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Wave propagators for the Timoshenko beam

Dag V�J� Billger a� Peter D� Folkowb��

aThe Imego Institute� Aschebergsgatan ��� S���� �� G	oteborg� Sweden

bDepartment of Mechanics� Chalmers University of Technology� S���
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Abstract

The propagation and scattering of waves on the Timoshenko beam are investigated by

using the method of wave propagators� This method is more general than the scattering

operators connected to the imbedding and Green function approaches� the wave propagators

map the incoming �eld at an internal position onto the scattering �elds at any other inter�

nal position of the scattering region� This formalism contains the imbedding method and

Green function approach as special cases� Equations for the propagator kernels are derived�

as are the conditions for their discontinuities� Symmetry requirements on certain coupling

matrices originating from the wave splitting are considered� They are illustrated by two spe�

ci�c examples� The �rst being an unrestrained beam with a varying cross section and the

other a homogeneous� viscoelastically restrained beam� A numerical algorithm for solving

the equations for the propagator kernels is described� The algorithm is tested for the case

of a viscoelastically restrained� homogeneous beam� In a limit these results agree with the

ones obtained for the re�ection kernel by a previously developed algorithm for the imbedding

re�ection equation�

� Introduction

In the recent past� several direct and inverse wave propagation problems for the Timoshenko beam

have been addressed using time domain techniques� The start of such analysis in beam theory

being marked by the discovery of the wave splitting of the Timoshenko beam equation by Olsson

and Kristensson ���� The wave splitting was used together with the Green function technique in ���

for the direct propagation of waves on a free� homogeneous beam� In ��� the imbedding method was
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applied to derive equations for the re	ection and transmission operator kernels� The imbedding

equations have subsequently been used in the investigation of direct problems �
� �� and have also

found application in inverse beam problems such as the reconstruction of the varying cross section

of a free inhomogeneous beam� see �
�� Another inverse problem is treated in ��� and deals with

the reconstruction of the layer properties of a homogeneous beam on a semiin�nite viscoelastic

foundation�

The present paper concerns the propagation of 	exural waves on an inhomogeneous and visco

elastically restrained Timoshenko beam� utilizing the propagator technique and the wave splitting

of a free homogeneous beam ���� The wave splitting results in coupled equations for the split

�elds in the inhomogeneous and restrained region ���� The various �elds in this region are related

through propagators� which are operators mapping the incoming �eld at a certain cross section

onto the scattered �elds at an arbitrary position� The propagator technique was in this context

introduced by Karlsson and Stewart ��� for dispersive electromagnetic wave propagation� Since

then� the method has been applied extensively to electromagnetic problems ��� �� ��� ��� ��� ��� �
��

but also to elastodynamic ���� and viscoelastic ���� wave propagation problems�

The properties of the propagating waves for small wave front times are of considerable interest

in electrodynamics ��� �� ��� �
� ��� ���� Here the early time behavior of the propagators� characte

rized by rapid oscillations and high amplitudes� is approximated by timedomain precursors using

various power series expansions� These e�ects are not seen in the present paper which make the

precursor e�ects negligible� More accurate approximations are obtained by omitting convolutional

terms in the propagator expressions� However� since the solution of the propagator equation is

not very time consuming� no results based on various approximated equations are presented in

this paper� A way of estimating the contributions from precursors are given in ����

Section � brie	y reviews the equations of an inhomogeneous Timoshenko beam on a visco

elastic support� The concepts of wave splitting and travel time coordinate transformation are

summarized in Section �� Section 
 introduces the wave propagator formalism and states explicit

representations for the propagators in terms of integral kernels� The equations for the propagator

kernels are derived in Section � and the corresponding discontinuities are treated in Section �� The

relation of the wave propagators to the imbedding technique and the Green function approach is

given in Section �� Section � discusses symmetries of the coupling matrices and their representa

tions for two di�erent cases� The numerical algorithm when solving for the propagator kernels is

presented in Section � and some numerical examples are given in Section �� for a homogeneous
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beam on a viscoelastic support� Finally� the propagator kernel equations and the corresponding

discontinuities in the case when the sources are located to the right of the scattering region are

presented and discussed in Appendix A�

� Preliminary remarks

In this and the next section� some of the basic work presented in ��� is brie	y reviewed� Consider

a beam which is inhomogeneous and vertically restrained over a �nite region �Figure ��� This part

of the beam will henceforth be referred to as the region of inhomogeneity and its length is taken

to be d� The restraint is modelled by uniformly distributed� locally acting springs that include the

e�ect of viscoelastic damping� The springs act on the displacement and the rotation of a beam

section�

z

(t)χ
i

r(z)

Figure �� Inhomogeneous beam on viscoelastic suspension�

Using the Timoshenko beam theory ����� the equations of motion are written

�

�z
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�
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�
� f�� � k�� �K� � � � �I

���
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where u�z� t�� ��z� t� and ��z� t� are the mean transverse de	ection� the mean rotation and the

mean shear angle of the cross section� respectively ����� Here� A and I are the area and the moment

of inertia of the cross section� while � is the density of the beam� The shear sti�ness is given by

f� � k�GA and the bending sti�ness is denoted f� � EI � where E is the modulus of elasticity and

