuracy, and

this is further discussed in the following and is investigated in the numerical

examples. Substituting the power series expansions into Eq. 3 and putting

each power of z to zero individually gives the following recursion relation

vk+2 = − 1

(k + 1)(k + 2)µ0

[
k∑

s=0

DT
s vk−s +

k∑
s=1

(k − s+ 1)(k − s+ 2)µsvk−s+2

+
k∑

s=0

(s+ 1)(k − s+ 1)µs+1vk−s+1

]
, k = 0, 1, 2, . . . , (6)

where the terms are written in terms of the horizontal shear wave operator

DT
s = −ρs

∂2

∂t2
+ µs

∂2

∂x2
, s = 0, 1, . . . . (7)

Accordingly, all the terms vk, with k = 2, 3, . . ., can be expressed in terms of
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v0 and v1, e.g.

v2 = − 1

2µ0

[
DT

0 v0 + µ1v1
]
, (8)

v3 = − 1

6µ2
0

[
µ0DT

0 v1 + 2(µ0µ2 − µ2
1)v1 + µ0DT

1 v0 − 2µ1DT
0 v0

]
. (9)

The recursion relation can be used directly to obtain an accurate field rep-

resentation in the layer which can be used when applying the boundary

conditions. This works well also if the layer is not thin, but for thin layers

one would expect that some sort of effective boundary conditions between

the two half-spaces can be derived. In this way all effects of the layer are

incorporated into the effective boundary conditions and the layer can be dis-

regarded completely. However, if the material properties of the layer depend

on the thickness of the layer this does not work as explained at the end of

this section.

The boundary conditions at the boundaries of the FG layer are continuity

of displacement and shear stress:

v(x, 0, t) = vA(x, t), σyz(x, 0, t) = σA
yz(x, t), (10)

v(x, d, t) = vB(x, t), σyz(x, d, t) = σB
yz(x, t). (11)

Here the limiting values of the displacement and stress in the two half-spaces

z < 0 and z > d are denoted by a superscript ’A’ and ’B’, respectively.

The boundary conditions at z = 0 directly give v0(x, t) = vA(x, t) and

µ0v1(x, t) = σA
yz(x, t). Using this and the boundary conditions at z = d,

and eliminating the expansion functions in the layer (v0 and v1), gives the

effective boundary conditions between the two half-spaces A and B (taken

at z = 0 and z = d, respectively):

vB = vA +
d

µ0

σA
yz −

d2

2µ2
0

[
µ0DT

0 v
A + µ1σ

A
yz

]
8



+
d3

6µ3
0

[
µ0

(
2µ1DT

0 − µ0DT
1

)
vA −

(
2µ0µ2 − 2µ2

1 + µ0DT
0

)
σA
yz

]
+

d4

24µ4
0

[
µ0

(
µ0

(
DT

0

)2 − 6
(
µ2
1 − µ0µ2

)
DT

0 + µ0

(
3µ1DT

1 − 2µ0DT
2

))
vA

−2
(
3µ3

1 + 3µ2
0µ3 − 6µ0µ1µ2 − 2µ0µ1DT

0 + µ2
0DT

1

)
σA
yz

]
, (12)

σB
yz = σA

yz − dDT
0 v

A − d2

2µ0

[
µ0DT

1 v
A +DT

0 σ
A
yz

]
+

d3

6µ2
0

[
µ0

((
DT

0

)2 − 2µ0DT
2

)
vA +

(
µ1DT

0 − 2µ0DT
1

)
σA
yz

]
+

d4

24µ3
0

[
µ0

(
DT

0

)2 − 2
(
µ2
1 − µ0µ2

)
DT

0 + 3µ0

(
µ1DT

1 − 2µ1DT
2

)
σA
yz

− 2µ0

(
µ1

(
DT

0

)2 − 2µ0DT
1DT

0 + 3µ2
0DT

3

)
vA

]
. (13)

Here the x and t dependence of the field variables are suppressed. Terms

up to order d4 are included, but it is straightforward to include higher order

terms also. However, if more terms are needed it is better to use the recursion

relation repeatedly in the numerical scheme as explained above, and this is

the procedure used when investigating the convergence numerically below.

The effective boundary conditions between the half-spaces are believed

to be asymptotically correct to all orders in d, cf. Boström et al. (2001).

