
Chalmers Publication Library

Satellite constellations: Towards the nonlinear channel capacity

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

25th IEEE Photonics Conference, IPC 2012, Burlingame, 23 - 27 September 2012 [Invited]

Citation for the published paper:
Agrell, E. ; Karlsson, M. (2012) "Satellite constellations: Towards the nonlinear channel
capacity". 25th IEEE Photonics Conference, IPC 2012, Burlingame, 23 - 27 September 2012
[Invited] pp. 316-317.

http://dx.doi.org/10.1109/IPCon.2012.6358619

Downloaded from: http://publications.lib.chalmers.se/publication/170232

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/IPCon.2012.6358619
http://publications.lib.chalmers.se/publication/170232


Satellite Constellations:
Towards the Nonlinear Channel Capacity

Erik Agrell and Magnus Karlsson
Chalmers University of Technology, Sweden

agrell@chalmers.se, magnus.karlsson@chalmers.se
(Invited)

Abstract—We present a family of adaptive constellations that,
in a nonlinear optical fiber channel model, has a mutual infor-
mation (modulation-constrained capacity) that does not decrease
with signal power.

I. INTRODUCTION

The fiber nonlinearity is generally regarded as the most
significant obstacle to increase the data rates in high-capacity
fiber-optic systems [1]. Simulations and experiments show
that the symbol- and bit-error rates (SER/BER) have local
minima as functions of the average signal power for any
given modulation format, in almost any investigated optical
link [1]–[3]. It is then often concluded that that channel
capacity (interpreted as the maximum achievable data rate for
the given channel) will have a maximum at a certain signal
power, beyond which the capacity will decrease. However,
this is not correct in general, as was recently shown [4]. In
contrast, the channel capacity is monotonically nondecreasing
with signal power for all linear and nonlinear single-user
channels. The reason for this apparent contradiction is that
the channel capacity is defined as the maximum over all
possible modulation formats and distributions, and such a
search is generally infeasible with reasonable computational
resources. For some specific nonlinear channels, the capacity-
increases-with-power theorem has been shown [5]–[7], and the
monotonically decreasing SER was illustrated in [8].

The purpose of this paper is to illustrate that no sophisticated
optimization procedure is needed to obtain a family of mod-
ulation formats that perform well at arbitrarily high average
power. We introduce a simple class of constellations, referred
to as satellite constellations, whose performance improves, or
stays constant, as the signal power increases. This class of
constellations may have limited practical relevance, but, as
we shall see, they offer a convenient technique to lowerbound
the channel capacity (and upperbound the achievable SER).
Moreover, the nonlinear regime is relatively unexplored and
it it would be of general interest to find capacity-achieving
constellations in this regime. The present study could be one
small step towards this ultimate goal.

As a case study, we consider a simple kind of satellite
constellations, based on phase-shift keying (PSK) modulation,
and evaluate its performance over a nonlinear phase noise
channel [9, Ch. 6], which accounts for inline amplifier noise
and self-phase modulation, assuming negligible dispersion and
cross-channel effects.

Fig. 1. A satellite constellation is characterized by a small probability
mass having a much larger power than the rest of the constellation. This
example shows a (7,1)-PSK constellation with β = 5. Dashed lines indicate
(suboptimal) decision regions.

II. SATELLITE CONSTELLATIONS

We define a satellite constellation loosely as a constellation
that has a high power in a small probability portion of the
constellation. Intuitively, this means that most of the time,
signal points are transmitted with moderate power, for which
the channel is well-behaved.

Satellite constellations can be designed in many different
ways. In this study, we modify a regular M -PSK constellation
with amplitude a into a satellite constellation by increasing the
amplitude of just one of the M points, the “satellite,” to βa for
some parameter β ≥ 1. While such a lone point may contribute
little to capacity, it can consume arbitrarily high signal powers
if located at a sufficiently high amplitude. The constellation,
which we call (M − 1, 1)-PSK, is illustrated in Fig. 1.

An extreme case of a satellite constellation is nonuniform
on–off keying, for which the power is zero with high prob-
ability. Such constellations, or variations thereof, have been
used for certain channels to optimize the SER [10] or mutual
information (MI) [6].