G is the shear modulus� The shear coe�cient k� depends on the dimensions of the cross section

and on Poisson�s ratio � ����� Note that A� I � �� E� G and k� may all vary along the beam inside

the region of inhomogeneity� For convenience� the zdependence is suppressed in these and the

following expressions� The main contribution to the elastic part of the external forces is modelled

by spring constants ki� The viscous behaviour is modelled by convolutions with memory functions

Ki�t�� Hence� the response of the suspension is in	uenced by the time history of mean de	ection
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and mean rotation� Note that the memory functions also contribute to the elastic part of the

response�

Using the relation �zu � � � �� ����� can be given as a system of equations

�z

�BBBBBBB�

u

�

�

�z�

�CCCCCCCA
�

�BBBBBBB�

� � � �

� � � �

c��� ��t � �� � ��z ln f� �

� c��� ��t � �� �f�	f� ��z ln f�

�CCCCCCCA

�BBBBBBB�

u

�

�

�z�

�CCCCCCCA
�����

where the two velocities c� �
p
k�G	� �e�ective shear velocity� and c� �

p
E� �rod velocity�

satisfy the inequality c� 
 c�� The operators �� and �� are de�ned as �� �
�
k� �K��

�
	f� and

�� �
�
k� �K��

�
	f�� The choice of dependent variables fu� �� �� �z�g is natural since � � Q	f�

and �z� �M	f�� where Q is the shear force andM is the bending moment� This makes boundary

values easy to express�

It is convenient to write ����� as

�zu � Du� �����

D is an integrodi�erential matrix operator� which may be subdivided into three parts D �

D��D��D�� The �rst term� D�� represents the dynamics of a free �unrestrained�� homogeneous

beam� D� models the in	uence of the restraining viscoelastic layer while the spatial dependence

of the shear and bending sti�nesses is contained in D��

� The wave splitting transformation

The wave splitting transformation is performed in order to diagonalize the Timoshenko equation

of a free� homogeneous beam ���� At a �xed cross section� the wave �elds of such a beam are

decomposed into pairs of uncoupled right and left moving waves� u�� � u
�
� and u�� � u

�
� � Inside a

region of inhomogeneity these waves couple and the interpretation of purely right and left moving

�elds is in general not valid� However� the wave splitting transformation remains a suitable

mathematical tool for studying scattering by inhomogeneities�

The part of ����� that represents a free� homogeneous beam is �zu � D�u� Introduce a

wave splitting operator B and its formal inverse B�� according to w � Bu and u � B
��
w�

where w � �u�� � u
�
� � u

�
� � u

�
� �

T � The matrix operator B is chosen so as to diagonalize D� through






BD�B
�� � diag��������� ��� ��� � ��

Since �zB
�� � � for a homogeneous beam� the equations of motions are diagonalized

�zw � �w� �����

The �i�s are the eigenoperators of D�� which are represented by �i � ��	ci��t � Fi�� Expressions
of the integrodi�erential operators B and B�� and the kernels Fi�t� can be found in ���� Note

that the Fi�t� are of exponential order �	 � where the characteristic time  is de�ned by  �

��	�c��
�
�� c��	c

�
�

�p
f�	f�� which causes the split �elds to increase exponentially with time ����

Explicitly� ����� reads

��z � ��	ci��t� u
�
i � Fi � u�i � �� i � �� ��

Hence� it is clear that the split �elds satisfy uncoupled oneway wave equations� The right moving

waves� u�i � propagate in the positive zdirection with the wavefront velocity ci� while the left

moving counterparts� u�i � propagate in the opposite direction� This transformation is also valid

for a restrained� inhomogeneous beam but then the system of equations is no longer diagonal�

��� Application to the inhomogeneous equation

Application of the wave splitting transformation w � Bu to ����� leads to

�zw � ���L�w� �����

where

� � BD�B
��� L � BD�B

�� �BD�B
�� �B��zB���� �����

The operator L represents the coupling between the split �elds in a restrained and�or inhomoge

neous beam� By introducing the twobytwo submatrices C � diag�c�� c�� and F � diag�F�� F���

the eigenmatrix � may be written � � diag��C���t �F��C���t �F��� Thus� ����� is explicitly
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decomposed into coupled equations for the right and left moving �elds

�I �z �C
���t�u

� � �L�� �F��u� � L��u
��

�I �z �C���t�u� � L��u
� � �L�� �F��u��

���
�

where Lij are the submatrices of L� The twobytwo identity matrix is denoted I� These coupled

equations are the Timoshenko equations expressed in terms of the transformed �elds u��z� t� �

�u�� � u
�
� �

T and u��z� t� � �u�� � u
�
� �

T � The matrix L may contain both convolutional operators

and multiplicative functions� Therefore the following partition is introduced

Lij �Mij�z� �� ��Nij�z�� �����

where the elements are denoted �Mij�kl �Mijkl and �Nij�kl � Nijkl�

��� Travel time coordinates

It is convenient to express the dynamics ���
� on nondimensional form� This is done by introducing

the travel time coordinate transformation

z��z� �
�

l

Z z

�

dz��

c��z���
z� � ��� ��� s�t� �

t

l
� l �

Z d

�

dz��

c��z���
�

where l is the time for the faster wave front to traverse the full length d of the inhomogeneity� The

nondimensional velocities for the wave fronts are chosen such that c�
� � � and c�

� � c�	c� � ��

Thus� the nondimensional travel time for the slower wave front to traverse the distance between

x and y� � � x� y � �� is

��y� x� �

Z y

x

�

��z���
dz��� �����

By transforming the operators to nondimensional form and dropping the primes� the dynamics

���
� are

�I �z �C
���s�u

� �N��u
� �N��u

� � �M�� � F� � u� �M�� � u��

�I �z �C���s�u� �N��u
� �N��u

� �M�� � u� � �M�� �F� � u��
�����
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� The propagator representation

As an incident �eld impinges on the region of inhomogeneity� it is scattered into coupled left and

right moving �elds� Consider waves that are generated in the homogeneous region z 
 � and

propagate in the positive zdirection towards the left boundary of the scattering region� z � �

�Figure ��� The scattered �elds at an internal position y �y � �� are related to the u��eld at

x �x � �� through linear operators known as wave propagators ����� These are de�ned by the

following mapping properties

u
��y� s� y � x� � P���y� x�u��x� s�� �
���

The case in which all sources are present in the homogeneous region z � � is studied in Appendix

A� Note that there are no restrictions on the relative magnitudes of x and y� When y 
 x� the

�elds are propagated backward in both time and space�

1x0

u  (y, s  
u+(y, s  

y

u+(x, s )
u (x, s )

P      -     - y x+ - )
y x+ - )

-++

Figure �� Scattering from sources in z 
 ��

The de�nition of the wave propagators implies the following relations for positive x� x� and y

P
���y� x� � P���y� x��P���x�� x�� �
���

P
���x� x� � P���x� x��P���x�� x� � I � �
���

The last relation suggests the existence of an inverse operator according to �P���y� x���� �

P
���x� y��

The functional form of the propagators is obtained by making use of the canonical representa

tion ���

u
��y� s� �

Z ��

��

U��x� y� s� s��u��x� s�� ds�� �
�
�

where U��x� y� s� is the impulse response at y originating from a right moving �eld at x at time

s � �� While all the responses may contain jump discontinuities� it is only the elements U�
ii that
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carry Dirac�s �distributions along their respective characteristics

U�
���x� y� s� � t�� �y� x���s � ��y� x�� � U�

���x� y� s�
��

U�
���x� y� s� � t�� �y� x���s � y � x� � U�

���x� y� s�
��

�
���

The superscript � refers to the regular parts of the impulse responses U�
ij � Inserting �
��� into

�
�
� and performing a shift in time� s� s� y � x� gives

u
��y� s� y � x� � t��y� x�S�y� x�u��x� s� � �P���y� x� �� � u��x� ����s��

u
��y� s� y � x� � �P���y� x� �� � u��x� ����s��

�
���

where the propagator kernels are de�ned as P���y� x� s� � U��x� y� s � y � x��� Note that the

time variable is local in this de�nition� s � � when waves corresponding to the faster velocity c�

reach y from x�

The elements in the diagonal matrix t��y� x� � diag�t�� �y� x�� t
�
� �y� x�� are the wave fronts

factors that state the attenuation of the direct propagated part in the representation of the u�

�eld in �
���� Equations for these elements are obtained by studying the step function responses�

This results in t�� �y� x� � e
R
y

x
N�����y

�� dy�

and t�� �y� x� � e
R
y

x
N�����y

�� dy�

� Here the order of the

arguments of the wave front factors is shifted as compared to that of ���� The time shift matrix

S�y� x� introduced in �
��� is represented as S�y� x� � diag�S��y� x��S��y� x��� The scalar valued
time shift operators are de�ned Si�y� x�f�x� s� � f�x� s � d�i �y� x��� where d

�
� �y� x� and d�� �y� x�

measure the time elapsed after the arrival of the fast and the slow wave front at y� respectively�

Hence� d�� �y� x� � � and d�� �y� x� � ��y� x�� y � x where ��y� x� is de�ned in ������

The existence of the inverse operator P���x� y� s� is guaranteed by the representation of the

u
��eld �
���� Making use of �
��� and the representation of the right moving �eld �
���� leads to

a set of Volterra equations of the second kind through which the propagator kernels P���x� y� s�

and P���y� x� s� are related

P���x� y� s� � t��x� y�S�x� y�
�
t
��x� y�S�x� y�P���y� x� s�T

�T
� t��x� y�S�x� y�

�
P���x� y� �� �P���y� x� ��� �s� � ��

�



� Equations for the propagator kernels

In this section the equations for the propagator kernels are derived� This is done by using the

dynamics ����� and the representations �
���� Note that di�erent time arguments are used in these

equations� the space and time derivatives being related as

�su
��y� s�js�s�y�x � �su

��y� s� y � x�� �yu
��y� s�js�s�y�x � ��y � �s�u

��y� s� y � x��

Partial di�erentiation of the u�representation �
��� with respect to s and y gives