However, for this to be true it is essential that the expansion coefficients of

the material parameters ρi and µi are independent of d. Often, this will not be

the case for FG layers. As an example, consider a linear variation inside the

FG layer with the density and shear modulus continuous at the boundaries.

Then µ0 = µA and µ1 = (µB −µA)/d and similarly for the density. It is then

easily seen that the d dependence of µ1 destroys the asymptotic character of

the boundary conditions; instead all terms will be of order d.
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3. In-plane motion (P-SV case)

In the case of in-plane P-SV waves also the other Lamé constant λ is

needed. It can depend on the z coordinate in the layer so λ = λ(z). The

displacement components in the x and z directions are u and w, respectively.

The stresses expressed in the displacements are:

σxz = µ(z)

(
∂u

∂z
+

∂w

∂x

)
, (14)

σxx = (λ(z) + 2µ(z))
∂u

∂x
+ λ(z)

∂w

∂z
, (15)

σzz = λ(z)
∂u

∂x
+ (λ(z) + 2µ(z))

∂w

∂z
, (16)

and the governing elastodynamic equations are

∂

∂z

(
µ
∂u

∂z

)
+ (λ+ µ)

∂2w

∂x∂z
+

∂µ

∂z

∂w

∂x
+ (λ+ 2µ)

∂2u

∂x2
− ρ

∂2u

∂t2
= 0, (17)

∂

∂z

(
(λ+ 2µ)

∂w

∂z

)
+ (λ+ µ)

∂2u

∂x∂z
+

∂λ

∂z

∂u

∂x
+ µ

∂2w

∂x2
− ρ

∂2w

∂t2
= 0. (18)

The expansion of the Lamé constant λ is assumed in a power series

λ(z) =
M∑
i=0

λiz
i. (19)

Also the displacements are expanded

u(x, z, t) =
N∑
j=0

uj(x, t)z
j, w(x, z, t) =

N∑
j=0

wj(x, t)z
j. (20)

Introducing all series expansions into the governing equations and putting

each power of z to zero individually leads to the recursion relations

10



uk+2 = − 1

(k + 1)(k + 2)µ0

[
k∑

s=1

(k − s+ 1)(k − s+ 2)µsuk−s+2

+
k∑

s=0

DL
s uk−s +

k∑
s=0

(s+ 1)(k − s+ 1)µs+1uk−s+1

+
k∑

s=0

(s+ 1)µs+1Dxwk−s +
k∑

s=0

(k − s+ 1)(λs + µs)Dxwk−s+1

]
, (21)

wk+2 = − 1

(k + 1)(k + 2)(λ0 + 2µ0)

[
k∑

s=1

(k − s+ 1)(k − s+ 2)(λs + 2µs)wk−s+2

+
k∑

s=0

DT
s wk−s +

k∑
s=0

(s+ 1)(k − s+ 1)(λs+1 + 2µs+1)wk−s+1

+
k∑

s=0

(s+ 1)λs+1Dxuk−s +
k∑

s=0

(k − s+ 1)(λs + µs)Dxuk−s+1

]
,(22)

where the new differential operators are

DL
s = −ρs

∂2

∂t2
+ (λs + 2µs)

∂2

∂x2
s = 0, 1, . . . , (23)

and

Dx =
∂

∂x
. (24)

Applying all boundary conditions at z = 0 and z = d leads to the effective

boundary conditions between the half-spaces

uB = uA + d

[
1

µ0

σA
xz −DxwA

]
− d2

2µ0

[(
DL

0 − λ0(λ0 + µ0)

λ0 + 2µ0

(Dx)2
)
uA +

µ1

µ0

σA
xz +

λ0 + µ0

λ0 + 2µ0

DxσA
zz

]
, (25)
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wB = wA + d

[
σA
zz − λ0DxuA

λ0 + 2µ0

]
+

d2

2(λ0 + 2µ0)

[ (
(λ0 + µ0)(Dx)2 −DT

0

)
wA

+2
µ1λ0 − µ0λ1

(λ0 + 2µ0)
DxuA − λ0 + µ0

µ0

DxσA
xz −

λ1 + 2µ1

λ0 + 2µ0

σA
zz

]
, (26)

σB
xz = σA

xz + d

[(
λ2
0

λ0 + 2µ0

(Dx)2 −DL
0

)
uA − λ0

λ0 + 2µ0

DxσA
zz

]
−d2

2

[
λ0(λ0 + µ0)(Dx)2 − (λ0 + 2µ0)DL

0 − λ0DT
0

(λ0 + 2µ0)
DxwA

+

(
DL

1 − λ0
4λ1µ0 + λ0 (λ1 − 2µ1)