III. CHANNEL MODEL AND DETECTION

As in previous works [2], [7], [8], [11], we use Ho’s
discrete-time model [9, pp. 157, 225–226]. This model is valid
in the limit of low accumulated local dispersion, e.g., for
sufficiently low bandwidth or frequent inline compensation.
The signal gets its main distortion from inline amplifier
noise, which is additive, white, and Gaussian, together with
a nonlinear self-phase modulation, which rotates the phase
of the signal depending on its amplitude. The model was
recently extended to dual polarizations in [3], but here we
use the single-polarization version described in [2], with the
same parameters: A 5000 km system is considered with a
single wavelength, bandwidth (equal to the symbol rate) 42.7
GHz, and distributed amplification. The fiber loss coefficient
is α = 0.058 km−1 (corresponding to 0.25 dB/km), the
nonlinear coefficient is γ = 1.2 (W·km)−1, the amplifier



noise parameter is nsp = 1.41, and the photon energy is
hν = 1.28 ·10−19 W/Hz. These parameters give a total optical
noise power in the receiver of −23.5 dBm, independently of
the signal power. In the receiver, we apply the Lau–Kahn back-
rotation technique [2] to compensate for the deterministic part
of the nonlinear phase noise, but due to the inline noise, a
residual phase noise remains.

The detection rule is a regular M -PSK minimum-distance
detector, except that a received signal with an amplitude
above a certain threshold is always interpreted as the satel-
lite, because when this point is transmitted, the system will
experience a dramatically increased phase noise. This rule is
suboptimal, but simple and sufficient for our purposes. In this
study, the threshold is set somewhat arbitrarily to 2a. The
decision regions are shown in Fig. 1.

IV. NUMERICAL RESULTS

In Fig. 2, the SER is shown as a function of signal
power P for (7,1)-PSK satellite constellations with β rang-
ing from 1 (corresponding to regular 8-PSK with slightly
suboptimal detection) to 10. The minimum SER that can be
attained does not depend appreciably on β, but the power at
which this peak occurs grows approximately proportionally to
1 + (β2 − 1)/M . Most importantly, even though the SER of
any given (M−1, 1)-PSK constellation displays a minimum at
a certain power, after which it increases towards almost 1, the
minimum over all β values does not increase. This envelope
(dashed) serves as a simple upper bound on the achievable
SER with adaptive modulation. The BER (not shown) displays
essentially the same behavior. Stronger upper bounds can be
obtained by optimizing the constellation, detection method,
and thresholds. For instance, pure amplitude-shift keying is
attractive in the nonlinear regime [2], [8].

The MI, which is shown in Fig. 3, also has a peak for any
given (M − 1, 1)-PSK constellation, and the envelope of all
such constellations (dashed) has not. Recalling that the channel
capacity by definition is the supremum of the MI over all
possible source distributions with a certain power, the envelope
serves as a lower bound on channel capacity, a bound that
can be strengthened if a wider class of source distributions
is considered (including varying symbol probabilities or con-
tinuous distributions). This proves that the channel capacity
does not decrease to zero, which is already known for this
particular channel [7]. However, the proof method based on
satellite constellations is applicable to any channel model [4].

V. CONCLUSIONS

We introduced satellite constellations as a means to transmit
at an arbitrarily high signal power without losing performance,
in terms of SER or MI, compared with standard modulation
formats. The key idea is to rescale a portion of the constella-
tions as the signal power increases, rather than the whole con-
stellation linearly. This principle, which was here illustrated
for a simple dispersion-free channel model, is applicable to
arbitrary single-user channels. It provides theoretical insight
into the design of capacity-achieving constellations in the
nonlinear regime and may influence the design of adaptive
modulation formats for nonlinear optical channels.
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Fig. 2. Symbol error rates vs. signal power of (7,1)-PSK at a radius ratio
of β = 1, 5, 10 (solid), where β = 1 corresponds to regular 8-PSK, and the
minimum over all (7,1)-PSK constellations (dashed). The SER of 8-PSK for
the linear Gaussian channel (γ = 0) is included for reference (thick dotted).
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Fig. 3. MI of (7,1)-PSK constellations. The channel capacity is lower-
bounded by the envelope of these curves (dashed line). Included for reference
are the channel capacity (thin dotted) and the 8-PSK MI (thick dotted), both
for the linear Gaussian channel.
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