�su
��y� s� y � x� � t��s

�
Su�

�
� �s

�
P�� � u���

�yu
��y� s� y � x� � �yt

�Su� � t�
�
I�C����s�Su��� �y

�
P�� �u���

while the corresponding partial derivatives of the u�representation �
��� is straightforward� If

nothing else is stated �� N � t�� S� u�� M and P�� are implicitly taken to be ��y�� N �y��

t
��y� x�� S�y� x�� u��x� s��M �y� s� and P���y� x� s�� respectively�

The elements of the propagator kernels may contain jump discontinuities across a set of curves

s � d�i �y� x�� These curves are members of the families of characteristic curves of the propagator

kernels and the corresponding discontinuities are denoted

�
P��

	
i
� P���y� x� d�i �y� x�

���P���y� x� d�i �y� x����

The time and space derivatives of the temporal convolutions above are thus

�s
�
P�� � u�� � �sP

�� � u� �
nX

i��

�
P��

	
i
u
��x� s� d�i ��

�y
�
P�� � u�� � �yP

�� � u� �
nX
i��

��yd
�
i �
�
P��

	
i
u
��x� s� d�i ��

�����

where the distributional parts of the integrands have been extracted on the righthand side� In

serting the representations �
��� into the dynamics ����� and then making use of the relations

����� results in equations consisting of convolutions with u� and sums over contributions from

the curves of discontinuity� These parts can be proven independent and therefore must be treated
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separately ���� The propagator equations originate from the convolutional parts and read

�yP
�� �

�
C�� � I��sP�� �

�
S
�
MT

�� �F
��T

t
�

�N��P
�� �N��P

���
�
M�� �F

� �P�� �M�� �P���
�����

�yP
�� � �C�� � I��sP�� �

�
SMT

��

�T
t
�

�N��P
�� �N��P

�� �M�� �P�� �
�
M�� �F

� �P��� �����

The equations for the discontinuities are

N�
��t

�Su��
nX
i��

�
C�� � I� ��yd

�
i �I

� �
P��

	
i
u
��x� s� d�i � � �� ���
�

N��t
�Su��

nX
i��

�
C�� � I� ��yd

�
i �I

� �
P��

	
i
u
��x� s� d�i � � �� �����

where N�
�� � N�� � diag�N����� N������

The propagator kernels are independent of the incoming and the scattered �elds and depend

solely on the properties of the region of inhomogeneity� Note that the relations above are valid

without any restrictions on the relative magnitudes of x and y� Moreover� in order for the solutions

of ����� and ����� to be causal and the representations �
��� to be consistent with the scattering

problem� the following boundary and initial values must hold for the propagator kernels

P���x� x� s� � P����� x� s� � �� �s � � �from �
�����

P���y� x� ��� � P���y� x� ��� � �� y � x �by causality��

�����

� Discontinuities of the propagator kernels

From the de�nition of the time shift matrix� it is clear that the propagator kernels may be di

scontinuous across the characteristics d�� and d�� emanating from �z� s� � �x� ��� These curves are

marked by solid lines in Figure ��

The magnitude of the jump discontinuities of P�� that are obtained directly from ���
� are

�
P��
��

	
�
�

�

�� �
N���� t

�
� �

�
P��
��

	
�
�

��
�� �

N���� t
�
� � �����

��
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Figure �� The discontinuity characteristics of P���

and
�
P��
��

	
�
�
�
P��
��

	
�
� �� The remaining possible discontinuities in P�� across its characte

ristics d�� and d�� are yet to be determined� As for P��� all the possible jumps across d�� and d��

are obtained directly from ������ The nonzero ones are

�
P����

	
�
�
��
�
N���� t

�
� �

�
P����

	
�
�

��
� � �

N���� t
�
� �

�
P����

	
�
�

��
� � �

N���� t
�
� �

�
P����

	
�
�
��
�
N���� t

�
� �

�����

while
�
P����

	
�
�
�
P����

	
�
�
�
P����

	
�
�
�
P����

	
�
� �� The undetermined jump discontinuities of

P�� can be derived from ����� together with the consistency requirements on the jumps ����� as

y approaches x from the right� In this limit� the sum of all jumps of the respective kernels must

equal zero

�
P��
ij

	
�
jy�x �

�
P��
ij

	
�
jy�x � �� �����

which� using ������ gives

�
P��
��

	
�
jy�x �

���x�
�� ��x�

N�����x��
�
P��
��

	
�
jy�x �

��x�

�� ��x�
N�����x�� ���
�

together with
�
P��
��

	
�
jy�x �

�
P��
��

	
�
jy�x � �� The transport equations for the jump disconti

nuities are obtained from ����� making use of the fact that the lefthand side derivatives are the

��



directional derivatives along the characteristics corresponding to d�� and d�� � Consequently�

d

dy

�
P��
��

	
�
� N����

�
P��
��

	
�
� f���t

�
� �

d

dy

�
P��
��

	
�
� N����

�
P��
��

	
�
�

d

dy

�
P��
��

	
�
� N����

�
P��
��

	
�
�

d

dy

�
P��
��

	
�
� N����

�
P��
��

	
�
� f���t

�
� �

�����

where

f����y� �M�����y� �
��� F��y� �

��� �

�
N����N���� � �

�� �
N����N���� � �

� � �
N����N�����

f����y� �M�����y� �
��� F��y� �

��� �

�
N����N���� �

�

�� �
N����N���� � �

� � �
N����N�����

By integrating ������ together with the boundary values stated in ���
�� the remaining jumps of