(λ0 + 2µ0)2
(Dx)2

)
uA(

− λ0 (λ0 + µ0)

µ0(λ0 + 2µ0)
(Dx)2 +

1

µ0

DL
0

)
σA
xz + 2

µ0λ1 − µ1λ0

(λ0 + 2µ0)2
DxσA

zz

]
, (27)

σB
zz = σA

zz + d
[
(µ0(Dx)2 −DT

0 )w
A −DxσA

xz

]
+
d2

2

[(
DL

0 +
λ0

λ0 + 2µ0

DT
0 − λ0(λ0 + µ0)

λ0 + 2µ0

(Dx)2
)
DxuA

+
(
µ1(Dx)2 −DL

1

)
wA +

λ0 + µ0

λ0 + 2µ0

(Dx)2σA
zz +

1

λ0 + 2µ0

DT
0 σ

A
zz

]
, (28)

where a superscript ’A’ or ’B’ again denotes the limiting value from the

half-spaces. The x and t dependence of the fields are again not written out

explicitly. These effective boundary conditions are only given to second order

in d, the higher order terms become very complicated. The same remarks

are valid for these conditions as for the corresponding SH conditions.
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4. Three-dimensional case

Turning to the fully three-dimensional case, the governing elastodynamic

equations of motion are

∂

∂z

(
µ
∂u

∂z

)
+ (λ+ µ)

∂2w

∂x∂z
+

∂µ

∂z

∂w

∂x
+ (λ+ µ)

∂2v

∂x∂y

+(λ+ 2µ)
∂2u

∂x2
+ µ

∂2u

∂y2
− ρ

∂2u

∂t2
= 0, (29)

∂

∂z

(
µ
∂v

∂z

)
+

∂µ

∂z

∂w

∂y
+ (λ+ µ)

∂2w

∂y∂z
+ (λ+ µ)

∂2u

∂x∂y

+µ
∂2v

∂x2
+ (λ+ 2µ)

∂2v

∂y2
− ρ

∂2v

∂t2
= 0, (30)

∂

∂z

(
(λ+ 2µ)

∂w

∂z

)
+ (λ+ µ)

(
∂2u

∂x∂z
+

∂2v

∂y∂z

)
+

∂λ

∂z

∂u

∂x
+

∂λ

∂z

∂v

∂y

+µ
∂2w

∂x2
+ µ

∂2w

∂y2
− ρ

∂2w

∂t2
= 0, (31)

where the same notions as earlier are used. The density, the Lamé constants,

and the displacement components are expanded in power series exactly as in

previous sections, and this leads to the following recursion relations

uk+2 = − 1

(k + 1)(k + 2)µ0

[
k∑

s=1

(k − s+ 1)(k − s+ 2)µsuk−s+2

+
k∑

s=0

D1
suk−s +

k∑
s=0

(s+ 1)(k − s+ 1)µs+1uk−s+1 +
k∑

s=0

(s+ 1)µs+1Dxwk−s

+
k∑

s=0

(k − s+ 1)(λs + µs)Dxwk−s+1 +
k∑

s=0

(λs + µs)DxDyvk−s

]
,(32)

vk+2 = − 1

(k + 1)(k + 2)µ0

[
k∑

s=1

(k − s+ 1)(k − s+ 2)µsvk−s+2

+
k∑

s=0

D2
svk−s +

k∑
s=0

(s+ 1)(k − s+ 1)µs+1vk−s+1 +
k∑

s=0

(s+ 1)µs+1Dywk−s

13



+
k∑

s=0

(k − s+ 1)(λs + µs)Dywk−s+1 +
k∑

s=0

(λs + µs)DxDyuk−s

]
,(33)

wk+2 = − 1

(k + 1)(k + 2)(λ0 + 2µ0)

[
k∑

s=1

(k − s+ 1)(k − s+ 2)(λs + 2µs)wk−s+2

+
k∑

s=0

D3
swk−s +

k∑
s=0

(s+ 1)(k − s+ 1)(λs+1 + 2µs+1)wk−s+1

+
k∑

s=0

(s+ 1)λs+1(Dxuk−s +Dyvk−s)

+
k∑

s=0

(k − s+ 1)(λs + µs)(Dxuk−s+1 +Dyvk−s+1)

]
.(34)

Here the differential operators are

D1
s =

(
(λs + 2µs)

∂2

∂x2
+ µs

∂2

∂y2
− ρs

∂2

∂t2

)
, (35)

D2
s =

(
µs

∂2

∂x2
+ (λs + 2µs)

∂2

∂y2
− ρs

∂2

∂t2

)
, (36)

D3
s =

(
µs

∂2

∂x2
+ µs

∂2

∂y2
− ρs

∂2

∂t2

)
, (37)

where s = 0, 1, . . ., and

Dx =
∂

∂x
, Dy =

∂

∂y
. (38)

Applying all boundary conditions at z = 0 and z = d finally leads to the

effective boundary conditions between the half-spaces

uB = uA + d

[
1

µ0

σA
xz −DxwA

]
− d2

2µ0

[(
D1

0 −
λ0(λ0 + µ0)

λ0 + 2µ0

(Dx)2
)
uA + 2µ0

λ0 + µ0

λ0 + 2µ0

DxDyvA +
µ1

µ0

σA
xz +

λ0 + µ0

λ0 + 2µ0

DxσA
zz

]
,(39)
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vB = vA + d

[
1

µ0

σA
yz −DywA

]
− d2

2µ0

[(
D2

0 −
λ0(λ0 + µ0)

λ0 + 2µ0

(Dy)2
)
vA + 2µ0

λ0 + µ0

λ0 + 2µ0

DxDyuA +
µ1

µ0

σA
yz +

λ0 + µ0

λ0 + 2µ0

DyσA
zz

]
,(40)

wB = wA + d

[
σA
zz − λ0(DxuA +DyvA)

λ0 + 2µ0

]
+
d2

2

[
(λ0 + µ0) ((Dx)2 + (Dy)2)−D3

0

(λ0 + 2µ0)
wA

+2
µ1λ0 − µ0λ1

(λ0 + 2µ0)2
(
DxuA +DyvA

)
− λ0 + µ0

µ0(λ0 + 2µ0)

(
DxσA

xz +DyσA
yz

)
− λ1 + 2µ1

(λ0 + 2µ0)2
σA
zz

]
,(41)

σB
xz = σA

xz + d

[(
λ2
0

λ0 + 2µ0

(Dx)2 −D1
0

)
uA − µ0(3λ0 + 2µ0)

λ0 + 2µ0

DxDyvA − λ0

λ0 + 2µ0

DxσA
zz

]
−d2

2

[
λ0(λ0 + µ0)(Dx)2 − µ0(λ0 + µ0)(Dy)2 − (λ0 + 2µ0)D1

0 − λ0D3
0

(λ0 + 2µ0)
DxwA

+

(
D1

1 −
λ0(4λ1µ0 + λ0(λ1 − 2µ1))

(λ0 + 2µ0)2
(Dx)2

)
uA +

4λ1µ
2
0 + µ1(3λ

2
0 + 4λ0µ0 + 4µ2

0)

(λ0 + 2µ0)2
DxDyvA

+

(
− λ0 (λ0 + µ0)

µ0(λ0 + 2µ0)
(Dx)2 +

1

µ0

D1
0

)
σA
xz +

µ0 + λ0

λ0 + 2µ0

DxDyσA
yz + 2

µ0λ1 − µ1λ0

(λ0 + 2µ0)2
DxσA

zz

]
,(42)

σB
yz = σA

yz − d

[
µ0(3λ0 + 2µ0)

λ0 + 2µ0

DxDyuA +

(
− λ2

0

λ0 + 2µ0

(Dy)2 +D2
0

)
vA +

λ0

λ0 + 2µ0

DyσA
zz

]
−d2

2

[
λ0(λ0 + µ0)(Dy)2 − 2µ0(λ0 + µ0)(Dx)2 − (λ0 + 2µ0)D2

0 − λ0D3
0

λ0 + 2µ0

DywA

+

(
D2

1 −
λ0 (4λ1µ0 + λ0(λ1 − 2µ1))

(λ0 + 2µ0)2
(Dy)2

)
vA +

4λ1µ
2
0 + µ1(3λ

2
0 + 4λ0µ0 + 4µ2

0)