P�� are

�
P��
��

	
�
� t��

Z y

x

f����y
��dy��

�
P��
��

	
�
�

���x�
�� ��x�

N�����x�t
�
� �

�
P��
��

	
�
�

��x�

�� ��x�
N�����x�t

�
� �

�
P��
��

	
�
� t��

Z y

x

f����y
��dy��

This far� all the possible discontinuities of P�� are given above� as well as some of the possible

discontinuities of P��� However� it is clear from ����� that P�� may have jumps across curves

with slopes �yd
� � �� and �yd

� � ��� � ��	�� These describe the families of characteristic

curves of ������ The discontinuity characteristics that may emanate from the intersections of d��

and d�� with y � � are � Figure 
�

d�� �y� x� � �� �y� d�� �y� x� � ���� y� � �� y�

d�	 �y� x� � ���� x� � �� �y � x� d�
 �y� x� � ���� y� � ���� x�� y � x�

From ����� it follows that

�
P���j

	
�
�
�
P���j

	
	
�
�
P���j

	
�
�
�
P���j

	


� �� j � �� �� �����

The remaining jump discontinuities of P�� are determined by using the corresponding propagator

��
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Figure 
� The additional discontinuity characteristics of P���

equation ����� together with the consistency requirements on the jumps in the limit y � �

�
P��ij

	
�
jy�� �

�
P��ij

	
�
jy�� �

�
P��ij

	
�
jy�� � ��

�
P��ij

	
�
jy�� �

�
P��ij

	
	
jy�� �

�
P��ij

	


jy�� � ��

These are the analogies of ������ The jump discontinuities not given in ����� are obtained in the

same manner as for the jumps of P��� Hence

�
P����

	


�

����

�
N�������t

�
� ��� x�t

�
� �y� ���

�
P����

	
�
�

����

� � ����
N�������t

�
� ��� x�t

�
� �y� ���

�
P����

	
	
�

����

� � ����
N�������t

�
� ��� x�t

�
� �y� ���

�
P����

	
�
�

�

�
N�������t

�
� ��� x�t

�
� �y� ���

and
�
P����

	
�
�
�
P����

	


�
�
P����

	
�
�
�
P����

	
	
� �� The functions t�i �y� x� are the elements of the

wave front matrix t��y� x� de�ned in Appendix A�

� Related techniques

The wave propagators are related to other time domain formalisms such as the Green function

technique and the imbedding method� This section presents these approaches as special cases of

the propagator technique�

��
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Figure �� The Green function approach�

��� The Green function technique

In the Green function approach operators G� map the incident �elds at z � � to the scattered

ones at y � � �Figure �� as

u
��y� s� y� � G��y�u���� s��

By comparing this to the de�nition of the propagators �
���� it is clear that G��y� � P���y� ���

and the kernels are related through G��y� s� � P���y� �� s�� implying that the equations and

the jump conditions for G��y� s� follow from Section � and Section � with x � �� In ���� Green

functions are obtained for a free homogeneous beam�

��� The imbedding method

1x

u - (x, s )

u+(x, s )
R

0

u+(1, s  T 1   x+ )-

Figure �� The imbedding geometry�

The imbedding approach covers re	ection and transmission on a subregion z � �x� �� of the

whole region of inhomogeneity z � ��� �� �Figure ��� Introducing a �ctitious homogeneous continu

ation to the left of z � x� the scattering problem of the full region is imbedded in a oneparameter

family of scattering problems� The operators R and T are de�ned by

u
��x� s� �R�x�u��x� s�� u

���� s� �� x� � T �x�u��x� s��

Apparently� R�x� � P
���x� x� and T �x� � P

����� x�� Moreover� the kernel relations become

R�x� s� � P���x� x� s� and T�x� s� � P����� x� s�� The equations for R�x� s� and T�x� s� are

�




obtained from propagator equations where the spatial derivatives are taken with respect to the

second variable x instead of y as in Section �� In ��� the imbedding equations are derived with the

transmission kernel T being de�ned in a slightly di�erent manner than above�

� Symmetry properties illustrated by two examples

This section deals with the various symmetries that exists for the coupling functions ������ Their

explicit representations� together with the discontinuities of the propagator kernels� are given for

two di�erent cases�

First consider the operator identity L � I�z�� from ������ where I is a fourbyfour identity

matrix� The matrices C and F are independent under a re	ection of the coordinate system in the

origin ez � �z� Thus� eF � F� eC � C and thereby e� � �� Applying the change of frames giveseL � I�ez � e� � � �I�z ���� By de�ning the matrix A according to

A �

�B�� I

I �

�CA
and using A �I�z ��� � �I�z ���A� the following general relation is obtained

eL � �ALA� �����

Second� consider the operators constituting L as de�ned in ������ It is apparent that

eB � B� eB�� � B��� eD� � D�� �����

and� due to the presence of spatial derivatives�

eD� � �D�� �ez eB�� � ��zB��� �����

For a homogeneous beam that is suspended on a viscoelastic layer� it holds thatD� � �zB
�� �

�� Then from the de�nition of L and using ������ eL � L and therefore fMij �Mij and eNij � Nij �

Combining this result with the general relation ����� gives the following symmetry requirements