(λ0 + 2µ0)2
DxDyuA

+
µ0 + λ0

λ0 + 2µ0

DxDyσA
xz +

(
− λ0 (λ0 + µ0)

µ0(λ0 + 2µ0)
(Dy)2 +

1

µ0

D2
0

)
σA
yz + 2

µ0λ1 − µ1λ0

(λ0 + 2µ0)2
DyσA

zz

]
,(43)
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σB
zz = σA

zz + d
[
(µ0((Dx)2 + (Dy)2)−D3

0)w
A −DyσA

yz −DxσA
xz

]
+
d2

2

[(
D2

0 +
2µ0(λ0 + µ0)(Dx)2 − λ0(λ0 + µ0)(Dy)2 + λ0D3

0

λ0 + 2µ0

)
DyvA(

D1
0 +

−λ0(λ0 + µ0)(Dx)2 + 2µ0(λ0 + µ0)(Dy)2 + λ0D3
0

λ0 + 2µ0

)
DxuA

+(µ1((Dx)2 + (Dy)2)−D3
1)w

A +
(λ0 + µ0)((Dx)2 + (Dy)2)−D3

0

λ0 + 2µ0

σA
zz

]
. (44)

As in the in-plane case the effective boundary conditions are written to second

order in the thickness d. Comparing the three-dimensional case with the two

two-dimensional ones it is apparent that the latter are special cases, exactly

as they must be. As for the antiplane case the method is believed to be

asymptotically correct to all orders, although this demands that the material

parameters do not depend on the layer thickness.

5. Numerical examples

To validate the approach and to investigate the convergence a few numer-

ical examples are now provided. An incoming plane wave from medium A is

then assumed. This plane wave makes the angle θ0 with the normal to the FG

layer, and can be of SH, SV, or P type. These plane wave problems are then

one- or two-dimensional, but this is not expected to influence the conclusions

in the following. The transmission and reflection coefficients are calculated

with the present approach. To this end a truncation N of the number of

expansion coefficients (which in the case of plane waves are independent of x

and t) in each displacement component is taken and the boundary conditions

at z = 0 and z = d are written down together with N − 1 recursion relations
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for each displacement component. This yields a system of linear equations for

the transmission and reflection coefficients and the displacement expansion

coefficients which it is of course straightforward to solve. As a comparison

the reflection and transmission problem is also solved by subdividing the

FG layer into a (usually large) number of sublayers with constant material

properties (Cretu and Nita, 2004; Wu et al., 2009). This method is straight-

forward and is not described further. It is checked that a sufficient number of

layers are taken so the result has converged, see (Golub et al., 2012). In the

following this method is designated the ’exact’ one although it is not more

exact than the method with the recursion relations, and generally speaking

the method with sublayers is numerically much less effective. The number of

sublayers needed varies with frequency, but typically up to 1000 layers are

needed in the following computations.

The energy transmission coefficient and the energy reflection coefficient

are used to characterize the transfer through the layer, where the total en-

ergy transmission coefficient, denoted κ+, is the ratio of the time-averaged

energy flow transmitted through the layer to the energy of the incident plane

wave. Energy conservation can then be used as a check on the numerical

computations.

Notation Materials Density Young’s modulus Poisson’s ratio

[kg/m3] [GPa]

A Alumina 4000 400 0.231

B Aluminium 2700 70 0.33

Table 1: Elastic moduli and densities of the half-spaces.
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The variation of the material properties in the FG layer is assumed to be

given by

P (z) = (PB − PA)
(z
d

)M

+ PA, 0 < z < d. (45)

Here M = 1, 3, or 5 is chosen, which means that the truncation of the

expansion of the material parameters is also M . P is any of the parameters

of the layer, i.e. ρ, µ, and λ are all assumed to have the same functional

dependence on z. Note that the material parameters become continuous at

the interface between the FG layer and the surrounding half-spaces. For

M = 1 the dependence is linear and the parameters have a discontinuous

derivative at the interfaces. For M = 3 and M = 5 the parameters have

continuous derivatives at the interfaces.

In the numerical calculations the normalized frequency ωd/(2πcB) is in-

troduced, where d is the thickness of the FG layer and cB =
√

µB/ρB is the

shear wave velocity of material B. This dimensionless frequency thus mea-

sures the thickness of the FG layer in terms of the wavelength of material

B (but with the material parameters chosen the wavelengths in the different

materials are about the same). The two half-spaces are chosen as alumina

and aluminium. The material properties used are specified in Table 1.

First a few examples are given to demonstrate the convergence of the

scheme, varying the material law (the value of M), the type of incident wave,

and the angle of incidence. Figure 2 shows the energy transmission coefficient

for M = 5 and an SH wave with angle of incidence θ0 = 0◦ and θ0 = 15◦. A

high truncation in N (the number of expansion terms for the displacement) is

needed and it is also seen that a skew incidence needs a higher N than normal

incidence; thus N = 150 is enough for normal incidence whereas N = 200 is
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ωd/(2πc )

N = 100

N = 150

N = 200
Exact solution

N = 100

N = 150

N = 200
Exact solution

κ

κ

+

+

B

0.7

0.8

0.9

0 0.5 1.0 1.5

1.0

0.7

0.8

0.9

1.0

(a)

(b)

Figure 2: Energy transmission coefficient κ+ for M = 5 and SH wave with θ0 = 0◦(a) and

θ0 = 15◦(b).

needed for θ0 = 15◦. Figure 3 likewise shows the convergence for M = 3 and

an incident SV wave with θ0 = 15◦. Here the even higher truncation N = 250

is needed to secure convergence. However, turning to the linear law M = 1

in Fig. 4, which is for an incoming P wave with θ0 = 30◦, shows that in this

case a much lower truncation is needed; it is in fact enough with N = 40.

In conclusion it can be stated that moderate truncations, around N = 40, is

enough for the linear law M = 1, whereas much higher truncations, around

N = 200, are needed for the material laws with M = 3 and M = 5.
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ωd/(2πc )

N = 150

N = 200

N = 250
Exact solution

κ
+

B

0 0.5 1.0 1.5
0.75

0.85

0.95
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Figure 3: Energy transmission coefficient κ+ for M = 3 and SV wave with θ0 = 15◦.

ωd/(2πc )

N = 20

N = 30

N = 40
Exact solution

κ
+

B

0 0.5 1.0 1.5
0.75

0.85

0.95

1.05

Figure 4: Energy transmission coefficient κ+ for M = 1 and P wave with θ0 = 30◦.

To investigate how important the variations of the material properties

within a layer are, the three different laws M = 1, M = 3, and M = 5 are

now compared with each other and also with the corresponding means. The

means are of course calculated in the ordinary way, i.e.

µ0 =
1

d

∫ d

0

µ(z)dz, (46)

and similarly for λ and ρ. When using the means this also gives that M = 0
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+

0.8
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+
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Figure 5: Energy transmission coefficient κ+ for P wave with θ0 = 45◦: mean value for

elastic moduli (dash-dotted line) and exact solution (solid line). M = 1 (a); M = 3 (b);

M = 5 (c).
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can be used in the recursion relations. Figure 5 shows the energy transmission

coefficient for an incoming P wave with θ0 = 45◦ and the three M -values and

the corresponding means. Note that all curves start at frequency ω = 0

at κ+ = 0.818, where the waves are so long so that there is no influence

at all from the layer. When the frequency is increased all the six curves

start to deviate from each other. It is noticed that the transmission for

the means is larger than those for varying material parameters when the

frequency is increasing from low values . Already around ωd/(2πcB) = 0.05

the deviations start, so already at this surprisingly low frequency the detailed

material behaviour of the layer starts to be of importance.

6. Concluding remarks

It has been shown how the use of recursion relations for the displacement

expansion functions is an effective way to treat a layer of an inhomogeneous

material such as FGM. If the layer is thin and the material parameters in the

layer do not depend on the layer thickness, the effective boundary conditions

with only linear, or maybe quadratic, terms is an efficient way of treating the

layer. If the material parameters depend on the layer thickness it is better to

use the recursion relations directly in the numerical scheme, not making an

analytical elimination of the expansion functions. This approach may also

be good if the layer is thicker, and is more straightforward than replacing the

layer by a (large) number of thin layers with constant material parameters

or using some numerical scheme like FEM for the layer.

The number of expansion functions, and thereby the number of recursion

relations, that are needed depend on exact material behaviour in the layer.
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If powers higher than linear are used for the material behaviour, then a quite

large number of expansion functions and recursion relations are needed. It

even seems that the expansion can have divergence problems if dMµM/µ0 > 1,

see Eq. 6, but this has not been further investigated, and it requires quite

extreme material behaviour.
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