��



for the suspended� homogeneous beam

M�� � �M��� M�� � �M��� N�� � �N��� N�� � �N��� ���
�

In the case of a free inhomogeneous beam�D� � �� Making use of ������ it follows that eL � �L
which results in fMij � �Mij and eNij � �Nij � Using ������ the symmetry requirements for the

unrestrained� inhomogeneous beam are obtained as

M�� �M��� M�� �M��� N�� �N��� N�� � N��� �����

��� Viscoelastic damping of a homogeneous beam

For a homogeneous beam that is suspended on a viscoelastic layer of length d� the material

parameters are spatially independent and the operator L in ����� is reduced to L � BD�B
���

The operator L is calculated by means of Laplace transform techniques as described in ���� The

results reveal that none of its matrix elements contain purely multiplicative terms� so the partition

introduced in ����� simpli�es to Lij �Mij����� The convolution kernels can be structured as

M�� � �M�� � ��A� � ��A�� M�� � �M�� � ��A� � ��A�� �����

where the operators �i are de�ned in Section � and the operator matricesAi are found in ���� Note

that these coupling matrices possess the symmetries predicted in ���
�� Further� since Nij � ��

the wave front matrices equal the identity matrix t� � t� � I� According to Section �� the only

nonzero jump discontinuities are given by

�
P��
��

	
�
�

d�

�

�
��k�

f�
�

�

�� ��
f�
f�

�
�y � x��

�
P��
��

	
�
� �d�

�

�
k�
f�

�
�

�� ��
f�
f�

�
�y � x��

��� Unsupported beam with a varying cross section

The second example concerns an unsupported beam that has a region of length d along which

the dimensions of the cross section vary� The cross section is assumed to be either circular or

rectangular� since these are examples of geometries where k� is independent of the cross sectional

dimensions� ����� Thus� the nondimensional velocity � is constant along the beam� Since the beam

is unsupported� D� � � and the operator L � BD�B
�� � B��zB���� The purely multiplicative

��



matrices Nij are given by

N���y� �
�

�

�B��A��y�
A�y� � �

�

A��y�
A�y� �

I��y�
I�y�

� � I��y�
I�y�

�CA � N���y� �
�

�

�B�A��y�
A�y�

�
�

A��y�
A�y� �

I��y�
I�y�

� � I��y�
I�y�

�CA � �����

where N�� � N�� and N�� � N��� The matrices Mij�y� s� may be expressed according to

M�j�y� s� �
�

�
��y�

�
A��y�

A�y�
AM�j���y�s� �

I ��y�

I�y�
BM�j���y�s�

�
� �����

with M�� �M�� and M�� �M��� The function � is de�ned by

��y� �
l


�

���

�� ��
d

s
A�y�

I�y�
� �����

The expressions for the matrixvalued functions AM�j and BM�j are quite complicated and lengthy�

involving modi�ed Bessel functions �
�� Note that the coupling matricesMij and Nij possess the

symmetries predicted in ������

With the elements Nij as stated in ������ the wave front matrices are

t
��y� x� � t��y� x� � diag


s
A�x�

A�y�
�

s
I�x�

I�y�

�
�

Since the multiplicative terms Nij are nonzero� there are several jump discontinuities according

to Section �� These explicit expressions are straightforward to obtain� and thus not presented

here�

	 Numerical method

This section describes an algorithm for solution of the partial integrodi�erential equations satis�ed

by the propagator kernels� A numerical example is presented in Section �� for a homogeneous

beam on a viscoelastic layer�

It has been found that the time dependent coupling matrices are of exponential order �	

���� where  is a characteristic time parameter of the beam and is de�ned in Section �� In or

der to suppress numerical instabilities that occur in the numerical treatment of the equations

for the propagator kernels� this exponential factor is extracted� Thus� introduce the transforma

tion P��
�
�y� x� s� � e���y�sP���y� x� s� together with F��y� s� � e���y�s F�y� s� and Mij

��y� s� �

��



e���y�sMij�y� s�� The argument of the exponential� ��y�s � t	�z�� originates from the intro

duction of the nondimensional variables in Section ���� � is the nondimensional counterpart of

�	 � The time independent coupling matrices Nij�y� remain unchanged� as do the wave front

matrices t��y� x� and the curves of discontinuity d�i �y� x�� However� the timeshift operator is

modi�ed and now reads S ��y� x� � diag
�
e���y�d

�

�
�y�x�S��y� x� � � e���y�d�� �y�x�S��y� x�


� Finally�

the initial conditions and the boundary values ����� remain the same while the magnitudes of the

jump discontinuities alter according to
h
P��ij

�
i
k
� e���y�d

�

k
�y�x�

�
P��ij

	
k
�

Dropping the primes� the equations ����� and ����� for the propagator kernels turn into

�
I�y �

�
C�� � I� �s�P�� � J�

�
I�y �

�
C�� � I

�
�s
�
P�� � J� �����

where the righthand sides are the following matrixvalued functionals

J
� �

�
S
�
MT

�� �F
��T

t
� �

�
N�� � ���y�sI� ��y�

�
I�C����P��

�N��P
���

�
M�� � F

� �P�� �M�� �P���

J
� �

�
SMT

��

�T
t
� �

�
N�� � ���y�sI� ��y�

�
I�C��

��
P��

�N��P
�� �M�� �P�� �

�
M�� �F

� �P���
�����

��� Numerical integration of the propagator equations

In the examples considered in Sections ��� and ��� it is assumed that the velocity ratio � is

constant� Thus� ��y� x� � �y � x�	� from ������ To form the mesh of calculation� the spatial

interval y � �x� �� is divided into N subintervals� The time step� h� is subsequently chosen so that

the characteristic curves corresponding to d��x� coincide with a node point in the mesh at every

time step� this means

sk � kh k � �� �� �� � � � � yn � x� nhy n � �� �� �� � � � � N�

The time step is related to the spatial step through h � ��	� � ��hy and hy � �� � x�	N �

The discretized kernel elements of ����� are denoted P��ij�nk � P��ij �yn� x� sk� and P��ij �y�k �

P��ij �y� x� sk�� The equation for each element is approximated along its family of characteristic

curves� by using the method of Euler and the trapezoidal quadrature rule� These discretizations

are used to set up a predictorcorrector procedure� in which Euler�s method� the predictor� supplies

��



a starting value for an iteration sequence which is generated by the trapezoidal rule� the corrector�

In the algorithm used here� a uniform calculation mesh is formed and linear interpolation is

used to calculate data at points which are not on this mesh� Since the propagator kernels have

jump discontinuities across the characteristic curves d�i � no interpolation is used across these

curves� The values predicted by the method of Euler are� from ������

�
P��
ij�nk

���
� P��

ij �yn��� x� sk���i� �
h

��i
J�
ij �yn��� sk���i��

�
P��ij�nk

���
� P��ij �Yi� x� sk��� �

h

��i
J �ij �Yi� sk����

�����

Here� the factors ��i are the slopes of the characteristics of P��
ij and P��ij � that is ��� � �	� �

�� ��� � �� ��� � ���	� � �� and ��� � ��� Further� Yi � yn � h	��i and represents the

intersections of the paths of integration for the kernel elements P��ij with time sk�� �Figure ���

The correctoriteration formulae for a computational molecule of the uniform mesh is

�
P��
ij�nk

�p���
� P��

ij �yn��� x� sk���i� �
h

���i

�
J �
ij �yn��� sk���i� � J ��ij�yn� sk�


�
P��ij�nk

�p���
� P��ij �Yi� x� sk��� �

h

���i

�
J �ij �Yi� sk��� � J ��ij�yn� sk�

 ���
�

In these formulas� both J ��ij�yn� sk� and J ��ij�yn� sk� involve
�
P��ij�nk

�p�
�

The superscript p � �� �� �� � � � enumerates the iteration sequence for P��ij�nk with both n and k

�xed� The iteration for the uniform mesh is conducted for n � �� �� � � � � N with k �x� The points

of in	uence on the point of calculation� �yn� sk�� belong to the set f�yn��� sk�g 	 f�yq� sr� � q �

n� �� n� n� �� � � r � k � �g�
The temporal convolutions of the functionals stated in ����� are approximated by the trape

zoidal quadrature rule using the uniform time step h� The discretized versions of J� are each

subdivided into two parts� One that depends on P���y� sp� for past time� � 
 p � k� �� and one

extracted part that depends on P���y� sk�� respectively� Note that P
��
ij � � at the left boundary

and therefore only the iterations for P��ij have to be conducted at x � �� Also� at the right

boundary P��ij � � and only the elements P��
ij have to be iterated for at x � �� At all interior

points the kernel elements are simultaneously iterated for�

Algorithm � The scheme for computation of the propagator kernels�

�� Determine the kernel for all mesh nodes at s�� The initial conditions P��ij �x� �� are sequen�

��
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Figure �� The computational molecule�

tially inserted into the predictor�corrector procedure� ����� and ���
�� Thus the discrete set

fP��ij�n�gNn�� is obtained�

�� Determine the kernel elements for all o�node interpolation points at s�� The set fP��ij�n�gNn��
is linearly interpolated� from the uniform mesh� to retrieve P��ij �Yi� s�� for all Yi � �x� ���

In performing the linear interpolation� knowledge of the intersections of the discontinuity

characteristics with the present time step is used to ensure that no interpolation is performed

across such a characteristic curve� If a point of interpolation should fall in between a node

and a jump discontinuity� then the value at the node is used �zeroth order interpolation��

	� Repeat the procedure� The iteration procedure is subsequently repeated to obtain the set

fP��ij�n�gNn��� which is in turn interpolated to give P��ij �Yi� s�� for all Yi � �x� ��� Steps �
	

of this scheme are then applied repeatedly until a pre�set �nal time has been reached�

�
 Numerical example

The numerical example concerns a homogeneous beam on a viscoelastic layer� In the example

the relevant material parameters are chosen to match those of a beam of square cross section�

The Poisson ratio is set to � � ��� and the shear coe�cient k� is chosen in accordance with �����

k� � ���� � ��	��� � ���� � ����� The corresponding velocity thus becomes � � ����� Further�

the length of the viscoelastic suspension need not be explicitly stated� since only the ratio of the

suspensionlength d to the width a of the cross section enters into the equation� This ratio is set

to d	a � ���� in order to make comparisons with the results from ����

Concerning the viscoelastic layer� the viscous damping is modelled by exponential memory

kernels of the form Ki�s� � �kie�s� where ki are the spring constants� In similarity with ��� the

spring constants are set to k� � k� � ���� in all the numerical examples� The discretization time

��
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step is h � ������ Further� since the beam is homogeneous� the scaling function � according to

����� is constant�

Figures � and � present the numerical results for the elements of the kernels P�� for a series

of y� The corresponding results for the elements of P�� are shown in Figures �� and ��� In all of

these examples x � �� so in conformity with what is stated in Section ��� the functions presented

are also the Green functions of the scattering region� Also� the elements of P�� corresponding to

y � � coincide with the elements of the imbedding re	ection kernel� as was stated in Section ����

These results agree with those obtained by the numerical algorithm for the imbedding re	ection

equation� presented in ���� Finally� note the jump discontinuities of P��
�� across d�� �Figure �� and

of P��
�� across d�� �Figure ���

�� Conclusion

In this paper� the wave propagator method is applied in the study of of wave scattering on a

viscoelastically restrained� inhomogeneous Timoshenko beam� The propagators are operators that

map the incoming �eld at a �x cross section onto the scattered �elds at an arbitrary position� The

aim of the work is to present equations for the propagator kernels together with expressions for

their jump discontinuities� In addition� certain symmetry properties are obtained for the coupling

matrices of an inhomogeneous beam as well as for a homogeneous beam subjected to viscoelastic

damping� The behaviour of the propagator kernels is presented in a numerical example concerning

the viscoelastically restrained beam� The imbedding approach and the Green function technique

are related to the propagator formalism� Especially� the propagator kernel P���y� x� s� is equal to

the imbedding re	ection kernel in the limit �y� x�� ��� ��� This fact is used to check the agreement

of the numerical results for the propagators with the results for the corresponding re	ection kernel

obtained by a previously developed algorithm�

A future extension of this work is to study the wave propagation in periodic structures� As an

example� a railroad track may be modelled by a homogeneous beam resting on a periodic layer� It

is likely that the propagators obtained for one period may be used in an e�cient way to develop

propagators for an arbitrary number of periods� see ���� Also� it would be of interest to study

the propagation of waves on a homogeneous beam on an elastic foundation with spatially varying

spring constants� The propagator method may be used to include the in	uence of distributed

piezoelectric sensor and actuator layers on the beam� which has applications in structural control

technologies�

��
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A Wave propagators for sources located in z � �

This appendix treats an analogous scattering problem to the one presented above� The only di�e

rence being that all sources are now present in the region z � � and generate �elds that propagate

in the negative zdirection �Figure ���� The aim is to study the corresponding propagators and to

1x0

u  (x, s )
u+(x, s )

y

u+(y, s  
u (y, s  

P
     -     -

y x- + )
y x- + ) +--

Figure ��� Scattering from sources in z � ��

derive equations for the propagator kernels� Since the procedure is similar to that of Section 
� �

and �� the analysis is kept to a minimum� The de�nitions of the wave propagators are analogous

to �
����

u
��y� s� y � x� � P���y� x�u��x� s��

Consequently� interchanging the plus and minus signs� the composition rules �
����
��� apply here�

The explicit representations of the propagators follow from �
���

u
��y� s� y � x� � t��y� x�S�y� x�u��x� s� � �P���y� x� �� �u��x� ����s��

u
��y� s� y � x� � �P���y� x� �� � u��x� ����s��

Here� the wave front matrix is t��y� x� � diag�t�� �y� x�� t
�
� �y� x�� where t

�
� �y� x� � e

R
y

x
N�����y

�� dy�

and t�� �y� x� � e
R
y

x
N�����y

�� dy�

�

Using the dynamics ������ the equations for the propagator kernels that corresponds to �����

��



and ����� are

�yP
�� � �C�� � I��sP�� �

�
S
�
MT

�� �F
��T

t
�

�N��P
�� �N��P

���
�
M�� �F

� �P�� �M�� �P���

�A���

�yP
�� �

�
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�
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�
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��

�T
t
�

�N��P
�� �N��P

�� �M�� �P�� �
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The equations for the discontinuities become

N�
��t

�Su��
nX
i��

�
C�� � I� �yd

�
i I
� �
P��

	
i
u
��x� s� d�i � � ��

N��t
�Su��

nX
i��

�
C�� � I� �yd

�
i I
� �
P��

	
i
u
��x� s� d�i � � ��

where N�
�� � N�� � diag�N����� N������ For a homogeneous beam on a viscoelastic foundation� it

is clear from ������ ������ �A��� and �A��� that P�� � P�� up to the time when the �rst jump

discontinuity due to re	ection at an end is present�

The jump discontinuities may exist across

d�� �y� x� � �� d�� �y� x� � ��x� y� � y � x� d�� �y� x� � �y

d�� �y� x� � ��y� �� � y� d�	 �y� x� � ��x� �� � �y � x� d�
 �y� x� � ��y� �� � ��x� �� � y � x�

P�� have jumps across d�� and d�� according to

�
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where

f��� � �M�����y� �
��� F��y� �

��� �

�
N����N���� � �

�� �
N����N���� � �

� � �
N����N�����

f��� � �M�����y� �
��� F��y� �

��� �

�
N����N���� �

�

�� �
N����N���� � �

� � �
N����N�����
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The discontinuities of P�� are given as
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